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Abstract. Probabilistic model checking (PMC) is a well-established
method for the quantitative analysis of dynamic systems. Description
logics (DLs) provide a well-suited formalism to describe and reason about
terminological knowledge, used in many areas to specify background
knowledge on the domain. We investigate how such knowledge can be
integrated into the PMC process, introducing ontology-mediated PMC.
Specifically, we propose a formalism that links ontologies to dynamic
behaviors specified by guarded commands, the de-facto standard input
formalism for PMC tools such as Prism. Further, we present and imple-
ment a technique for their analysis relying on existing DL-reasoning and
PMC tools. This way, we enable the application of standard PMC tech-
niques to analyze knowledge-intensive systems. Our approach is imple-
mented and evaluated on a multi-server system case study, where differ-
ent DL-ontologies are used to provide specifications of different server
platforms and situations the system is executed in.

1 Introduction

Probabilistic model checking (PMC, see, e.g., [6,17] for surveys) is an automated
technique for the quantitative analysis of dynamic systems. PMC has been suc-
cessfully applied in many areas, e.g., to ensure that the system meets quality
requirements such as low error probabilities or an energy consumption within a
given bound. The de-facto standard specification for the dynamic (probabilis-
tic) system under consideration is given by stochastic programs, a probabilistic
variant of Dijkstra’s guarded command language [14,21] used within many PMC
tools such as Prism [24]. Usually, the behavior described by a stochastic program
is part of a bigger system, or might be even used within a collection of systems
that have an impact on the operational behavior as well. There are different ways
in which this can be taken into consideration by using stochastic programs: one
could (1) integrate additional knowledge about the surrounding system directly
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into the stochastic program, or (2) use the concept of nondeterminism that mod-
els all possible behaviors of the surrounding system. The second approach might
lead to analysis results that are too coarse with respect to desired properties and
increases the well-known state-space explosion problem. Also the first approach
has its drawbacks: although guarded command languages are well-suited to spec-
ify operational behaviors, they are not specialized to describe static knowledge.
This, e.g., makes it cumbersome to describe knowledge-intensive contexts within
guarded commands. We therefore propose a third approach where we separate
the specification of the dynamic behavior of a system from the specification of
the additional knowledge that influences the behaviors. This allows to use differ-
ent, specialized formalisms for describing the complex properties of the system
analyzed. Further, such an approach adds flexibility, as we can exchange both
behavioral and knowledge descriptions, e.g., to analyze the same behavior in
different contexts, or to analyze different behaviors in the same context.

A well-established family of formalisms for describing domain knowledge are
description logics (DLs), fragments of first-order logic balancing expressivity and
decidability [1,3]. While the worst-case complexity for reasoning in DLs can be
very high, modern optimized DL reasoning systems often allow reasoning even
for very large knowledge bases in short times [30]. Logical theories formulated in
a DL are called ontologies, and may contain universal statements defining and
relating concepts from the application domain and assertional axioms about
specific individuals.

In this paper, we propose ontology-mediated probabilistic model checking as
an approach to include knowledge described in a DL ontology into the PMC pro-
cess. The center of this approach are ontologized (stochastic) programs which can
be subject of probabilistic model checking. Following the separation of concerns
described above, ontologized programs use different formalisms for specifying
the operational behavior and the ontology, loosely coupled through an inter-
face. Specifically, ontologized programs are stochastic programs that use hooks
to refer to the ontology within the behavior description, which are linked to DL
expressions via the interface. The semantics of ontologized programs follows a
product construction of the operational semantics for the stochastic program,
combined with annotations in which states are additionally associated with DL
knowledge bases. To analyze ontologized programs, we present a technique to
rewrite ontologized programs into (plain) stochastic programs without explicit
references to the ontology, preserving those properties of the program that are
relevant for the analysis. A similar transformation is done to those analysis prop-
erties that depend on an ontology, i.e., include hooks. This translation approach
enables the full potential of standard PMC tools such as Prism [24] including
advanced analysis properties [8,23] also for the analysis of ontologized programs
with properties that refer to background knowledge captured in the ontology.

We implemented the technique in a tool chain in which the operational behav-
ior is specified in the input language of Prism, and where the ontology is given
as an OWL knowledge base [28]. Since our approach is independent of any par-
ticular DL, the implementation supports any OWL-fragment that is supported
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by modern DL reasoners. In the translation process we use axiom pinpointing
to minimize the use of external DL reasoning, and to enable a practical imple-
mentation.

We evaluated the implementation based on a heterogeneous multi-server sce-
nario and show that our approach facilitates the analysis of knowledge-intensive
systems when varying behavior and ontology.

Missing proofs and details about the evaluation can be found in the technical
report [16] that also explains the use of ontology-mediated probabilistic model
checking for the analysis of context-dependent systems.

2 Preliminaries

We recall well-known notions and formalisms from probabilistic model checking
and description logics required to ensure a self-contained presentation through-
out the paper. By Q, Z, and N we denote the set of rationals, integers, and non-
negative integers, respectively. Let S be a countable set. We denote by ℘(S) the
powerset of S. A probability distribution over S is a function μ : S → [0, 1] ∩ Q

with
∑

s∈S μ(s) = 1. The set of distributions over S is denoted by Distr(S).

