
Expressive Cardinality Constraints on ALCSCC Concepts
Franz Baader

∗

Theoretical Computer Science, TU Dresden

Dresden, Germany

franz.baader@tu-dresden.de

ABSTRACT
In two previous publications we have, on the one hand, extended

the description logic (DL) ALCQ by more expressive number re-

strictions using numerical and set constraints expressed in the

quantifier-free fragment of Boolean Algebra with Presburger Arith-

metic (QFBAPA). The resulting DL was called ALCSCC. On the

other hand, we have extended the terminological formalism of the

well-known description logicALC from concept inclusions (CIs) to

more general cardinality constraints expressed in QFBAPA, which

we called extended cardinality constraints. Here, we combine the

two extensions, i.e., we consider extended cardinality constraints

on ALCSCC concepts. We show that this does not increase the

complexity of reasoning, which is NExpTime-complete both for

extended cardinality constraints in ALC and ALCSCC. The
same is true for a restricted version of such cardinality constraints,

where the complexity of reasoning decreases to ExpTime, not just

for ALC, but also for ALCSCC.

CCS CONCEPTS
• Theory of computation→ Description logics.

KEYWORDS
Description Logic, Number Restrictions, Cardinality Restrictions,

QFBAPA, Complexity

ACM Reference Format:
Franz Baader. 2019. Expressive Cardinality Constraints on ALCSCC
Concepts. In The 34th ACM/SIGAPP Symposium on Applied Computing (SAC
’19), April 8–12, 2019, Limassol, Cyprus. ACM, New York, NY, USA, 8 pages.

https://doi.org/10.1145/3297280.3297390

1 INTRODUCTION
Description Logics (DLs) [3] are a well-investigated family of logic-

based knowledge representation languages, which are frequently

used to formalize ontologies for application domains such as bi-

ology and medicine [7]. To define the important notions of such

an application domain as formal concepts, DLs state necessary

and sufficient conditions for an individual to belong to a concept.

These conditions can be Boolean combinations of atomic properties

∗
Partially supported by DFG within the Research Unit 1513 Hybris.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SAC ’19, April 8–12, 2019, Limassol, Cyprus
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-5933-7/19/04. . . $15.00

https://doi.org/10.1145/3297280.3297390

required for the individual (expressed by concept names) or prop-

erties that refer to relationships with other individuals and their

properties (expressed as role restrictions). Using an example from

[4], the concept of a motor vehicle can be formalized by the concept

description Vehicle ⊓ ∃part.Motor, which uses the concept names

Vehicle and Motor and the role name part as well as the concept
constructors conjunction (⊓) and existential restriction (∃r .C). The
concept inclusion (CI) Motor-vehicle ⊑ Vehicle ⊓ ∃part.Motor can
then be used to state that every motor vehicle needs to belong to

this concept description.

Numerical constraints on the number of role successors (so-

called number restrictions) have been used early on in DLs [5, 8,

9]. For example, using number restrictions, motorcycles can be

constrained to being motor vehicles with exactly two wheels:

Motorcycle ⊑ Motor-vehicle ⊓ (⩽ 2 part.Wheel) ⊓ (⩾ 2 part.Wheel).

The exact complexity of reasoning in ALCQ, the DL that has all

Boolean operations and number restrictions of the form (⩽n r .C)
and (⩾n r .C) as concept constructors, was determined by Stephan

Tobies [12, 14]: it is PSpace-complete without CIs and ExpTime-

complete w.r.t. CIs, independently of whether the numbers occur-

ring in the number restrictions are encoded in unary or binary.

The classical number restrictions available in ALCQ can only

be used to compare the number of role successors of an individual

with a fixed natural number. They cannot relate numbers of dif-

ferent kinds of role successors to each other. This would, e.g., be

required to state that the number of cylinders of a motor coincides

with the number of spark plugs in this motor, without fixing what

this number actually is. To overcome this deficit, we have extended

ALCQ by allowing the statement of constraints on role succes-

sors that are more general than the number restrictions of ALCQ
[1]. To formulate these constraints, we have used the quantifier-

free fragment of Boolean Algebra with Presburger Arithmetic (QF-

BAPA) [10], in which one can express Boolean combinations of

set constraints and numerical constraints on the cardinalities of

sets. In the resulting logic ALCSCC, the above constraint regard-
ing cylinders and spark plugs can be expressed using a cardinality

constraint on the role successors:Motor ⊑ succ(|part ∩ Cylinder | =
|part∩SparkPlug |). In general, such a succ-expression considers the
set of all role successors of a given individual, and requires certain

subsets to satisfy the stated QFBAPA constraints. In our example,

the cardinality of the set of part-successors that belong to the con-

cept Cylinder must be the same as of the set of part-successors that
belong to the concept SparkPlug.

In [1] it was shown that this extension of the expressive power

of ALCQ does not increase the complexity of reasoning: it is

still PSpace-complete without CIs and ExpTime-complete w.r.t. CIs.

While the PSpace result also follows from previous work on modal

logics with Presburger constraints [6], the ExpTime result was new.

https://doi.org/10.1145/3297280.3297390
https://doi.org/10.1145/3297280.3297390

SAC ’19, April 8–12, 2019, Limassol, Cyprus Franz Baader

Whereas number restrictions are local in the sense that they

consider role successors of an individual under consideration (e.g.

the wheels that are part of a particular motor vehicle), cardinality

restrictions on concepts (CRs) [2, 13] are global, i.e., they consider

all individuals in an interpretation. For example, the cardinality re-

striction (⩽ 45000000 (Car ⊓ ∃registered-in.German-district)) states
that at most 45 million cars are registered all over Germany. Such

cardinality restrictions can express CIs (C ⊑ D is equivalent to

(⩽ 0 (C ⊓¬D))), but are considerably more expressive. In particular,

they increase the complexity of reasoning: for the DLs ALC and

ALCQ, consistency w.r.t. CIs is ExpTime-complete [11, 14], but

consistency w.r.t. CRs is NExpTime-complete if the numbers oc-

curring in the CRs are assumed to be encoded in binary [13]. With

unary coding of numbers, consistency stays ExpTime-complete

even w.r.t. CRs [13], but the above example considering 45 million

cars clearly shows that unary coding is not appropriate if numbers

with large values are employed.

Just like classical number restrictions, CRs can only relate the

cardinality of a concept to a fixed number. In [4], we have intro-

duced and investigate more general constraints on the cardinalities

of concepts, which we called extended cardinality constraints. The

main idea was again to use QFBAPA to formulate and combine these

constraints. An example of a constraint expressible this way, but not

expressible using CRs is 2 · |Car ⊓ ∃registered-in.German-district ⊓
∃fuel.Diesel| ≤ |Car⊓∃registered-in.German-district⊓∃fuel.Petrol|,
which states that, in Germany, cars running on petrol outnumber

cars running on diesel by a factor of at least two. In [4] it is shown

that, in the DL ALC, the complexity of reasoning w.r.t. extended

cardinality constraints (NExpTime for binary coding of numbers)

is the same as for reasoning w.r.t. CRs. In addition, the paper intro-

duces a restricted version of this formalism, which can express CIs,

but not CRs, and shows that this way the complexity can be low-

ered to ExpTime. The NExpTime upper bound for the general case

actually also follows from the NExpTime upper bound in [15] for a

more expressive logic with n-ary relations and function symbols,

but the ExpTime result for the restricted case was new.

