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Abstract. A joining implication is a restricted form of an implication where it
is explicitly specified which attributes may occur in the premise and in the conclu-
sion, respectively. A technique for sound and complete axiomatization of joining
implications valid in a given formal context is provided. In particular, a canoni-
cal base for the joining implications valid in a given formal context is proposed,
which enjoys the property of being of minimal cardinality among all such bases.
Background knowledge in form of a set of valid joining implications can be incor-
porated. Furthermore, an application to inductive learning in a Horn description
logic is proposed, that is, a procedure for sound and complete axiomatization of
Horn-M concept inclusions from a given interpretation is developed. A complex-
ity analysis shows that this procedure runs in deterministic exponential time.
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1 Introduction

Formal Concept Analysis (abbrv.FCA) [10] is subfield of lattice theory that allows to
analyze data-sets that can be represented as formal contexts. Put simply, such a formal
context binds a set of objects to a set of attributes by specifying which objects have
which attributes. There are two major techniques that can be applied in various ways
for purposes of data mining, machine learning, knowledge management, knowledge
visualization, etc. On the one hand, it is possible to describe the hierarchical structure
of such a data-set in form of a formal concept lattice [10]. On the other hand, the
theory of implications (dependencies between attributes) valid in a given formal context
can be axiomatized in a sound and complete manner by the so-called canonical base
[11], which furthermore contains a minimal number of implications w.r.t. the properties
of soundness and completeness. So far, some variations of the canonical base have been
developed, e.g., incorporation of valid background knowledge [29], constraining premises
and conclusions in implications by some closure operator [3], and incorporation of
arbitrary background knowledge [22], among others. The canonical base in its default
form as well as its variations can be be computed by the algorithm NextClosures [17,22]
in a highly parallel way such the necessary computation time is almost inverse linear
proportional to the number of available CPU cores.
Description Logic (abbrv.DL) [2] belongs to the field of knowledge representation

and reasoning. DL researchers have developed a large family of logic-based languages, so-
called description logics (abbrv.DLs). These logics allow their users to explicitly represent



knowledge as ontologies, which are finite sets of (human- and machine-readable) axioms,
and provide them with automated inference services to derive implicit knowledge. The
landscape of decidability and computational complexity of common reasoning tasks for
various description logics has been explored in large parts: there is always a trade-off be-
tween expressibility and reasoning costs. It is therefore not surprising that DLs are nowa-
days applied in a large variety of domains [2]: agriculture, astronomy, biology, defense,
education, energy management, geography, geoscience, medicine, oceanography, and oil
and gas. Furthermore, the most notable success of DLs is that these constitute the logical
underpinning of the Web Ontology Language (abbrv.OWL) [13] in the Semantic Web.

Within this document, we propose the new notion of so-called joining implications
in FCA. More specifically, we assume that there are two distinct sets of attributes: the
first one containing the attributes that may occur in premises of implications, while
conclusions must only contain attributes from the second set. A canonical base for
the joining implications valid in a given formal context is developed and it is proven
that it has minimal cardinality among all such bases. Then, an application to inductive
learning in a Horn description logic [24] is provided. Roughly speaking, such a Horn DL
is obtained from some DL by disallowing any disjunctions. Reasoning procedures can
then work deterministically, i.e., reasoning by case is not required [14]. Hornness is not
a new notion: Horn clauses in first-order logic are disjunctions of an arbitrary number
of negated atomic formulae and at most one non-negated atomic formula. It is easy to
see that such Horn clauses have an implicative character, since ¬φ1 ∨ . . .∨¬φn ∨ ψ is
equivalent to φ1 ∧ . . . φn → ψ. A logic program is a set of Horn clauses, and a Datalog
programm is a function-free logic program [7]. All commonly known Horn description
logics can be translated into Datalog—more specifically, each Horn-DL TBox T can be
translated into some Datalog programD such that, for each simple ABoxA, the ontology
T ∪A is satisfiable if, and only if, the Datalog programm D∪A is satisfiable. For deeper
insights please consider [12,15,24]. The most important advantage of Horn fragments is
that these often have a significantly lower computational complexity. Using the canonical
base of joining implications, we show how the Horn-M concept inclusions valid in a
given interpretation can be axiomatized. This continues a line of research that combines
FCA and DL for the sake of inductive learning, cf. [4,5,9,18,19,21,27] just to name a few.

Due to space constraints some technical lemmas and some proofs have been moved
to a technical report [20].

2 Joining Implications in Formal Contexts

Throughout this section, assume that K := (G,M,I) is some formal context, that
is, G is a set of objects, M is a set of attributes, and I ⊆ G ×M is an incidence
relation. If (g,m) ∈ I, then we say that g has m. It is well-known that the two
mappings ·I : ℘(G) → ℘(M) and ·I : ℘(M) → ℘(G) defined below constitute a
Galois connection, cf. [10].

