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ABSTRACT
In two previous publications we have, on the one hand, ex-
tended the description logic (DL) ALCQ by more expressive
number restrictions using numerical and set constraints ex-
pressed in the quantifier-free fragment of Boolean Algebra
with Presburger Arithmetic (QFBAPA). The resulting DL
was called ALCSCC. On the other hand, we have extended
the terminological formalism of the well-known description
logic ALC from concept inclusions (CIs) to more general car-
dinality constraints expressed in QFBAPA, which we called
extended cardinality constraints. Here, we combine the two
extensions, i.e., we consider extended cardinality constraints
on ALCSCC concepts. We show that this does not increase
the complexity of reasoning, which is NExpTime-complete
both for extended cardinality constraints in the DLALC and
in its extension ALCSCC. The same is true for a restricted
version of such cardinality constraints, where the complexity
of reasoning decreases to ExpTime, not just for ALC, but
also for ALCSCC.

CCS Concepts
•Theory of computation → Description logics;

Keywords
Description Logic, Number Restrictions, Cardinality Restric-
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1. INTRODUCTION
Description Logics (DLs) [4] are a well-investigated family
of logic-based knowledge representation languages, which
are frequently used to formalize ontologies for application
domains such as biology and medicine [11]. To define the
important notions of such an application domain as formal
concepts, DLs state necessary and sufficient conditions for
an individual to belong to a concept. These conditions can
be Boolean combinations of atomic properties required for
the individual (expressed by concept names) or properties
that refer to relationships with other individuals and their
properties (expressed as role restrictions). Using an example
from [6], the concept of a motor vehicle can be formalized
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by the concept description

Vehicle u ∃part.Motor,

which uses the concept names Vehicle and Motor and the
role name part as well as the concept constructors conjunc-
tion (u) and existential restriction (∃r.C). The concept in-
clusion (CI)

Motor-vehicle v Vehicle u ∃part.Motor

can then be used to state that every motor vehicle needs to
belong to this concept description.

Numerical constraints on the number of role successors (so-
called number restrictions) have been used early on in DLs
[8, 13, 12]. For example, using number restrictions, motorcy-
cles can be constrained to being motor vehicles with exactly
two wheels:

Motorcycle v Motor-vehicle u
(6 2 part.Wheel) u (> 2 part.Wheel).

The exact complexity of reasoning in ALCQ, the DL that
has all Boolean operations and number restrictions of the
form (6n r.C) and (>n r.C) as concept constructors, was
determined by Stephan Tobies [18, 20]: it is PSpace-complete
without CIs and ExpTime-complete w.r.t. CIs, independently
of whether the numbers occurring in the number restrictions
are encoded in unary or binary. Note that, using unary cod-
ing of numbers, the number n is assumed to contribute n to
the size of the input, whereas with binary coding the size of
the number n is logn. Thus, for large numbers, using binary
coding is more realistic.

The classical number restrictions available in ALCQ can
only be used to compare the number of role successors of
an individual with a fixed natural number. They cannot
relate numbers of different kinds of role successors to each
other. This would, e.g., be required to state that the number
of cylinders of a motor coincides with the number of spark
plugs in this motor, without fixing what this number actu-
ally is. To overcome this deficit, we have extended ALCQ by
allowing the statement of constraints on role successors that
are more general than the number restrictions of ALCQ [1].
To formulate these constraints, we have used the quantifier-
free fragment of Boolean Algebra with Presburger Arith-
metic (QFBAPA) [15], in which one can express Boolean
combinations of set constraints and numerical constraints
on the cardinalities of sets. In the resulting logic ALCSCC,
the above constraint regarding cylinders and spark plugs



can be expressed using a cardinality constraint on the role
successors:

Motor v succ(|part ∩ Cylinder | = |part ∩ SparkPlug |).

In general, such a succ-expression considers the set of all
role successors of a given individual, and requires certain
subsets to satisfy the stated QFBAPA constraints. In our
example, the cardinality of the set of part-successors that
belong to the concept Cylinder must be the same as of the
set of part-successors that belong to the concept SparkPlug .

Such cardinality constraints strictly extend the expressive
power ofALCQ. In [1] it shown that the constraint succ(|r| =
|s|), which describes individuals that have the same num-
ber of r-successors as s-successors, cannot be expressed in
ALCQ. In [5], the constraint succ(|r ∩ A| = |r ∩ ¬A|) de-
scribing individuals such that the number of r-successors
belonging to A is the same as the number of r-successors
not belonging to A was shown to be not even expressible in
first-order logic. Intuitively, both kinds of constraints can,
e.g., be used to describe people that have the same number
of sons and daughters, where in the first constraint one uses
roles son and daughter , whereas in the second one uses the
role child and the concept Male.

In spite of this considerable increase of the expressive power,
we were able to show in [1] that this does not increase the
complexity of reasoning: like for ALCQ, the complexity of
the satisfiability problem in ALCSCC is PSpace-complete
without CIs and ExpTime-complete w.r.t. CIs. While the
PSpace result also follows from previous work on modal log-
ics with Presburger constraints [9], the ExpTime result was
new.

Whereas number restrictions are local in the sense that they
consider role successors of an individual under consideration
(e.g. the wheels that are part of a particular motor vehicle),
cardinality restrictions on concepts (CRs) [3, 19] are global,
i.e., they consider all individuals in an interpretation. For
example, the cardinality restriction

(6 45000000 (Car u ∃registered-in.German-district))

states that at most 45 million cars are registered all over
Germany. Such cardinality restrictions can express CIs (C v
D is equivalent to (6 0 (Cu¬D))), but are considerably more
expressive. In fact, it is well known that models of CIs in
ALC and ALCQ are closed under disjoint union (see [7],
Theorem 3.8, for a proof in the case of ALC), but models of
a CR like (6 1A) are clearly not.

In addition, CRs increase the complexity of reasoning: for
the DLsALC andALCQ, consistency w.r.t. CIs is ExpTime-
complete [16, 20], but consistency w.r.t. CRs is NExpTime-
complete if the numbers occurring in the CRs are assumed to
be encoded in binary [19]. With unary coding of numbers,
consistency stays ExpTime-complete even w.r.t. CRs [19],
but the above example considering 45 million cars clearly
shows that unary coding is not appropriate if numbers with
large values are employed.

Just like classical number restrictions, CRs can only relate
the cardinality of a concept to a fixed number. In [6], we
have introduced and investigate more general constraints on
the cardinalities of concepts, which we called extended cardi-

nality constraints. The main idea was again to use QFBAPA
to formulate and combine these constraints. An example of
a constraint expressible this way, but not expressible using
CRs is

2 · |Car u ∃registered-in.German-district u ∃fuel.Diesel|
≤ |Car u ∃registered-in.German-district u ∃fuel.Petrol|,

which states that, in Germany, cars running on petrol out-
number cars running on diesel by a factor of at least two.