The results on extended cardinality constraints in [4] were re-

stricted to concepts of the DL ALC. It was not even clear whether

the complexity upper bounds also hold for ALCQ, let alone the
considerably more expressive DL ALCSCC. In the present paper,

we combine the work in [1] and [4] by considering extended cardi-

nality constraints in ALCSCC. This turned out to be non-trivial

since the local cardinality constraints of ALCSCC may interact

with the global ones in the extended cardinality constraints. Never-

theless, we are able to show that the complexity results (NExpTime-

complete in general, and ExpTime-complete in the restricted case)

hold not only for ALC, but also for ALCSCC.

2 PRELIMINARIES
Before defining ALCSCC and extended cardinality constraints,

we must introduce QFBAPA, on which both are based. More details

on this logic can be found in [10].

The logic QFBAPA. In this logic one can build set terms by applying

Boolean operations (intersection ∩, union ∪, and complement ·c)
to set variables as well as the constants ∅ and U. Set terms s, t can
then be used to state inclusion and equality constraints (s = t , s ⊆ t)

between sets. Presburger Arithmetic (PA) expressions are built from
integer variables, integer constants, and set cardinalities |s | using
addition as well as multiplication with an integer constant. They

can be used to form numerical constraints of the form k = ℓ,k <
ℓ,N dvd ℓ, where k, ℓ are PA expressions, N is an integer constant,

and dvd stands for divisibility. A QFBAPA formula is a Boolean

combination of set and numerical constraints.

A solution σ of a QFBAPA formula ϕ assigns a finite set σ (U) to
U, subsets of σ (U) to set variables, and integers to integer variables
such that ϕ is satisfied by this assignment. The evaluation of set

terms, PA expressions, and set and numerical constraints w.r.t. σ is

defined in the obvious way. For example, σ satisfies the numerical

constraint |s ∪ t | = |s | + |t | for set variables s, t if the cardinality
of the union of the sets σ (s) and σ (t) is the same as the sum of

the cardinalities of these sets. Note that this is the case iff σ (s) and
σ (t) are disjoint, which we could also have expressed using the set

constraint s ∩ t ⊆ ∅. A QFBAPA formula ϕ is satisfiable if it has a
solution. As shown in [10], satisfiability of QFBAPA formulae is an

NP-complete problem.

The main tool used in [10] to show that satisfiability in QFBAPA

is in NP is a “sparse solution” lemma (see Lemma 1 below), which

will also turn out to be useful for showing one of our complexity

upper bounds. Assume that ϕ is a QFBAPA formula containing the

set variables X1, . . . ,Xk . A Venn region is of the form

X c1
1

∩ . . . ∩ X
ck
k ,

where ci is either empty or c for i = 1, . . . ,k . It is shown in [10]

that, given ϕ, one can easily compute a number N whose value

is polynomial in the size of ϕ such that the following holds: ϕ
is satisfiable iff it has a solution in which ≤ N Venn regions are

interpreted by non-empty sets. Taking a closer look at how this

result is proved in [10], one can actually strengthen it (see [1] for a

proof).

Lemma 1. For every QFBAPA formula ϕ, one can compute in poly-
nomial time a number N whose value is polynomial in the size of
ϕ such that the following holds for every solution σ of ϕ: there is a
solution σ ′ of ϕ such that

• |{v | v Venn region and σ ′(v) , ∅}| ≤ N , and
• {v | v Venn region and σ ′(v) , ∅} ⊆
{v | v Venn region and σ (v) , ∅}.

The DL ALCSCC. In the following, we recall syntax and seman-

tics of ALCSCC (a more detailed introduction can be found in

[1]). Basically, the DL ALCSCC has all Boolean operations (⊓,
⊔, ¬) as concept constructors and can state constraints on role

successors using the expressiveness of QFBAPA.

To be more precise, a successor constraint is either a set constraint
or a cardinality constraint. As in QFBAPA, set constraints are in-
clusion constraints or equality constraints (s = t , s ⊆ t) between
set terms s, t , but now s, t use role names and ALCSCC concept

descriptions in place of set variables. For example, the ALCSCC
concept descriptionMale⊓succ(child∩Female ⊆ Rich) describes all
male individuals that have only rich daughters (i.e., female children),

whereMale, Female are concept names and child is a role name. Sim-

ilarly, cardinality constraint are of the form k = ℓ,k < ℓ,N dvd ℓ,
but in the PA expressions k, ℓ there are no integer variables, but

only set cardinalities |s |. For example, the ALCSCC concept

Expressive Cardinality Constraints on ALCSCC Concepts SAC ’19, April 8–12, 2019, Limassol, Cyprus

description Female ⊓ succ(|child ∩ Female | = |child ∩ Male |) de-
scribes all female individuals that have exactly as many sons as

daughters. Of course, successor constraints can also be nested, as

in the ALCSCC concept description succ(|child ∩ succ(child ⊆
Female)| = |child ∩ succ(child ⊆ Male)|), which describes all indi-

viduals having as many children that have only daughters as they

have children having only sons.

Given disjoint sets NC and NR of concept and role names, respec-

tively, an interpretation ofNC andNR consists of a finite1 non-empty

set ∆I
and a mapping ·I that maps every concept name A ∈ NC

to a subset AI
of ∆I

and every role name r ∈ NR to a binary

relation r I over ∆I
. Given an individual d ∈ ∆I

and a role name

r ∈ NR , we define r
I (d) := {e ∈ ∆I | (d, e) ∈ r I } (r -successors)

and arsI (d) := ⋃
r ∈NR r

I (d) (all role successors).
As usual, the interpretation function ·I is inductively extended

to ALCSCC concept descriptions by interpreting ⊓, ⊔, and ¬
respectively as intersection, union and complement. Successor con-

straints are evaluated according to the semantics of QFBAPA. To

be more precise, to determine whether d ∈ succ(c)I or not, roles r

occurring in c are evaluated as r I (d) (i.e., the set of r -successors of
d) and concept descriptions D as DI ∩ arsI (d) (i.e., the set of role
successors of d that belong to D).2 Then d ∈ succ(c)I iff the valua-

tion obtained this way is a solution of the QFBAPA formula c (see
[1] for a more detailed definition of the semantics of ALCSCC).

