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Abstract. The Description Logic (DL) FL0 uses universal quantifica-
tion, whereas its well-known counter-part EL uses the existential one.
While for EL deciding subsumption in the presence of general TBoxes is
tractable, this is no the case for FL0. We present a novel algorithm for
solving the ExpTime-hard subsumption problem in FL0 w.r.t. general
TBoxes, which is based on the computation of so-called least functional
models. To build a such a model our algorithm treats TBox axioms as
rules that are applied to objects of the interpretation domain. This algo-
rithm is implemented in the FLower reasoner, which uses a variant of the
Rete pattern matching algorithm to find applicable rules. We present an
evaluation of FLower on a large set of TBoxes generated from real world
ontologies. The experimental results indicate that our prototype imple-
mentation of the specialised technique for FL0 leads in most cases to
a huge performance gain in comparison to the highly-optimised tableau
reasoners.

1 Introduction

The Description Logic (DL) FL0 is a minimalistic DL, since it offers only the
top concept, conjunction, and value restriction (universal quantification) as con-
structors for building complex concepts. It is the core part of one of the very first
DLs called FL− (Frame Language) introduced by Brachman and Levesque [8] for
formalising frames. Unfortunately, in presence of a TBox value restrictions and
conjunction have been identified as exactly those constructors that make the
problem of deciding the subsumption relationship between two concepts hard
[15, 1]. In particular, depending on the syntactical form of the TBox the com-
plexity of deciding subsumption in FL0 takes a rollercoaster ride: it starts from
Ptime with the empty TBox [8], jumps to co-NP-completeness with acyclic
TBoxes [15], then to Pspace-completeness with cyclic definitions [12], culmi-
nates in ExpTime-completeness in presence of general TBoxes [1], and drops
back to Ptime when restricted to Horn-TBoxes [13]. This is in sharp contrast to
the robust behaviour of the popular DL EL that differs from FL0 only by using
existential restrictions instead of value restrictions. In EL, the complexity stays
in Ptime even in the presence of general TBoxes [1].



In this paper we devise a novel algorithm for deciding subsumption w.r.t.
general FL0-TBoxes, describe a first implementation of it in the new FLower
reasoner and report on an evaluation of FLower on a large collection of on-
tologies. There are several reasons to study subsumption algorithms for FL0.
First, for the Boolean-complete DL ALC subsumption w.r.t. TBoxes is still Exp-
Time-complete, thus its fragment FL0 hardly offers an optimal trade-off between
worst-case complexity and expressiveness. Nevertheless, the volatile complexity
of subsumption in FL0 raises the question of whether hard instances of the
subsumption problem are even likely to occur in application ontologies.

Second, most state-of-the-art ontology reasoners are built and optimised for
expressive DLs beyond ALC, as for example FaCT++1, HermiT2 or Konclude3.
Some DL reasoners such as Konclude and MORe [17] make use of specialised
algorithms for certain language fragments as part of their overall reasoning al-
gorithm. Thus an efficient subsumption algorithm for FL0 might be such a ded-
icated procedure that can augment general ontology reasoners.

Third, dedicated methods for standard and non-standard reasoning tasks in
FL0 w.r.t. general TBoxes have been studied recently in [5, 3, 4, 6]. Quite some of
these useful inferences rely on subsumption tests as sub-procedures and FLower
can supply a base for implementing these inferences.
FLower’s subsumption algorithm for FL0 uses a characterisation of subsump-

tion based on so-called tree-shaped least functional models [4]. For a given input
concept and TBox, this algorithm generates a sufficiently large subtree of their
least functional model by using the axioms from the TBox like rules to aug-
ment the tree. This process corresponds to deriving implicit consequences. To
ensure termination it employs a blocking mechanism. We have implemented this
algorithm in the new FLower reasoner.4

The key idea of the implementation is to use a variant of the well-known
Rete algorithm for rule application [9] adapted to the case without negation:
we translate the TBox to a Rete network and generate the tree representing
the model of the TBox by propagating the nodes through the network. More
precisely, the axioms in the TBox are applied as rules to nodes in the tree. For
example, consider the following FL0 axiom:

Animal u ∀eats.Plants v Herbivore,

which essentially says that animals that eat only plants are herbivores. If a node
in the current tree matches the left-hand side, which means it is labelled with
the name Animal and its eats-child with Plants, then we add Herbivore to its label
set. Since there are potentially many nodes and many axioms to consider, it is
critical for performance reasons to avoid reiterating over all nodes and axioms
after each change and so the key idea from the Rete algorithm is well-suited for
our task. To support this claim we have conducted an evaluation on FLower. To

1 owl.man.ac.uk/faktplusplus
2 hermit-reasoner.com
3 konclude.com
4 https://github.com/attalos/fl0wer



create a large set of challenging FL0 ontologies we have transformed the OWL 2
EL ontologies of the OWL reasoner competition [16] into FL0 by replacing exis-
tential restrictions by value restrictions. It turns out that our reasoner FLower
is in many cases able to clearly outperform highly-optimised (hyper)tableaux
reasoners like HermiT or JFact on reasoning tasks for this set of ontologies.

2 Preliminaries on FL0 and Least Functional Models

We define the DL FL0 and recall the characterisation of subsumption from [4]
based on least functional models.

Syntax. Let NC and NR be disjoint finite sets of concept names and role names,
respectively. An FL0-concept description (concept for short) C is built according
to the following syntax rule

C ::= A | > | C u C | ∀r.C, where A ∈ NC, r ∈ NR.

> is called the top concept and ∀r.C is a value restriction. For nested value
restrictions we use the following notation: let σ = r1 · · · rm ∈ NR

∗ for some
m ≥ 0 be a word over the alphabet NR of role names. For some A ∈ NC we write
∀σ.A as an abbreviation of ∀r1. · · · ∀rm.A. The empty word ε stands for A.

A general concept inclusion (GCI) is of the form C v D, where C and D are
concepts. A TBox is a finite set of GCIs.

Semantics. An interpretation I is a pair I = (∆I , ·I), consisting of a non-empty
set ∆I (domain of I) and an interpretation function ·I that maps every concept
name A ∈ NC to a subset of the domain AI ⊆ ∆I and every role name r ∈ NR

to a binary relation rI ⊆ ∆I ×∆I . The interpretation function is extended to
(complex) concepts as follows:

(C uD)I := CI uDI , (>)I := ∆I , and

(∀r.C)I := {d ∈ ∆I | ∀e ∈ ∆I .(d, e) ∈ rI −→ e ∈ CI}

A GCI C v D is satisfied in I, denoted by I |= C v D, iff CI ⊆ DI . I is a model
of a TBox T , denoted by I |= T , iff I satisfies all GCIs in T . The concept C is
subsumed by the concept D w.r.t. a TBox T , denoted by C vT D, iff CI ⊆ DI

is satisfied in all models of T .
Our focus is on a certain kind of tree-shaped interpretation. A functional

interpretation is a tree with domain NR
∗, where each element has exactly one

child node for each role name.

Definition 1. An interpretation I = (∆I , ·I) is called a functional interpreta-
tion iff ∆I = NR

∗ and rI = {(σ, σr) | σ ∈ NR
∗} for all r ∈ NR. A functional

interpretation I is called functional model of a concept C w.r.t. TBox T iff
I |= T and ε ∈ CI . For two functional interpretations I and J we write

I ⊆ J iff AI ⊆ AJ for all A ∈ NC.



The notion of a functional interpretation fixes the domain and the interpretation
of role names. Thus, a functional interpretation is uniquely determined by the
interpretation of concept names.

Definition 2. Let C be a concept and T be a TBox. The interpretation IC,T =
(NR

∗, ·IC,T ) is the functional interpretation satisfying

AIC,T = {σ ∈ NR
∗ | C vT ∀σ.A} for all A ∈ NC.

We summarize some properties of IC,T which characterize IC,T as the least
functional model of C w.r.t. T .

Theorem 1 ([4, 2]). It holds that IC,T is a functional model of C w.r.t. T .
Furthermore, if J is a functional model of C w.r.t. T , then IC,T ⊆ J .