In [6] it is shown that, in the DL ALC, the complexity of rea-
soning w.r.t. extended cardinality constraints (NExpTime
for binary coding of numbers) is the same as for reasoning
w.r.t. CRs. In addition, the paper introduces a restricted
version of this formalism, which can express CIs, but not
CRs, and shows that this way the complexity can be lowered
to ExpTime. The NExpTime upper bound for the general
case actually also follows from the NExpTime upper bound
in [21] for a more expressive logic with n-ary relations and
function symbols, but the ExpTime result for the restricted
case was new. Regarding expressive power, we will show
in this paper that, in contrast to CRs, extended cardinality
constraints cannot be expressed in first-order logic.

The results on the complexity of reasoning with extended
cardinality constraints in [6] were restricted to concepts of
the DL ALC. It was not even clear whether the complexity
upper bounds also hold for ALCQ, let alone the consider-
ably more expressive DL ALCSCC. In the present paper,
we combine the work in [1] and [6] by considering extended
cardinality constraints in ALCSCC. This turned out to be
non-trivial since the local cardinality constraints of ALCSCC
may interact with the global ones in the extended cardi-
nality constraints. Nevertheless, we are able to show that
the complexity results (NExpTime-complete in general, and
ExpTime-complete in the restricted case) hold not only for
ALC, but also for ALCSCC.

2. PRELIMINARIES
Before we define ALCSCC and extended cardinality con-
straints, we must introduce QFBAPA, on which both are
based. More details on this logic can be found in [15].

2.1 The logic QFBAPA
In this logic one can build set terms by applying Boolean
operations (intersection ∩, union ∪, and complement ·c) to
set variables as well as the constants ∅ and U . Set terms s, t
can then be used to state inclusion and equality constraints
(s = t, s ⊆ t) between sets. For example, if Car, Motorcycle,
Motor-vehicle are set variables, then the set constraints

Car ∩Motorcycle = ∅, Car ∪Motorcycle ⊆ Motor-vehicle

say that cars are not motorcycles, and that both are motor
vehicles.

Presburger Arithmetic (PA) expressions are built from in-
teger variables, integer constants, and set cardinalities |s|
using addition as well as multiplication with an integer con-
stant. They can be used to form numerical constraints of the
form k = `, k < `,N dvd `, where k, ` are PA expressions, N
is an integer constant, and dvd stands for divisibility. For



example, the numerical constraint

|Car| > 10·(|Motorcycle|+ |EBike|)

says that there are more than ten times as many cars as there
are motorcycles and E-bikes together. A QFBAPA formula
is a Boolean combination of set and numerical constraints.
For example, the QFBAPA formula

|GoodThing| > 0⇒ |GoodThing| ≥ 3

expresses the saying that all good things come in threes.

A solution σ of a QFBAPA formula φ assigns a finite set
σ(U) to U , subsets of σ(U) to set variables, and integers to
integer variables such that φ is satisfied by this assignment.
The evaluation of set terms, PA expressions, and set and
numerical constraints w.r.t. σ is defined in the obvious way.
For example, σ satisfies the numerical constraint |s ∪ t| =
|s| + |t| for set variables s, t if the cardinality of the union
of the sets σ(s) and σ(t) is the same as the sum of the
cardinalities of these sets. Note that this is the case iff σ(s)
and σ(t) are disjoint, which we could also have expressed
using the set constraint s ∩ t ⊆ ∅, as in the above example.
A QFBAPA formula φ is satisfiable if it has a solution. As
shown in [15], satisfiability of QFBAPA formulae is an NP-
complete problem.

The main tool used in [15] to show that satisfiability in QF-
BAPA is in NP is a “sparse solution” lemma (see Lemma 1
below), which will also turn out to be useful for showing
one of our complexity upper bounds. Assume that φ is a
QFBAPA formula containing the set variables X1, . . . , Xk.
A Venn region is of the form

Xc1
1 ∩ . . . ∩X

ck
k ,

where ci is either empty or c for i = 1, . . . , k. It is shown in
[15] that, given φ, one can easily compute a number N whose
value is polynomial in the size of φ such that the following
holds: φ is satisfiable iff it has a solution in which ≤ N Venn
regions are interpreted by non-empty sets. Taking a closer
look at how this result is proved in [15], one can actually
strengthen it (see [1] for a proof).

Lemma 1. For every QFBAPA formula φ, one can com-
pute in polynomial time a number N whose value is polyno-
mial in the size of φ such that the following holds for every
solution σ of φ: there is a solution σ′ of φ such that

• |{v | v Venn region and σ′(v) 6= ∅}| ≤ N , and

• {v | v Venn region and σ′(v) 6= ∅} ⊆
{v | v Venn region and σ(v) 6= ∅}.

2.2 Extended number restrictions
In the following, we recall syntax and semantics of ALCSCC.
In this logic, which was first introduced in [1], numerical and
set constraints of QFBAPA can be used to formulate more
expressive number restrictions. Basically, ALCSCC provides
us with Boolean operations on concepts and constraints on
role successors, which are expressed in QFBAPA. In these
constraints, role names and concept descriptions can be used
as set variables, and there are no PA variables allowed.

Definition 2 (Syntax of ALCSCC). Given finite, dis-
joint sets NC of concept names and NR of role names, the set
of ALCSCC concept descriptions over the signature (NC , NR)
is inductively defined as follows:

• every concept name in NC is an ALCSCC concept de-
scription over (NC , NR);

• if C,D are ALCSCC concept descriptions over the sig-
nature (NC , NR), then so are C uD, C tD, and ¬C;

• if Con is a set or numerical constraint of QFBAPA
using role names and already defined ALCSCC concept
descriptions over the signature (NC , NR) as set vari-
ables, then succ(Con) is an ALCSCC concept descrip-
tion over (NC , NR).

An ALCSCC TBox over (NC , NR) is a finite set of concept
inclusions of the form C v D, where C,D are ALCSCC
concept descriptions over (NC , NR).

For example, the ALCSCC concept description

Female u succ(|child ∩ Female| = |child ∩Male|)

describes all female individuals that have exactly as many
sons as daughters. Of course, successor constraints can also
be nested, as in the ALCSCC concept description

succ(|child ∩ succ(child ⊆ Female)| =
|child ∩ succ(child ⊆ Male)|),

which describes all individuals having as many children that
have only daughters as they have children having only sons.
For the sake of simplicity, we will sometimes use “concept”
in place of “concept description,” and often dispense with
explicitly mentioning the signature.

As usual in DL, the semantics of ALCSCC is defined using
the notion of an interpretation. A more detailed definition
of the semantics can be found in [1].

Definition 3 (Semantics of ALCSCC). Given finite,
disjoint sets NC and NR of concept and role names, respec-
tively, an interpretation of NC and NR consists of a non-
empty and finite set ∆I and a mapping ·I that maps every
concept name A ∈ NC to a subset AI of ∆I and every
role name r ∈ NR to a binary relation rI over ∆I . Given
an individual d ∈ ∆I and a role name r ∈ NR, we de-
fine rI(d) := {e ∈ ∆I | (d, e) ∈ rI} (r-successors) and
arsI(d) :=

⋃
r∈NR

rI(d) (all role successors).

