
Congenial Benchmarking of RDF Storage Solutions
Axel-Cyrille Ngonga Ngomo

axel.ngonga@upb.de
Data Science Group, Paderborn University

Paderborn, Germany

Felix Conrads
felix.conrads@upb.de

Data Science Group, Paderborn University
Paderborn, Germany

Maximilian Pensel
maximilian.pensel@tu-dresden.de

Chair for Automata Theory, TU Dresden
Dresden, Germany

Anni-Yasmin Turhan
anni-yasmin.turhan@tu-dresden.de

Chair for Automata Theory, TU Dresden
Dresden, Germany

ABSTRACT

Many SPARQL benchmark generation techniques rely on SPARQL
query templates or on selecting representative queries from a set of
input queries by inspecting their syntactic features. Hence, proto-
type queries from such benchmarks mainly capture combinations
of SPARQL features, but not the semantics nor the conceptual asso-
ciation between queries. We present congenial benchmarks—a novel
type of benchmark that can detect conceptual associations and
thus reflect prototypical user intentions when selecting prototype
queries. We study Sparrow, an instantiation of congenial bench-
marks, where the conceptual associations of SPARQL queries are
measured by concept similarity measures. To this end, we transform
unary acyclic conjunctive SPARQL queries into ELH -description
logic concepts. Our evaluation of three popular triple stores on
two datasets shows that the benchmarks generated by Sparrow
differ considerably from benchmarks generated using a feature-
based approach. Moreover, our evaluation suggests that Sparrow
can characterize the performance of common triple stores with re-
spect to user needs by exploiting conceptual associations to detect
prototypical user needs.

CCS CONCEPTS

• Information systems →World Wide Web.

KEYWORDS

Information systems Web data description languages

ACM Reference Format:

Axel-Cyrille Ngonga Ngomo, Felix Conrads, Maximilian Pensel, and Anni-
Yasmin Turhan. 2018. Congenial Benchmarking of RDF Storage Solutions. In
10th International Conference on Knowledge Capture (K-CAP’19), November
19–21, 2019, Marina Del Rey, CA, USA. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/1122445.1122456

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
K-CAP ’19, November 19–21, 2019, Marina Del Rey, CA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7008-0/19/11. . . $15.00
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

Performance evaluations of triple stores based on realistic bench-
marks are vital to assess and constantly improve such systems
[8, 16]. In recent years, a large collection of benchmarks and bench-
mark generation techniques has been developed (see [17] for an
overview). Two families of benchmarks for triple stores dominate
this collection. Most of the early benchmarks for triple stores are
synthetic benchmarks (e.g., [1, 8]), which commonly generate a syn-
thetic dataset upon which a set of predefined query templates is
instantiated. However, works on the structure of RDF data point
out a high discrepancy between synthetic and real RDF data [6, 13].
Hence, an increasing number of benchmarks belong to the second
family of benchmarks, which rely on real datasets and real queries
[12, 18, 19]. Most of these benchmark generation techniques ana-
lyze a set of queries in regard of which (syntactic) SPARQL features
they use [16]. The queries are then clustered according to the re-
sults of the feature analysis. A prototype query is selected from
each cluster. The prototype queries then constitute the resulting
feature-based benchmark.

A performance evaluation based on such a feature-based bench-
mark can only supply insights on the relationship between syntac-
tical features and performance. While this can be sufficient to tailor
the performance of triple stores for many applications, this is cer-
tainly not meaningful for all. In many SPARQL-based applications
(e.g., search and question answering [21], automatic exploration
[9], machine learning [2]), the SPARQL queries are relaxed to avoid
empty result sets, or strengthened to prune large result sets. This
alteration of the query may be done either manually by a user, by
a query editing system [20] or even automatically in structured
machine learning applications [2]. The corresponding query logs re-
veal that queries often address similar “targets” reflecting the user’s
intent for posing the query [15]. Essentially, there is a strong con-
ceptual association between the queries for this kind of application
which in turn gives rise to clusters of such congenial queries.

Traditional SPARQL feature-based benchmarks are oblivious
to such kind of conceptual associations between queries and do
not allow the performance of the query engine to be tuned to this
kind of query collection. More precisely, the overlap of features
used in queries does not indicate whether these queries retrieve
things alike or are serving similar or even the same user intents.
Consequently, the analysis of features and the resulting clustering
yields benchmarks that simply do not reflect howwell existing triple
stores can serve clusters of queries obtained from prototypical user

Session: Planning and Queries K-CAP ’19, November 19–21, 2019, Marina Del Rey, CA, USA

213

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

intents. Instead, they evaluate how well triple stores implement
particular SPARQL features or combinations thereof. Our aim is
to provide benchmarks that challenge triple stores in the same way
as do applications producing a proliferation of similar queries due to
the user intent. We call such benchmarks congenial benchmarks. To
produce such benchmarks, we analyze real input query logs with
regard to the semantic similarity between queries and then perform
the clustering accordingly.

The central task for generating congenial benchmarks is to mea-
sure the similarity between the queries. This can be done by ap-
plying similarity measures, which are functions that compute a
value from the unit interval, where 1 indicates high similarity (even
equivalence) and 0 indicates total dissimilarity. The similarity mea-
sure that we want to employ for our purpose needs to a) regard
the semantics of the query and b) abstract from its syntactic form
as we want to cluster those queries that formalize a similar intent.
Furthermore, our similarity measure needs to c) be robust in the
sense that it has (formal) properties that ensure “wanted” behavior,
such as symmetry or equivalence invariance. While there are many
similarity measures available for concepts written in ontology lan-
guages, there are hardly any for conjunctive or SPARQL queries
[5]. An approach to obtain a measure with the desired properties is
the simi framework [11], which generates concept similarity mea-
sures (CSM) for concepts written in the description logic ELH .
The application of the CMS to the queries then yields clusters from
which we select prototype queries that constitute the cases in the
congenial benchmark.