2.1 Markov Decision Processes

The operational model used in this paper is given in terms of Markov decision
processes (MDPs) (see, e.g., [32]). MDPs are tuples M = 〈Q,Act , P, q0, Λ, λ〉
where Q and Act are countable sets of states and actions, respectively, P : Q ×
Act ⇀ Distr(Q) is a partial probabilistic transition function, q0 ∈ Q an ini-
tial state, and Λ a set of labels assigned to states via the labeling function
λ : Q → ℘(Λ). Intuitively, in a state q ∈ Q, we nondeterministically select
an action α ∈ Act for which P (q, α) is defined, and then move to a succes-
sor state q′ with probability P (q, α, q′). Formally, a path in M is a sequence
π = q0 α0 q1 α1 . . . where P (qi, αi) is defined and P (qi, αi, qi+1) > 0 for all i.
The probability of a finite path is the product of its transition probabilities.
Resolving nondeterministic choices gives then rise to a probability measure over
maximal paths, i.e., paths that cannot be extended. Amending M with a weight
function wgt : Q → N turns M into a weighted MDP 〈M,wgt〉. The weight of a
finite path π = q0 α0 q1 . . . qn is defined as wgt(π) =

∑
i≤n wgt(qi).

MDPs are suitable for a quantitative analysis using probabilistic model check-
ing (PMC, cf. [6]). A property to be analyzed is usually defined using temporal
logics over the set of labels, constituting a set of maximal paths for which the
property is fulfilled after the resolution of nondeterministic choices. By ranging
over all possible resolutions of nondeterminism, this enables a best- and worst-
case analysis on the property. Standard analysis tasks ask, e.g., for the minimal
and maximal probability of a given property, or the expected weight reaching a
given set of states. An energy-utility quantile [5] is an advanced property that is
used to reason about trade-offs: given a probability bound p ∈ [0, 1] and a set of
goal states, we ask for the minimal (resp. maximal) weight required to reach the
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goal with probability at least p when ranging over some (resp. all) resolutions of
nondeterminism.

2.2 Stochastic Programs

A concise representation of MDPs is provided by a probabilistic variant of Dijk-
stra’s guarded-command language [14,21], compatible with the input language
of the PMC tool Prism [24]. Throughout this section, we fix a countable set
Var of variables, on which we define evaluations as functions η : Var → Z. We
denote the set of evaluations over Var by Eval(Var).

Arithmetic Constraints and Boolean Expressions. Let z range over Z

and v range over Var . The set of arithmetic expressions E(Var) is defined by
the grammar

α ::= z | v | (α + α) | (α · α).

Variable evaluations are extended to arithmetic expressions in the natural way,
i.e., η(z) = z, η(α1 + α2) = η(α1) + η(α2), and η(α1 · α2) = η(α1) · η(α2).
C(Var) denotes the set of arithmetic constraints over Var , i.e., terms of the
form (α 	
 z) with α ∈ E(Var), 	
 ∈ {>,≥,=,≤, <, 	=}, and z ∈ Z. For a
given evaluation η ∈ Eval(Var) and constraint (α 	
 z) ∈ C(Var), we write
η |= (α 	
 z) iff η(α) 	
 z and say that (α 	
 z) is entailed by η. Furthermore, we
denote by C(η) the constraints entailed by η, i.e., C(η) = {c ∈ C(Var) | η |= c}.

For a countable set X and x ranging over X, we define Boolean expressions
B(X) over X by the grammar φ ::= x | ¬φ | φ ∧ φ . Furthermore, we define the
satisfaction relation |= ⊆ ℘(X)×B(X) in the usual way (with Y ⊆ X) as Y |= x
if x ∈ Y , Y |= ¬ψ iff Y 	|= ψ, and Y |= ψ1 ∧ ψ2 iff Y |= ψ1 and Y |= ψ2. For
an evaluation η ∈ Eval(Var) and φ ∈ B(C(Var)), we write η |= φ iff C(η) |= φ.
Well-known Boolean connectives such as disjunction ∨, implication →, etc. and
their satisfaction relation can be deduced in the standard way using syntactic
transformations, e.g., through de Morgan’s rule.

Stochastic Programs. We call a function u : Var → E(Var) update, and a dis-
tribution σ ∈ Distr(Upd) over a given finite set Upd of updates stochastic update.
The effect of an update u : Var → E(Var) on an evaluation η ∈ Eval(Var)
is their composition η ◦ u ∈ Eval(Var), i.e., (η ◦ u)(v) = η(u(v)) for all
v ∈ Var . This notion naturally extends to stochastic updates σ ∈ Distr(Upd) by
η ◦ σ ∈ Distr(Eval(Var)), where for any η′ ∈ Eval(Var) we have

(η ◦ σ)(η′) =
∑

u∈Upd,η◦u=η′
σ(u).

A stochastic guarded command over a finite set of updates Upd , briefly called
command, is a pair 〈g, σ〉 where g ∈ B(C(Var)) is a guard and σ ∈ Distr(Upd)
is a stochastic update. Similarly, a weight assignment is a pair 〈g, w〉 where
g ∈ B(C(Var)) is a guard and w ∈ N a weight. A stochastic program over Var is
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a tuple P = 〈Var , C,W, η0〉 where C is a finite set of commands, W a finite set
of weight assignments, and η0 ∈ Eval(Var) is an initial variable evaluation. For
simplicity, we write Upd(P) for the set of all updates in C.