The function ·I is inductively extended to ALCSCC concept
descriptions over (NC , NR) by interpreting u, t, and ¬ re-
spectively as intersection, union and complement. Successor
constraints are evaluated according to the semantics of QF-
BAPA: to determine whether d ∈ succ(Con)I or not,

• U is evaluated as arsI(d)
(i.e., the set of all role successors of d),

• ∅ as the empty set,

• roles r occurring in Con as rI(d)
(i.e., the set of r-successors of d),

• and concept descriptions D as DI ∩ arsI(d)
(i.e., the set of role successors of d that belong to D).
Note that, by induction, the sets DI are well-defined.



Then d ∈ succ(Con)I iff the substitution obtained this way
is a solution of the QFBAPA formula Con.
The interpretation I is a model of the TBox T if CI ⊆ DI

holds for all C v D ∈ T . The ALCSCC concept description
C is satisfiable if there is an interpretation I such that CI 6=
∅, and it is satisfiable w.r.t. the TBox T if there is a model I
of T such that CI 6= ∅. The ALCSCC concept descriptions
C,D are equivalent (written C ≡ D) if CI = DI for all
interpretations I.

Note that, in the above definition, interpretations are re-
quired to have a finite domain to ensure that all the sets
considered when evaluating QFBAPA constraints are finite.
In [1] a weaker restriction is used, where only the number
of role successors of all individuals must be finite. Here we
use the stronger restrictions that ∆I is finite since we need
this restriction in the presence of extended cardinality con-
straints [6] (see below). By using a variant of QFBAPA that
can also deal with infinite sets [14, 5], one can actually de-
fine a variant of ALCSCC in which the restriction to finite
domains is not needed [5]. However, in the following we stick
with the version originally introduced in [1, 6] and defined
above.

Note that ALCSCC contains the well-known DLs ALC and
ALCQ as sub-logics. In fact, in ALC only successors con-
straints of the form succ(r ⊆ C) and succ(|r ∩ C| ≥ 1) are
allowed, which are usually written as ∀r.C and ∃r.C, re-
spectively. Similarly, in ALCQ only successors constraints
of the form succ(|r ∩ C| ≤ n) and succ(|r ∩ C| ≥ n) are
allowed, which are usually written as 6n r.C and >n r.C,
respectively.

As shown in [1], satisfiability of ALCSCC concept descrip-
tions is PSpace-complete without TBox and ExpTime-complete
w.r.t. TBoxes. Thus, these problems have the same com-
plexity as in ALC and ALCQ.

2.3 Extended cardinality constraints
Basically, extended cardinality constraints are QFBAPA for-
mulae where ALCSCC concept descriptions are used in place
of set variables. However, since inclusion constraints s ⊆ t
(and thus equality constraints) can be expressed as cardi-
nality constraints |s ∩ tc| ≤ 0, we do not explicitly allow
the use of set constraints. In addition, since ALCSCC has
all Boolean operations on concepts, we do not need Boolean
operations on set terms. Consequently, we define extended
cardinality constraints on ALCSCC concepts as follows:

Definition 4. Let NC and NR be finite, disjoint sets
concept names and of role names, respectively.

• ALCSCC cardinality terms over the signature (NC , NR)
are built from integer constants and concept cardinali-
ties |C| for ALCSCC concepts C over (NC , NR) using
addition and multiplication with integer constants.

• ExtendedALCSCC cardinality constraints over the sig-
nature (NC , NR) are of the form k = `, k < `,N dvd `,
where N is an integer constant and k, ` are ALCSCC
cardinality terms over (NC , NR).

• Extended ALCSCC cardinality boxes over the signa-
ture (NC , NR) are Boolean combinations of extended

ALCSCC cardinality constraints over (NC , NR). We
will call such a Boolean combination an ECBox.

When defining the semantics of ECBoxes, we again restrict
the attention to finite interpretations to ensure that car-
dinalities of concepts are always well-defined non-negative
integers. Given a finite interpretation I, concept cardinal-
ities are interpreted in the obvious way, i.e., |C|I := |CI |.
Addition and multiplication in cardinality terms are inter-
preted as the usual addition and multiplication operations
on integers, and the same is the case for the comparison op-
erators =, <, and divisibility dvd. This yields the semantics
of extended ALCSCC cardinality constraints and thus also
of their Boolean combinations.

As shown in [5], ALCSCC concepts are in general nor ex-
pressible in first-order logic. We will show now that the
same is true for extended cardinality constraints, even if
the concepts used within these constraints are first-order
expressible.

Proposition 5. The extended cardinality constraint

2 dvd |>|

cannot be expressed in first-order logic, i.e., there is no first-
order sentence ϕ such that ϕ and 2 dvd |>| have the same
finite models.

Proof. Clearly, a given interpretation I = (∆I , ·I) satis-
fies the extended cardinality constraint 2 dvd |>| iff the car-
dinality of ∆I is even. However, even cardinality of the
domain cannot be expressed in first-order logic since this
would contradict the so-called 0–1-law. To be more precise,
the 0–1-law says the following. For a first-order sentence ϕ
and a positive integer N , let pN be the percentage of inter-
pretations with domain {1, . . . , N} that satisfy ϕ among all
interpretations with this domain. Then limN→∞ pN exists
and is either 0 or 1 [10]. Obviously, if ϕ were a first-order
sentence expressing even cardinality, then we would have
`N = 0 if N is odd and `N = 1 if N is even, and thus the
limit would not exist.

Regarding the complexity of reasoning with extended cardi-
nality constraints, note that extended cardinality constraints
on ALC concepts are clearly a special case of extended cardi-
nality constraints on ALCSCC concepts. In [6] it was shown
that consistency of ALC ECBoxes is a NExpTime-complete
problem independently of whether the numbers occurring in
the ECBoxes are encoded in unary or binary. The hardness
result clearly transfers to ALCSCC.

Proposition 6. Consistency of ECBoxes is NExpTime-
hard in ALCSCC both for unary and binary coding of num-
bers.

In the next section, we show that the NExpTime upper
bound holds not only for ALC, but also for ALCSCC.

3. CONSISTENCY OF ECBOXES
In the following we consider an ALCSCC ECBox E and show
how to test E for consistency by reducing this problem to the



problem of testing satisfiability of QFBAPA formulae. Since
the reduction is exponential and satisfiability in QFBAPA
is in NP, this yields a NExpTime upper bound for consis-
tency of ALCSCC ECBoxes. Such an ExpTime-reduction to
satisfiability in QFBAPA has already been used in the con-
sistency procedure for ALC ECBoxes in [6]. However, for
ALCSCC it needs to be extended considerably. In addition
to encoding the global cardinality constraints in E using the
notion of a type, we also need to take care of the local con-
straints expressed by successor constraints within ALCSCC,
and to link both kinds of constraints. This makes both the
reduction and the proof of its correctness considerably more
complicated.

Given a set of concept descriptions M, the type of an in-
dividual in an interpretation consists of the elements of M
to which the individual belongs. Such a type t can also be
seen as a concept description Ct, which is the conjunction
of all the elements of t. We assume in the following, that
M consists of all subdescriptions of the concept descriptions
occurring in E as well as the negations of these subdescrip-
tions.

Definition 7. A subset t ofM is a type for E if it satis-
fies the following properties for all concept descriptions C,D:

1. if ¬C ∈M, then either C or ¬C belongs to t;

2. if C uD ∈M, then C uD ∈ t iff C ∈ t and D ∈ t;

3. if C tD ∈M, then C tD ∈ t iff C ∈ t or D ∈ t.

