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Abstract. We present ALCME, a probabilistic variant of the Descrip-
tion Logic ALC that allows for representing and processing conditional
statements of the form “if E holds, then F follows with probability p”
under the principle of maximum entropy. Probabilities are understood
as degrees of belief and formally interpreted by the aggregating seman-
tics. We prove that both checking consistency and drawing inferences
based on approximations of the maximum entropy distribution is possi-
ble in ALCME in time polynomial in the domain size. A major problem for
probabilistic reasoning from such conditional knowledge bases is to count
models and individuals. To achieve our complexity results, we develop
sophisticated counting strategies on interpretations aggregated with re-
spect to the so-called conditional impacts of types, which refine their
conditional structure.
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1 Introduction

Description Logics [1] are a well-investigated family of logic-based knowledge
representation languages that are tailored towards representing terminological
knowledge, i.e. knowledge about concepts, which can then be used to state facts
about individuals and objects in a concrete situation. In many application do-
mains, like medicine, knowledge is, however, not always certain, which motivates
the development of extensions that can deal with uncertainty. In this paper, we
present the probabilistic Description Logic ALCME, which allows to represent
and process uncertain knowledge using conditional statements of the form “if E
holds, then F follows with probability p”. Probabilities are understood as de-
grees of belief based on the aggregating semantics [9]. This semantic generalizes
the statistical interpretation of conditional probabilities by combining it with
? This work was supported by the German Research Foundation (DFG) within the
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subjective probabilities based on probability distributions over possible worlds.
Basically, in a fixed world I, the conditional (F |E) can be evaluated statisti-
cally by considering the number of individuals that verify the conditional (i.e.,
belong to E and F ) and dividing this number by the number of individuals to
which the conditional applies (i.e., the elements of E). In the aggregation se-
mantics, this is not done independently for each world. Instead, one first sums
up these numbers over all possible worlds, weighted with the probability of the
respective world, both in the numerator and in the denominator, and only then
divides the resulting sums by each other. The semantics obtained this way there-
fore mimics statistical probabilities from a subjective point of view. This is in
contrast to other approaches for probabilistic Description Logics, which handle
either subjective [10] or statistical probabilities [13], or are essentially classical
terminologies over probabilistic databases [4].

Due to this combination of statistical and subjective probabilities, the mod-
els of ALCME-knowledge bases are probability distributions over a set of inter-
pretations that serve as possible worlds. In order to ensure that the possible
worlds have the same scope and that counting elements with certain proper-
ties leads to well-defined natural numbers, we assume that all the interpreta-
tions have the same fixed finite domain. However, reasoning on all models of an
ALCME-knowledge base is not productive due to the vast number of such mod-
els. Thus, for reasoning purposes, we select among all models of the knowledge
base the distinct model with maximum entropy [12]. This MaxEnt distribution is
known to be the only model fulfilling some evident common sense principles that
can be summarized by the main idea that “essentially similar problems should
have essentially similar solutions” [11]. In general, however, the MaxEnt distri-
bution is a real-valued function without a finite, closed-form representation. In
fact, from a computational point of view, it is the solution of a nonlinear opti-
mization problem, and thus approximations with values in the rational numbers
must be used.

The main result shown in this paper is that all required computations can be
done in time polynomial in the chosen domain size. First, we show that check-
ing consistency of ALCME-knowledge bases is possible in time polynomial in the
domain size. A consistent ALCME-knowledge base always has a MaxEnt model.
Second, we prove that, once an approximation of this distribution is determined,
inferences can be drawn exactly from this approximation, and these inferences
can again be computed in time polynomial in the domain size. Investigating the
complexity with respect to the domain size is a fundamental problem in proba-
bilistic reasoning as the domain size is usually the crucial quantity in application
domains. Inferences that can be drawn in time polynomial in the domain size
are known as domain-lifted inferences [6]. The problem of drawing inferences
in a domain-lifted manner is non-trivial since probability distributions are de-
fined over possible worlds, the number of which is exponential in the domain
size. Thus, our complexity results require sophisticated strategies of aggregating
and counting interpretations. More precisely, we capture the fact that interpre-
tations with the same conditional structure [8] have the same impact on the
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aggregating semantics and the MaxEnt distribution, and we refine the notion of
conditional structures of interpretations to conditional impacts of types [14, 15],
which enables the use of efficient counting strategies.

The rest of the paper is organized as follows. In Section 2, we introduce
syntax and semantic of the Description Logic ALCME. We prove that checking
consistency and drawing inferences from approximations of the maximum en-
tropy distribution are possible in ALCME in time polynomial in the domain size
in Section 5. For this, we first discuss how interpretations can be aggregated
into equivalence classes based on conditional structures and types (Section 3),
and then show how these equivalence classes and their cardinalities can be de-
termined efficiently (Section 4).