In this paper, we examine the approach of congenial benchmarks
and study an instantiation of it with SPARQL queries from query
logs generated by applications for RDF data series. The simi frame-
work yields CSMs that are only applicable to a subclass of SPARQL
queries, namely those that correspond to ELH concepts, i.e., tree-
shaped queries with only one answer variable. Despite this, we
adopt simi since the resulting measures abstract from the syntactic
form and consider the semantics of the queries. Furthermore, there
is an implementation of the simi framework available. To use as
many queries from the logs as possible, we devise a translation
function from SPARQL to ELH concepts and carry out a gener-
ation of congenial benchmarks in two variants: first for queries
from the fragment of ELH concepts that can be translated without
loss and, second, for those queries that can be approximated by an
ELH concept with some loss of information. We use a clustering
approach to detect prototype queries from a truncated query sim-
ilarity graph generated using the simi framework. The resulting
set of queries yields a congenial benchmark which we then use to
benchmark triple stores.

Interestingly, despite the limitation to ELH concepts during
the generation of the benchmark, our evaluation on the original
queries shows that triple stores exhibit different behavior on con-
genial benchmarks and on feature-based benchmarks. In particular,
while the mix of SPARQL query features is not significantly dif-
ferent across the benchmarks, the clusters and prototype queries
generated by the two benchmarks are clearly different (see Figure
1). Moreover, the distributions of the query runtimes suggest that
the ability of triple stores to perform well on feature-based bench-
marks measured in previous works is not a good predictor for their
performance on congenial benchmarks (see Figure 2). This insight

is supported by the difference in ranking of triple stores obtained
with the two categories of benchmarks (see Figure 3).

The paper is structured as follows: Next, we introduce ELH ,
the simi framework, and our CSM BM-simi . Section 3 describes
our translations from SPARQL queries to ELH concepts. The pro-
cess of benchmark generation is detailed in Section 4. Section 5
reports on experiments and their results. The paper ends with a
brief discussion.

2 PRELIMINARIES

We briefly sketch the DL ELH and introduce the simi framework
for generating CSMs from which we derived the particular CSM
used in our experiments.1

2.1 The description logic ELH

In DLs, ontologies are built from concept names, role names and
individual names. Let NC be a set of concept names, NR a set of
role names, and NI a set of individual names. In ELH , complex
concepts are built according to the concept constructors shown in
the upper part of Table 1. The semantics of ELH concepts are given
by interpretations I = (∆I , ·I), where ∆I is the interpretation
domain and ·I is the interpretation mapping that assigns to each
A ∈ NC a subset of ∆I , to each r ∈ NR a subset of ∆I × ∆I and to
each a ∈ NI an element from ∆I . The interpretation of complex
concepts is given according to the semantics listed in Table 1.

Table 1: Syntax and semantics of ELH .

Name Syntax Semantics

atomic concept A (A ∈ NC) AI

top concept ⊤ ∆I

conjunction C ⊓ D CI ∩ DI

existential restriction ∃r .C {x ∈ ∆I | ∃y ∈

CI∧ ⟨x ,y⟩ ∈ r I }

concept definition A = C (A ∈ NC) AI = CI

role inclusion r ⊑ s (r , s ∈ NR) r I ⊆ sI

concept assertion C(a) aI ∈ CI

role assertion r (a,b) ⟨aI ,bI⟩ ∈ r I

A complex ELH concept can be assigned a concept name via a
concept definition, as displayed in the lower part of Table 1. If the
ontology contains only concept definitions that are acyclic, i.e., no
concept name on the left-hand side of a definition refers to itself
(indirectly), then the ontology is called acyclic. In such a case, the
concept definitions can be used like macros and defined concepts
can simply be expanded to exemplify the TBox information. In
ELH , roles can be assigned super-roles by role inclusion axioms. A
TBox T is a set of concept definitions and role inclusion axioms. An
interpretation I is a model of a TBox T , if it fulfills the semantics
of all concept definitions and role inclusion axioms from T (dis-
played in Table 1). Please note that ELH -concepts (together with
an acyclic TBox) can only specify graph structures that are trees.
1We refer the reader to the specifications of SPARQL at https://www.w3.org/TR/
sparql11-query/ and RDF at https://www.w3.org/RDF/.

Session: Planning and Queries K-CAP ’19, November 19–21, 2019, Marina Del Rey, CA, USA

214

https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/RDF/

Let a,b ∈ NI. Then, assertions can either be concept assertions or
role assertions as shown in Table 1. A set of assertions is called an
ABox. An interpretation I is a model of an ABox A, if it fulfills the
semantics of all assertions from A (displayed in Table 1).

Two prominent inferences for DLs are testing subsumption and
answering concept queries. Given two concepts C and D, subsump-
tion (denoted C ⊑T D) decides whether C is a sub-concept of D
w.r.t. T . Formally, C ⊑T D holds iff CI ⊆ DI holds in all models
of T . Equivalence of concepts w.r.t. T (denoted C ≡T D), holds
if C ⊑T D and D ⊑T C hold. Given a concept C , answering the
concept query C , is to compute the set of all individuals from A

that are instances of C w.r.t. T . Formally, C(a) holds w.r.t. ⟨T ,A⟩

iff aI ∈ CI holds for all models I of T and A. ELH concept
queries correspond to SPARQL queries that are tree-shaped con-
junctive queries with one projection variable. We concentrate on
this kind of queries, since we want to employ “well-behaved” CSMs
for congenial benchmarks—as supplied by the simi framework.