Note that ALCSCC contains the well-known DLs ALC and

ALCQ as sub-logics. For example, the value restriction ∀r .C of

ALC can be expressed as succ(r ⊆ C) and the number restriction

⩾n r .C as succ(|r ∩C | ≥ n).

Extended cardinality constraints. Basically, extended cardinality con-
straints are QFBAPA formulae where ALCSCC concept descrip-

tions are used in place of set variables. However, since inclusion

constraints s ⊆ t (and thus equality constraints) can be expressed

as cardinality constraints |s ∩ tc | ≤ 0, we do not explicitly allow the

use of set constraints. In addition, sinceALCSCC has all Boolean

operations on concepts, we do not need Boolean operations on set

terms. Consequently, we define extended cardinality constraints on
ALCSCC concepts as follows:

• ALCSCC cardinality terms are built from integer constants

and concept cardinalities |C | for ALCSCC concepts C us-

ing addition and multiplication with integer constants;

• extended ALCSCC cardinality constraints are of the form
k = ℓ,k < ℓ,N dvd ℓ, where k, ℓ are ALCSCC cardinality

terms and N is an integer constant;

• an extended ALCSCC cardinality box (ECBox) is a Boolean
combination of extended ALCSCC cardinality constraints.

When defining the semantics of ECBoxes, we again restrict the

attention to finite interpretations to ensure that cardinalities of

concepts are always well-defined non-negative integers. Given a

finite interpretation I, concept cardinalities are interpreted in the

obvious way, i.e., |C |I := |CI |. Addition and multiplication in cardi-

nality terms are interpreted as the usual addition and multiplication

operations on integers, and the same is the case for the comparison

1
In [1] a weaker restriction is used, where only the number of role successors of all

individuals must be finite. Here we use the stronger restrictions that ∆I
is finite since

we need this restriction in the presence of extended cardinality constraints [4].

2
Note that, by induction, the sets DI

are well-defined.

operators =, <, and divisibility dvd. This yields the semantics of

extended ALCSCC cardinality constraints and thus also of their

Boolean combinations.

Since ALC is a sub-logic of ALCSCC, extended cardinality

constraints on ALC concepts are a special case of extended cardi-

nality constraints onALCSCC concepts. In [4] it was shown that

consistency of ALC ECBoxes is a NExpTime-complete problem if

the numbers occurring in the ECBoxes are encoded in binary. The

hardness result obviously transfers to the super-logic ALCSCC.

Proposition 2. Consistency of ECBoxes with numbers encoded
in binary is NExpTime-hard in ALCSCC.

In the next section, we show that the NExpTime upper bound

holds not only for ALC, but also for ALCSCC.

3 CONSISTENCY OF ALCSCC ECBOXES
In the followingwe consider anALCSCC ECBox E and show how

to test E for consistency by reducing this problem to the problem

of testing satisfiability of QFBAPA formulae. Since the reduction

is exponential and satisfiability in QFBAPA is in NP, this yields a

NExpTime upper bound for consistency of ALCSCC ECBoxes.

Such an ExpTime-reduction to satisfiability in QFBAPA has already

been used in the consistency procedure for ALC ECBoxes in [4].

However, for ALCSCC it needs to be extended considerably. In

addition to encoding the global cardinality constraints in E using

the notion of a type, we also need to take care of the local constraints

expressed by successor constraints within ALCSCC, and to link

both kinds of constraints. This makes both the reduction and the

proof of its correctness considerably more complicated.

Given a set of concept descriptions M, the type of an individual

in an interpretation consists of the elements of M to which the

individual belongs. Such a type t can also be seen as a concept

description Ct , which is the conjunction of all the elements of t .
We assume in the following, that M consists of all subdescriptions
of the concept descriptions occurring in E as well as the negations
of these subdescriptions.

Definition 3. A subset t of M is a type for E if it satisfies the
following properties for all concept descriptions C,D:

(1) if ¬C ∈ M, then either C or ¬C belongs to t ;
(2) if C ⊓ D ∈ M, then C ⊓ D ∈ t iff C ∈ t and D ∈ t ;
(3) if C ⊔ D ∈ M, then C ⊔ D ∈ t iff C ∈ t or D ∈ t .

We denote the set of all types for E with types(E). Given an interpre-
tation I and an individual d ∈ ∆I , the type of d is the set

tI (d) := {C ∈ M | d ∈ CI }.

It is easy to show that the type of an individual really satisfies

the conditions stated in the definition of a type. Due to Condition 1

in the definition of types, concept descriptions induced by different

types are disjoint, and all concept descriptions inM can be obtained

as the disjoint union of the concept descriptions induced by the

types containing them. In particular, we have

|CI | =
∑

t type withC ∈t
|CI
t | for all finite interpretations I.

We transform the ECBox E into a QFBAPA formula ϕE by intro-

ducing an integer variable vt for every type t , stating that these

SAC ’19, April 8–12, 2019, Limassol, Cyprus Franz Baader

variables have a non-negative value, and then replacing every con-

cept cardinality |C | in E by the sum of the corresponding type

variables, i.e.,

|C | is replaced by

∑
t type withC ∈t

vt .

A model I of E then yields a solution of ϕE as follows: if we define

σ (vt) := |CI
t | for all types t , then σ is a solution of ϕE .

However, not every solution of ϕE is induced by a model of E in

this way. For example, let E := | succ(|A∩ r | ≥ 5)| ≥ 1∧ |A| ≤ 3. In

this case,M consists of the concept descriptions A,¬A, succ(|A ∩
r | ≥ 5),¬ succ(|A ∩ r | ≥ 5), and there are four types:

t1 := {A, succ(|A ∩ r | ≥ 5)}, t2 := {¬A, succ(|A ∩ r | ≥ 5)},
t3 := {A,¬ succ(|A ∩ r | ≥ 5)}, t4 := {¬A,¬ succ(|A ∩ r | ≥ 5)}.
The ECBox E is now translated into the QFBAPA formula ϕE by

replacing | succ(|A ∩ r | ≥ 5)| with vt1 +vt2 and |A| with vt1 +vt3
and adding the information that vt1 ,vt2 ,vt3 ,vt4 have values ≥ 0,

i.e., ϕE is the following formula:

vt1 ≥ 0∧vt2 ≥ 0∧vt3 ≥ 0∧vt4 ≥ 0∧vt1 +vt2 ≥ 1∧vt1 +vt3 ≤ 3.

If we set σ (vt1) = σ (vt3) = σ (vt4) = 0 and σ (vt2) = 1, then σ is

a solution of ϕE . However, E does not have a model. In fact, E
requires that there is an element belonging to the concept succ(|A∩
r | ≥ 5), which implies that this element must have at least 5 distinct

r -successors belonging to A. However, this is prohibited by E since

the second conjunct states that globally (i.e., in the whole model)

there are at most 3 elements belonging to A.
This example shows that we must take elements required by

successor constraints into account. Basically, if a type t is realized
in the sense that the variable vt receives a value > 0, then we

must ensure that also types required by the successor constraints

in t are realized with the right multiplicity. In our example, the

types t1 and t2 require that an element belonging to them has at

least 5 distinct r -successors belonging to A. As shown in [1], we

can express such constraints again by QFBAPA formulae. Given a

type t , the (possibly negated) successor constraints occurring in t
induce a QFBAPA formulaψt , in which the concepts C and roles

r occurring in these constraints induce set variables X t
C and X t

r .