2 The Description Logic ALCME

We present ALCME, a probabilistic conditional extension of the terminological
part of the Description Logic ALC. The semantics of ALCME is based on the
aggregating semantics [16] and the principle of maximum entropy [12].

Let NC and NR be disjoint finite sets of concept and role names, respectively.
A concept is either a concept name or of the form

>, ⊥, ¬C, C uD, C tD, ∃r.C, ∀r.C,

where C and D are concepts and r is a role name. The set of all subconcepts of
a concept C, i.e. the concepts C is built of, is denoted by sub(C).

An interpretation I = (∆I , ·I) is a tuple consisting of a non-empty set ∆I

called domain and an interpretation function ·I that maps every C ∈ NC to a
subset CI ⊆ ∆I and every r ∈ NR to a binary relation rI ⊆ ∆I × ∆I . The
interpretation of arbitrary concepts is recursively defined as

– >I = ∆I and ⊥I = ∅,
– (¬C)I = ∆I \ CI , (C uD)I = CI ∩DI , and (C tD)I = CI ∩DI ,
– (∃r.C)I = {a ∈ ∆I | ∃b ∈ ∆I : (a, b) ∈ rI ∧ b ∈ CI}, and
– (∀r.C)I = {a ∈ ∆I | ∀b ∈ ∆I : (a, b) ∈ rI → b ∈ CI}.

Let C,D,E, F be concepts and let p ∈ [0, 1]. An expression of the form
C v D is called a concept inclusion, and an expression of the form (F |E)[p] is
called a (probabilistic) conditional. For computational issues, we assume p to be
a rational number. Concept inclusions C v D represent strict knowledge (“every
individual that has property C must also have property D”) while conditionals
(F |E)[p] act as uncertain beliefs (“if E holds for an individual, then F follows
with probability p”).

An interpretation I is a model of a concept inclusion, written I |= C v D,
iff CI ⊆ DI . The semantics of conditionals is based on probability distributions
over possible worlds. For this, we require a fixed finite domain ∆ = ∆I for all
interpretations as part of the input. The interpretations serve as possible worlds,
thus the fixed finite domain guarantees that all possible worlds have the same
scope. We denote the set of all interpretations I = (∆, ·I) with I∆ and the set
of all probability distributions P : I∆ → [0, 1] with P∆.
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Definition 1 (Aggregating Semantics). A probability distribution P ∈ P∆

is a (probabilistic) model of a concept inclusion C v D, written P |= C v D, iff

I 6|= C v D ⇒ P(I) = 0 ∀I ∈ I∆,

and of a conditional (F |E)[p], written P |= (F |E)[p], iff∑
I∈I∆ |EI ∩ F I | · P(I)∑

I∈I∆ |EI | · P(I)
= p. (1)

Concept inclusions are interpreted as hard constraints in the obvious manner:
if a concept inclusion does not hold in an interpretation I, then I has probability
zero. Whether a concept inclusion holds in I can be decided independently of
the probability distribution. The interpretation of conditionals is an adaption
of the aggregating semantics [16] and needs more explanation. The core idea is
to capture the definition of conditional probabilities by a probability-weighted
sum of the number of individuals b for which the conditional (F |E) is verified
(i.e., b ∈ |EI ∩ F I |) divided by a probability-weighted sum of the number of
individuals a for which the conditional is applicable (i.e., a ∈ |EI |). Hence, the
aggregating semantics mimics statistical probabilities from a subjective point of
view, and probabilities can be understood as degrees of belief in accordance with
type 2 probabilities in the classification of Halpern [7].

The aggregating semantics constitutes the main difference to the approaches
in [10] and [13]: while there is no probabilistic semantics for terminological knowl-
edge in [10], conditionals are interpreted in [13] purely statistically by the relative
frequencies |EI ∩ F I |/|EI | in every single interpretation I.

A knowledge base R = (T , C) consists of a finite set of concept inclusions T
and a finite set of conditionals C = {(F1|E1)[p1], . . . , (Fn|En)[pn]}. Without loss
of generality, we make the following assumptions:

1. Knowledge bases contain concepts that are built using the constructors nega-
tion (¬C), conjunction (C u D), and existential restriction (∃r.C) only. In
addition, we disallow double negation. For the rest of the paper, whenever
the negation of an already negated concept is mentioned, we mean the con-
cept itself.

2. Concepts in existential restrictions ∃r.C are concept names. Otherwise, re-
place C by a fresh concept name A and add C v A and A v C to T .

3. Probabilities of conditionals (F |E)[p] ∈ C satisfy 0 < p < 1. This is without
loss of generality, because (F |E)[1] and E v F as well as (F |E)[p] and
(¬F |E)[1−p] (and hence (F |E)[0] and E v ¬F ) are semantically equivalent.