2.2 The simi framework and our CSM BM-simi
For our proof of concept of congenial benchmarks, we need an
assessment of similarity that regards the semantics rather than the
syntax of the queries. The simi framework [11] generates CSMs
that realize this property. By various parameters, this framework
allows tailored CSMs to be built and guarantees formal properties
for the resulting CSMs. If used w.r.t. an acyclic ELH -TBox T , a
CSM simi() generated by the framework has (among others) the
following properties:

• symmetric, iff simi(C,D) = simi(D,C);
• equivalence invariant, iff for allC ≡T D and all concepts E it
holds that
simi(C,E) = simi(D,E);

• equivalence closed, iff C ≡T D ⇐⇒ simi(C,D) = 1;

For the conceptual association, the important property is equiva-
lence invariance, which is achieved by preprocessing of the concepts
(see [11] for details). The resulting concepts are conjunctions and
can be represented as a set of conjuncts (denoted Ĉ for a conceptC).
Symmetry is achieved by a directed CSM simid , a fuzzy connector
⊗ and defining:

simi(C,D) := simid (C,D) ⊗ simid (D,C). (1)

In our measure BM-simi , the values obtained from BM-simid are
combined by the average as the fuzzy connector ⊗.

The directed CSM simid works analogously to the Jaccard index,
which is a similarity measure for sets [10], but with the important
difference that simid needs to treat complex syntactic sub-concepts
appearing in existential restrictions recursively. Thus, simid follows
the inductive definition of ELH -concepts, where the base case are
pairs of named concepts from NC (and of roles from NR). These
pairs are assessed by a primitive measure, which is a function pm :
N 2
C ∪ N 2

r −→ [0, 1] where for all A,B ∈ NC and r , s, t ∈ Nr the
following holds:

• pm(A,B) = 1 ⇐⇒ A = B
• pm(r , s) = 1 ⇐⇒ s ⊑T r
• s ⊑T r =⇒ pm(s, r) > 0, and
• t ⊑T s =⇒ pm(r , s) ≤ pm(r , t).

Our instantiation BM-simid uses the “default primitive measure”
from [11] that yields 1 for syntactically equal (concept or role)
names, 0.01 for roles r , s with r ⊑T s and s @T r , and 0 otherwise.

Another parameter of simid is the weighting function (denoted
д()) for elements from Ĉ . It allows some concept names or exis-
tential restrictions to contribute more to the similarity value and
can highlight thematic sub-domains of the ontology. As we don’t
want such imbalance, we take a uniform weighting function д() for
BM-simid .

To combine similarity values obtained from the recursive calls,
simid uses a weightw ∈ (0, 1) that sets for existential restrictions,
say ∃r .C , the ratio of how much the role r versus the concept C
contributes to the combined similarity value. BM-simid employs
w = 0.8 which lets the existence of a related object contribute
more to the similarity value than the class of that object. This
weight essentially also dampens the contribution of concepts nested
existential restrictions according to their nesting depth.

Let E, F be ELH concepts,C,D be ELH concepts distinct from
⊤, A,B ∈ NC and r , s ∈ NR. Then the directed measure simid is
a function that maps pairs of ELH concepts to [0, 1] and can be
parameterized by a bounded t-conorm ⊕, a primitive measure pm,
a weighting function д andw ∈ (0, 1). The definition of simid is

simid (⊤,⊤) := simid (⊤,D) := 1,
simid (C,⊤) := 0,

simid (C,D) :=
∑
C ′∈Ĉ

[
д(C ′) ·

⊕
D′∈D̂simia (C

′,D ′)
]∑

C ′∈Ĉ д(C ′)
,

where simia measures the similarity of C ′ ∈ Ĉ to D ′ ∈ D̂ and is
defined as

simia (A,B) := pm(A,B),

simia (∃r .E,A) := simia (A,∃r .E) := 0,
simia (∃r .E,∃s .F) := pm(r , s) · [w + (1 −w)simid (E, F)].

Our CSM BM-simi is an instantiation of the simi framework that
uses average for ⊗, probabilistic sum for ⊕, the default primitive
measure pm, a uniform weighting function д, andw = 0.8. BM-simi
fulfills the formal properties listed above. We have obtained a pro-
totype implementation of the simi framework from the authors of
[11] that we use to generate and compute BM-simi . For the equiva-
lence tests of concepts and roles, we use the HermiT reasoner [7].
Before applying BM-simi to SPARQL queries, a conversion of these
queries to ELH concept queries is necessary.

3 CONVERTING SPARQL TO ELH CONCEPT

QUERIES

Only a subset of all SPARQL queries are also ELH concept queries.
We present two approaches to converting SPARQL queries to ELH

queries. The lossless approach only converts a SPARQL query q into
an ELH concept C if the result set of q without solution modifiers
is equal to the extensionCI ofC . The lossy approach is a best-effort
conversion of acyclic SPARQL queries q to ELH concepts C that
needs not preserve equality between the result sets of q and C .
This approach relies on heuristics to determine the parts of the

Session: Planning and Queries K-CAP ’19, November 19–21, 2019, Marina Del Rey, CA, USA

215

query that are to be converted.2 In the following, we characterize
the queries which can be converted by the lossless approach and
describe the steps of the conversion. Thereafter, we present the
heuristics at the core of our lossy approach.

3.1 Lossless Approach

This approach converts SPARQL queries q into ELH concepts C
with [[q]] = CI , where [[q]] stands for the interpretation of q with-
out solution modifiers, i.e., for its result set.3 For example, CI for
C = Person is equal to the interpretation of the query SELECT ?x
WHERE {?x a Person}. Mapping SPARQL queries to ELH con-
cepts comes with the following limitations: a) Only queries with
one projection variable (i.e., unary queries) can be captured. b) The
projection variable cannot be a role. c) The query must be acyclic
and conjunctive. d) The query must be free of filters. Concept
queries that fulfill these conditions are called ACQ (acyclic conjunc-
tive queries). Importantly, while we consider queries with optional
patterns and solution modifiers when running the benchmarks, we
ignore both during the conversion process.

Preprocessing. Let Q be a set of ACQs (e.g., from a query log). The
basic intuition behind our conversion strategy is to transform each
ACQ q ∈ Q into an edge-labeled graphG(q) = (V ,E, l) with the fol-
lowing properties: a) V is the set of all subjects and objects (includ-
ing variables) occurring in q. b) e = (s,o) ∈ E iff ∃p ∈ V : (s,p,o)
is a triple pattern in q. c) If (s,p,o) is a triple pattern in q, then
l((s,o)) = p.