Subsumption can now be characterised as inclusion between least functional
models. It follows that C vT D iff IC,T ⊆ ID,T .

3 Subsumption Algorithm for FL0 with General TBoxes

We define a decision procedure for subsumption of two concepts w.r.t. a TBox
based on a finite representation of the least functional model obtained by “apply-
ing” GCIs. The algorithm expects input in a certain normal form. A concept is in
normal form if it is either > or a conjunction of concept names and value restric-
tions of the form ∀r.A with r ∈ NR and A ∈ NC. A GCI C v D is in normal form
if both C and D are in normal form and a TBox T is in normal form if all GCIs
in T are in normal form. By using the equivalence ∀r.(CuD) ≡ ∀r.Cu∀r.D and
via “flattening” of nested value restrictions by introducing fresh concept names
every TBox can be transformed in linear time into normal form.

In the remainder of this section T denotes a TBox in normal form. Given
two concept names A and B mentioned in T we want to decide whether A vT B
holds. The algorithm computes a finite subtree of the tree IA,T such that one
can read off the named subsumers (concept names) of A w.r.t. T at the root. The
structure that the algorithm operates on is a partial functional interpretation.
It is the same as a functional interpretation but the domain is only a finite
prefix-closed subset of NR

∗, that is, a finite tree.

Definition 3. The interpretation Y = (∆Y , ·Y) is a partial functional interpre-
tation iff ∆Y ⊂ NR

∗ is a finite prefix-closed set and for all r ∈ NR it holds that
rY = {(σ, σr) | (σ, σr) ∈ ∆Y ×∆Y} .

The algorithm for deciding A vT B generally proceeds as follows: it starts
with a partial functional interpretation Y that just consists of

∆Y := {ε} AY := {ε} BY := ∅ for all B ∈ NC \ {A}.

In each iteration a single element of the current tree and a single GCI from T
is chosen such that the chosen element matches the left-hand side, but not the



right-hand side of the GCI. Then minimal extensions of the tree are performed
such that the element now matches also the right-hand side. The extension affects
the domain and/or the interpretation of concept names. To ensure soundness we
guarantee that for the tree Y, the invariant Y ⊆ IA,T is always satisfied. To
ensure termination we distinguish blocked and non-blocked elements in the tree.
The algorithm terminates if for all non-blocked elements and all GCIs, a match
of the left-hand side implies a match of the right-hand side. For describing the
procedure we have to define 1. what it means that a domain element of a partial
interpretation matches a concept, 2. how to extend the tree to achieve a match
with the right-hand side, and 3. how to distinguish blocked and non-blocked
elements. For the first step we introduce the following auxiliary notions.

Definition 4. Let Y = (∆Y , ·Y) be a partial functional interpretation and D a
concept in normal form. The set of elements in ∆Y that match D, denoted by
match(D,Y), is defined inductively as follows:

match(>,Y) := ∆Y ;

match(A,Y) := {w ∈ ∆Y | w ∈ AY} for all A ∈ NC;

match(∀r.A,Y) := {σ ∈ ∆Y | there exists σr ∈ ∆Y and σr ∈ AY}
for all r ∈ NR and A ∈ NC;

match(C1 u C2,Y) := match(C1,Y) ∩match(C2,Y).

Since Y is partial functional (i.e. has at most one child per node for each role
name), it is easy to see that σ ∈ match(C,Y) implies σ ∈ CY . The converse need
not be true, as σ may have no r-child in ∆Y . We define σ ∈ ∆Y violates C v D
(in normal form) iff σ ∈ match(C,Y) and σ /∈ match(D,Y). Given a TBox T in
normal form and a partial functional interpretation Y we define the set of all
incomplete elements as follows

ic(Y, T ) := {σ ∈ ∆Y | there is E v F ∈ T such that σ violates E v F}.

Intuitively, the elements in ic(Y, T ) are those eligible for an extension of Y
towards building a representation of the least functional model, while those in
∆Y \ ic(Y, T ) are not. As an additional filter for extensions we define a blocking
condition. First, we introduce the auxiliary notions for the blocking mechanism
consisting of the standard notion of a prefix and proper prefix and a strict total
order on (NR)∗.