The semantics of P is now defined as the weighted MDP

M[P] = 〈S,Act , P, η0, Λ, λ,wgt〉
where

– S = Eval(Var),
– Act = Distr(Upd(P)),
– Λ = C(Var),
– λ(η) = C(η) for all η ∈ S,
– P (η, σ, η′) = (η ◦ σ)(η′) for any η, η′ ∈ S and 〈g, σ〉 ∈ C with λ(η) |= g, and
– wgt(η) =

∑
〈g,w〉∈W,λ(η)|=g w for any η ∈ S.

Note that M[P] is indeed a weighted MDP and that P (η, σ) is a probability
distribution with finite support for all η ∈ Eval(Var) and σ ∈ Distr(Upd(P)).

2.3 Description Logics

We recall basic notions of description logics (DLs) (see, e.g., [1,3] for more
details). Our approach presented in this paper is general enough to be used with
any expressive DL, and our implementation supports the expressive DL SROIQ
underlying the web ontology standard OWL-DL [20]. For illustrative purposes,
we present here a small yet expressive fragment of this DL called ALCQ. Let Nc,
Nr and Ni be pairwise disjoint countable sets of concept names, role names, and
individual names, respectively. For A ∈ Nc, r ∈ Nr, and n ∈ N, ALCQ concepts
are then defined through the grammar

C ::= A | ¬C | C � C | ∃r.C | ≥nr.C.

Further concept constructors are defined as abbreviations: C � D = ¬(¬C � ¬D),
∀r.C = ¬∃r.¬C, ≤nr.C = ¬≥(n+1)r.C, ⊥ = A�¬A (for any A), and � = ¬⊥.
Concept inclusions (CIs) are statements of the form C � D, where C and D are
concepts. A common abbreviation is C ≡ D for C � D and D � C. Assertions
are of the form A(a) or r(a, b), where A is a concept, r ∈ Nr, and a, b ∈ Ni. CIs
and assertions are commonly referred to as DL axioms, and we use A to denote
the set of all DL axioms. A knowledge base K is a finite set of DL axioms.

CIs model background knowledge on notions and categories from the appli-
cation domain. Assertions are used to describe the facts that hold for particular
objects from the application domain.

Example 1. We can define the state of a multi-server platform, in which different
servers run processes with different priorities, using the following assertions:

hasServer(platform, server1) hasServer(platform, server2) (1)
runsProcess(server2, process1) runsProcess(server2, process2) (2)

hasPriority(process1, highP) hasPriority(process2, highP) High(highP), (3)
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and specify further domain knowledge using the following CIs:

∃runsProcess.� � Server (4)
≥4runsProcess.� � Overloaded (5)

≥2runsProcess.∃hasPriority.High � Overloaded (6)
PlatformWithOverload ≡ ∃hasServer.Overloaded. (7)

These CIs express that if something runs a process (of some kind) then it is a
server (4), and something that runs more than 4 processes is overloaded (5), that
something is already overloaded when it runs 2 processes with a high priority (6),
and that PlatformWithOverload is a platform that has an overloaded server (7)./

The semantics of DLs is defined in terms of interpretations, which are tuples
〈ΔI , ·I〉 of a set ΔI of domain elements, and an interpretation function ·I that
maps every A ∈ Nc to some AI ⊆ ΔI , every r ∈ Nr to some rI ⊆ ΔI × ΔI , and
every a ∈ Ni to some aI ∈ ΔI . Interpretation functions are extended to complex
concepts in the following way:

(¬C)I = ΔI \ CI (C � D)I = CI ∩ DI

(∃r.C)I = {d ∈ ΔI | ∃e : 〈d, e〉 ∈ rI ∧ e ∈ CI}
(≥nr.C)I = {d ∈ ΔI | #{〈d, e〉 ∈ rI | e ∈ CI} ≥ n}

Satisfaction of a DL axiom α in an interpretation I, in symbols I |= α, is
defined as I |= C � D iff CI ⊆ DI , I |= A(a) iff aI ∈ AI , and I |= r(a, b)
iff 〈aI , bI〉 ∈ rI . An interpretation I is a model of a DL knowledge base K iff
I |= α for all α ∈ K. K is inconsistent if it does not have a model, and it entails
an axiom α, in symbols K |= α, iff I |= α for all models I of K.

Example 2. Returning to Example 1, we have K |= Overloaded(server2) as server
server2 runs two prioritized processes, and K |= PlatformWithOverload(platform)
as platform has server2 as an overloaded server. /

3 Ontologized Programs

We introduce our notion of ontologized programs. In general, an ontologized
program comprises the following three components:

The Program is a specification of the operational behavior given as an abstract
stochastic program, which may use hooks to refer to knowledge relative to the
ontology.

The Ontology is a DL knowledge base representing additional knowledge that
may influence the behavior of the program.