Let ?x be the unique projection variable of the input query. To
transform this graph into a tree with ?x as root, we first need
to introduce extensions for properties, nominals and a universal
property. Hence, we preprocess our input data as follows: a) For
each individual o, we add a class O with OI = {o}, which is safe
as we consider only tree structures in the end. b)We create a role
r0 with r I0 =

⋃
r ∈NR r

I . c) For each role r we create a new role
r− with (r−)I = {(b,a) : (a,b) ∈ r I } representing the inverse
role. Note that we do not include inverse roles in the TBox of the
underlying ontology as it would exceed the expressivity of ELH .

We transform the labeled graph G(q) into a tree as follows: Let
δ : V × V → N be the graph distance between two nodes, i.e.,
the length of the shortest path between these nodes. For any edge
(s,o)with label p, if δ (?x, s) > δ (?x,o), then replace (s,o)with (o, s)
and set l(o, s) = p−. Consider for example the query shown in the
following, which retrieves entities that live in capital cities:

SELECT ?x WHERE
{ ?x :livesIn ?y. ?z :hasCapital ?y.}

The distance from the subject of the second triple (?z) to the root
(?x) is larger than the distance of the object (?y). Hence, we would
transform it into the following query:

SELECT ?x WHERE
{?x :livesIn ?y. ?y :hasCapital−1 ?z.}

2Note that we assume that all triples entailed by ELH have been materialized in the
knowledge base.
3Technically, [[q]] is a sequence of partial variable bindings, which is a table and CI

is a set. Still, we can define the equality of the two by mapping the rows of [[q]] to a
set.

G(q) is now a tree that we transform q into an ELH concept by
using the transformation τ , which we define in the following.

Converting triple patterns to ELH . If the queryq contains exactly
one triple pattern, then G(q) = (s,p,o). In this case, τ (s,p,o) is
computed as shown in Table 2 below.

Table 2: Conversion of triple patterns into ELH concepts.

Triple pattern ELH concept

?u p Class ∃p.Class
?u p o ∃p.O
?u rdf:type Class Class
Class p ?u ∃p−.Class
s p ?u ∃p.s
?u ?p Class ∃r0.Class
?u p ?o ∃p.⊤
Class ?p ?u ∃r−0 .Class
?u p ?x ∃p−.⊤
?x ?p ?o ∃r0.⊤
?s ?p ?x ∃r−0 .⊤

• Class stands
for a class.

• s and o stand
for individuals.

• All letters
preceding by a
question mark
are variables.

• ?u stands for
the join
variable or the
root of the
tree.

Converting queries to ELH . For the sake of readability, we use
the triple (s,p,o) to denote an edge (s,o) ∈ E with the label p.
The translation function τ is defined as follows: first compute all
paths αi from the root ?x to all leaves of G(q) and set τ (G(q)) :=d
i τ (αi). The translation of paths is carried out as follows: if αi

is of length 1, then τ (αi) is a triple pattern and can be translated
using Table 2. Otherwise, αi is a sequence of triple patterns: αi =
[(s1i ,p

1
i ,o

1
i);. . . ; (s

z
i ,p

z
i ,o

z
i)], where o

k
i = sk+1i for k ∈ [1, z − 1]. We

define τ (αi) := τ ([(s1i ,p
1
i ,o

1
i); . . . ; (s

z
i ,p

z
i ,o

z
i)]) recursively as:

Rule 1: τ (αi) = τ ([(s
2
i ,p

2
i ,o

2
i); . . . ; (s

z
i ,p

z
i ,o

z
i)]) if p1 is rdf:type,

Rule 2: τ (αi) = ∃p1i .τ ([(s2i ,p2i ,o2i); . . . ; (szi ,pzi ,ozi)]) if p1i is not a
variable and is not rdf:type,

Rule 3: τ (αi) = ∃r0.τ ([(s2i ,p2i ,o2i); . . . ; (szi ,pzi ,ozi)]), otherwise.
As an example to illustrate such a conversion consider the query q:

SELECT ?x WHERE
{ ?x a :Person. ?x :livesIn ?y.
?y :locatedIn Europe. }

q has two paths from the answer variable ?x to the leaves, namely
α1 = ?x a Person and α2 = ?x livesIn ?y. ?y locatedIn
Europe. Hence the conversion is τ (q) = τ (α1) ⊓ τ (α2). Since α1 is
a single triple pattern, it is translated into the concept C = Person.
Since α2 is a path, it must be transformed recursively. Given that
the predicate in the first triple pattern in α2 is not a variable and
is not a rdf:type, Rule 2 applies and yields τ (α2) = ∃ livesIn.
τ (?y locatedIn Europe). Translating the inner part results in
τ (q) = Person⊓∃ livesIn.(∃locatedIn.{Europe}). The individual
Europe is finally replaced with a singleton class. Note that the
conversion step described in Subsection 3.3 needs to be applied for
large query logs.

Session: Planning and Queries K-CAP ’19, November 19–21, 2019, Marina Del Rey, CA, USA

216

3.2 Lossy Approach

The lossy approach converts SPARQL queries by simply remov-
ing the parts that cannot be expressed in ELH . It addresses the
limitations presented above as follows: a) Only queries with one
projection variable. If a query has more than one answer variable,
the lossy approach selects a random projection variable and ignores
the remaining ones. b) The projection variable cannot be a role. The
lossy approach simply omits such queries. c) The query must be
conjunctive and acyclic. Queries with UNIONs are transformed into
disjunctive normal form and each of the conjunctions is considered
independently. Join variables which lead to a cycle are replaced
by as many distinct variables as the number of their occurrence.
d) The query must be free of filters. Filters are simply ignored. The
possibly pruned query is then converted using the procedure from
the lossless approach. Generally, the lossy approach provides a
means for the conversion of a large portion of SPARQL queries and
admits in our case the generation of congenial benchmarks based
on a broader set of queries.