AI := {m ∈M | (g,m) ∈ I for each g ∈ A} for any A ⊆ G
BI := {g ∈ G | (g,m) ∈ I for each m ∈M } for any B ⊆M

In particular, this means that the following statements hold true for any sets A,C ⊆ G
and B,D ⊆M .
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1. A ⊆ BI if, and only if, B ⊆ AI if, and only if, A×B ⊆ I
2. A ⊆ AII

3. AI = AIII

4. A ⊆ C implies CI ⊆ AI

5. B ⊆ BII

6. BI = BIII

7. B ⊆ D implies DI ⊆ BI

An implication over M is a term X → Y where X,Y ⊆ M . It is valid in K if
XI ⊆ Y I is satisfied, i.e., if each object that has all attributes in X also has all
attributes in Y , and we shall then write K |= X → Y . A model of X → Y is a set
U ⊆M such that X ⊆ U implies Y ⊆ U , denoted as U |= X → Y . An implication
set L entails an implication X → Y if any model of L, i.e., any set that is a model of
all implications in L, is also a model of X → Y , and we denote this by L |= X → Y .

We are now interested in a restricted form of implications. In particular, we restrict
the sets of attributes that may occur in the premise X and in the conclusion Y ,
respectively, of every implication X → Y . Thus, let further Mp be a set of premise
attributes and let Mc be a set of conclusion attributes such that Mp ∪Mc ⊆ M
holds true. For each x ∈ {p, c}, we define the subcontext Kx := (G,Mx, Ix) where
Ix := I ∩ (G×Mx). Furthermore, we may also write Xx instead of XIx for subsets
X ⊆ G or X ⊆ Mx. Please note that then each pair (·x, ·x) is a Galois connection
between (℘(G),⊆) and (℘(Mx),⊆), that is, similar statements like above are valid.

Definition 1. A joining implication from Mp to Mc, or simply pc-implication, is an
expression X → Y where X ⊆Mp and Y ⊆Mc. It is valid inK, writtenK |= X → Y ,
if Xp ⊆ Y c holds true.
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Wendy × × × × × × × · · × · ×

Mp Mc

Figure 1. The formal context Killnesses.

Example. Consider the formal context Killnesses in Figure 1. It considers six persons as
objects and their symptoms and illnesses as attributes. Furthermore, we regard the symp-
toms as premise attributes and the illnesses as conclusion attributes. Note that, in general,
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it is not required that the setsMp andMc form a partition of the attribute set. For other
use cases both could overlap, one could be contained in the other, or their union could be
a strict subset of the whole attribute set. The concept lattice is displayed in Figure 2.1
The expression {Cold, Cough} → {Chills} is no pc-implication, since the attribute

Cold must not occur in a premise and, likewise, the attribute Chills must not occur in a
conclusion. The expression {Sneezing, Cough, Stuffy Nose} → {Cold} is a well-formed
joining implication and it is valid in Killnesses, since {Sneezing, Cough, Stuffy Nose}p =
{Bob, Alice} is a subset of {Cold}c = {Bob, Alice, Tom}. Furthermore, the expression
{Abrupt Onset} → {Cold} is a well-formed joining implication as well, but it is not
valid in Killnesses, as {Abrupt Onset}p = {Julia, Keith, Wendy} is not a subset of
{Cold}c = {Bob, Alice, Tom}.

In the following, we shall characterize the set of all joining implications valid in K.
Of course, the pc-implication set

Imppc(K) := {X → Xpc | X ⊆Mp }

contains only valid pc-implications and further entails any valid pc-implication, since
K |= X → Y is equivalent to Y ⊆ Xpc and so {X → Xpc} |= X → Y .
Remark that a closure operator on M is some mapping φ : ℘(M)→ ℘(M) with

the following properties for all subsets X,Y ⊆M .
1. X ⊆ φ(X) (extensive)
2. X ⊆ Y implies φ(X) ⊆ φ(Y ) (monotonic)
3. φ(φ(X)) = φ(X) (idempotent)

It is easy to verify that, for each Galois connection (f, g), the compositions f ◦ g and
g ◦ f are closure operators. It is well-known that each implication set L induces a
corresponding closure operator φL such that the models of L are exactly the closures of
φL, cf. [10,22]: for each U ⊆M , the closure φL(U) is the smallest superset of U such
that X ⊆ φL(U) implies Y ⊆ φL(U) for any implication X → Y in L. In particular,
we can readily verify the following.

φL(U) = UL :=
⋃
{UL,n | n ∈N}

where V L,n+1 := (V L,1)L,n

and V L,1 := V ∪ {Y | X → Y ∈ L and X ⊆ V } for each V ⊆M

For the above joining implication set, we easily get that φpc
K

:= φImppc(K) satisfies

φpc
K
(X) = X ∪ (X ∩Mp)

pc

for any X ⊆M .
An implication X → Y is valid in a closure operator φ, written φ |= X → Y ,

if Y ⊆ φ(X) holds true, cf. [17]. Please note that this coincides with the notion of
validity in a formal context K if we consider the closure operator φK : X 7→ XII and,
likewise, entailment by an implication set L is the same as validity in φL. Now consider
an implication set L. We say that L is sound for φ if φ |= L holds true, that is, if
φ |= X → Y is satisfied for each implication X → Y ∈ L. Furthermore, L is complete
for φ if, for any implicationX → Y , it holds true that φ |= X → Y implies L |= X → Y .
1 We have not introduced the notion of a concept lattice here, since it is not needed for
our purposes; the interested reader is rather referred to [10].
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Figure 2. The concept lattice of Killnesses.