The Interface links program and ontology by providing mappings between the
language used in the program and the DL of the knowledge base.
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We provide a formal definition of ontologized programs (Sect. 3.1) and define
their semantics in terms of weighted MDPs (Sect. 3.2). To illustrate these defini-
tions, we extend Example 1 towards a scenario for probabilistic model checking:
we consider a generic multi-server platform on which processes can be assigned to
servers, scheduled to complete a given number of jobs. The program specifies the
dynamics of this scenario, i.e., how jobs are executed, how processes are assigned
to servers or moved, and when processes terminate and when they are spawned.
The ontology gives details and additional constraints for a specific multi-server
platform. In this setting, probabilistic model checking can be used to analyze
different aspects of the system, depending on the operational behavior and the
different hardware and software configurations specified by the ontology.

3.1 Ontologizing Stochastic Programs

We introduce ontologized programs formally and illustrate their concepts by
our running example. In preparation of the definition, we fix a set H of labels
called hooks. We define abstract stochastic programs as an extension of stochastic
programs where the guards used in guarded commands and in weights can be
picked from the set B(C(Var) ∪ H). For instance, with a hook migrate ∈ H,
the following guarded command may appear in an abstract stochastic program:

(migrate ∧ server proc1 = 2) �→
{

1/2 : server proc1 := 1
1/2 : server proc1 := 3

This command states that, if the hook migrate is active and Process 1 runs on
Server 2, then we move Process 1 to Server 1 or to Server 3 with a 50% probability
each. For a given abstract program P, we refer to its hooks by H(P).

Definition 1. An ontologized program is a tuple O = 〈P,K, I〉 where

– P = 〈VarP, C,W, η0〉 is an abstract stochastic program,
– K is a DL knowledge base describing the ontology,
– I = 〈VarO,HO,FO, pD,Dp〉 is a tuple describing the interface, where VarO is

a set of variables, HO is a set of hooks, FO is a set of DL axioms called fluent
axioms, and two mappings pD : HO → ℘(A) and Dp : FO → B(C(VarO)),

and for which we require that I is compatible with P in the sense that H(P) ⊆
HO and VarO ⊆ VarP. Given an ontologized program O, we refer to its abstract
stochastic program by PO, to its ontology by KO, and to its interface by IO.

We illustrate the above definition and its components by our multi-server system
example, for which we consider instances running n processes on m servers.

Program. The stochastic program PO specifies the protocol how processes are
scheduled to complete their jobs when running on the same server, and when
ontology-dependent migration of processes to other servers should be performed.
Job scheduling could be performed, e.g., by selecting processes uniformly via
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tossing a fair coin or in a round-robin fashion. Here, the hook migrate ∈ H is
used to determine when a server should migrate processes to other servers. The
program further specifies guarded weights, e.g., amending states marked with
migrate by the costs to migrate processes.

Ontology. The knowledge base KO models background knowledge about a
particular server platform. For instance, it could use the example axioms from
Example 1 to specify hardware characteristics of the servers using the CIs (5)–
(7), architecture specifics using the assertions in (1), and distribute different
priorities among a set of predefined processes using the assertions in (3). To
establish a link with the hook migrate in the interface, we use an additional CI
to describe the conditions that necessitate a migration in the platform:

NeedsToMigrate ≡ PlatformWithOverload.

In more complex scenarios, migration can depend on a server and can be specified
by more complex CIs. This modeling makes it easy to define different migration
strategies within the different ontologies. Each of them can be used by simply
referring to the migrate hook in the program.

Note that the guarded command language uses variables (over integers) to
refer to servers and processes, while the knowledge base uses individual names
for them. The program and the ontology thus have different views on the system,
mapped to each other via the interface.

Interface. To interpret the states of the program PO in DL, the interface speci-
fies a set FO of “fluent” DL axioms that describe the dynamics of the system. The
function Dp maps each element α ∈ FO to an expression Dp(α) ∈ B(C(Var)),
identifying states in the program language in which α holds. It is thus a map-
ping from the DL to the abstract program language. In our example, FO would
contain assertions of the form runsProcess(serveri, processj), which are mapped
using Dp(runsProcess(serveri, processj)) = (server procj = i) to constraints
over the states of the abstract program. This allows to represent each program
state as a DL knowledge base with axioms from FO and KO. Note that the
mapping Dp can only refer to variables that are used by the program, as we
require VarO ⊆ VarP. Hence, for every axiom α ∈ FO, Dp(α) has a well-defined
meaning within the abstract program. However, the program may use additional
variables that are only relevant for the operational behavior.

To interpret the hooks in the DL, we additionally need a mapping pD from
the program language into the DL. Specifically, pD assigns to each hook � ∈ HO

a set pD(�) of DL axioms. In our running example, the hook migrate would,
e.g., be mapped as pD(migrate) = {NeedsToMigrate(platform)}. All hooks in
the program are mapped by the interface due to the condition H(P) ⊆ HO.
However, further hooks can be defined that are only relevant for the analysis
tasks to be performed. For instance, we might use a hook critical to mark
critical situations in our system, and analyze the probability of the ontologized
program to enter a state in which this hook is activated.