In addition, to take into account the semantics of ALCSCC, we
conjoin

αt := (Ut =
⋃
r ∈NR

X t
r) ∧

∧
C ∈M

X t
C ⊆ Ut

to the formula obtained from the successor constraints and replace

U in these constraints byUt
. In our example, we have

ψt1 := |X t1
A ∩ X t1

r | ≥ 5 ∧ αt1 , ψt2 := |X t2
A ∩ X t2

r | ≥ 5 ∧ αt2 ,
ψt3 := ¬(|X t3

A ∩ X t3
r | ≥ 5) ∧ αt3 , ψt4 := ¬(|X t4

A ∩ X t4
r | ≥ 5) ∧ αt4 .

In principle, the formulaψt constrains the “local” role successors of
an individual of type t . It remains to link these local constraints with

the global ones in case type t is populated. Basically, we need to

ensure that our solutions of the local constraints do not assume that

a concept is populated by more individuals than the solution of the

global constraints allows. This can be expressed by the following

QFBAPA formula:

γt :=
∧

t ′∈types(E)
|
⋂
C ∈t ′

X t
C | ≤ vt ′ . (1)

In our example, the formulaeγti (for 1 ≤ i ≤ 4) in particular contain

the conjuncts

vt1 ≥ |X ti
A ∩X ti

C | andvt3 ≥ |X ti
A ∩X ti

¬C |whereC = succ(|A∩r | ≥ 5).
Overall, we translate the ALCSCC ECBox E into the QFBAPA

formula

δE := ϕE ∧
∧

t ∈types(E)
vt = 0 ∨ (ψt ∧ γt).

Assume that σ is a solution of δE for the ECBox E of our example.

Then σ (vt1)+σ (vt2) ≥ 1, which implies that σ (vt1) > 0 or σ (vt2) >
0. Let us assume first that σ (vt1) > 0. Then σ must satisfyψt1 and

γt1 . But thenψt1 yields that |σ (X
t1
A)| ≥ 5. However, γt1 yields that

|σ (X t1
A)| = |σ (X t1

A ∩ X t1
C)| + |σ (X t1

A ∩ X t1
¬C)| ≤ σ (vt1) + σ (vt3) ≤ 3,

where the latter inequality holds because σ satisfies the conjunct

vt1 +vt3 ≤ 3 of ϕE . This yields a contradiction to our assumption

that σ (vt1) > 0. However, then we must have σ (vt2) > 0, which

also leads to a contradiction: 5 ≤ |σ (X t2
A)| ≤ σ (vt1) + σ (vt3) ≤ 3.

This shows that δE does not have a solution in our example, which

corresponds to the fact that E is actually inconsistent.

The next lemma shows that there is indeed a 1–1-relationship

between solvability of δE and consistency of E.

Lemma 4. The QFBAPA formula δE is of size at most exponential
in the size of E, and it is satisfiable iff E is consistent.

Proof. The at most exponential size of δE is an easy conse-

quence of the fact that there are at most exponentially many types

t , and thus at most exponentially many variables vt since the cardi-
nality ofM is linear in the size of E. This implies that the size of ϕE
is at most exponential. For every type t , the size ofψt is polynomial

in the size of E since the cardinality of M is linear in the size of

E and the constraints inψt not contained in αt are obtained from

successor constraints occurring in the concepts inM. Finally, the

size of γt is at most exponential in the size of E since there are at

most |M| concepts C and at most exponentially many types t ′.
Now, assume that the finite interpretation I is a model of E. If

we define σ as σ (vt) := |CI
t | for all types t , then we know that σ

solves ϕE . Let t by a type such that σ (vt) , 0. Then there is an

individual d ∈ ∆I
such that d ∈ CI

t . The semantics of ALCSCC
then implies that we can extend σ to a solution ofψt by interpreting
the set variables with superscript t using the role successors of d :

σ (X t
r) := {e | (d, e) ∈ r I }, σ (Ut) := ⋃

r ∈NR σ (X
t
r), and

σ (X t
C) := C

I ∩ σ (Ut).
This also yields a solution ofγt since the following holds for all types

t ′:
⋂
C ∈t ′ σ (X t

C) ⊆ ⋂
C ∈t ′ C

I = CI
t ′ and thus |⋂C ∈t ′ σ (X t

C)| ≤
|CI
t ′ | = σ (vt ′).
If t is a type such that σ (vt) = 0, then it is not necessary for σ

to satisfyψt and γt . We can thus extend σ to the set variables with

superscript t in an arbitrary way, e.g. by interpreting all of them as

the empty set. Overall, this show that we can use a model of E to

define a solution σ of δE .
Conversely, assume that there is a solution σ of δE . Let

Tσ := {t | t type with σ (vt) , 0}
be the types that are realized by σ . We now define a finite inter-

pretation I and show that it is a model of E. The interpretation

Expressive Cardinality Constraints on ALCSCC Concepts SAC ’19, April 8–12, 2019, Limassol, Cyprus

domain consists of copies of the realized types, where the number

of copies is determined by σ :

∆I
:= {(t , j) | t ∈ Tσ and 1 ≤ j ≤ σ (vt)}.

For concept names A we define

AI
:= {(t , j) ∈ ∆I | A ∈ t}.

Defining the interpretation of a role name in I is a bit more in-

volved. Consider a type t with σ (vt) , 0. Then σ satisfiesψt and γt .
The solution ofψt yields a finite set σ (Ut) and interprets the set

variables X t
r and X t

C as subsets of σ (Ut) such thatψt is satisfied.