3.3 Conversion of ABox Individuals

The two conversion approaches can cause a large number of sin-
gleton classes generated by mapping single individuals to concepts.
This leads to impractical compute times and memory requirements
if the set Q of ACQs to convert is large. Hence, we generalize
over the results of the lossless and lossy approach in the following
way. For all individuals s occurring in a translated query τ (q), we
compute the most specific class S with sI ∈ SI . To this end, we
compute the class hierarchy of all classes whose extension contains
s . We then select (randomly) one of the leaves of this hierarchy
and replace s with that leaf. As this may lead to identical ELH

concepts for different queries, we only consider one of these ELH

concepts and subsume the queries under this concept for the matter
of performance.

4 GENERATION OF CONGENIAL

BENCHMARKS

Let C be the set of all distinct ELH concepts extracted from query
log Q and converted to ELH concepts. The aim of our benchmark
generation approach is to compute a set of representative concepts
to stand for C according to their semantic similarity. To this end,
we use the simple but time-efficient graph clustering approach
described in the subsequent subsection. The input graph SG is a
truncated similarity graph whose set of nodes is C. (C1,C2) ∈ C2

is an edge in SG iff BM-simi(C1,C2) ≥ θ , where θ ∈ [0, 1]. The
weight of the edge (C1,C2) is then set to BM-simi(C1,C2). In our
experiments we set θ to 0.45 to assure a middle ground between
very specific and very broad clusters.

4.1 Clustering ELH query concepts by BM-simi
An overview of the method is given in Algorithm 1. We define the
similarity between an ELH concept C and a cluster D as

sim(C,D) =
|D|

N
·
∑
D∈D

BM-simi(C,D),

where N stands for the average size of all clusters. Our approach
begins with an empty set of clusters. For each ELH concept, sayC ,

our algorithm checks if there is a cluster which contains a concept
D with BM-simi(C,D) = 1. In this case, these two concepts are
equivalent, since BM-simi is equivalence closed, and ELH concept
C is added to this cluster. Otherwise, the algorithm checks if there
exists a cluster where the similarity to the concept is higher than
the given threshold θ (0.45 in our experiments). If there are sev-
eral clusters with a similarity higher than the threshold, the ELH

concept is added to the one with the highest similarity. Else, a new
cluster is created for C .

4.2 Query Selection from Clusters

The final step of the process for generating congenial benchmarks
is the selection of the prototypical concept from a cluster. For each
cluster, we select (one of) the concepts with the highest average
similarity to all other concepts in the cluster, i.e., the medoid of the
cluster. The overall procedure of conversion, clustering and query

Algorithm 1 Sparrow’s cluster algorithm.

procedure ComputeClusters(SG, θ)
Input: Similarity Graph SG, threshold θ
Output: Set of clusters

Set ClusterSet = new Set()
for Concept C in SG.getConcepts() do

int maxSimi = 0
Best = BestCluster(C , ClusterSet)
Best.add(C)
if Best < ClusterSet then

ClusterSet.add(Best)
end if

end for

return ClusterSet
end procedure

function BestCluster(C , ClusterSet)
Cluster bestCluster = new Cluster()
for Cluster in ClusterSet do

int simi = 0
for Concept D in Cluster do

if SG.getSim(C , D)==1 then
return Cluster

else

simi = simi + SG.getSim(C , D)
end if

end for

simi = simi∗Cluster.size()
avgSize(ClusterSet)

if simi ≥ θ ∧ simi > maxSimi then
bestCluster = Cluster
maxSimi = simi

end if

end for

return bestCluster
end function

Session: Planning and Queries K-CAP ’19, November 19–21, 2019, Marina Del Rey, CA, USA

217

selection was implemented in our system for generating congenial
benchmarks called Sparrow.4

5 EXPERIMENTS AND RESULTS

The goal of our evaluation was twofold. First, we wanted to charac-
terize the difference between congenial benchmarks and benchmarks
based on SPARQL features. In [18], the benchmark generation ap-
proach Feasible was compared with other approaches such as [12]
and it was concluded that they achieve the smallest compounded
error during the benchmark creation process. Hence, we used Fea-
sible to generate benchmarks based on SPARQL features for such a
comparison. We compared the clusters generated by Sparrow and
by Feasible using the positive predictive value as measure (short
PPV, see Section 5.3 for a formal definition). Second, we wanted to
test whether benchmarking results computed using a congenial and
a SPARQL feature-based benchmark differ. We hence executed the
benchmarks generated by Sparrow and Feasible on the same orig-
inal datasets using the same hardware and compared the behavior
of state-of-the-art triple stores on these two kinds of benchmarks.

5.1 Experimental Data and Setup

Hardware: All experiments were executed on a desktop machine
with an Intel(R) Core(TM) i7-3770 CPU @ 3.4 GHZ CPU, 32 GB
RAM and a 4 TB HDD running on Ubuntu 16.04.4 LTS and Java
1.8. Each experiment was executed using the benchmark execution
framework Iguana v2.0.0 [4]5, which we chose because it is open-
source and thus ensures that our experiments can easily be repeated.

Datasets: We used two datasets and two corresponding query
logs. SemanticWeb Dog Food (SWDF)6 is a small dataset with 304,592
triples and 185 distinct properties. For this dataset, we used a
log with 1,411,932 queries provided by LSQ.7 We used a subset
of DBpedia8 with 361,404,364 triples and 60,677 distinct properties
as our second dataset. For this dataset, we relied on a log with
2,311,262 queries.9 During our experiments, we bulk loaded each
of the datasets into the triple stores before starting the evaluation
procedure for the said dataset. During each run of the experiment,
the triple stores contained only the dataset upon which the bench-
marking was being carried out.