Definition 5. Let σ, ρ ∈ NR
∗. We write ρ ∈ prefix(σ) iff σ = ρσ̂ for some σ̂ ∈

NR
∗. We write ρ ∈ pprefix(σ) iff ρ ∈ prefix(σ) and ρ 6= σ to denote a proper prefix

of σ. Let NR = {r1, . . . , rn}, σ = ri1 · · · rik ∈ NR
∗ and ρ = rj1 · · · rj` ∈ NR

∗ be
two words with i1, . . . , ik, j1, . . . , j` ∈ {1, . . . , n}. Let ≺N denote the lexicographic
order over tuples of natural numbers. We define

σ ≺ ρ iff |σ| < |ρ| or if k = `, then (i1, . . . , ik) ≺N (j1, . . . , j`).

The blocking condition is defined by induction on ≺.



Definition 6. Let Y = (∆Y , ·Y) be a partial functional interpretation and let
σ ∈ ∆Y . By Y(σ) := {A ∈ NC | σ ∈ AY} we denote the label of σ in Y. The set
of all blocked elements in ∆Y is defined as the smallest set satisfying all of the
following conditions:

1. ε is not blocked.
2. Let σ ∈ ∆Y and assume for all σ′ ∈ ∆Y with σ′ ≺ σ the blocking status is

already defined. The following conditions apply to σ:

(a) If there exists ω ∈ ∆Y with ω ≺ σ such that Y(σ) = Y(ω) and ω is not
blocked, then σ is blocked.

(b) If there exists ρ ∈ pprefix(σ) such that ρ is blocked, then σ is blocked.

The set of all non-blocked elements in Y is denoted by nb(Y).

Next, we define what an extension step is. Such a step expands a single
non-blocked and incomplete element in a partial functional interpretation.

Definition 7. Let Y and Z be two partial functional interpretations, T a TBox
in normal form, m,n ≥ 0

α = C v (A1 u · · · uAm u ∀r1.B1 u · · · ∀rn.Bn) and α ∈ T

a GCI and σ ∈ nb(Y)∩ ic(Y, T ) a non-blocked, incomplete element in Y violating
α. Then Y expands α at σ to Z, denoted Y `σα Z iff Z satisfies the conditions

– ∆Z = ∆Y ∪ {σr1, . . . , σrn};
– AZi = AYi ∪ {σ} for all i = 1, . . . ,m;
– BZj = BYj ∪ {σrj} for all j = 1, . . . , n; and

– QZ = QY for all Q ∈ NC \ ({A1, . . . Am, B1, . . . , Bn}).

A partial functional interpretation Z ′ is a T -completion of Y, written as Y`T Z ′,
iff there exists α′ ∈ T and σ′ ∈ nb(Y) ∩ ic(Y, T ) such that Y `σ′

α′ Z ′ holds.

For a given σ ∈ nb(Y)∩ ic(Y, T ) violating a GCI α ∈ T there exists a unique
Z with Y `σα Z. The extension of Y leading to Z is minimal such that now σ
matches the right-hand side of α in Z. Depending on the choice of σ and the
GCI there can be several T -completions of Y. Furthermore, it is guaranteed that
either nb(Y) ∩ ic(Y, T ) = ∅ or there exists a T -completion of Y.

Given the input A,B ∈ NC and T , the algorithm Subs(A,B, T ) for checking
whether A vT B holds, computes a sequence of T -completions until it reaches
a partial functional interpretation where no non-blocked element violates any
GCI. The algorithm starts with the following partial functional interpretation:

∆Y0 := {ε}; AY0 := {ε} and BY0 := ∅ for all B ∈ NC \ {A}, (1)

and computes a sequence

Y0 `T Y1 `T · · · Y(n−1) `T Yn



such that Yn is complete in the sense that only blocked elements can remain
incomplete, i.e. nb(Yn)∩ ic(Yn, T ) = ∅. It answers “yes” if B ∈ Yn(ε) (or equiv-
alently ε ∈ BYn) and “no” otherwise.