For every element e of σ (Ut) there is a unique type te such that

e ∈ ⋂
C ∈te σ (X

t
C). In addition, the fact that σ satisfies γt implies

that, for all types t ′, we have |{e ∈ σ (Ut) | te = t ′}| ≤ σ (vt ′). This
show that there exists an injective mapping πt of σ (Ut) into ∆I

such that πt (e) = (t ′, j) implies that t ′ = te . Given a role name r ,
we now define

r I := {((t , j), (t ′, j ′)) ∈ ∆I × ∆I | ∃e ∈ σ (Ut) : πt (e) = (t ′, j ′) ∧
e ∈ σ (X t

r)}.
Note that πt is a bijection between σ (Ut) and the role successors

of (t , j) ∈ ∆I
. To show this it is enough to prove that, for all

e ∈ σ (Ut), there is a role r ∈ NR such that e ∈ σ (X t
r). This is an

immediate consequence of the fact that σ satisfies αt .
We want to show that the following holds for all types t ∈ Tσ

and j, 1 ≤ j ≤ σ (vt):
(t , j) ∈ CI

t . (2)

Note that, due to the disjointness of the type concepts, this implies

that (t , j) cannot be an element of CI
t ′ for any type t ′ , t . As an

easy consequence we obtain that |CI
t | = σ (vt) for all types t . Thus,

the fact that σ solves ϕE implies that I is a model of E.
It remains to show (2). For this it is sufficient to show the fol-

lowing: for all concept descriptionsC ∈ M, all types t ∈ Tσ and all

j, 1 ≤ j ≤ σ (vt) we have
(t , j) ∈ CI

iff C ∈ t . (3)

We show (3) by induction on the structure of C:
• Let C = A for a concept name A. Then (3) is an immediate

consequence of the definition of AI
.

• Let C = ¬D. Then induction yields (t , j) ∈ DI
iff D ∈ t .

By contraposition, this is the same as (t , j) < DI
iff D < t .

By Condition 1 in the definition of types and the semantics

of negation, this is in turn equivalent to (t , j) ∈ (¬D)I iff

¬D ∈ t .
• LetC = D⊓E. Then induction yields (t , j) ∈ DI

iffD ∈ t and
(t , j) ∈ EI iff E ∈ t . From this, we obtain (t , j) ∈ (D ⊓ E)I iff

D ⊓ E ∈ t using Condition 2 in the definition of types and

the semantics of conjunction.

• The case where C = D ⊔ E can be handled similarly, using

Condition 3 in the definition of types and the semantics of

disjunction.

• C = succ(c) be a successor restriction. First, assume that

C ∈ t . Then the translation c ′ of c using set variables with

superscript t is a conjunct inψt . Consequently,σ satisfies this

translation c ′. We know that the mapping πt is a bijection be-

tween σ (Ut) and the set arsI (t , j) of role successors of (t , j)
in I. Because of our definition of the interpretation of roles

in I, we know more precisely that πt is also a bijection be-

tween σ (X t
r) and r I (t , j). It is thus sufficient to show that πt

is a bijection between σ (X t
D) and D

I ∩ arsI (t , j) for all con-
cept descriptionsD occurring in the constraint c . In fact, then

πt is an “isomorphism” between σ (Ut) and arsI (t , j), and
thus the fact that σ satisfies c ′ implies that (t , j) ∈ succ(c)I .
By induction, we know that the equivalence (3) holds for
the concept descriptions D occurring in c . Let e ∈ σ (X t

D)
and πt (e) = (t ′, i ′). Consequently, we have t ′ = te , and thus

D ∈ t ′. By induction, we obtain (t ′, i ′) ∈ DI
, and we already

know that (t ′, i ′) ∈ arsI (t , j). This shows that πt is an injec-

tive mapping from σ (X t
D) into D

I ∩ arsI (t , j). To show sur-

jectivity, assume that (t ′, i ′) ∈ DI ∩ arsI (t , j). By induction

(t ′, i ′) ∈ DI
yields D ∈ t ′. In addition, (t ′, i ′) ∈ arsI (t , j)

implies that there is an e ∈ σ (Ut) such that πt (e) = (t ′, i ′).
Consequently, t ′ = te , which implies that e ∈ σ (X t

D), and
thus establishes he desired surjectivity result.

Second, assume that C < t . Then ¬ succ(c) ∈ t , and thus the

translation ¬c ′ of ¬c using set variables with superscript t
is a conjunct inψt . We can now proceed as in the first case,

but with ¬c and ¬c ′ in place of c and c ′.

This completes the proof of (3) and thus the proof of the lemma. □

Since satisfiability of QFBAPA formulae can be decided within

NP even for binary coding of number [10], this lemma shows that

consistency of ALCSCC ECBoxes can be decided within NExp-

Time. Together with the known NExpTime lower bound for consis-

tency of ALC ECBoxes [4], this yields:

Theorem 5. Consistency of ECBoxes with numbers encoded in
binary is NExpTime-complete in ALCSCC.

4 RESTRICTED CARDINALITY
CONSTRAINTS

For ALC, a restricted notion of ECBoxes was introduced in [4],

and it was show that this restriction lowers the complexity of the

consistency problem from NExpTime to ExpTime. We will show

below that the same is true for ALCSCC.
Restricted cardinality constraints on ALCSCC concepts are de-

fined as follows:

• restricted ALCSCC cardinality constraints are of the form

N1 |C1 | + · · · + Nk |Ck | ≤ Nk+1 |Ck+1 | + · · · + Nk+ℓ |Ck+ℓ |,

where Ci are ALCSCC concept descriptions and Ni are

integer constants for 1 ≤ i ≤ k + ℓ;
• a restricted ALCSCC cardinality box (RCBox) is a conjunc-
tion of restricted ALC cardinality constraints.

Since ExpTime hardness already holds for restrictedALC cardi-

nality boxes [4], we obtain the following complexity lower bounds

for ALCSCC. Actually, the hardness proof does not require large
number, and thus ExpTime-hardness even holds for unary coding

of numbers.

Proposition 6. Consistency of ALCSCC RCBoxes is ExpTime-
hard, independently of whether numbers are encoded in unary or
binary.

SAC ’19, April 8–12, 2019, Limassol, Cyprus Franz Baader

We show the ExpTime upper bound for numbers encoded in

binary using type elimination, where the notion of augmented type

from [1] is used, and a second step for removing types is added

to take care of the RCBox, similar to what is done in the type

elimination procedure for ALC RCBoxes in [4].

The ExpTime upper bound for our procedure on the one hand

depends on the following lemma, which applies in our setting due

to the special form of RCBoxes. A proof of this lemma can be found

in [4].

Lemma 7. Let ϕ be a system of linear inequalities consisting of
A ·v ≥ 0, v ≥ 0, and B ·v ≥ 1, where A,B are matrices of integer
coefficients andv is the variable vector.

(1) Deciding whether ϕ has a non-negative integer solution can
be done in polynomial time.

(2) The solutions of ϕ are closed under addition, and in particular
we have the following: if {v1, . . . ,vk } is a set of variables such
that, for all vi (1 ≤ i ≤ k), ϕ has a solution σi in which vi has
a non-zero value, then there is a non-negative integer solution
σ of ϕ such that σ (vi) ≥ 1 for all i, 1 ≤ i ≤ k .

Another important ingredient of our ExpTime procedure are

augmented types, which have been introduced in [1] to show that

satisfiability in ALCSCC w.r.t. concept inclusions is in ExpTime.