We denote the set of all types for E with types(E). Given an
interpretation I and an individual d ∈ ∆I , the type of d is
the set

tI(d) := {C ∈M | d ∈ CI}.

It is easy to show that the type of an individual really satis-
fies the conditions stated in the definition of a type. Due to
Condition 1 in the definition of types, concept descriptions
induced by different types are disjoint, and all concept de-
scriptions inM can be obtained as the disjoint union of the
concept descriptions induced by the types containing them.
In particular, we have for all finite interpretations I:

|CI | =
∑

t type withC∈t

|CI
t |.

We transform the ECBox E into a QFBAPA formula φE by
introducing an integer variable vt for every type t, stating
that these variables have a non-negative value, and then
replacing every concept cardinality |C| in E by the sum of
the corresponding type variables, i.e.,

|C| is replaced by
∑

t type withC∈t

vt.

A model I of E then yields a solution of φE as follows: if we
define σ(vt) := |CI

t | for all types t, then σ is a solution of
the QFBAPA formula φE .

However, not every solution of φE is induced by a model of
E in this way. For example, let

E := | succ(|A ∩ r| ≥ 5)| ≥ 1 ∧ |A| ≤ 3.

In this case, M consists of the concept descriptions

A,¬A, succ(|A ∩ r| ≥ 5),¬ succ(|A ∩ r| ≥ 5),

and there are four types:

t1 := {A, succ(|A ∩ r| ≥ 5)},
t2 := {¬A, succ(|A ∩ r| ≥ 5)},
t3 := {A,¬ succ(|A ∩ r| ≥ 5)},
t4 := {¬A,¬ succ(|A ∩ r| ≥ 5)}.

The ECBox E is now translated into the QFBAPA formula
φE by replacing | succ(|A∩r| ≥ 5)| with vt1 +vt2 and |A| with
vt1 + vt3 and adding the information that vt1 , vt2 , vt3 , vt4
have values ≥ 0, i.e., φE is the following formula:

φE = vt1 ≥ 0 ∧ vt2 ≥ 0 ∧ vt3 ≥ 0 ∧ vt4 ≥ 0 ∧
vt1 + vt2 ≥ 1 ∧ vt1 + vt3 ≤ 3.

If we set σ(vt1) = σ(vt3) = σ(vt4) = 0 and σ(vt2) = 1, then
σ is a solution of φE . However, E does not have a model.
In fact, E requires that there is an element belonging to the
concept succ(|A ∩ r| ≥ 5), which implies that this element
must have at least 5 distinct r-successors belonging to A.
However, this is prohibited by E since the second conjunct
states that globally (i.e., in the whole model) there are at
most 3 elements belonging to A.

This example shows that we must take elements required by
successor constraints into account. Basically, if a type t is
realized in the sense that the variable vt receives a value > 0,
then we must ensure that also types required by the succes-
sor constraints in t are realized with the right multiplicity.
In our example, the types t1 and t2 require that an ele-
ment belonging to them has at least 5 distinct r-successors
belonging to A. As shown in [1], we can express such con-
straints again by QFBAPA formulae. Given a type t, the
(possibly negated) successor constraints occurring in t in-
duce a QFBAPA formula ψt, in which the concepts C and
roles r occurring in these constraints induce set variables
Xt
C and Xt

r. In addition, to take into account the semantics
of ALCSCC, we conjoin

αt := (U t =
⋃

r∈NR

Xt
r) ∧

∧
C∈M

Xt
C ⊆ U t

to the formula obtained from the successor constraints and
replace U in these constraints by U t. In our example, we
have

ψt1 := |Xt1
A ∩X

t1
r | ≥ 5 ∧ αt1 ,

ψt2 := |Xt2
A ∩X

t2
r | ≥ 5 ∧ αt2 ,

ψt3 := ¬(|Xt3
A ∩X

t3
r | ≥ 5) ∧ αt3 ,

ψt4 := ¬(|Xt4
A ∩X

t4
r | ≥ 5) ∧ αt4 .

In principle, the formula ψt constrains the “local” role suc-
cessors of an individual of type t. In order to ensure that
the Boolean structure of concepts is respected by the set
variables, we introduce

βt :=
∧

CuD∈M

Xt
CuD = Xt

C ∩Xt
D ∧∧

CtD∈M

Xt
CtD = Xt

C ∪Xt
D ∧

∧
¬C∈M

X¬C = (Xt
C)
c
.

Lemma 8. If σ solves βt, then for every e ∈ σ(U t) there
is a unique type te such that e ∈

⋂
C∈te σ(Xt

C).



Proof. Given e ∈ σ(U t), we define

te := {C ∈M | e ∈ σ(Xt
C)}.

By definition, te satisfies e ∈
⋂
C∈te σ(Xt

C). The set te is a

type since σ satisfies βt. Finally, assume that t′ is a type
such that e ∈

⋂
C∈t′ σ(Xt

C). To show that t = t′, first

assume that C ∈ t′. Then e ∈ σ(Xt
C), which implies C ∈ te

by the definition of te. Conversely, if C 6∈ t′, then ¬C ∈ t′
and thus ¬C ∈ te, which yields C 6∈ te.

It remains to link the local constraints ψt and βt with the
global ones in case type t is populated. Basically, we need
to ensure that our solutions of the local constraints do not
assume that a concept is populated by more individuals than
the solution of the global constraints allows. This can be
expressed by the following QFBAPA formula:

γt :=
∧

t′∈types(E)

|
⋂
C∈t′

Xt
C | ≤ vt′ . (1)

In our example, the formulae γti (for 1 ≤ i ≤ 4) in particular
contain the conjuncts

|Xti
A ∩X

ti
C | ≤ vt1 and |Xti

A ∩X
ti
¬C | ≤ vt3 ,

where C = succ(|A ∩ r| ≥ 5). Overall, we translate the
ALCSCC ECBox E into the QFBAPA formula

δE := φE ∧
∧

t∈types(E)

vt = 0 ∨ (ψt ∧ βt ∧ γt).

Assume that σ is a solution of δE for the ECBox E of our
example. Then σ(vt1) + σ(vt2) ≥ 1, which implies that
σ(vt1) > 0 or σ(vt2) > 0. If σ(vt1) > 0, then σ must satisfy
ψt1 , βt1 , and γt1 . Now, γt1 and βt1 yield that |σ(Xt1

A )| =
|σ(Xt1

A ∩ X
t1
C )| + |σ(Xt1

A ∩ X
t1
¬C)| ≤ σ(vt1) + σ(vt3) ≤ 3,

where the latter inequality holds because σ satisfies the con-
junct vt1 + vt3 ≤ 3 of φE . This yields a contradiction to
|σ(Xt1

A )| ≥ 5, which is obtained from ψt1 , and thus σ(vt1) =
0. However, then we must have σ(vt2) > 0, which also leads
to a contradiction: 5 ≤ |σ(Xt2

A )| ≤ σ(vt1) + σ(vt3) ≤ 3.
This shows that δE does not have a solution in our example,
which corresponds to the fact that E is actually inconsistent.

The next lemma shows that there is indeed a 1–1-relationship
between solvability of δE and consistency of E .