The choice of the next T -completion is a don’t care nondeterministic choice.
For proving soundness it is sufficient to show that Yi ⊆ IA,T holds for each
partial functional interpretation reachable from Y0 via `T . By `T ∗ we denote
the reflexive transitive closure of `T .

Lemma 1. Let Y0 be as in (1), IA,T the least functional model of A w.r.t. T
and Z a partial functional interpretation satisfying Y0 `T ∗ Z. Then Z ⊆ IA,T .

Proof (sketch). The proof is straightforward by induction on the length of the
completion sequence.

As a consequence of this we get soundness of the overall procedure.

Lemma 2. Subs(A,B, T ) is sound.

Proof. If the answer is “yes”, then Subs(A,B, T ) has obtained Yn with Y0`T ∗Yn
and ε ∈ BYn . Since Yn ⊆ IA,T , it follows that ε ∈ BIA,T . From the definition of
IA,T it follows that A vT B holds.

We prove that the algorithm terminates, which means that it always reaches
a partial functional interpretation Z, where the set nb(Z, T )∩ ic(Z, T ) is empty.
Using the blocking condition, the following lemma about the length of the el-
ements in the tree follows immediately. The length of an element σ ∈ NR

∗ is
denoted by |σ|. We have |ε| = 0 and |σ′r| = |σ′|+ 1 with r ∈ NR.

Lemma 3. Let Z be a partial functional interpretation such that Y0 `T ∗ Z.
Then the set nb(Z) is prefix-closed and σ ∈ nb(Z) implies that |σ| ≤ 2|(NC)|.

Lemma 3 yields an upper bound on the depth of the trees that are the result of a
sequence of T -completions starting in the initial Y0 consisting only of ε labelled
with A. The depth of a partial functional interpretation Y = (∆Y , ·Y), denoted
by depth(Y), is the maximum length defined by

depth(Y) := max({|σ| | σ ∈ ∆Y}).

Lemma 4. Let Z be a partial functional interpretation such that Y0 `T ∗ Z. It
holds that

depth(Z) ≤ 2|(NC)| + 1.

The upper bound on the depth of the tree in a T -completion sequence also
yields an upper bound on its overall size. Furthermore, we observe that Y `T Y ′
implies that Y ( Y ′, i.e. a T -completion always adds something. At the same
time, each label set can at most contain

∣∣NC

∣∣ many names. Thus, due to the
depth bound and the upper bound on the label size there cannot be an infinite
sequence of T -completions. Hence, Subs(A,B, T ) always terminates.

Lemma 5. Subs(A,B, T ) always terminates.



After Subs(A,B, T ) terminates, it obtains a partial functional interpretation Z
with nb(Z) ∩ ic(Z, T ) = ∅. For the completeness proof we construct a model of
T and A from Z. In particular, the construction is based on the non-blocked
elements in nb(Z). It might be the case that a non-blocked element has children
(role successors) that are blocked. To handle this situation the following lemma
is helpful. Recall that for an element σ ∈ ∆Z the label set Z(σ) is the set of all
concept names that σ satisfies in Z (see Def. 6).

Lemma 6. Let Z be a partial functional interpretation such that Y0 `T ∗ Z and
nb(Z) ∩ ic(Z, T ) = ∅. For all σ ∈ nb(Z) and all r ∈ NR it holds that

if σr ∈ ∆Z then there exists ρ ∈ nb(Z) such that Z(σr) = Z(ρ).

The construction of a model of T and A from the final partial functional
interpretation Z obtained from the run of the algorithm is based on the label
sets of the non-blocked elements. The lemma above guarantees that the label
sets of blocked children of non-blocked elements can be found in nb(Z).

Definition 8. Let Z be a partial functional interpretation such that Y0 `T ∗ Z
and nb(Z) ∩ ic(Z, T ) = ∅. We define an interpretation m(Z) as follows:

– ∆m(Z) := {Z(σ) | σ ∈ nb(Z)};
– Qm(Y) := {X ∈ ∆m(Y) | Q ∈ X} for all Q ∈ NC;
– rm(Y) := {(Z(σ),Z(σr)) | σ ∈ nb(Z), σr ∈ ∆Z} for all r ∈ NR.