Definition 2. An implication set is join-sound or pc-sound if it is sound for φpc
K
, and it

is join-complete or pc-complete if it is complete for φpc
K
. Fix some pc-sound implication

set S. A pc-implication set is called joining implication base or pc-implication base
relative to S if it is pc-sound and its union with S is pc-complete.

Obviously, the above Imppc(K) is a joining implication base relative to ∅.
Further fix some implication set S as well as a closure operator φ such that φ |= S.

Now remark that a pseudo-closure of φ relative to S is a set P ⊆M such that P 6= φ(P )
and P |= S (i.e., P = φS(P )) hold true and Q ( P implies φ(Q) ⊆ P for each pseudo-
closure Q of φ relative to S. We shall denote the set of all pseudo-closures of φ relative
to S as PsClo(φ,S). Then, the canonical implication base of φ relative to S is defined
as Can(φ,S) := {P → φ(P) | P ∈ PsClo(φ,S)}, and it is sound for φ and is further
complete for φ relative to S, i.e., φ |= X → Y if, and only if, Can(φ,S)∪S |= X → Y
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for each implication X → Y , cf. [11,17,29]. It is easy to see that we can replace each
implication P → φ(P) by P → φ(P) \ P to get an equivalent implication set.

Our aim for the sequel of this section is to find a canonical representation of the valid
joining implications of some formal context, i.e., we shall provide a joining implication
base that has minimal cardinality among all joining implication bases. For this purpose,
we consider the canonical implication base of the above closure operator φpc

K
and show

how we can modify it to get a canonical joining implication base. We start with showing
that we can rewrite any join-sound and join-complete implication set into a joining
implication base in a certain normal form. For the remainder of this section, fix some
arbitrary join-sound joining implication set S that is used as background knowledge.

Lemma 3. Fix some join-sound implication set L over M. Further assume that L∪S
is join-complete, and define the following set of joining implications.

Lpc := {X ∩Mp → (X ∩Mp)
pc | X → Y ∈ L}

Then, Lpc is a joining implication base relative to S.

Proof. Since Lpc ⊆ Imppc(K) obviously holds true, we know that Lpc is join-sound. For
join-completeness we show that Lpc∪S |= Imppc(K). Thus, consider some Z ⊆Mp. As
L∪S is join-complete, it must hold true that L∪S |= Z → Zpc, that is, there are impli-
cationsX1 → Y1, . . .,Xn → Yn in L∪S such that the following statements are satisfied.

X1 ⊆ Z
X2 ⊆ Z ∪ Y1
X3 ⊆ Z ∪ Y1 ∪ Y2

...
Xn ⊆ Z ∪ Y1 ∪ Y2 ∪ · · · ∪ Yn−1
Zpc ⊆ Z ∪ Y1 ∪ Y2 ∪ · · · ∪ Yn−1 ∪ Yn

Let L := { k | k ∈ {1, . . . , n} and Xk → Yk ∈ L \ S } and S := {1, . . . , n} \ L.
Since L is join-sound, we have Yk ⊆ Xk ∪ (Xk ∩Mp)

pc for each index k ∈ L. Define
Xn+1 := Zpc. An induction on k ∈ {1, . . . , n+ 1} shows the following.

Xk ⊆ Z ∪
⋃
{Yi | i ∈ {1, . . . , k− 1} ∩ S }

∪
⋃
{ (Xi ∩Mp)

pc | i ∈ {1, . . . , k− 1} ∩L}

Of course, Xk ∩Mp ⊆ Xk is satisfied for any index k ∈ L. We conclude that {Xk →
Yk | k ∈ S }∪{Xk∩Mp → (Xk∩Mp)

pc | k ∈ L} entailsZ → Zpc and we are done. ut

The transformation from Lemma 3 can now immediately be applied to the canonical
implication base of the closure operator φpc

K
to obtain a joining implication base, which

we call canonical. This is due to fact that, by definition, Can(φpc
K
) is both pc-sound

and pc-complete.

Proposition 4. The following is a joining implication base relative to S and is called
canonical joining implication base or canonical pc-implication base of K relative to S.

Canpc(K,S) := {P ∩Mp → (P ∩Mp)
pc | P ∈ PsClo(φpc

K
,S)}
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Proof. Remark that φpc
K
(P) = P ∪ (P ∩Mp)

pc holds true and, consequently, the
canonical implication base for φpc

K
relative to S evaluates to

Can(φpc
K
,S) = {P → (P ∩Mp)

pc | P ∈ PsClo(φpc
K
,S)}.

We already know that Can(φpc
K
,S) is join-sound and its union with S is join-complete.

Since (Can(φpc
K
,S))pc = Canpc(K,S) holds true, an application of Lemma 3 shows that

Canpc(K,S) is indeed a joining implication base relative to S. ut

Example. We continue with investigating our exemplary formal context Killnesses. In
order to compute the canonical joining implication base of it (relative to ∅), we first
need to construct the canonical base of the closure operator φpc

Killnesses
.2

Can(φpc
Killnesses

,∅) =



{Headache, Sore Throat} → {Cold}
{Abrupt Onset} → {Flu}

{Sore Throat, Stuffy Nose} → {Cold}
{Flu, Sore Throat, Chills} → {Cold}
{Stuffy Nose, Sneezing} → {Cold}

{Chills} → {Flu}
{Sore Throat, Cough} → {Cold}


Now applying the transformation from Lemma 3 yields the following set of joining
implications, which is the canonical joining implication base. In particular, only the
fourth implication is altered.