202 C. Dubslaff et al.

To illustrate the idea of the mappings, consider a virtual communication flow
between the program and the ontology. If the ontology wants to know which
axioms in α ∈ FO hold in the current state, it “asks” the abstract program
whether the expression Dp(α) is satisfied. For the program to know which hooks
� ∈ HO are active in the current state, it “asks” the ontology whether an axiom
in pD(�) is entailed. In the next section, we formalize this intuition and define
the semantics of ontologized programs via induced MDPs.

3.2 Semantics of Ontologized Programs

The semantics is formally defined using ontologized MDPs. In order to account
for both the program PO and the ontology KO, the ontologized MDP induced
by PO has to provide two views on its states. The first view is from the per-
spective of PO: for a stochastic programs, a system state is characterized by
an evaluation over VarP. For instance, a state q might be associated with the
following evaluation ηq:

server proc1 = 2 server proc2 = 2 server proc3 = 0,

stating that Process 1 and Process 2 run on Server 2, while Process 3 is currently
not running. The second view is from the perspective of the ontology: state q is
characterized by a knowledge base Kq that contains all axioms in KO and

runsProcess(server2, process1) runsProcess(server2, process2).

Kq entails NeedsToMigrate(platform), and therefore the state q should be labeled
with the hook migrate. We make this intuition formal in the following definition.

Definition 2. An ontologized state is a tuple of the form q = 〈ηq,Kq〉, where ηq

is an evaluation and Kq a DL knowledge base. Let O be an ontologized program
as in Definition 1. An ontologized state q conforms to O iff

1. Kq ⊆ KO ∪ FO,
2. KO ⊆ Kq, and
3. for every α ∈ FO, we have α ∈ Kq iff ηq |= Dp(α).

Intuitively, an ontologized state conforms to O if it conforms to the mapping
Dp provided by the interface, as well as to the axioms specified by the ontology
KO. It follows from Condition 3 in Definition 2 that for every evaluation η and
ontologized program O, there is a unique ontologized state q that conforms to O
such that ηq = η. We refer to this unique ontologized state as q = e(O, η),
which is defined by ηq = η and Kq = KO ∪ {α ∈ FO | η |= Dp(α)}. This
observation allows us to define updates on ontologized states in a convenient
manner. Specifically, the result of applying an update u on an ontologized state
q is defined as u(q) = e(O, u(ηq)). Intuitively, we first apply the update on the
evaluation ηq of q, and then compute its unique extension to an ontologized state
conforming to O. Our definition naturally extends to stochastic updates, leading
to distributions over ontologized states.
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Let q denote the ontologized state from above and consider the update u =
{server proc1 �→ 1}. For q′ = u(q), we obtain u(ηq) = ηq′ as

server proc1 = 1 server proc2 = 2 server proc3 = 0,

and K′
q = KO ∪ F ′, where F ′ contains

runsProcess(server1, process1) runsProcess(server2, process2).

While Kq |= NeedsToMigrate(platform), there is no such entailment in Kq′ , so
that the hook migrate should become inactive in state q′.

In the ontologized MDP, states are labeled with constraints C(VarO) and
with hooks HO. The hooks h ∈ HO included in the label of a state q are deter-
mined by whether Kq |= pD(h) is satisfied. This is captured using the labeling
function of the MDP, since the labels determine relevant properties of a state
for both model checking and update selection.

Definition 3. Let O = 〈P,K, I〉 be an ontologized program as in Definition 1.
The weighted MDP induced by O is M[O] = 〈Q,Act , P, q0, Λ, λ,wgt〉 where

– Q = {e(O, η) | η ∈ Eval(VarP)},
– Act = Distr(Upd(P)),
– q0 = e(O, η0),
– Λ = HP ∪ C(VarP),
– λ(q) = C(ηq) ∪ {� ∈ HO | Kq |= pD(�)} for every q ∈ Q,
– P (q1, σ, q2)=(ηq1 ◦ σ)(ηq2) for any q1, q2∈Q and 〈g, σ〉∈C with λ(q1)|=g, and
– wgt(q) =

∑
〈g,w〉∈W,λ(q)|=g w for all q ∈ Q.

The above definition closely follows the standard semantics for stochastic
programs (see Sect. 2.2), while amending knowledge information to each state
in such a way that hooks are assigned to states as specified by the interface I.
Thus, the weighted MDP induced by a ontologized program is well defined.

Remark on Inconsistent States. Note that our formalism allows for states
of the induced MDP to have logically inconsistent knowledge bases assigned.
We call those states inconsistent. We can identify and mark inconsistent states
easily using a hook �⊥ ∈ H for which we set pD(�⊥) = {� � ⊥}. Depending
on the application, inconsistent states might or might not be desirable. In gen-
eral, there are different ways in which such states can be handled within our
framework: (1) Inconsistent states could stem from errors in specification of the
operational behavior or in the ontology. We would then want to provide users
with tool support for detecting whether the program can enter an inconsistent
state. Existing model-checking tools can directly be used for this, as they just
have to check whether a state labeled with �⊥ is reachable. (2) The stochastic
program can detect inconsistent states using the hook �⊥, and act upon them
accordingly to resolve the inconsistency. This could be useful, e.g., for modeling
exception handling or interrupts within the program to deal with unexpected
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situations. (3) Both the nondeterministic and probabilistic choices in the MDP
can be restricted to only enter consistent states. The ontology then has a direct
impact on the state space of the MDP. This can be seen as a desirable feature
of ontologized programs, as different ontologies may pose different constraints
on possible states a system may enter, which can be quite naturally expressed
using DL axioms.