Triple stores: We selected triple stores that were openly avail-
able, were able to store the DBpedia dataset and that offered a
SPARQL 1.1 HTTP endpoint at the time of writing. The following
three triple stores were hence used in our evaluation: a) Virtuoso,
7.2.5.3229-pthreads, b) Fuseki (Jena TDB), 3.5.0, and c) GraphDB,
GRAPHDB_LITE v8.3.1+sha.4a20f47. Each triple store was allo-
cated 16 GB RAM. For Virtuoso we used the setting NumberOf-
Buffers=1,360,000 and MaxDirtyBuffers=1,000,000.

Benchmark Generation: We applied the lossless and the lossy ap-
proaches to convert the queries from the DBpedia and SWDF query
logs into ELH concepts. We used the set of queries which could
4https://github.com/dice-group/sparrow
5http://iguana-benchmark.eu/
6https://drive.google.com/file/d/1R1bmqOTfdOV3paVRGfZbERbQwcUjEBRO
7The LSQ datasets can be found at http://lsq.aksw.org. A copy of the query log used
for SWDF is at http://goo.gl/3q52Ka.
8That is, all the files listed at http://downloads.dbpedia.org/2016-10/core/.
9All queries can be found at https://bit.ly/2FAKbfk

be converted into ELH as input for the benchmark generation in
Feasible. The set of corresponding ELH concepts was used as
input for the benchmark generation of Sparrow.

Benchmark Execution: To ensure realistic query loads, each ELH

concept selected by Sparrow was mapped back to the original
SPARQL query fromwhich it was computed.We executed these real
queries (not their ELH conversions) throughout our benchmarking
experiments based on Sparrow. The benchmarking experiments
based on Feasible were carried out with the real queries Feasible
had selected as prototypes. Each experiment was executed in a
single-threaded stress test with 60 minutes runtime and a timeout
of 3 minutes per query. After each run, the tested triple store was
restarted to avoid the possible effects of caching and buffering.

5.2 Benchmark Characteristics from

Benchmark Generation

An overview of the number of queries converted and the size of the
benchmarks generated by our conversion approaches is shown in
Table 3. For SDWF, the lossless approach converted 525 queries and
the lossy approach converted 33,413 queries. The queries were used
to generate 185 resp. 271 clusters. DBpedia led to more concepts,
with the lossless approach generating more than 180,000 concepts
and 6,734 clusters. Like in Feasible, we used the 250 most densely
populated clusters to generate our congenial benchmark. As the
lossy approach generated too many queries for clustering, we only
considered a random subset of 2 · 105 queries from the DBpedia
query log. More than 51% of these queries were transformed into
ELH concepts. Again, only the 250 most dense clusters from the
4,116 generated clusters were considered for the benchmark.

Table 3: Overview of the conversion of SPARQL queries into

ELH concepts.

SWDF DBpedia

Approach lossless lossy lossless lossy

Size of query log 1,411,932 1,411,932 2,311,262 200,000
ELH concepts 525 33,413 180,128 102,028

Number of clusters 185 271 6,734 4,116
Benchmark size 185 271 250 250

5.3 Comparing Congenial and Feature-based

Benchmarks

The first question to address regarded the similarity between the
benchmarks generated by Feasible and Sparrow. As in previous
works (e.g. see [3]), we measured the positive predictive value
(PPV) of Sparrow w.r.t. Feasible and vice-versa. Let S be the set
of clusters generated by Sparrow and F be the set of clusters
generated by Feasible. The PPV of Sparrow w.r.t. Feasible is
defined as

PPV (S,F) =
1
|S|

·
∑
S ∈S

maxF ∈F |S ∩ F |

|S |
.

The results of our comparison are shown in Figure 1. The average

Session: Planning and Queries K-CAP ’19, November 19–21, 2019, Marina Del Rey, CA, USA

218

https://github.com/dice-group/sparrow
http://iguana-benchmark.eu/
https://drive.google.com/file/d/1R1bmqOTfdOV3paVRGfZbERbQwcUjEBRO
http://lsq.aksw.org
http://goo.gl/3q52Ka
http://downloads.dbpedia.org/2016-10/core/
https://bit.ly/2FAKbfk

SWDF lossless SWDF lossy DBpedia lossless DBpedia lossy
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35 Feasible to Sparrow
Sparrow to Feasible

Figure 1: Positive predictive value of Sparrow w.r.t. Feasi-

ble and vice-versa.

PPV from Feasible to Sparrow is below 0.21, i.e., less than 21% of
the queries contained in the clusters from Feasible are contained in
the best matching cluster in Sparrow. A similar observation holds
in the other direction, with the threshold being around 32%. We
can conclude a) that the benchmarks generated by Sparrow and
Feasible for our experiments are different in their composition and
b) that the semantic (Sparrow) and structural (Feasible) similar-
ity of SPARQL queries differ considerably. These findings support
our initial hypothesis: the prototype queries needed to measure the
performance of triple stores on congenial queries are clearly different
from the prototype queries computed by feature-based benchmarks.

5.4 Performance Evaluation of Triple stores

based on Congenial vs. Feature-based

Benchmarks

We measured the number of Queries per Second (QpS) as well as
the Query Mixes per Hour (QMpH) achieved by the triple stores
Virtuoso, Fuseki, and GraphDB in four different settings (2 datasets
and lossless vs. lossy conversion). Figure 2 shows the distribution
of QpS in all four settings for both, Sparrow and Feasible. As
expected, there is a considerable difference between the behavior
of triple stores faced with (Sparrow implementing) a congenial
benchmark and their behavior when benchmarked with (Feasible
implementing) a feature-based benchmark. On SWDF (see Figures
2a and 2c), the mean of the QpS is commonly higher for Sparrow.
For example, GraphDB reaches a median of 422.28 on Sparrow
(lossless) while it only achieves a median of 363.64 on Feasible
(lossless). Similar observations can be made on the other datasets.
However, the number of outliers is considerably higher than with
Feasible. A similar but less pronounced effect can be seen on the
DBpedia dataset (see Figures 2b and 2d).