Canpc(Killnesses,∅) =



{Headache, Sore Throat} → {Cold}
{Abrupt Onset} → {Flu}

{Sore Throat, Stuffy Nose} → {Cold}
{Sore Throat, Chills} → {Flu, Cold}

{Stuffy Nose, Sneezing} → {Cold}
{Chills} → {Flu}

{Sore Throat, Cough} → {Cold}


The canonical base ofKillnesses, which coincides with the canonical base of the induced

closure operator φKillnesses , is as follows. Note that it is sound and complete for all impli-
cations valid in Killnesses, i.e., no constraints on premises and conclusions are imposed.

Can(Killnesses,∅) =

2 The result has not been obtained by hand, but instead the implementation of the algorithm
NextClosures [17] in ConceptExplorer FX [16] has been utilized. Thus, no intermediate
computation steps are provided.
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

{Fever} → {Fatigue, Aches}
{Sore Throat} → {Sneezing}

{Chills} →
{

Headache, Flu, Fatigue, Cough,
Fever, Aches, Abrupt Onset

}
{Cold} → {Sore Throat, Stuffy Nose, Sneezing}

{Headache} → {Fatigue, Cough, Fever, Aches}{
Headache, Flu, Fatigue, Cough,
Fever, Aches, Abrupt Onset

}
→ {Chills}

{Aches} → {Fatigue, Fever}
{Stuffy Nose, Sneezing} → {Sore Throat, Cold}

{Fatigue} → {Fever, Aches}
{Sore Throat, Sneezing, Cough} → {Stuffy Nose, Cold}

{Fatigue, Stuffy Nose, Fever, Aches} → {Headache, Cough}
{Fatigue, Cough, Fever, Aches} → {Headache}

{Abrupt Onset} → {Flu, Fatigue, Fever, Aches}
{Flu} → {Fatigue, Fever, Aches, Abrupt Onset}


If we apply the transformation from Lemma 3 to Can(Killnesses,∅), then we obtain the
following set of joining implications. Obviously, it is not complete, since it does not
entail the valid joining implication {Headache, Sore Throat} → {Cold}.

{Chills} → {Flu}
{Stuffy Nose, Sneezing} → {Cold}

{Sore Throat, Sneezing, Cough} → {Cold}
{Abrupt Onset} → {Flu}


We close this section with two further important properties of the canonical joining

implication base. On the one hand, we shall show that it has minimal cardinality among
all joining implication bases or, more generally, even among all join-sound, join-complete
implication bases. On the other hand, we investigate the computational complexity
of actually computing the canonical joining implication base.

Proposition 5. The canonical joining implication base Canpc(K,S) has minimal car-
dinality among all implication sets that are join-sound and have a union with S that
is join-complete.

Proof. Consider some implication set L such that L∪S is join-sound and join-complete.
According to Lemma 3, we can assume that—without loss of generality—L ⊆ Imppc(K)
holds true. In particular, note that |Lpc| ≤ |L| is always true.

Join-soundness and join-completeness of L∪S yield that L∪S and Can(φpc
K
,S)∪S

are equivalent. It is well-known [11,29] that Can(φpc
K
,S) has minimal cardinality among

all implication bases for φpc
K

relative to S, and so it follows that |L| ≥ |Can(φpc
K
,S)|.

Clearly, the choice L := Canpc(K,S) implies |Canpc(K,S)| ≥ |Can(φpcK,S)|. It is
further apparent that |Canpc(K,S)| ≤ |Can(φpcK,S)| holds true and we infer that, in par-
ticular, Canpc(K,S) and Can(φpc

K
,S)must contain the same number of implications. ut
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The next proposition shows that computing the canonical joining implication base is
not more expensive than computing the canonical implication base where no constraints
on the premises and conclusions must be satisfied. It uses the fact that canonical implica-
tion bases of closure operators can be computed using the algorithm NextClosures [17].

Proposition 6. The canonical joining implication base can be computed in exponential
time, and there exist formal contexts for which the canonical joining implication base
cannot be encoded in polynomial space.

Proof. The canonical implication base of the closure operator φpc
K

relative to some
background implication set S can be computed in exponential time by means of
the algorithm NextClosures, cf. [5,17], which is easy to verify. The transformation of
Can(φpc

K
,S) into Canpc(K,S) as described in Lemma 3 can be done in polynomial time.

Kuznetsov and Obiedkov have shown in [26, Theorem 4.1] that the number of im-
plications in the canonical implication base Can(K) of a formal context K := (G,M,I)
can be exponential in |G| · |M |. Clearly, if we let S := ∅ and set both Mp and Mc to
M , then Can(K) and Canpc(K,S) coincide. ut
We have seen in the running example that the canonical pc-implication base can

be used to characterize implications between symptoms and diagnoses/illnesses. A
further applications is, for instance, formal contexts encoding observations between
attributes satisfied yesterday and today, i.e., we could construct the canonical base of
pc-implications and then use it as a forecast stating which combinations of attributes
being satisfied today would imply which combinations of attributes being satisfied
tomorrow. In general, we could think of the premise attributes as observable attributes
and the conclusion attributes as goal/decision attributes. By constructing the canonical
pc-implication base from some formal context in which the goal/decision attributes have
been manually assessed, we would obtain a set of rules with which we could analyze
new data sets for which only the observable attributes are specified.