4 Analysis of Ontologized Programs

For the quantitative analysis of ontologized programs, we make use of a proba-
bilistic model checking (PMC) tool in combination with a DL reasoner. Specifi-
cally, the DL reasoner is used to decide which hooks are assigned to each state
in the MDP. This in turn depends on the axioms entailed by the knowledge base
assigned to the state. Constructing the ontologized states explicitly is not feasi-
ble in practice, as there can be exponentially many. One might think about using
advanced techniques to represent the set of MDP states concisely by PMC tools
such as Prism to mitigate the exponential blowup, e.g., through symbolic repre-
sentations via MTBDDs [27]. However, such a representation does not provide a
guarantee to concisely represent ontologized states and does not directly enable a
method how to assign hooks. Furthermore, DL reasoning itself can be costly. For
the DL SROIQ underlying the OWL-DL standard, reasoning is N2ExpTime-
complete [22], and already for its fragment ALCQ introduced in Sect. 2.3, it is
ExpTime-complete [35]. Even though there exist optimized reasoners that can
deal with large OWL-DL ontologies [30], if we want to perform model checking
efficiently, we should avoid invoking the reasoner exponentially many times.

In settings where ontologies are used to enrich queries over databases [9], a
common technique is to rewrite queries by integrating all relevant information
from the ontology. This allows for a direct evaluation of the rewritten query using
standard database systems [10]. We propose a similar technique here, where we
rewrite the ontologized program into a stochastic program that can be directly
evaluated using PMC tools. To do this efficiently, our technique aims at reducing
the amount of reasoning required and to reduce the size of the resulting program.

Formalizing this idea, we define a translation t from ontologized programs O
into stochastic programs t(O) that do not contain any hooks in guards. The
translation is based on an assignment hf : HO → B(C(VarO)) of hooks � ∈ HO

to corresponding hook formulas hf(�), such that the MDPs induced by O and
by t(O) correspond to each other except for the hooks. This correspondence is
captured in the following definition.

Definition 4. Given two weighted MDPs, M = 〈S,Act , P, s0, Λ, λ,wgt〉 and
M′ = 〈S′,Act ′, P ′, s′

0, Λ
′, λ′,wgt ′〉, such that Act = Act ′, and a partial function

hf : Λ ⇀ B(Λ′) mapping labels in Λ to formulas over Λ′, the weighted MDPs M
and M′ are equivalent modulo hf iff there exists a bijection b : S → S′ such that

1. b(s0) = s′
0,
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2. for every s1, s2 ∈ S and α ∈ Act, P (s1, α) is defined iff P ′(b(s1), α) is defined,
and P (s1, α, s2) = P ′(b(s1), α, b(s2)),

3. for every s ∈ S, wgt(s) = wgt ′(b(s)), and
4. for every � ∈ Λ and s ∈ S holds that � ∈ λ(s) iff λ(b(s)) |= hf(�).

This notion extends to stochastic programs and ontologized programs via their
induced MDPs: an ontologized program O and a stochastic program P are equiv-
alent modulo hf iff M[O] and M[P] are equivalent modulo hf.

If an ontologized program O and a stochastic program P are equivalent
modulo hf, all analysis tasks on O can be reduced to analysis on P, as we just
have to replace any label � relevant for the analysis by hf(�). In particular, hf
allows for a straightforward translation of properties expressed using temporal
logics. As a result, we can perform any PMC task that is supported by a PMC
tool like Prism on ontologized programs, provided that the translation function
hf and the corresponding stochastic program can be computed practically.

Based on O we define a function hf that can be efficiently computed using
DL reasoning and which can be used to compute a corresponding stochastic
program equivalent to the ontologized program modulo hf. Specifically, for every
constraint c ∈ C(VarP) we set hf(c) := c, and for every hook � ∈ HO, we
provide a hook formula hf(�). In other words, we only provide for a translation
of the hooks, and keep the evaluations in the program the same. The stochastic
program t(O) is then obtained from O by replacing every hook � ∈ HO by hf(�).
This is sufficient, since the labels assigned to an ontologized state q are fully
determined by the evaluation of the state: the axioms that are part of the state
are determined by the mapping Dp : FO → B(C(Var)), and the labels that are
part of the state are determined by using the mapping pD : HO → ℘(A), based
on which axioms are entailed by the ontology Kq assigned to the state.

To compute hf in a goal-oriented manner, we make use of so-called justifi-
cations. These are defined independently of the DL in question, and there exist
tools for computing justifications in various DLs.

Definition 5. Given a knowledge base K and an axiom (set) α s.t. K |= α, a
subset J ⊆ K is a justification of K |= α iff J |= α, and for every J ′ � J ,
J ′ 	|= α. We denote by J(O, α) the set of all justifications of K |= α.