A comparison of the QMpH achieved using Sparrow and Fea-
sible also suggests a considerable difference between the average
runtimes of the queries selected from the same subset of queries
by Sparrow and Feasible (see Figure 3). While one could assume
that this difference is due to the combination of SPARQL features
used in Feasible queries, our study of the distribution of SPARQL
features across the queries in the two benchmarks shows that there
is no significant difference between the use of SPARQL features in
Sparrow and Feasible.10 This result substantiates the claim made

10Detailed numbers can be found in the supplementary materials.

in the introduction of the paper, i.e., that the ability of triple stores
to cater to prototypical user needs expressed as queries—as measured
by congenial benchmarks—differs from their ability to execute pro-
totypical combinations of SPARQL features—as measured by current
state-of-the-art benchmarks.

An analysis of Figure 3 reveals another important insight un-
veiled by our results: the fastest triple stores w.r.t. stress tests based
on SPARQL features are not necessarily the best to cater to congenial
queries. In particular, Virtuoso is the fastest triple store according
to Feasible but it is outperformed by GraphDB on Sparrow in all
experimental setups. This means in particular that the ability to
cater for particular combinations of SPARQL features differ from that
of catering for prototypical user needs.

This result is of central importance as it suggests that while
Virtuoso implements prototypical combinations of SPARQL fea-
tures efficiently, applications based on generating a flurry of similar
queries (e.g., structured machine learning applications) might be
better served using GraphDB as a backend. These results further
emphasize the need for congenial benchmarks by suggesting that
congenial benchmarks provide more adequate results pertaining to
the performance of triple stores as backends of applications, such
as structured machine learning, browsing and relationship finding,
which all rely on sequences of semantically similar queries.

6 DISCUSSION

We presented and evaluated a novel approach towards generating
benchmarks for triple stores: congenial benchmarks. While current
benchmarks based on real data and real queries (such as Feasible)
often measure the ability of triple stores to deal with prototypical
syntactic features of SPARQL queries, congenial benchmarks (such
as generated by Sparrow) measure how well triple stores can cater
for prototypical users’ needs by considering the semantic similarity
of SPARQL queries. Our evaluation revealed that these two tasks
differ considerably. This means that congenial benchmarks allow the
exploration of a portion of the behavior of triple stores, which has not
been considered in the literature.

Our implementation of a congenial benchmark generation sys-
tem revealed a large number of research avenues. First, semantic
similarity frameworks often do not scale to large numbers of queries.
The computation of bounded similarity has been well studied in
the deduplication and link discovery literature. However, semantic
similarity measures such as simi have never been studied in this
respect. As the development of an efficient means for the detection
of semantically near-duplicates went beyond the scope of this pa-
per, we had to implemented a rather naïve indexing technique for
accelerating the runtime of our benchmark generation procedure.
The efficient generation of congenial benchmarks from large query
logs will however demand the development of efficient techniques
for computing the semantic similarity of SPARQL query concepts.

We had to use ELH concepts as coarse approximation to mea-
sure the similarity of user needs expressed in SPARQL queries,
which is a strong restriction. While our results suggest that this
approach still suffices to show that congenial benchmarks differ
from benchmarks based on SPARQL features, our implementation
also shows that more than 50% of the SPARQL queries cannot be
compared using this conversion. Hence, there is clearly a need

Session: Planning and Queries K-CAP ’19, November 19–21, 2019, Marina Del Rey, CA, USA

219

0 100 200 300 400 500

Virtuoso (Feasible)

Virtuoso (Sparrow)

Fuseki (Feasible)

Fuseki (Sparrow)

GraphDB (Feasible)

GraphDB (Sparrow)

(a) SWDF (lossless)

0 100 200 300 400 500 600

Virtuoso (Feasible)

Virtuoso (Sparrow)

Fuseki (Feasible)

Fuseki (Sparrow)

GraphDB (Feasible)

GraphDB (Sparrow)

(b) DBpedia (lossless)

0 100 200 300 400 500

Virtuoso (Feasible)

Virtuoso (Sparrow)

Fuseki (Feasible)

Fuseki (Sparrow)

GraphDB (Feasible)

GraphDB (Sparrow)

(c) SWDF (lossy)

0 100 200 300 400 500

Virtuoso (Feasible)

Virtuoso (Sparrow)

Fuseki (Feasible)

Fuseki (Sparrow)

GraphDB (Feasible)

GraphDB (Sparrow)

(d) DBpedia (lossy)

Figure 2: Distribution of queries per second (QPS) on SWDF

and DBpedia.

Virtuoso Fuseki GraphDB
100

101

102

103

104

105 Sparrow
Feasible

(a) SWDF (lossless)

Virtuoso Fuseki GraphDB
100

101

102

103

104

105 Sparrow
Feasible

(b) DBpedia (lossless)

Virtuoso Fuseki GraphDB
100

101

102

103

104

105 Sparrow
Feasible

(c) SWDF (lossy)

Virtuoso Fuseki GraphDB
100

101

102

103

104

105 Sparrow
Feasible

(d) DBpedia (lossy)

Figure 3: QMpH on SWDF and DBpedia. The y-axis is in log-

arithmic scale.

to develop frameworks for measuring the semantic similarity of
SPARQL queries. First steps in this direction could be to build se-
mantic similarities for monotone SPARQL queries based on their
newly presented canonical form [14].

REFERENCES

[1] Günes Aluç, Olaf Hartig, M. Tamer Özsu, and Khuzaima Daudjee. 2014. Diversi-
fied Stress Testing of RDF Data Management Systems. In ISWC. 197–212.

[2] Simon Bin, Lorenz Bühmann, Jens Lehmann, and Axel-Cyrille Ngonga Ngomo.
2016. Towards SPARQL-based Induction for Large-scale RDF Data Sets. In ECAI.
IOS Press, 1551–1552.