3 The Description Logic Horn-M
A Horn description logic [12,15,24] is some description logic that, basically, does not
allow for any usage of disjunction. While Hornness decreases expressiveness, it often
also significantly lowers the computational complexity of some common reasoning tasks,
e.g., instance checking or query answering. These are, thus, of importance in practical
applications where computation times and costs must not be too high.
In the sequel of this section, we introduce the description logic Horn-M, which is

the Horn variant ofM := ALQ≥N≤(Self) [18]. Restrictions are imposed on concept
inclusions only and, generally speaking, premises must always be EL∗ := EL⊥(Self) con-
cept descriptions while conclusions may be arbitraryM≤1 := ALQ≥N≤1(Self) concept
descriptions, that is,M concept descriptions except that in unqualified smaller-than
restrictions

E

≤n. r only the case n = 1 is allowed. More specifically, a Horn-M concept
inclusion is an expression C v D where the concept descriptions C and D are built by
means of the following grammar. Beforehand, fix some signature Σ, which is a disjoint
union of a set ΣI of individual names, a set ΣC of concept names, and a set ΣR of role
names. In the below grammar, A can be replaced by an arbitrary concept name from
ΣC and, likewise, r can be replaced by an arbitrary role name from ΣR.

C := ⊥ | > | A | C uC |

E

r.C |

E

r.Self
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D := ⊥ | > | A | ¬A | D uD |

E

≥n. r.D |

E

≤1. r |

A

r.D |

E

r.Self

As usual, we denote by DL(Σ) the set of all DL concept descriptions over Σ for each
description logic DL. The role depth rd(E) of a concept description E is the maximal
number of nestings of restrictions within E.3 We then further denote by DLd(Σ) the
set of all DL concept descriptions over Σ with a role depth not greater than d. Note
that the above syntactic characterization follows easily from the results in [12,15,24].
A finite set of concept inclusions is called terminological box (abbrv.TBox).

As it has already been pointed out in [15], the following properties can be expressed
in a sufficiently strong Horn DL, e.g., in Horn-M.

Inclusion of Simple Concepts. A v B states that each individual being A is also B.
Concept Disjointness. AuB v ⊥ states that there are no individuals that are both

A and B.
Domain Restrictions.

E

r.> v A states that each individual having an r-successor
must be an A.

Range Restrictions. > v

A

r.A states that each individual being an r-successor must
be an A.

Functionality Restrictions. > v

E

≤1. r states that each individual has at most one
r-successor.

Participation Constraints. A v

E

r.B states that each individual that is an A has an
r-successor that is a B.

A concept assertion is an expression a @− E where a is an individual name from
ΣI and E is some concept description, and further a role assertion is an expression
(a, b) @− r where a, b ∈ ΣI and r is some role name from ΣR. A finite set of concept and
role assertions is called assertional box (abbrv.ABox). The union of a terminological
and an assertional box yields an ontology. We often call the assertional part of an
ontology the data and the terminological part of an ontology the schema. If a question
of the form O |= α ? is to be decided, then we also call the axiom α the query.
An interpretation I is a pair (∆I, ·I) consisting of a non-empty set ∆I of objects,

called domain, and an extension mapping ·I such that aI ∈ ∆I for a ∈ ΣI, AI ⊆ ∆I
for each A ∈ ΣC, and rI ⊆ ∆I ×∆I for each r ∈ ΣR. The extension mapping is then
extended to all concept descriptions in the following recursive manner; the names of
these concept descriptions are shown in the right column.

⊥I := ∅ (bottom concept description)

>I := ∆I (top concept description)

(¬A)I := ∆I \AI (negated concept name)

(E u F)I := EI ∩ FI (conjunction)

(

E

r.E)I := { δ | (δ, ε) ∈ rI and ε ∈ EI for some ε} (existential restriction)

(

E

≥n. r.E)I := { δ | |{ ε | (δ, ε) ∈ rI and ε ∈ EI }| ≥ n} (qualified at-least restr.)

(

E

≤1. r)I := { δ | |{ ε | (δ, ε) ∈ rI }| ≤ 1} (local functionality restriction)

3 Formally, the role depth is recursively defined as follows: rd(⊥) := rd(>) := rd(A) :=
rd(¬A) := 0, and rd(E u F) := rd(E) ∨ rd(F), and rd(

E

r.E) := rd(

E

≥n. r.E) :=
rd(

A

r.E) := 1 + rd(E), and rd(

E

≤1. r) := rd(

E

r.Self) := 1.
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(

E

r.Self)I := { δ | (δ, δ) ∈ rI } (existential self-restriction)

(

A

r.E)I := { δ | (δ, ε) ∈ rI implies ε ∈ EI for each ε} (value restriction)

Now a concept inclusionC v D is valid in I ifCI ⊆ DI holds true, written I |= C v D.
A concept assertion a @− E is valid in I if aI ∈ EI is satisfied, and we shall denote this
as I |= a @− E. Likewise, a role assertion (a, b) @− r is valid in I if (aI, bI) ∈ rI holds
true, and we symbolize this as I |= (a, b) @− r. If O is an ontology, then I is a model
of O if I |= α holds true for each axiom α ∈ O, and we shall denote this as I |= O.
Furthermore, an ontology O1 entails another ontology O2, written O1 |= O2, if each
model ofO1 is a model ofO2 too. In caseO |= {α} for some single axiom α, we shall omit
set parenthesis and simply write O |= α. Note that, if x ∗ y is an axiom and Z is either
an interpretation or an ontology, then we sometimes write x ∗Z y instead of Z |= x ∗ y.
There are several standard reasoning tasks as follows.