Intuitively, a justification for K |= α is a minimal sufficient axiom set wit-
nessing the entailment of α from K. For the hook formula hf(�), we consider the
justifications J of KO ∪ F |= pD(�), as these characterize exactly those subsets
F ′ ⊆ FO for which KO ∪ F ′ |= pD(�). Note that for each such justification J ,
only the subset J \ KO is relevant. We thus define the hook formula hf(�) for
� ∈ HO as

hf(�) =
∨

J ∈J(KO∪FO,pD(�))

∧

α∈(J ∩FO)

Dp(α). (8)

Here, we follow the convention that the empty disjunction corresponds to a
contradiction ⊥, while the empty conjunction corresponds to a tautology �.
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The final translation t(O) of the ontologized program O = 〈P,K, I〉 is then
obtained from P by replacing every hook � ∈ HO by hf(�). The following theorem
is proven in the extended version of the paper [16].

Theorem 1. The ontologized program O and the stochastic program t(O) are
equivalent modulo hf.

5 Evaluation

We implemented the method described in Sect. 4, where we use the input lan-
guage of Prism [24] to specify the abstract program, and the standard web ontol-
ogy language OWL-DL [20] to specify the ontology. Specifically, our tool chain
computes a stochastic program based on the ontologized program, on which we
can directly perform ontology-mediated PMC using Prism. We used the OWL-
API [19] to parse and access the ontology, and the OWL reasoner Pellet [34] for
computing the justifications, where we adapted the implementation slightly to
improve its performance. Note that in Eq. 8 for the hook formula, we are only
interested in the intersection of the full justification with the set F of the axioms
the program can actually change. This reduces the search space for computing
justifications drastically. We adapted the justification algorithm in Pellet to
take this into account, which was crucial for computing the hook formulas used
in our experiments. Apart from this optimization, we computed the situation
formulas exactly as described in Sect. 4.

Our evaluation scenario is based on the multi-server platform example used
in this paper, but modeled in more detail. In addition to modeling different
capacity constraints of the servers and different priority settings on the pro-
cesses, we also modeled software compatibility between processes and servers,
so that certain processes can only be executed on servers having respective soft-
ware support. We furthermore used three different types of hooks to link the
abstract program with the ontology: (1) a critical system state hook to mark
states the system should avoid, which we call in the following critical states,
(2) a migrate hook describing when the system should schedule the migration
of a process, and (3) consistency hooks specifying when it is allowed for a given
process to be moved to a particular server, taking into account both capacity
and compatibility limitations. We defined four ontologies in total, which differ in
their capacity and compatibility constraints, as well as properties of the server
and processes. To evaluate also the flexibility regarding the operational behavior
in ontologized programs, we furthermore provided two abstract programs dif-
fering in their policy in how jobs are processed on each server by using either
a randomized or round-robin selection. Weights were used to model the energy
consumption of the system and the number of critical states entered. A special
counter variable is used to store the achieved utility in terms of total number of
jobs completed. Ontologies and abstract programs were defined for systems with
two and three servers, respectively. Within all these combinations, we obtained
2 · 4 · 2 = 16 ontologized programs in total, which we translated into stochas-
tic programs expressed in the input language of Prism. The rewriting of all 16
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Fig. 1. Selected analysis results (left) and running times (right, logarithmic scale).

ontologized programs into Prism programs took 130 s in total, including the
computation of hook formulas using justifications.

For the analysis, we first considered standard reachability properties, and
computed (i) the probability of reaching a critical system state within a given
time window, (ii) the expected energy consumption of gaining a specified utility
value, and (iii) the expected number of critical states entered before reaching a
specified utility value. For each of these properties, we computed the minimal and
maximal value when ranging over all nondeterministic choices in the MDP. To
show-case our approach for more advanced model-checking tasks, we furthermore
considered energy-utility quantiles [5]. Specifically, we computed (1) the minimal
energy required, and (2) the minimal number of critical states entered, to gain
a utility value of at least 20 with probability at least 95%.

All the experiments were carried out1 using the symbolic MTBDD engine of
Prism 4.2 in the version presented in [23], which also supports advanced PMC
tasks such as the computation of energy-utility quantiles [5]. Details about the
setup, as well as the evaluation results for all PMC tasks, can be found in the
extended version of the paper [16]. We only illustrate some of the results and
analysis statistics. On the left in Fig. 1, we see the analysis results for prop-
erty (iii), where bars span the range of minimal and maximal expected number
of critical situations and for the critical situation quantile (2) depicted by dots.
The analysis times required to compute these properties are depicted on the right
of Fig. 1. The four different ontologies considered in both hardware/software set-
tings are listed in the x-axis, using the notation “o-s”, where “o” identifies an
ontology and “s” is the number of servers. The blue and red bars show the values
for random and round-robin scheduling behavior, respectively, modeled in the
stochastic program. In the case of the two-server setup, only in the first ontology
there is some freedom in performing migrations as in this ontology all software
instances are placed on both servers while in the other ontologies each server
has a different software setup. Hence, only in the configuration 1–2 (Ontology 1
with 2 servers) the minimal and maximal expected number of critical situations
differ. For the three-server setup, the additional server provides enough freedom
for migration strategies, but also there the first ontology has the most impact on