Lemma 9. The QFBAPA formula δE is of size at most
exponential in the size of E, and it is satisfiable iff E is con-
sistent.

Proof. The at most exponential size of δE is an easy
consequence of the fact that there are at most exponentially
many types t, and thus at most exponentially many vari-
ables vt since the cardinality of M is linear in the size of E .
This implies that the size of φE is at most exponential. For
every type t, the size of ψt∧βt is polynomial in the size of E
since the cardinality of M is linear in the size of E and the
constraints in ψt not contained in αt are obtained from suc-
cessor constraints occurring in the concepts in M. Finally,
the size of γt is at most exponential in the size of E since
there are at most |M| concepts C and at most exponentially
many types t′.

Now, assume that the finite interpretation I is a model of
E . If we define σ as σ(vt) := |CI

t | for all types t, then we
know that σ solves φE . Let t by a type such that σ(vt) 6= 0.
Then there is an individual d ∈ ∆I such that d ∈ CI

t . The
semantics of ALCSCC then implies that we can extend σ
to a solution of ψt by interpreting the set variables with
superscript t using the role successors of d:

σ(Xt
r) := {e | (d, e) ∈ rI}, σ(U t) :=

⋃
r∈NR

σ(Xt
r), and

σ(Xt
C) := CI ∩ σ(U t).

This obviously satisfies βt, and it also yields a solution of
γt since the following holds for all types t′:

⋂
C∈t′ σ(Xt

C) ⊆⋂
C∈t′ C

I = CI
t′ and thus |

⋂
C∈t′ σ(Xt

C)| ≤ |CI
t′ | = σ(vt′).

If t is a type such that σ(vt) = 0, then it is not necessary for
σ to satisfy ψt, βt, and γt. We can thus extend σ to the set
variables with superscript t in an arbitrary way, for instance
by interpreting all of them as the empty set. Overall, this
show that we can use a model of E to define a solution σ of
the QFBAPA formula δE .

Conversely, assume that there is a solution σ of δE . Let

Tσ := {t | t type with σ(vt) 6= 0}

be the types that are realized by σ. We now define a finite
interpretation I and show that it is a model of E . The
interpretation domain consists of copies of the realized types,
where the number of copies is determined by σ:

∆I := {(t, j) | t ∈ Tσ and 1 ≤ j ≤ σ(vt)}.

For concept names A we define

AI := {(t, j) ∈ ∆I | A ∈ t}.

Defining the interpretation of a role name in I is a bit more
involved. Consider a type t ∈ Tσ. Then σ satisfies ψt, βt,
and γt. The solution of ψt yields a finite set σ(U t) and
interprets the set variables Xt

r and Xt
C as subsets of σ(U t)

such that ψt is satisfied. By Lemma 8, for every element e of
σ(U t) there is a unique type te such that e ∈

⋂
C∈te σ(Xt

C).
In addition, the fact that σ satisfies γt implies that, for all
types t′, we have |{e ∈ σ(U t) | te = t′}| ≤ σ(vt′). This show
that there exists an injective mapping πt of σ(U t) into ∆I

such that πt(e) = (t′, j) implies that t′ = te. Given a role
name r, we now define

rI := {((t, j), (t′, j′)) ∈ ∆I ×∆I | ∃e ∈ σ(U t) :
πt(e) = (t′, j′)∧ e ∈ σ(Xt

r)}.

Note that πt is a bijection between σ(U t) and the role suc-
cessors of (t, j) ∈ ∆I . To show this it is enough to prove
that, for all e ∈ σ(U t), there is a role r ∈ NR such that
e ∈ σ(Xt

r). This is an immediate consequence of the fact
that σ satisfies αt.

We want to show that the following holds for all types t ∈ Tσ
and j, 1 ≤ j ≤ σ(vt): (t, j) ∈ CI

t .

Note that, due to the disjointness of the type concepts, this
implies that (t, j) cannot be an element of CI

t′ for any type
t′ 6= t. As an easy consequence we obtain that |CI

t | = σ(vt)
for all types t. Thus, the fact that σ solves φE implies that
I is a model of E .



It remains to show (t, j) ∈ CI
t . For this it is sufficient to

show the following by induction on the structure of C: for
all concept descriptions C ∈ M, all types t ∈ Tσ and all
j, 1 ≤ j ≤ σ(vt), we have

(t, j) ∈ CI iff C ∈ t. (2)

• Let C = A for a concept name A. Then (2) is an
immediate consequence of the definition of AI .

• Let C = ¬D. Then induction yields (t, j) ∈ DI iff D ∈
t. By contraposition, this is the same as (t, j) 6∈ DI iff
D 6∈ t. By Condition 1 in the definition of types and
the semantics of negation, this is in turn equivalent to
(t, j) ∈ (¬D)I iff ¬D ∈ t.

• Let C = D u E. Then induction yields (t, j) ∈ DI iff
D ∈ t and (t, j) ∈ EI iff E ∈ t. From this, we obtain
(t, j) ∈ (DuE)I iff DuE ∈ t using Condition 2 in the
definition of types and the semantics of conjunction.
The case where C = D t E can be handled similarly.

• C = succ(c) be a successor restriction. First, assume
that C ∈ t. Then the translation c′ of c using set
variables with superscript t is a conjunct in ψt. Con-
sequently, σ satisfies this translation c′. We know that
the mapping πt is a bijection between σ(U t) and the
set arsI(t, j) of role successors of (t, j) in I. Because
of our definition of the interpretation of roles in I, we
know more precisely that πt is also a bijection between
σ(Xt

r) and rI(t, j).

It is thus sufficient to show that πt is a bijection be-
tween σ(Xt

D) and DI ∩ arsI(t, j) for all concept de-
scriptions D occurring in the constraint c. In fact, then
πt is an “isomorphism” between σ(U t) and arsI(t, j),
and thus the fact that σ satisfies c′ implies that (t, j) ∈
succ(c)I .

By induction, we know that the equivalence (2) holds
for the concept descriptions D occurring in c. Let e ∈
σ(Xt

D) and πt(e) = (t′, i′). By the definiton of πt, we
have t′ = te where te = {E ∈ M | e ∈ σ(Xt

E)}, which
yields D ∈ t′. By induction, we obtain (t′, i′) ∈ DI ,
and we already know that (t′, i′) ∈ arsI(t, j). This
shows that πt is an injective mapping from σ(Xt

D) into
DI ∩ arsI(t, j).

To show surjectivity, assume that we have an element
(t′, i′) ∈ DI ∩ arsI(t, j). By induction (t′, i′) ∈ DI

yields D ∈ t′. In addition, (t′, i′) ∈ arsI(t, j) implies
that there is an e ∈ σ(U t) such that πt(e) = (t′, i′).
Consequently, t′ = te, which together with D ∈ t′ im-
plies that e ∈ σ(Xt

D), and thus establishes the desired
surjectivity result.

Second, assume that C 6∈ t. Then ¬ succ(c) ∈ t, and
thus the translation ¬c′ of ¬c using set variables with
superscript t is a conjunct in ψt. We can now proceed
as in the first case, but with ¬c and ¬c′ in place of c
and c′.

This completes the proof of (2) and thus the proof of the
lemma.