Knowledge Base Consistency. Given an ontology O, is there a model of O?
Concept Satisfiability. Given a concept description E and an ontology O, is there a

model of O in which E has a non-empty extension?
Concept Subsumption. Given two concept descriptions C and D and an ontology O,

does O entail C v D?
Instance Checking. Given an individual a, a concept description E, and an ontology
O, does O entail a @− E?

There are two approaches to determining the computational complexity of the above
tasks.

Combined Complexity. This is the default. Necessary time and space for solving the
reasoning problem is measured as a function in the size of the whole input. For
instance, if a @−O E is to be decided, then time and space requirements are measured
as a function of ||a @− E||+ ||O||.

Data Complexity. Determining data complexity is more meaningful for practical pur-
poses, as in most cases the size of the stored data easily outgrows the size of the
schema and query. In particular, time and space needed for solving the reasoning
problem is measured as a function in the size of the ABox only. If, e.g., a @−O E
is to be decided where O is the union of an ABox A and some TBox T , then
necessary time and space is only measured as a function of ||A||.

So far, the computational complexity of reasoning inM and its sibling Horn-M has
not been determined and, thus, we shall catch up on this here. Since for a large variety
of description logics complexity results have been obtained, we can immediately find
the following results forM− := ALQ≥N≤, the sublogic ofM in which we disallow
existential self-restrictions

E

r.Self. Note that we always consider the case of a general
TBox, i.e., where no restrictions are imposed on the concept inclusions (except those
possibly implied by Hornness).

Concept subsumption inM− is EXP-complete (combined complexity). SinceM− is
a sublogic of SHIQ and concept subsumption in SHIQ is in EXP [28,30], it follows
that concept subsumption inM− is in EXP as well. Furthermore, FL0 is a sublogic
ofM− in which concept subsumption is EXP-hard [1]. We conclude that concept
subsumption inM− must be EXP-hard too.
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Concept subsumption in Horn-M− is EXP-complete (combined complexity). Horn-M−
is a sublogic of Horn-SHIQ and for the latter concept subsumption is known to
be in EXP [24]. Thus, concept subsumption in Horn-M− is also in EXP. Since
ELF is a sublogic of Horn-M− in which concept subsumption is EXP-hard [1], we
infer that the same problem in Horn-M− must be EXP-hard too.

Instance checking inM− is coNP-complete (data complexity). Instance checking in
SHIQ is in coNP (data complexity) [14] and sinceM− is a sublogic of SHIQ, it
follows that instance checking inM− is also in coNP (data complexity). Further-
more, ELkf is a sublogic ofM− in which instance checking is coNP-hard (data
complexity) [23], and this result immediately transfers toM−.

Instance checking in Horn-M− is P-complete (data complexity). As instance check-
ing in Horn-SHIQ is in P (data complexity) [14] and Horn-M− is a sublogic of
Horn-SHIQ, we conclude that the similar problem in Horn-M− is in P (data
complexity) as well. Furthermore, EL is a sublogic of Horn-M− and instance
checking in EL is P-hard (data complexity) [6]. Consequently, instance checking
in Horn-M− is P-hard as well.

We see that terminological reasoning in Horn-M− is not cheaper than inM−, but
that assertional reasoning with knowledge bases containing both a schema (TBox) and
data (ABox) is considerably cheaper in Horn-M− than inM− if we only take into
account the size of the ABox (data complexity), unless P = NP. It is obvious that
the hardness results transfer fromM− toM and accordingly for the Horn variants.
Furthermore, sinceM and Horn-M can each be seen as a sublogic of µALCQ in which
concept subsumption is EXP-complete [8,25], we can infer that concept subsumption in
M as well as in Horn-M is EXP-complete (combined complexity) as well. Unfortunately,
the author cannot provide sharp upper bounds for the data complexity of instance
checking inM and Horn-M. If one takes a closer look on the proofs in [15], one could
get the impression that it might suffice to include the case πy(

E

R.Self,X) := R(X,X)
for the translation of concept descriptions into first-order logic. While the author
conjectures that this extended translation allows for obtaining the same complexity
results, it is necessary to check whether all later steps in the proof indeed work as before.

Henceforth, it makes sense to use a Horn-M TBox as the schema for ontology-based
data access (abbrv.OBDA) applications. This motivates the development of a procedure
that can learn Horn-M concept inclusions from observations in form of an interpretation.
The next section makes use of the notion of a model-based most specific concept

description, which we shall define now. Fix some description logic DL, an interpretation
I, a subset X ⊆ ∆I, as well as some role-depth bound d ∈ N. The model-based
most specific concept description (abbrv.MMSC) of X in I is then some DL concept
description E that satisfies the following conditions.