Lemma 6 ensures that the interpretation of role names is well-defined in
m(Z). It easy to show that m(Z) is a model of T and A. As a consequence we
get completeness of Subs(A,B, T ).

Theorem 2. Subs(A,B, T ) is sound, complete and terminating.

The algorithm Subs(A,B, T ) shares properties with the completion method for
EL [1] as well as with tableau algorithms for expressive DLs [7]. Every single T -
completion step extends the label set of at least one node in the tree. Intuitively,
adding the concept name C to the label set of domain element σ corresponds to
deriving A v ∀σ.C as a consequence of T . One single run of Subs(A,B, T ) not
only decides whether A v B is entailed by T but computes all subsumers of A.
This is similar to the EL completion method and other consequence-based calculi
[18]. From tableau algorithms Subs(A,B, T ) inherits the blocking mechanism
that ensures termination.

4 A Rete-based Matching Algorithm for FL0-Concepts

Our implementation of Subs(A,B, T ) in FLower employs a variant of the Rete
algorithm [9] to obtain candidates for each T -completion step. While the full
Rete algorithm admits also negation, we only need the positive part. In this
section, we informally describe how this is realised—for full details see [14].



In order to compute a sequence of T -completions Y0 `T Y1 `T Y2 `T · · ·
starting from the tree Y0, one has to compute in each completion step i the
pairs (σ,C v D) ∈

(
∆Yi ∩ nb(Yi)

)
×T such that σ matches C but not D in Yi.

Thus, we can view a GCI C v D ∈ T as a rule of the form

?σ ∈ match(C,Yi)→ ?σ ∈ match(D,Yi),

where ?σ ranges over the non-blocked domain elements of Yi. Since there is
potentially a large number of elements in ∆Yi that has to be matched with a
large number of left-hand sides of GCIs (patterns) in the TBox in each step, we
have chosen to implement this task using the Rete matching algorithm [9]. In
each completion step the extension of the tree only affects a small number of
elements: the matching element σ itself and/or its children. This makes the Rete-
based algorithm particularly efficient in our setting because it stores matching
information across completion steps to avoid reiterating over the whole set of
pairs

(
∆Yi ∩ nb(Yi)

)
× T in each step. Only the elements with changes have to

be rematched again in each step.
As a preprocessing phase FLower compiles the TBox T in normal form into

a Rete network. In general, the network consists of three kinds of nodes: a single
root node, intermediate nodes and terminal nodes. A terminal node holds the
right-hand side of a GCI that is ready to be applied to an element. The matching
is done by passing so called tokens from the root node through the intermediate
nodes to the terminal nodes. A token is a pair of the form (σ, s) ∈ (NR

∗,NR∪{ε}).
Intuitively, the token (σ, ε) is used to check whether σ matches the concept names
at the top-level of a concept and a token of the form (σ, r) with r ∈ NR is used
to check whether σ matches value restrictions with role name r.

There are three types of intermediate nodes that process tokens arriving from
predecessor nodes in the network:

– A concept node is labelled with a concept name B ∈ NC. It sends a token
(σ, s) to all successor nodes iff σs ∈ BYi .

– A role node is labelled with an s ∈ NR ∪ {ε}. An arriving token of the form
(σ, s′) is handled as follows. If s ∈ NR, then it sends (σ, s′) to all successor
nodes iff s′ = s and if s = ε, then it sends the token (σs′, ε) to all successor
nodes.

– An inter-element node is labelled with a tuple (s1, . . . , sm) ∈ (NR ∪ {ε})m.
It stores all arriving tokens and sends a token (σ, ε) to its successor nodes
once all tokens of the form (σ, s1), . . . , (σ, sm) have arrived at this node.