Augmented types consider not just the concepts to which a single

individual belongs, but also the Venn regions to which its role suc-

cessors belong. Given a type t for R, we consider the corresponding

QFBAPA formula ϕt , which is induced by the (possibly negated)

successor constraints occurring in t . We conjoin to this formula the

set constraint Xr1 ∪ . . . ∪Xrn = U, where NR = {r1, . . . , rn }.3 For
the resulting formula ϕ ′t , we compute the number Nt that bounds

the number of Venn regions that need to be non-empty in a solution

of ϕ ′t (see Lemma 1).

Definition 8. Let R be an ALCSCC RCBox. An augmented

type (t ,V) for R consists of a type t for R together with a set of Venn
region V such that |V | ≤ Nt and the formula ϕ ′t has a solution in
which exactly the Venn regions in V are non-empty.

The existence of a solution of ϕ ′t in which exactly the Venn

regions in V are non-empty can obviously be checked (within NP)

by adding to ϕ ′t conjuncts that state non-emptiness of the Venn

regions in V and the fact that the union of these Venn regions is

the universal set (see the description of the PSpace algorithm in the

proof of Theorem 1 in [1]). Another easy to show observation is

that there are only exponentially many augmented types (see the

accompanying technical report of [1] for a proof of the following

lemma).

Lemma 9. Let R be an ALCSCC RCBox. The set of augmented
types for R contains at most exponentially many elements in the size
of R and it can be computed in exponential time.

Basically, type elimination starts with the set of all augmented

types, and then successively eliminates augmented types (i) whose

Venn regions are not realized by the currently available augmented

types, or (ii) whose first component is forced to be empty by the

constraints in R. To make the first reason for elimination more

3
Without loss of generality we assume that NR contains only the role names occurring

in R.

precise, assume that A is a set of augmented types and that v is a

Venn region. The Venn region v yields a set of concept descriptions

Sv that contains, for every set variable XD occurring in v , the
element D in case v contains XD and the element ¬D in case v
contains X c

D . It is easy to see that Sv is actually a subset of M
(modulo removal of double negation). We say that v is realized by
A if there is an augmented type (t ,V) ∈ A such that Sv ⊆ t .

Algorithm 10. Let R be an ALCSCC RCBox. The following
steps decides consistency of R:

(1) Compute the set M consisting of all subdescriptions of R as
well as the negations of these subdescriptions, and continue
with the next step.

(2) Based on M, compute the set A of all augmented types for R,
and continue with the next step.

(3) If the current setA of augmented types is empty, then the algo-
rithm fails. Otherwise, check whether A contains an element
(t ,V) such that not all the Venn regions in V are realized by
A. If there is no such element (t ,V) in A, then continue with
the next step. Otherwise, let (t ,V) be such an element, and set
A := A \ {(t ,V)}. Continue with this step, but now using the
new current set of augmented types.

(4) Let TA := {t | there is V such that (t ,V) ∈ A}, and let
ϕTA be obtained from R by replacing each |C | in R with∑
t ∈TA s.t. C ∈t vt and adding vt ≥ 0 for each t ∈ TA . Check

whetherTA contains an element t such that ϕTA ∧vt ≥ 1 has
no solution. If this is the case for t , then remove all augmented
types of the form (t , ·) fromA, and continue with the previous
step. If no type t is removed in this step, then the algorithm
succeeds.

Lemma 11 (Soundness). Let R be an ALCSCC RCBox. If the
Algorithm 10 succeeds on input R, then R is consistent.

Proof. Assume that the algorithm succeeds on input R, and
let A be the final set of augmented types when the algorithm

stops successfully. We show how A can be used to construct a

model I of R. For this construction, we first consider the formula

ϕTA , which is obtained from R by replacing each |C | in R with∑
t ∈TA s.t. C ∈t vt and adding vt ≥ 0 for each t ∈ TA . Since the

algorithm has terminated successfully, we know for all t ∈ TA that

the formula ϕTA ∧vt ≥ 1 has a solution. By Lemma 7 this implies

that ϕTA has a solution in which all variables vt for t ∈ TA have a

value ≥ 1 and all variablesvt with t < TA have value 0. In addition,

given an arbitrary number N ≥ 1, we know that there is a solution

σN of ϕTA such that σN (vt) ≥ 1 and N |σN (vt) holds for all t ∈ TA .

To see this, note that we can just multiply with N a given solution

satisfying the properties mentioned in the previous sentence.

We use the augmented types in A to determine the right N :

• For each augmented type (t ,V), we know that the formulaϕ ′t
has a solution where exactly the Venn regions in V are non-

empty (see Definition 8). Assume that this solution assigns a

set of cardinality k(t,V) to the universal set.

• For each t ∈ TA , let nt be the cardinality of the set {V |
(t ,V) ∈ A}, i.e., the number of augmented types in A that

have t as their first component.

We now define N as N := (max{k(t,V) | (t ,V) ∈ A}) ·∏t ∈TA nt ,
and use the solution σN of ϕTA to construct a finite interpretation

Expressive Cardinality Constraints on ALCSCC Concepts SAC ’19, April 8–12, 2019, Limassol, Cyprus

I as follows. The domain of I is defined as

∆I
:= {(t ,V)i | (t ,V) ∈ A and 1 ≤ i ≤ σN (vt)/nt }.

Note that σN (vt)/nt is a natural number since N |σN (vt) implies

nt |σN (vt). In addition, ∆I , ∅ because A , ∅ and σN (vt)/nt ≥ 1

since σN (vt) ≥ 1. Moreover, for each type t ∈ TA , the set {(t ,V)i |
(t ,V)i ∈ ∆I } has cardinality σN (vt).

The interpretation of the concept names A is based on the occur-

rence of these names in the first component of an augmented type,

i.e., AI
:= {(t ,V)i ∈ ∆I | A ∈ t}.

Defining the interpretation of the role names is a bit more tricky.

Obviously, it is sufficient to define, for each role name r ∈ NR and

each d ∈ ∆I
, the set r I (d). Thus, consider an element (t ,V)i ∈ ∆I

.

Since (t ,V) is an augmented type inA, the formulaϕ ′t has a solution
σ in which exactly the Venn regions inV are non-empty, and which

assigns a set of cardinality m := k(t,V) to the universal set. In

addition, each Venn regionw ∈ V is realized by an augmented type

(tw ,Vw) ∈ A. Assume that the solution σ assigns the finite set

{d1, . . . ,dm } to the set term U. We consider an injective mapping

π of {d1, . . . ,dm } into ∆I
such that the following holds for each

element dj of {d1, . . . ,dm }: if dj belongs to the Venn regionw ∈ V ,

then π (dj) = (tw ,Vw)ℓ for some 1 ≤ ℓ ≤ σN (vtw)/ntw . Such
a bijection exists since σN (vtw)/ntw ≥ max{k(t ′,V ′) | (t ′,V ′) ∈
A} ≥ k(t,V) =m. We now define

r I ((t ,V)i) := {π (dj) | dj ∈ σ (Xr)}.
Soundness of Algorithm 10 is now an easy consequence of the

following claim:

Claim: For all C ∈ M, (t ,V) ∈ A, and i, 1 ≤ i ≤ σN (vt)/nt we
have C ∈ t iff (t ,V)i ∈ CI .