Since satisfiability of QFBAPA formulae can be decided
within NP even for binary coding of numbers [15], this lemma
shows that consistency of ALCSCC ECBoxes can be decided
within NExpTime. Together with the known NExpTime
lower bound for consistency of ALC ECBoxes [6], this yields:

Theorem 10. Consistency of ECBoxes with numbers en-
coded in unary or binary is NExpTime-complete in ALCSCC.

4. RESTRICTING THE CONSTRAINTS
For ALC, a restricted notion of ECBoxes was introduced in
[6], and it was show that this restriction lowers the complex-
ity of the consistency problem from NExpTime to ExpTime.
We will show below that the same is true for ALCSCC. Re-
stricted cardinality constraints on ALCSCC concepts are de-
fined as follows:

Definition 11. Let NC and NR be finite, disjoint sets
concept names and of role names, respectively.

• Restricted ALCSCC cardinality constraints over the
signature (NC , NR) are of the form

N1|C1|+· · ·+Nk|Ck| ≤ Nk+1|Ck+1|+· · ·+Nk+`|Ck+`|,

where C1, . . . , Ck+` are ALCSCC concept descriptions
over (NC , NR) and N1, . . . , Nk+` are integer constants.

• A restricted ALCSCC cardinality box (RCBox) over
(NC , NR) is a conjunction of restricted ALCSCC car-
dinality constraints over (NC , NR).

Restricted cardinality constraints cannot express cardinal-
ity restrictions on concepts (CRs), as considered in [3, 19].
In fact, it is easy to see that models of RCBoxes are closed
under disjoint union, and thus always have models of arbi-
trarily large finite cardinality, whereas the CR (≤ 5>) only
has models of cardinality at most 5.

Proposition 12. Restricted cardinality constraints can-
not express cardinality restrictions on concepts.

Restricted cardinality constraints can, however, express CIs
since the constraint |C u D| = |C| is only satisfied in in-
terpretations I in which CI ⊆ DI holds. Consequently,
as already stated in [6], ExpTime hardness of consistency
w.r.t. TBoxes in ALC implies that consistency of restricted
ALC cardinality boxes is ExpTime hard. Since no large
number are needed when expressing CIs using restricted car-
dinality constraints, this hardness result also holds for unary
coding of numbers. Using the fact that ALC is a sub-logic
of ALCSCC, we thus obtain the following complexity lower
bound for ALCSCC RCBoxes.

Proposition 13. Consistency of ALCSCC RCBoxes is
ExpTime-hard, independently of whether numbers are en-
coded in unary or binary.

In the next section we show that ExpTime is indeed the
optimal worst-case complexity for the consistency problem
of restricted ALCSCC cardinality constraints.



5. CONSISTENCY OF RCBOXES
We show the ExpTime upper bound for numbers encoded
in binary using type elimination, where the notion of aug-
mented type from [1] is used, and a second step for removing
types is added to take care of the RCBox, similar to what
is done in the type elimination procedure for ALC RCBoxes
in [6].

The ExpTime upper bound for our procedure depends on
the following lemma, which applies in our setting due to the
special form of RCBoxes.

Lemma 14. Let φ be a system of linear inequalities con-
sisting of A · v ≥ 0, v ≥ 0, and B · v ≥ 1, where A,B are
matrices of integer coefficients and v is the variable vector.

1. Deciding whether φ has a non-negative integer solution
can be done in polynomial time even if the numbers
occurring in the system are encoded in binary.

2. The solutions of φ are closed under addition, and in
particular we have the following: if {v1, . . . , vk} is a
set of variables such that, for all vi (1 ≤ i ≤ k), φ has
a solution σi in which vi has a non-zero value, then
there is a non-negative integer solution σ of φ such
that σ(vi) ≥ 1 for all i, 1 ≤ i ≤ k.

A formal proof of this lemma can be found in [6]. Intuitively,
closure under addition is easily seen to hold due to the spe-
cial form of the inequalities considered in the lemma. On
the one hand, this yields that the existence of a rational so-
lution (which can be tested in polynomial time [17]) implies
the existence of an integer solution. On the other hand, it
also implies the existence of a solution as required in the
second part of the lemma.

Another important ingredient of our ExpTime procedure are
augmented types, which have been introduced in [1] to show
that satisfiability in ALCSCC w.r.t. concept inclusions is in
ExpTime.

Augmented types consider not just the concepts to which
a single individual belongs, but also the Venn regions to
which its role successors belong. Given a type t for R, we
consider the corresponding QFBAPA formula φt, which is
induced by the (possibly negated) successor constraints oc-
curring in t. We conjoin to this formula the set constraint
Xr1 ∪ . . . ∪ Xrn = U , where NR = {r1, . . . , rn} and we as-
sume without loss of generality that NR contains only the
role names occurring in R. For the resulting formula φ′

t, we
compute the number Nt that bounds the number of Venn
regions that need to be non-empty in a solution of φ′

t (see
Lemma 1).

Definition 15. Let R be an ALCSCC RCBox. An aug-
mented type (t, V ) for R consists of a type t for R together
with a set of Venn region V such that |V | ≤ Nt and the for-
mula φ′

t has a solution in which exactly the Venn regions in
V are non-empty.

The existence of a solution of φ′
t in which exactly the Venn

regions in V are non-empty can obviously be checked (within
NP) by adding to φ′

t conjuncts that state non-emptiness of
the Venn regions in V and the fact that the union of these

Venn regions is the universal set (see the description of the
PSpace algorithm in the proof of Theorem 1 in [1]). Another
easy to show observation is that there are only exponentially
many augmented types (see the accompanying technical re-
port of [1] for a proof of the following lemma).

Lemma 16. Let R be an ALCSCC RCBox. The set of
augmented types for R contains at most exponentially many
elements in the size of R and it can be computed in expo-
nential time.

Basically, type elimination starts with the set of all aug-
mented types, and then successively eliminates augmented
types (i) whose Venn regions are not realized by the cur-
rently available augmented types, or (ii) whose first compo-
nent is forced to be empty by the constraints in R. To make
the first reason for elimination more precise, assume that A
is a set of augmented types and that v is a Venn region. The
Venn region v yields a set of concept descriptions Sv that
contains, for every set variable XD occurring in v, the ele-
ment D in case v contains XD and the element ¬D in case v
contains Xc

D. It is easy to see that Sv is actually a subset of
M (modulo removal of double negation). We say that v is
realized by A if there is an augmented type (t, V ) ∈ A such
that Sv ⊆ t.

Algorithm 17. Let R be an ALCSCC RCBox. The fol-
lowing steps decide consistency of R:

1. Compute the set M consisting of all subdescriptions
of R as well as the negations of these subdescriptions,
and continue with the next step.

2. Based onM, compute the set A of all augmented types
for R, and continue with the next step.

3. If the current set A of augmented types is empty, then
the algorithm fails. Otherwise, check whether A con-
tains an element (t, V ) such that not all the Venn re-
gions in V are realized by A. If there is no such el-
ement (t, V ) in A, then continue with the next step.
Otherwise, let (t, V ) be such an element, and set A :=
A \ {(t, V )}. Continue with this step, but now using
the new current set of augmented types.