1 Hardware setup: Intel Xeon E5-2680@2.70 GHz, 128 GB RAM; Turbo Boost and HT
enabled; Debian GNU/Linux 9.1.
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minimal/maximal values. Regarding the MDPs, we see a big difference as well
between the first ontology, which poses very little constraints, and the remain-
ing ontologies, which are more restrictive in terms of consistent states. For the
random scheduling of jobs and Ontology 1, the resulting MDP had 23’072’910
states for two servers and 90’027’882 states for three servers, while the corre-
sponding MDPs for the other three ontologies had between 158’368 and 934’122
states, respectively. The sizes of the models have direct impact on their analysis
times, explaining the huge analysis times for the setups with Ontology 1 shown
in Fig. 1. Our experiments hence show that model-checking speed and results
profit from sufficiently precisely and restrictively modeled ontologies.

6 Related Work

Model Checking Context-Dependent Systems. The idea of using different
formalisms for behaviors and contexts to facilitate model checking goes back to
[13], where a scenario-based context description language (CDL) based on mes-
sage sequence charts is used to describe environmental behaviors. Their aim is
to mitigate the state-space explosion problem by resolving nondeterminism in
the system to model the environment by parallel composition with CDL ontolo-
gies. Modeling and model checking role-based systems with exploiting exogenous
coordination has been detailed in [7,12]. Here, components may play different
roles in specific contexts (modeled through elements called compartments). As
the approach above, the formalism to specify contexts is the same as for com-
ponents, and a parallel composition is used for deployment. Feature-oriented
systems describe systems comprising features that can be active or inactive (see,
e.g., [15]). We can employ similar principles within our framework to combine
ontological elements, as show-cased in our evaluation in Sect. 5. A reconfigura-
tion framework for context-aware feature-oriented systems has been considered
in [26]. All the above formalisms use an operational description of contexts, while
we intentionally focused on a knowledge-based representation through ontologies
that allows for reasoning about complex information and enables the reuse of
established knowledge bases.

Description Logics in Golog Programs. There is a relation between our
work and work on integrating DLs and ConGolog programs [4,36]. The focus
there is on verifying properties formulated in computation tree logic for Con-
Golog programs, where also DL axioms specify tests within the program and
within the properties to be checked. In contrast, we provide a generic approach
that allows to employ various PMC tasks using existing tools, and allow for
probabilistic programs. Furthermore, ontologies and program statements are not
separated as in our approach. However, the main difference is that in the seman-
tics of [4,36], states are identified with interpretations rather than knowledge
bases, which are directly modified by the program. This makes reasoning much
more challenging, and easily leads to undecidability if syntactic restrictions are
not carefully put. Closer to our semantics are the DL-based programs presented
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in [11,18], where actions consist of additions and removals of assertions in the
knowledge base. Again, there is no separation of concerns in terms of program
and ontology, and they only support a Golog-like program language that cannot
describe probabilistic behavior.

Ontology-Mediated Query Answering. There is a resemblance between the
our concept of ontology-mediated PMC and ontology-mediated query answering
(OMQA) [9,31], which also inspired the title of this paper. OMQA is concerned
with the problem of querying a possibly incomplete database, where an ontology
is used to provide for additional background knowledge about the domain of
the data, so that also information that is only implicit in the database can be
queried. Sometimes, additionally a mapping from concept and role names in the
ontology to tables in the database is provided, which plays a comparable role to
our interface [31]. Similar to our approach, a common technique for OMQA is to
rewrite ontology-mediated queries into queries that can be directly evaluated on
the data using standard database systems. However, different to our approach,
this is in general only possible for very restricted DLs, while for expressive DLs,
the complexity of OMQA is often very high [25,29,33].

7 Discussion and Future Work

We introduced ontologized programs, in which stochastic programs specify oper-
ational behaviors, and DLs are used to describe additional knowledge, with the
aim of facilitating quantitative analysis of knowledge-intensive systems. From
an abstract point of view, the general idea is to use different, domain-specific
formalisms for specifying the program and knowledge, which are linked through
hooks by an interface. We believe that the general idea of specifying operational
behavior and static system properties separately, each using a dedicated formal-
ism, would indeed be useful for many other applications. To this end, behaviors
could be specified, e.g., by program code of any programming language, UML
state charts, control-flow diagrams, etc., amended with hooks referring to addi-
tional knowledge, e.g., described by databases where hooks are resolved through
database queries. Depending on the chosen formalisms, our method for rewriting
ontologized programs could still be applicable in such settings.

Regarding the specific ontologized programs introduced in this paper, several
improvements are possible. First, as discussed in Sect. 3.2, we are currently not
addressing inconsistent states in the ontologized programs directly, but offer vari-
ous ways to deal with them in the program or analysis. In future work, we want to
investigate integrated mechanisms for handling inconsistent states in an autom-
atized way. Second, one could look at closer integrations between the ontology
and the abstract program by means of a richer interface. For example, we could
map numerical values directly into the DL by use of concrete domains [2], which
would allow to express more numerical constraints in the ontology. Furthermore,
we want to investigate dynamic switching of ontologies during program execu-
tion, to model complex interaction between ontologies as in [15], exploiting the
close connection to feature-oriented systems discussed in Sect. 6.
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