The overall network is structured in layers. The root node with no incoming edges
is on top. To represent GCIs of the form > v C the root node is connected to
a terminal node with C and sends all tokens directly to this terminal node. All
other successors of the root node are concept nodes. The root node takes an
element of the form σ = ρr ∈ NR

∗ and sends the token (ρ, r) to all successor
nodes. A successor of a concept node can only be another concept node or a
role node. A role node leads directly to an inter-element node and inter-element
nodes lead to terminal nodes.



Example 1. As an example consider a TBox that contains the following GCIs:

A2 uA4 uA5 u ∀r1.A3 u ∀r1.A4 u ∀r2.A1 v B7,

∀r2.A3 u ∀r2.A4 v B8,

∀r1.A6 v ∀r1.B9.

The corresponding Rete network is displayed in Figure 1.

5 Implementation and Evaluation of FLower

The FLower reasoner is implemented in Java and it takes as input a general
FL0-TBox T in OWL format [10]. It implements three different reasoning tasks.

Subsumption: Given two OWL classes A and B decide whether A vT B holds.
Subsumer set: Given an OWL class A compute all classes B in T for which

A vT B holds.
Classification: Decide for all pairs of named OWL classes A and B occurring

in T whether A vT B holds.

To decide subsumption FLower runs Subs(A,B, T ) but possibly stops already
in case B occurs at the root of the tree. For computing the subsumer set of
A a single complete run of Subs(A,B, T ) is sufficient, where the choice of B

root

A1 A2 A3 A6

A4 A4

A5

r2 ε r1 r2 r1

(ε, r1, r2)

B7 B8 ∀r1.B9

Fig. 1. Rete network for the TBox from Example 1.



is irrelevant. All subsumers of A can be found at the root of the final tree.
Classification is done by running Subs(A,B, T ) for each named class A in T
separately (again B is irrelevant). The Rete network for T is created only once
and is reused for the remaining runs of Subs(A, ∗, T ) multiple times in parallel.
To this end the information that is stored on inter-element nodes and final nodes
is stored in an external working memory.

5.1 Test Data

Since there are not enough FL0-ontologies around to yield a decently large test
suite, we had to generate such ontologies. Our goal was to create ontologies, that
are close to ontologies from applications rather than to construct purposefully
complex ones. To create ontologies with a similar structure to application on-
tologies, we have chosen to use FL0-variants of the OWL 2 EL [10] ontologies of
the OWL Reasoner Evaluation (ORE) competition benchmark [16]. For each on-
tology from that benchmark, we essentially flipped the quantifier, i.e., replaced ∃
by ∀. We have also dropped some axioms involving role inclusions and nominals
that cannot be expressed in FL0. Additionally, ontologies containing fewer than
500 classes were discarded. This resulted in a test suite of 159 ontologies with
an average number of 54.000 classes, 5 roles and 170.000 axioms. The largest
ontology in the test suite has 981.152 classes, 50 roles and 2.513.918 axioms.

5.2 Evaluation Setup

We have tested FLower on all three reasoning tasks (subsumption, subsumer set
and classification) with the 159 ontologies from our test suite. For a comparison
of the reasoning performance of FLower with tableau-based methods we have
chosen the following three state-of-the-art tableau reasoners

– HermiT5, version 1.3.8.510,
– Openllet6, version 2.6.3, and
– JFact7, version 5.0.1.

All three reasoners implement the OWL API [11] and are written in Java. This al-
lows us to measure and compare the time needed for the reasoning tasks alone—
excluding the time for initialising the reasoner and for loading the ontologies
using the OWL API. These two tasks can take fairly long and thus distort the
impression of the performance of solving the reasoning task. In case of FLower
the initialisation phase includes the generation of the Rete network.

As a test system we have used an Intel Core i5 7600K with 4x 3.80GHz
and 16 GB of RAM. We have used a setup, where only the runtime of the
reasoning task is measured and not the time of loading the ontology. Java was
called with -Xmx8g to set the maximum allocation pool (heap) size to 8 GB.

5 hermit-reasoner.com
6 github.com/Galigator/openllet
7 jfact.sourceforge.net



While this was sufficient for JFact, HermiT and FLower, Openllet ran into some
OutOfMemory exceptions. Those runs were counted as unsuccessful for Openllet.
For each reasoning task, the time out was set to 6 minutes.