4. Let TA := {t | there is V such that (t, V ) ∈ A}, and
let φTA be obtained from R by replacing each |C| in
R with

∑
t∈TA s.t. C∈t vt and adding vt ≥ 0 for each

t ∈ TA. Check whether TA contains an element t such
that φTA ∧ vt ≥ 1 has no solution. If this is the case
for t, then remove all augmented types of the form (t, ·)
from A, and continue with the previous step. If no type
t is removed in this step, then the algorithm succeeds.

First, we show soundness of this algorithm.

Lemma 18. If Algorithm 17 succeeds on input R, then
the ALCSCC RCBox R is consistent.

Proof. Assume that the algorithm succeeds on input R,
and let A be the final set of augmented types when the
algorithm stops successfully. We show how A can be used
to construct a model I of R.



For this construction, we first consider the formula φTA ,
which is obtained from R by replacing each |C| in R with∑
t∈TA s.t. C∈t vt and adding vt ≥ 0 for each t ∈ TA. Note

that, due to the special form of RCBoxes, we know that this
yields a system of linear inequalities of the form A · v ≥ 0,
v ≥ 0. Since the algorithm has terminated successfully, we
know for all t ∈ TA that the formula φTA ∧ vt ≥ 1 has
a solution. By Lemma 14(2) this implies that φTA has a
solution in which all variables vt for t ∈ TA have a value ≥ 1
and all variables vt with t 6∈ TA have value 0. In addition,
given an arbitrary number N ≥ 1, we know that there is
a solution σN of φTA such that σN (vt) ≥ 1 and N |σN (vt)
holds for all t ∈ TA. To see this, note that we can just
multiply with N a given solution satisfying the properties
mentioned in the previous sentence.

We use the augmented types in A to determine the right N :

• For each augmented type (t, V ), we know that the for-
mula φ′

t has a solution where exactly the Venn regions
in V are non-empty (see Definition 15). Assume that
this solution assigns a set of cardinality k(t,V ) to the
universal set.

• For each t ∈ TA, let nt be the cardinality of the set
{V | (t, V ) ∈ A}, i.e., the number of augmented types
in A that have t as their first component.

We now define N as

N := (max{k(t,V ) | (t, V ) ∈ A}) ·
∏
t∈TA

nt,

and use the solution σN of φTA to construct a finite inter-
pretation I as follows. The domain of I is defined as

∆I := {(t, V )i | (t, V ) ∈ A and 1 ≤ i ≤ σN (vt)/nt}.

Note that σN (vt)/nt is a natural number since N |σN (vt)
implies nt|σN (vt). In addition, ∆I 6= ∅ because A 6= ∅
and σN (vt)/nt ≥ 1 since σN (vt) ≥ 1. Moreover, for each
type t ∈ TA, the set {(t, V )i | (t, V )i ∈ ∆I} has cardinality
σN (vt).

The interpretation of the concept names A is based on the
occurrence of these names in the first component of an aug-
mented type, i.e., AI := {(t, V )i ∈ ∆I | A ∈ t}.

Defining the interpretation of the role names is again more
tricky. Obviously, it is sufficient to define, for each role name
r ∈ NR and each d ∈ ∆I , the set rI(d). Thus, consider an
element (t, V )i ∈ ∆I . Since (t, V ) is an augmented type
in A, the formula φ′

t has a solution σ in which exactly the
Venn regions in V are non-empty, and which assigns a set
of cardinality m := k(t,V ) to the universal set. In addition,
each Venn region w ∈ V is realized by an augmented type
(tw, V w) ∈ A. Assume that the solution σ assigns the finite
set {d1, . . . , dm} to the set term U . We consider an injective
mapping π of {d1, . . . , dm} into ∆I such that the following
holds for each element dj of {d1, . . . , dm}: if dj belongs to the
Venn region w ∈ V , then π(dj) = (tw, V w)` for some 1 ≤ ` ≤
σN (vtw )/ntw . Such a bijection exists since σN (vtw )/ntw ≥
max{k(t′,V ′) | (t′, V ′) ∈ A} ≥ k(t,V ) = m. We now define

rI((t, V )i) := {π(dj) | dj ∈ σ(Xr)}.

Soundness of Algorithm 17 is now an easy consequence of
the following claim:

Claim: For all C ∈M, (t, V ) ∈ A, and i, 1 ≤ i ≤ σN (vt)/nt
we have C ∈ t iff (t, V )i ∈ CI .

We prove the claim by induction on the size of C:

• The cases C = A, C = ¬D, C = D1 u D2, and C =
D1 t D2 can be handled as in the proof of (2) in the
proof of Lemma 9.

• Now assume that C = succ(c) for a set or cardinality
constraint c.

– If C ∈ t, then this constraint is part of the QF-
BAPA formula φ′

t obtained from t, and thus satis-
fied by the solution σ of φ′

t used to define the role
successors of (t, V )i. According to this definition,
there is a 1–1 correspondence between the ele-
ments of σ(U) and the role successors of (t, V )i.
This bijection π also respects the assignment of
subsets of σ(U) to set variables of the form Xr
(for r ∈ NR) and XD (for concept descriptions
D) occurring in φ′

t, i.e.,

(∗) dj ∈ σ(Xr) iff π(dj) ∈ rI((t, V )i) and
dj ∈ σ(XD) iff π(dj) ∈ DI .

Once (∗) is shown it is clear that (t, V )i ∈ succ(c)I .
In fact, the translation φc of c, where r is replaced
by Xr and D by XD, is a conjunct in φ′

t and
thus σ satisfies φc. Now (∗) shows that (modulo
the application of the bijection π), when checking
whether (t, V )i ∈ succ(c)I , roles r and concepts
D in φc are interpreted in the same way as the set
variables Xr and XD in c, respectively. Thus the
fact that σ satisfies φc implies that the role suc-
cessors of (t, V )i satisfy c, i.e., (t, V )i ∈ succ(c)I

holds.

For role names r, property (∗) is immediate by
the definition of rI((t, V )i).

Now consider a concept description D such that
XD occurs in φ′

t. Then D occurs in c, and is thus
smaller than C, which means that we can apply
induction to it.

If dj ∈ σ(XD), then the Venn region w to which
dj belongs contains XD positively. Consequently,
Sw contains D, and the augmented type (tw, V w)
realizing w satisfies D ∈ tw. By induction, we
obtain π(dj) = (tw, V w)` ∈ DI .

Conversely, assume that π(dj) = (tw, V w)` ∈ DI ,
where w is the Venn region to which dj belongs
w.r.t. σ. By induction, we obtain D ∈ tw, and
thus the Venn region w contains XD positively.
Since dj belongs to this Venn region, we obtain
dj ∈ σ(XD).

– The case where C 6∈ t can be treated similarly. In
fact, in this case the constraint ¬c is part of the
QFBAPA formula φ′

t obtained from t, and we can
employ the same argument as above, just using ¬c
instead of c.



This finishes the proof of the claim. As an easy consequence
of this claim we have for all C occurring in R that

CI = {(t, V )i | C ∈ t, (t, V ) ∈ A, and 1 ≤ i ≤ σN (vt)/nt}.