We prove the claim by induction on the size of C:

• The cases C = A, C = ¬D, C = D1 ⊓ D2, and C = D1 ⊔ D2

can be handled as in the proof of (3) in the proof of Lemma 4.

• Now assume that C = succ(c) for a set or cardinality con-

straint c .
– IfC ∈ t , then this constraint is part of the QFBAPA formula

ϕ ′t obtained from t , and thus satisfied by the solution σ of

ϕ ′t used to define the role successors of (t ,V)i . According
to this definition, there is a 1–1 correspondence between

the elements of σ (U) and the role successors of (t ,V)i .
This bijection π also respects the assignment of subsets of

σ (U) to set variables of the form Xr (for r ∈ NR) and XD
(for concept descriptions D) occurring in ϕ ′t , i.e.,

(∗) dj ∈ σ (Xr) iff π (dj) ∈ r I ((t ,V)i) and dj ∈ σ (XD) iff
π (dj) ∈ DI

.

Once (∗) is shown it is clear that (t ,V)i ∈ succ(c)I = CI
.

In fact, the translation ϕc of c , where r is replaced by

Xr and D by XD , is a conjunct in ϕ
′
t and thus σ satisfies

ϕc . Now (∗) shows that (modulo the application of the

bijection π), when checking whether (t ,V)i ∈ succ(c)I ,
roles r and concepts D in ϕc are interpreted in the same

way as the set variablesXr andXD in c , respectively. Thus
the fact that σ satisfies ϕc implies that the role successors

of (t ,V)i satisfy c , i.e., (t ,V)i ∈ succ(c)I holds.

For role names r , property (∗) is immediate by the defini-

tion of r I ((t ,V)i). Now consider a concept description D
such that XD occurs in ϕ ′t . Then D occurs in c , and is thus
smaller than C , which means that we can apply induction

to it. If dj ∈ σ (XD), then the Venn regionw to which dj be-
longs contains XD positively. Consequently, Sw contains

D, and the augmented type (tw ,Vw) realizingw satisfies

D ∈ tw . By induction, we obtain π (dj) = (tw ,Vw)ℓ ∈ DI
.

Conversely, assume that π (dj) = (tw ,Vw)ℓ ∈ DI
, where

w is the Venn region to which dj belongs w.r.t. σ . By in-

duction, we obtain D ∈ tw , and thus the Venn region

w contains XD positively. Since dj belongs to this Venn

region, we obtain dj ∈ σ (XD).
– The case where C < t can be treated similarly. In fact, in

this case the constraint ¬c is part of the QFBAPA formula

ϕ ′t obtained from t , and we can employ the same argument

as above, just using ¬c instead of c .

This finishes the proof of the claim. As an easy consequence of this

claim we have for all C occurring in R that

CI = {(t ,V)i | C ∈ t , (t ,V) ∈ A, and 1 ≤ i ≤ σN (vt)/nt }.

Consequently, |CI | = ∑
t ∈TA s.t. C ∈t σN (vt), which shows that I

satisfies R since σN solves ϕTA . □

Lemma 12 (Completeness). Let R be an ALCSCC RCBox. If
R is consistent, then Algorithm 10 succeeds on input R.

Proof. Assume that I is a model of R. Consider the set of all
types of elements of I, i.e.,

TI := {tI (d) | d ∈ ∆I }.

As mentioned below Definition 3, the elements of TI are indeed a

set of types according to Definition 3. In addition, since ∆I , ∅,
we also know that TI , ∅.

First, note that no element ofTI can be removed in Step 4 of our

algorithm. This is an easy consequence of the following observation.

Let T be a set of types such that TI ⊆ T , and let ϕT be obtained

from R by replacing each |C | in R with

∑
t ∈T s.t. C ∈t vt and adding

vt ≥ 0 for each t ∈ T . Since I is a model of R, it is easy to see that

ϕT has a solution that also satisfies vt ≥ 1 for all t ∈ TI .
Regarding Step 3 of our algorithm, we want to show that for

every type t ∈ TI there is at least one set of Venn regions V such

that the augmented type (t ,V) is not removed in this step. To this

purpose, let us now extend the types in TI by adding appropriate

Venn regions as second components. Consider t := tI (d) for an
element d ∈ ∆I

. Then the QFBAPA formula ϕ ′t corresponding to
t has a solution σ in which the universal setU consists of all the

role successors of d , and the other set variables are assigned sets

according to the interpretations of roles and concept descriptions

in the model I. Let {d1, . . . ,dm } = σ (U) be the set of all role

successors of d , andwi the Venn region to which di belongs w.r.t.
σ . By Lemma 1, there is a solution σ ′

of ϕ ′t such that the set V of

non-empty Venn regions w.r.t. σ ′
has cardinality ≤ Nt and each of

these non-empty Venn regions in V is one of the Venn regionswi ,

i.e.,V ⊆ {w1 . . . ,wm }. By construction, (t ,V) is an augmented type.

Let AI denote the set of augmented types obtained by extending

the types in TI in this way for every d ∈ ∆I
. By construction, for

SAC ’19, April 8–12, 2019, Limassol, Cyprus Franz Baader

every t ∈ TI there is a set of Venn regionsV such that (t ,V) ∈ AI .
In particular, this yields AI , ∅ and TAI = TI .

Next, we show that the Venn regions occurring in some aug-

mented type in AI are realized by AI . Thus, let (t ,V) be an aug-

mented type constructed from a type t = tI (d) as described above,

and letw ∈ V be a Venn region occurring in this augmented type.

Then there is a role successor di of d such that di belongs to the

Venn region w = wi w.r.t. the solution σ of ϕ ′t induced by I. We

know that di ∈ DI
for all D ∈ Sw , and thus Sw ⊆ tI (di). Since

AI contains an augmented type with first component tI (di), this
shows thatw is realized by AI .

We claim that, during the run of Algorithm 10, we always have

AI ⊆ A and TI ⊆ TA . Obviously, this is true after Step 2 of our

algorithm. In addition, in Step 3 of our algorithm, no element ofAI
can be removed since we have seen that the Venn regions occurring

in some augmented type in AI are realized by AI . Finally, we
have also seen above that in Step 4 of our algorithm, no element of

TI = TAI can be removed.

Since AI is non-empty, this shows that the algorithm cannot

fail on input R, and thus must succeed. This completes the proof of

completeness. □

Theorem 13. Consistency of ALCSCC RCBoxes is ExpTime-
complete.