5.3 Evaluation Results

We have obtained the following results for the three reasoning tasks.

Subsumption. Of the 159 ontologies with one subsumption call each for a ran-
domly selected pair of classes, JFact was not able to decide the subsumption in
21 cases, Openllet in 8 cases, HermiT in 3 cases, while FLower succeeded for all
159 ontologies. In Figure 2 the runtime for the subsumption task is displayed in
relation to the number of classes in the ontology. Note the use of a logarithmic
scale in this and the following figures. It shows that FLower performs best overall
and is close to and often better than HermiT in terms of reasoning times.

Subsumer set. The task was to compute the subsumer sets of a randomly se-
lected class from each test ontology. This task was not solved within the given
timeout of six minutes by JFact in 37 cases, Openllet in 15 cases, HermiT in 13
cases whereas FLower computed all again. The comparison of the runtimes is
displayed in Figure 3. It shows that FLower exhibit an almost linear behaviour
and outperforms the other DL reasoners by at least one order of magnitude.
Now, FLower is especially efficient for this task as it computes the subsumer set
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Fig. 2. Computation times for subsumption tests of the different reasoners in relation
to ontology size.
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Fig. 3. Computation times for subsumer sets of the different reasoners in relation to
ontology size.

of a given class within a single run, whereas the other reasoners need to perform
a classification of the whole ontology (compare Figures 3 and 4).

Classification. The unsuccessful attempts to classify test ontologies within the
time limit of 6 minutes sum up to 36 for JFact, 15 for Openllet, 13 for HermiT and
3 for FLower. The comparison of the runtime is displayed in Figure 4. FLower
still has an advantage in many cases, but not as huge, as for the subsumer
set computation. This seems bit surprising, since the classification method in
FLower is based on its fast subsumer set computation. We assume that this is
mostly due to the fact that FLower implements a naive classification algorithm
that simply computes the subsumer set for each named class.

6 Conclusions

We have presented a novel algorithm for deciding subsumption in the DL FL0

w.r.t. general TBoxes. The approach is to compute a (tree prefix of the) least
functional model for the TBox and the potential subsumee. This approach is
the basis for developing implementation friendly algorithms for other inferences
in FL0. Furthermore, reasoners for expressive DLs often incorporate reasoners
for special fragments and thus a dedicated reasoner for FL0 may be beneficial
for them. Therefore our investigation presented here can contribute to develop
a variety of DL reasoning systems.
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Fig. 4. Computation times for classification of the different reasoners in relation to
ontology size.

Our new reasoner FLower implements the algorithm for computing all sub-
sumers using a variant of the Rete pattern matching algorithm. Our experimental
results with our prototype showed that the specialised techniques lead in many
cases to a huge performance gain in comparison to highly-optimised tableau rea-
soners that are designed for more expressive DLs. In particular FLower is better
in most cases than the other systems for testing a single subsumption and for
computing classification. For the computation of all subsumers for a given con-
cept FLower truly outperforms the other DL reasoners by at least one order of
magnitude. This is a remarkable results as it raises hopes that a naive method for
classification can easily be sped up by simply using massively parallel hardware.
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16. Parsia, B., Matentzoglu, N., Gonçalves, R.S., Glimm, B., Steigmiller, A.: The OWL

reasoner evaluation (ORE) 2015 competition report. Journal of Automated Rea-
soning 59(4), 455–482 (2017)

17. Romero, A.A., Cuenca Grau, B., Horrocks, I.: More: Modular combination of OWL
reasoners for ontology classification. In: International Semantic Web Conference
(1). LNCS, vol. 7649, pp. 1–16. Springer (2012)

18. Simancik, F., Kazakov, Y., Horrocks, I.: Consequence-based reasoning beyond Horn
ontologies. In: IJCAI 2011, Proceedings of the 22nd International Joint Conference
on Artificial Intelligence, 2011. pp. 1093–1098. IJCAI/AAAI (2011). https://doi.
org/10.5591/978-1-57735-516-8/IJCAI11-187