[3] Sylvain Brohee and Jacques VanHelden. 2006. Evaluation of clustering algorithms
for protein-protein interaction networks. BMC bioinformatics 7, 1 (2006), 488.

[4] Felix Conrads, Jens Lehmann, Muhammad Saleem, Mohamed Morsey, and Axel-
Cyrille Ngonga Ngomo. 2017. IGUANA: A Generic Framework for Benchmarking
the Read-Write Performance of Triple Stores. In International Semantic Web
Conference (ISWC).

[5] Renata Queiroz Dividino and Gerd Gröner. 2013. Which of the following SPARQL
Queries are Similar? Why?. In Proceedings of the First International Workshop on
Linked Data for Information Extraction (LD4IE’13) (CEUR Workshop Proceedings),
Vol. 1057. CEUR-WS.org.

[6] SongyunDuan, Anastasios Kementsietsidis, Kavitha Srinivas, and Octavian Udrea.
2011. Apples and oranges: a comparison of RDF benchmarks and real RDF
datasets. In Proceedings of the 2011 ACM SIGMOD International Conference on
Management of data. ACM, 145–156.

[7] Birte Glimm, Ian Horrocks, Boris Motik, Giorgos Stoilos, and Zhe Wang. 2014.
HermiT: An OWL 2 Reasoner. J Autom Reasoning 53, 3 (2014), 245–269.

[8] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. 2005. LUBM: A benchmark for
OWL knowledge base systems. InWeb Semantics, Vol. 3. Elsevier, 158–182.

[9] Philipp Heim, Sebastian Hellmann, Jens Lehmann, Steffen Lohmann, and Timo
Stegemann. 2009. RelFinder: Revealing relationships in RDF knowledge bases. In
International Conference on Semantic and Digital Media Technologies. Springer,
182–187.

[10] Paul Jaccard. 1901. Étude comparative de la distribution florale dans une portion
des Alpes et des Jura. Bulletin de la Societe Vaudoise des Sciences Naturelles 37
(1901), 547–579.

[11] Karsten Lehmann and Anni-Yasmin Turhan. 2012. A Framework for Semantic-
based Similarity Measures for ELH-Concepts. In Proc. of the Europ. Conf. on
Logics in AI. Springer, 307–319.

[12] Mohamed Morsey, Jens Lehmann, Sören Auer, and Axel-Cyrille Ngonga Ngomo.
2011. DBpedia SPARQL Benchmark - Performance Assessment with Real Queries
on Real Data. In International Semantic Web Conference, Vol. 7031. Springer
Heidelberg, 454–469.

[13] Shi Qiao and Z. Meral Özsoyoglu. 2015. RBench: Application-Specific RDF
Benchmarking. In SIGMOD. ACM, 1825–1838. https://doi.org/10.1145/2723372.
2746479

Session: Planning and Queries K-CAP ’19, November 19–21, 2019, Marina Del Rey, CA, USA

220

https://doi.org/10.1145/2723372.2746479
https://doi.org/10.1145/2723372.2746479

[14] Jaime Salas and Aidan Hogan. 2018. Canonicalisation of monotone SPARQL
queries. In International Semantic Web Conference. Springer, 600–616.

[15] Muhammad Saleem, Muhammad Intizar Ali, Aidan Hogan, Qaiser Mehmood,
and Axel-Cyrille Ngonga Ngomo. 2015. LSQ: The linked sparql queries dataset.
In ISWC. Springer, 261–269.

[16] Muhammad Saleem, Ali Hasnainb, and Axel-Cyrille Ngonga Ngomo. 2017. Larg-
eRDFBench: A Billion Triples Benchmark for SPARQL Endpoint Federation. In
Journal of Web Semantics (JWS).

[17] Muhammad Saleem, Yasar Khan, Ali Hasnain, Ivan Ermilov, and Axel-Cyrille
Ngonga Ngomo. 2015. A fine-grained evaluation of SPARQL endpoint federation
systems. Semantic Web (2015), 1–26.

[18] Muhammad Saleem, Qaiser Mehmood, and Axel-Cyrille Ngonga Ngomo. 2015.
Feasible: A Feature-Based SPARQL Benchmark Generation Framework. In

International Semantic Web Conference. Springer, 52–69.
[19] Michael Schmidt, Olaf Görlitz, Peter Haase, Günter Ladwig, Andreas Schwarte,

and Thanh Tran. 2011. FedBench: A Benchmark Suite for Federated Semantic
Data Query Processing. In International Semantic Web Conference. 585–600.

[20] Ahmet Soylu, Martin Giese, Ernesto Jimenez-Ruiz, Evgeny Kharlamov, Dmitriy
Zheleznyakov, and Ian Horrocks. 2014. Towards exploiting query history for
adaptive ontology-based visual query formulation. In Research Conference on
Metadata and Semantics Research. Springer, 107–119.

[21] Christina Unger, Corina Forascu, Vanessa Lopez, Axel-Cyrille Ngonga Ngomo,
Elena Cabrio, Philipp Cimiano, and Sebastian Walter. 2014. Question answering
over linked data (QALD-4). InWorking Notes for CLEF Conf.

Session: Planning and Queries K-CAP ’19, November 19–21, 2019, Marina Del Rey, CA, USA

221

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 The description logic ELH
	2.2 The simi framework and our CSM BM-simi

	3 Converting SPARQL to ELH concept queries
	3.1 Lossless Approach
	3.2 Lossy Approach
	3.3 Conversion of ABox Individuals

	4 Generation of Congenial Benchmarks
	4.1 Clustering ELH query concepts by BM-simi
	4.2 Query Selection from Clusters

	5 Experiments and Results
	5.1 Experimental Data and Setup
	5.2 Benchmark Characteristics from Benchmark Generation
	5.3 Comparing Congenial and Feature-based Benchmarks
	5.4 Performance Evaluation of Triple stores based on Congenial vs. Feature-based Benchmarks

	6 Discussion
	References