1. rd(E) ≤ d
2. X ⊆ EI
3. X ⊆ FI implies E v∅ F for each DL concept description F satisfying rd(F ) ≤ d.

Since MMSCs are unique up to equivalence, we shall denote these as XI
DL
d . In [18] the

author has shown how MMSCs can be computed in the description logicM. For any
sublogic ofM, the computation method can suitably be adapted by simply ignoring
unsupported concept constructors.
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It is easy to see that this MMSC mapping ·IDLd : ℘(∆I)→DLd(Σ) is the adjoint
of the extension mapping ·I : DLd(Σ)→ ℘(∆I), that is, the pair of both constitutes
a galois connection just like it is the case for the pair of derivation operators ·I induced
by a formal context. This implies that the following statements hold true, where X
and Y are arbitrary subsets of the domain ∆I, and E and F are any DL concept
descriptions with a role depth of at most d.

1. X ⊆ EI if, and only if, XI
DL
d v∅ E

2. X ⊆ XIDLd I

3. XI
DL
d = XI

DL
d II

DL
d

4. X ⊆ Y implies XI
DL
d v∅ Y I

DL
d

5. EII
DL
d v∅ E

6. EI ≡∅ EII
DL
d I

7. E v∅ F implies EI ⊆ FI

Compared to the FCA setting, we have replaced intent descriptions using sets of
attributes by intent descriptions using DL concept descriptions.

4 Inductive Learning in Horn-M

Now fix some finitely representable interpretation I over a signature Σ, and further let
d ∈N be a role-depth bound. Similarly to [5,9,18], we define the induced formal context
KI,d := (∆I,M, I) where M :=Mp ∪Mc, the premise attribute set is defined by

Mp := {⊥} ∪ΣC ∪ {

E

r.Self | r ∈ ΣR } ∪ {

E

r.XI
EL∗
d−1 | r ∈ ΣR and ∅ 6= X ⊆ ∆I }

while the conclusion attribute set is given as

Mc := {⊥} ∪ {A,¬A | A ∈ ΣC } ∪ {

E

r.Self,

E

≤1. r,

A

r.⊥ | r ∈ ΣR }

∪

{

Q

r.XI
M≤1

d−1

∣∣∣∣∣

Q

∈ {

E

≥n | 1 ≤ n ≤ |∆I| } ∪ {

A

},
r ∈ ΣR, and ∅ 6= X ⊆ ∆I

}
,

and (δ,C) ∈ I if δ ∈ CI. Our interest is to axiomatize the Horn-M concept inclusions
valid in I. Of course, it holds true that

d
X v

d
Y is a Horn-M concept inclusion for

each subset X ⊆Mp and each subset Y ⊆Mc. As in [5,9,18], such a concept inclusion
is valid in I if, and only if, the joining implication X → Y is valid in the induced
formal context KI,d. As we are only interested in axiomatizing these concept inclusions
that are valid in I and are no tautologies, we define the following joining implication
set that we shall use as background knowledge on the FCA side.

S := {{C} → {D} | C ∈Mp, D ∈Mc, and C v∅ D }
∪ {{C,

E

r.Self} → {D} | C ∈Mp, r ∈ ΣR, D ∈Mc, and C u

E

r.Self v∅ D }

We will see at the end of this section that the model-based most specific concept
descriptions XId can have an exponential size w.r.t. |∆I| and d inM≤1. Since the
problem of deciding subsumption in Horn-M is EXP-complete, we infer that a naïve
approach of computing S needs double exponential time. However, a more sophisticated
analysis yields that most concept inclusions cannot be valid. In particular, a concept
description from Mp only contains concept names and existential (self-)restrictions and,
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thus, these can never be subsumed (w.r.t. ∅) by a concept description fromMc containing
a negated concept name, a local functionality restriction, a qualified at-least restriction
where n > 1, or a value restriction. Thus, we conclude from the characterization in [18,
Section 8] that S does not contain any implication {C} → {D} or {C,

E

r.Self} → {D}
except for the trivial cases where C = ⊥, C = D, or D =

E

r.Self (only for the second
form), and it can hence be computed in single exponential time. Even in the case where
the tautological TBox S is not that simple, e.g., for another description logic where
subsumption is also EXP-complete and model-based most specific concept descriptions
can have exponential sizes, we could also dispense with the expensive computation of
S, since the canonical base can then still be computed in single exponential time with
the only drawback that it could contain tautologies.

In the remainder of this section, we show how the techniques from Section 2 can be
applied to axiomatize Horn-M concept inclusions valid in I. Note that the proofs are
suitable adaptations of those for the EL⊥ case [5] or of those for theM case [18]. We
first show that the TBox consisting of the concept inclusions C v CIIM

≤1

d for all EL∗
concept descriptions C with a role depth not exceeding d is sound and complete. As a
further step, we prove by means of structural induction that also the TBox containing
the concept inclusions

d
C v (

d
C)II

M≤1

d where C is a subset of Mp is sound and
complete. Furthermore, when computing the MMSC of a conjunction

d
C where

C ⊆Mp we do not have to do this on the DL side, which is expensive, but it suffices to
compute the result Cpc on the FCA side by applying the derivation operators ·p and ·c.
The conjunction

d
Cpc is then (equivalent to) the MMSC in the DLM≤1. The proofs

for the three aforementioned statements can be found in the technical report [20].
The main result for inductive learning of Horn-M concept inclusions is as follows.