Consequently,

|CI | =
∑

t∈TA s.t. C∈t

σN (vt),

which shows that I satisfies R since σN solves φTA .

Next, we show completeness of the algorithm.

Lemma 19. If the ALCSCC RCBox R is consistent, then
Algorithm 17 succeeds on input R.

Proof. Assume that I is a model of R. Consider the set
of all types of elements of I, i.e.,

TI := {tI(d) | d ∈ ∆I}.

As mentioned below Definition 7, the elements of TI are
indeed types according to Definition 7. In addition, since
∆I 6= ∅, we also know that TI 6= ∅.

First, note that no element of TI can be removed in Step 4 of
our algorithm. This is an easy consequence of the following
observation. Let T be a set of types such that TI ⊆ T , and
let φT be obtained from R by replacing each |C| in R with∑
t∈T s.t. C∈t vt and adding vt ≥ 0 for each t ∈ T . Since I

is a model of R, it is easy to see that φT has a solution that
also satisfies vt ≥ 1 for all t ∈ TI .

Regarding Step 3 of our algorithm, we want to show that for
every type t ∈ TI there is at least one set of Venn regions
V such that the augmented type (t, V ) is not removed in
this step. To this purpose, let us now extend the types in
TI by adding appropriate Venn regions as second compo-
nents. Consider t := tI(d) for an element d ∈ ∆I . Then the
QFBAPA formula φ′

t corresponding to t has a solution σ in
which the universal set U consists of all the role successors
of d, and the other set variables are assigned sets according
to the interpretations of roles and concept descriptions in
the model I. Let {d1, . . . , dm} = σ(U) be the set of all role
successors of d, and wi the Venn region to which di belongs
w.r.t. σ. By Lemma 1, there is a solution σ′ of φ′

t such that
the set V of non-empty Venn regions w.r.t. σ′ has cardinality
≤ Nt and each of these non-empty Venn regions in V is one
of the Venn regions wi, i.e., V ⊆ {w1 . . . , wm}. By construc-
tion, (t, V ) is an augmented type. Let AI denote the set of
augmented types obtained by extending the types in TI in
this way for every d ∈ ∆I . By construction, for every t ∈ TI
there is a set of Venn regions V such that (t, V ) ∈ AI . In
particular, this yields AI 6= ∅ and TAI = TI .

Next, we show that the Venn regions occurring in some aug-
mented type in AI are realized by AI . Thus, let (t, V ) be
an augmented type constructed from a type t = tI(d) as
described above, and let w ∈ V be a Venn region occurring
in this augmented type. Then there is a role successor di
of d such that di belongs to the Venn region w = wi w.r.t.
the solution σ of φ′

t induced by I. We know that di ∈ DI

for all D ∈ Sw, and thus Sw ⊆ tI(di). Since AI contains
an augmented type with first component tI(di), this shows
that w is realized by AI .

We claim that, during the run of Algorithm 17, we always
have AI ⊆ A and TI ⊆ TA. Obviously, this is true after
Step 2 of our algorithm. In addition, in Step 3 of our algo-
rithm, no element of AI can be removed since we have seen
that the Venn regions occurring in some augmented type in
AI are realized by AI . Finally, we have also seen above that
in Step 4 of our algorithm, no element of TI = TAI can be
removed.

Since AI is non-empty, this shows that the algorithm cannot
fail on input R, and thus must succeed. This completes the
proof of completeness.

Theorem 20. The consistency problem for RCBoxes in
ALCSCC is ExpTime-complete both for unary and binary
coding of numbers.

Proof. Since ExpTime lower bounds for both cases were
already stated in Proposition 13, it remains to show the
ExpTime upper bound for the case of binary coding of num-
bers. In addition, since we have already shown soundness
and completeness of Algorithm 17, it is sufficient to prove
that this algorithm indeed runs in exponential time.

To see this, first note that, according to Lemma 16, there are
only exponentially many augmented types, and they can be
computed in exponential time. Thus, the first two steps of
the algorithm take only exponential time. In addition, the
iteration between Steps 3 and 4 can happen only exponen-
tially often since in each iteration at least one augmented
type is removed.

A single Step 3 takes only exponential time since for each
of the exponentially many augmented types (t, V ), only ex-
ponentially many other augmented types need to be consid-
ered.

Finally, a single Step 4 takes only exponential time. In fact,
we need to consider exponentially many systems of linear
inequalities φTA ∧ vt ≥ 1. Each of these systems may be
of exponential size, but its solvability can be tested in time
that is polynomial in this size (according to Lemma 14), and
thus exponential in the size of the input.

6. CONCLUSION
In two previous papers we have shown how to use QFBAPA
constraints to extend the expressive power of number re-
strictions, on the hand, and of cardinality restrictions on
concepts, on the other hand. In the present paper, we have
demonstrated that these two extensions can be combined
without increasing the complexity of reasoning. In fact, rea-
soning w.r.t. ECBoxes (RCBoxes) in ALCSCC, the exten-
sion of ALC with more expressive number restrictions, has
the same complexity as in ALC: NExpTime-complete for
ECBoxes and ExpTime-complete for RCBoxes. This com-
bination is non-trivial since role successors required by local
constraints might actually be prevented to exist by global
constraints. For ECBoxes, we have shown that this can be
taken care of by inequalities that basically relate cardinali-
ties of global types with cardinalities of local Venn regions
(see the definition of the formulae γt in (1)). For RCBoxes,
stating such inequalities explicitly is not necessary since in
this restricted case the cardinalities of global types can be



made as large as is needed to satisfy the local constraints (see
the definition of the solution σN in the proof of Lemma 18).
Technically, in both cases the fact that the interaction be-
tween global and local constraints is handled appropriately
shows up in the definition of the interpretation of roles in
the soundness proofs, where we see that sufficiently many
copies of the (augmented) types belong to the domain of
the interpretation.

The combined logic can, for instance, be used to check the
correctness of statistical statements. For example, if a Ger-
man car company claims that they have produced more than
N cars in a certain year, and P% of the tires used for their
cars were produced by Betteryear, this may be contradictory
to a statement of Betteryear that they have sold less than M
tires in Germany. This information can be expressed using
ALCSCC ECBoxes, and thus the contradiction can be found
using our consistency algorithm. It would not have been pos-
sible to express this using ALC ECBoxes since stating how
many tires a car has requires local number restrictions.

In [2], we have considered a setting that is even more expres-
sive than ALCSCC ECBoxes. To be more precise, in the DL
introduced in [2], local and global constraints can interact
directly. For example, the concept description

succ(|likes ∩ Cat | = |Cat |)

describes cat lovers, i.e., individuals d that like all cats.
In contrast to the semantics of ALCSCC introduced in the
present paper, Cat is here interpreted by all cats in the in-
terpretation domain, and not just by the cats that are linked
to the individual d via a role. A local interpretation as in
ALCSCC can be achieved by intersection with a role, as
in likes ∩ Cat . It is shown in [2] that satisfiability of con-
cepts in this logic has the same complexity as the consistency
problem for ALCSCC ECBoxes. However, conjunctive query
entailment in this setting is undecidable. In contrast, con-
junctive query entailment w.r.t. ALCSCC RCBoxes is shown
to be decidable (in ExpTime).
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