Proof. It remains to prove that Algorithm 10 indeed runs in

exponential time. To see this, first note that, according to Lemma 9,

there are only exponentially many augmented types, and they can

be computed in exponential time. Thus, the first two steps of the

algorithm take only exponential time. In addition, the iteration

between Steps 3 and 4 can happen only exponentially often since

in each iteration at least one augmented type is removed. A single

Step 3 takes only exponential time since for each of the exponen-

tially many augmented types (t ,V), only exponentially many other

augmented types need to be considered. Finally, a single Step 4 takes

only exponential time. In fact, we need to consider exponentially

many systems of linear inequalities ϕTA ∧ vt ≥ 1. Each of these

systems may be of exponential size, but its solvability can be tested

in time that is polynomial in this size (according to Lemma 7), and

thus exponential in the size of the input. □

5 CONCLUSION
In two previous papers we have shown how to use QFBAPA con-

straints to extend the expressive power of number restrictions, on

the hand, and of cardinality restrictions on concepts, on the other

hand. In the present paper, we have shown that these two extensions

can be combined without increasing the complexity of reasoning.

In fact, reasoning w.r.t. ECBoxes (RCBoxes) in ALCSCC, the ex-
tension ofALC with more expressive number restrictions, has the

same complexity as inALC: NExpTime-complete for ECBoxes and

ExpTime-complete for RCBoxes. This combination is non-trivial

since role successors required by local constraints might actually

be prevented to exist by global constraints. For ECBoxes, we have

shown that this can be taken care of by inequalities that basically

relate cardinalities of global types with cardinalities of local Venn

regions (see the definition of the formulae γt in (1)). For RCBoxes,
stating such inequalities explicitly is not necessary since in this

restricted case the cardinalities of global types can be made as large

as is needed to satisfy the local constraints (see the definition of the

solution σN in the proof of Lemma 11). Technically, in both cases

the fact that the interaction between global and local constraints is

handled appropriately shows up in the definition of the interpreta-

tion of roles in the soundness proofs, where we see that sufficiently

many copies of the (augmented) types belong to the domain of the

interpretation. The combined logic can, for instance, be used to

check the correctness of statistical statements. For example, if a

German car company claims that they have produced more than N
cars in a certain year, and P% of the tires used for their cars were

produced by Betteryear, this may be contradictory to a statement of

Betteryear that they have sold less thanM tires in Germany. This

information can be expressed using ALCSCC ECBoxes, and thus

the contradiction can be found using our consistency algorithm. It

would not have been possible to express this using ALC ECBoxes

since stating how many tires a car has requires local number re-

strictions.

REFERENCES
[1] Franz Baader. 2017. ANewDescription Logic with Set Constraints and Cardinality

Constraints on Role Successors. In Proceedings of the 11th International Symposium
on Frontiers of Combining Systems (FroCoS’17) (Lecture Notes in Computer Science),
Clare Dixon and Marcelo Finger (Eds.), Vol. 10483. Springer-Verlag, Brasília,

Brazil, 43–59.

[2] Franz Baader, Martin Buchheit, and Bernhard Hollunder. 1996. Cardinality

Restrictions on Concepts. Artificial Intelligence 88, 1–2 (1996), 195–213.
[3] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F.

Patel-Schneider (Eds.). 2003. The Description Logic Handbook: Theory, Implemen-
tation, and Applications. Cambridge University Press.

[4] Franz Baader and Andreas Ecke. 2017. Extending the Description Logic ALC

with More Expressive Cardinality Constraints on Concepts. In GCAI 2017. 3rd
Global Conference on Artificial Intelligence (EPiC Series in Computing), Vol. 50.
EasyChair, 6–19.

[5] Alexander Borgida, Ronald J. Brachman, Deborah L. McGuinness, and Lori

Alperin Resnick. 1989. CLASSIC: A Structural Data Model for Objects. In Proc. of
the ACM SIGMOD Int. Conf. on Management of Data. 59–67.

[6] Stéphane Demri and Denis Lugiez. 2010. Complexity of modal logics with

Presburger constraints. J. Applied Logic 8, 3 (2010), 233–252.
[7] Robert Hoehndorf, Paul N. Schofield, and Georgios V. Gkoutos. 2015. The Role

of Ontologies in Biological and Biomedical Research: A Functional Perspective.

Brief. Bioinform. 16, 6 (2015), 1069–1080.
[8] Bernhard Hollunder and Franz Baader. 1991. Qualifying Number Restrictions in

Concept Languages. In Proc. of the 2nd Int. Conf. on the Principles of Knowledge
Representation and Reasoning (KR’91). 335–346.

[9] Bernhard Hollunder, Werner Nutt, and Manfred Schmidt-Schauß. 1990. Subsump-

tion Algorithms for Concept Description Languages. In Proc. of the 9th Eur. Conf.
on Artificial Intelligence (ECAI’90). Pitman, London (United Kingdom), 348–353.

[10] Viktor Kuncak and Martin C. Rinard. 2007. Towards Efficient Satisfiability Check-

ing for Boolean Algebra with Presburger Arithmetic. In Proc. of the 21st Int. Conf.
on Automated Deduction (CADE-07) (Lecture Notes in Computer Science), Frank
Pfenning (Ed.), Vol. 4603. Springer, 215–230.

[11] Klaus Schild. 1991. A Correspondence Theory for Terminological Logics: Prelimi-

nary Report. In Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI’91).
466–471.

[12] Stephan Tobies. 1999. A PSPACE Algorithm for Graded Modal Logic. In Proc. of
the 16th Int. Conf. on Automated Deduction (CADE’99) (Lecture Notes in Artificial
Intelligence), Harald Ganzinger (Ed.), Vol. 1632. Springer-Verlag, 52–66.

[13] Stephan Tobies. 2000. The Complexity of Reasoning with Cardinality Restrictions

andNominals in Expressive Description Logics. J. of Artificial Intelligence Research
12 (2000), 199–217.

[14] Stephan Tobies. 2001. Complexity Results and Practical Algorithms for Logics
in Knowledge Representation. Ph.D. Dissertation. LuFG Theoretical Computer

Science, RWTH-Aachen, Germany. http://lat.inf.tu-dresden.de/research/phd/

Tobies-PhD-2001.pdf

[15] Kuat Yessenov, Ruzica Piskac, and Viktor Kuncak. 2010. Collections, Cardinalities,

and Relations. In Proc. of the 11th International Conference on Verification, Model
Checking, and Abstract Interpretation (VMCAI’10) (Lecture Notes in Computer
Science), Gilles Barthe and Manuel V. Hermenegildo (Eds.), Vol. 5944. Springer-

Verlag, 380–395.

http://lat.inf.tu-dresden.de/research/phd/Tobies-PhD-2001.pdf
http://lat.inf.tu-dresden.de/research/phd/Tobies-PhD-2001.pdf

	Abstract
	1 Introduction
	2 Preliminaries
	3 Consistency of ALCSCC ECBoxes
	4 Restricted Cardinality Constraints
	5 Conclusion
	References