It states that (the premises of) each pc-implication base of the induced context KI,d
give rise to a base of Horn-M concept inclusions for I.

Proposition 7. If L is a joining implication base for KI,d relative to S, then the
following TBox is sound and complete for the Horn-M concept inclusions that are valid
in I and have role depths not exceeding d.

{
l

C v (
l

C)II
M≤1

d | C→D ∈ L}

Instantiating the previous proposition with the canonical pc-implication base now
yields the following corollary.

Corollary 8. The following Horn-M TBox, called canonical Horn-M concept inclu-
sion base for I and d, is sound and complete for the Horn-M concept inclusions that
are valid in I and have role depths at most d.

CanHorn-M(I, d) := {
l

(P ∩Mp) v
l

(P ∩Mp)
pc | P ∈ PsClo(φHorn-M

I,d ,S)}

The closure operator φHorn-M
I,d : ℘(M)→ ℘(M) is defined by X 7→ X ∪ (X ∩Mp)

pc.

In the sequel of this section, we investigate the computational complexity of computing
the canonical Horn-M concept inclusion base. As it turns out, the complexity is the
same as for computing the canonical pc-implication base—both can be obtained in
exponential time. Afterwards, we investigate whether we can show that the canonical
Horn-M concept inclusion base has minimal cardinality.
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Proposition 9. The canonical Horn-M concept inclusion base for a finitely repre-
sentable interpretation I and role depth bound d ≥ 1 can be computed in exponential
time with respect to d and the cardinality of the domain ∆I, and further there exist
finitely representable interpretations I for which the canonical Horn-M concept inclusion
base cannot be encoded in polynomial space.

Note that in order to save space for representing the model-based most specific
concept descriptions, we could also represent them in the form XI�d where XI is the
model-based most specific concept description without any bound on the role depth and
E�d denotes the unraveling of some concept description E (formulated in a DL with
greatest fixed-point semantics) up to role depth d. In general, these unbounded MMSCs
XI only exist in extensions of the considered DL with greatest fixed-point semantics.
The advantage is that then the size of XI�d is exponential only in |∆I| but not in d.

The author conjectures that, for each finitely representable interpretation I, the
canonical Horn-M concept inclusion base CanHorn-M(I, d) has minimal cardinality
among all Horn-M concept inclusion bases for I and d. However, it is not immediately
possible to suitably adapt the minimality proof for the EL case described in [5,9],
since not all notions from EL are available in more expressive description logics. The
crucial point is that we need the validity of the following claim, which resembles [9,
Lemma 5.16] or [5, Lemma A.9], respectively, for our case of Horn-M.

Claim. Fix some Horn-M TBox T ∪ {C v D} in which all occurring concept descrip-
tions have role depths not exceeding d. Further assume that I is a finitely representable
model of T such that, for each subconcept

E

r.X of C, the filler X is (equivalent to)
some model-based most specific concept description of I in the description logic EL∗;
more specifically, we assume that Y ≡ Y II

EL∗
d−1 is satisfied for each

E

r. Y ∈ Conj(C).
If C 6v∅ D and C vT D, then C v∅ E and C 6v∅ F holds true for some concept
inclusion E v F contained in T .

However, the author has just developed a computation procedure for so-called most
specific consequences, cf. [19,21, Definition 3], in a description logic that is more
expressive than EL⊥. A proof of the above claim can then be obtained as a by-product.
This will be subject of a future publication.

5 Conclusion

In Formal Concept Analysis, a restricted form of implications has been introduced:
so-called joining implications. From the underlying attribute set M two subsets Mp

and Mc are declared, and then only those implications are considered in which the
premises only contain attributes from Mp and in which the conclusions only contain
attributes from Mc. A canonical base for the joining implications valid in some given
formal context has been devised, and it has been proven that it has minimal cardinality
and can be computed in deterministic exponential time.

The former results have then been applied to the problem of inductive learning in the
Horn description logic Horn-M. More specifically, we have proposed a canonical base
for the Horn-M concept inclusions valid in a given interpretation. While the author
conjectures that it has minimal cardinality, it has been demonstrated that it can be
computed in deterministic exponential time.
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Future research could deliver the proof for the claimed minimality of the canonical
Horn-M concept inclusion base, or could investigate means that allow for the integra-
tion of existing knowledge to make incremental learning possible. The author believes
that both tasks can be tackled as soon as computation procedures for most specific
consequences in Horn-M are available. This will be subject of future publications.

Eventually, the author wants to point out that incremental learning from a sequence
of interpretations [19,21, Section 8.4 for the EL⊥ case] is probably more practical than
model exploration or ABox exploration [9], since new observations that could show
invalidity of concept inclusions are not requested from the expert at a certain time
point, but are rather processed upon availability (“push instead of pull”). However,
completeness of the eventual result for the considered domain of interest is only achieved
if all typical individuals occur in the sequence at some time point.

Acknowledgments The author gratefully thanks Sebastian Rudolph for the very idea
of learning in Horn description logics as well as for a helpful discussion on basics of Horn
description logics. The author further thanks the reviewers for their constructive remarks.
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