We also require the notion of the signature of a knowledge base R. In particular,
we denote the set of all concept names that are mentioned in R with sigC(R),
and the set of all role names that are mentioned in R with sigR(R).

A probability distribution P ∈ P∆ is a model of a knowledge base R = (T , C),
written P |= R, iff it is a model of every concept inclusion in T and of every
conditional in C. A knowledge base with at least one model is called consistent.
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Knowledge bases with C = ∅ are equivalent to ALC-TBoxes (cf. [3]) and allow for
classical entailment. In particular, our probabilistic notion of consistency then
coincides with the classical one.

Example 1. Consider the following knowledge of an agent. Every person that
is generous certainly is wealthy. Otherwise, she would not have anything to
spend. And every wealthy person most likely is successful in her career or has a
generous patron. Of course, the latter is uncertain as, for example, persons could
also become wealthy because of luck in a lottery, etc. Further, wealthy persons
typically are not generous. We represent this knowledge by the concept inclusion

c1 : Generous v Wealthy

and the conditionals

r1 : (¬Successful u ¬∃patron.Generous|Wealthy)[0.1],

r2 : (¬Generous|Wealthy)[0.8],

and consider the knowledge base RW = ({c1}, {r1, r2}) later on. Note that r1 is
equivalent to the conditional (Successful t ∃patron.Generous|Wealthy)[0.9].

Consistent probabilistic knowledge bases typically have infinitely many mod-
els even for a fixed finite domain. Instead of reasoning w.r.t. all models, it is often
more useful to reason w.r.t. a fixed model since reasoning based on the whole set
of models leads to monotonic and often uninformative inferences. Any selected
model P yields the inference relation

R |=P

{
C v D iff P |= C v D,

(F |E)[p] iff P |= (F |E)[p].
(2)

From a commonsense point of view, the maximum entropy distribution is the
most appropriate choice of model [11]. For every consistent knowledge base, the
maximum entropy distribution exists and is unique.

Definition 2 (Maximum Entropy Distribution). Let R be a consistent
knowledge base and ∆ a fixed domain. The probability distribution

PME
R = argmax

P∈P∆

P|=R

−
∑
I∈I∆

P(I) · logP(I) (3)

is called the maximum entropy distribution (also MaxEnt distribution) of R.
In (3), the convention 0 · log 0 = 0 applies.

Since it is the solution of a nonlinear optimization problem, the MaxEnt
distribution can only be calculated approximately in general. This is typically
done by solving the dual optimization problem (cf. [5]), which leads to

PME
R (I) =

{
α0 ·

∏n
i=1 α

fi(I)
i I |= T ,

0 otherwise,
(4)

5



where, for i = 1, . . . , n, the index i refers to the i-th conditional (Fi|Ei)[pi] in
C, the feature function fi is defined as fi(I) = |EI

i ∩ F I
i | − pi · |EI

i |, α0 is a
normalizing constant, and the vector αME

R = (α1, . . . , αn) ∈ Rn
>0 is a solution of

the system of equations

∑
I∈I∆

I|=T

fi(I) ·
n∏

j=1

α
fj(I)
j = 0, i = 1, . . . , n. (5)

Given α1, . . . , αn and the feature functions, the normalization constant α0 is
defined as

α0 =
( ∑

I∈I∆

I|=T

n∏
i=1

α
fi(I)
i

)−1

. (6)

Its rôle is to ensure that a probability distribution is obtained, i.e., that summing
up the probabilities of the elements of I∆ yields 1.

The system (5) can, for instance, be solved using Newton’s method. Here, we
do not investigate this approximation process, but assume that an approximation
β ∈ Qn

>0 of αME
R is given. Then, β defines an approximation of PME

R via

Pβ
R(I) =

{
β0 ·

∏n
i=1 β

fi(I)
i I |= T ,

0 otherwise,
(7)

where β0 is a normalizing constant that is defined analogously to (6). It is easy
to see that Pβ

R indeed is a probability distribution. In particular, Pβ
R is an

exact model of T and of C up to a deviation depending on the precision of the
approximation β.

3 Conditional Structures and Types for ALCME

All kinds of maximum entropy calculations involve sums over interpretations.
As the number of interpretations is exponential in |∆|, evaluating these sums in
the naïve way is intractable. In this section, we aggregate interpretations into
equivalence classes such that equivalent interpretations have the same impact on
the calculations (basically, they have the same MaxEnt probability), while the
number of equivalence classes is bounded polynomially in |∆|.

The conditional structure σR(I) of an interpretation I with respect to a
knowledge base R = (T , C) is a formal representation of how often the condi-
tionals in C are verified and falsified in I [8]. Mathematically, the conditional
structure

σR(I) =
n∏

i=1

(a+i )
|EI

i ∩FI
i | · (a−i )

|EI
i ∩(¬Fi)

I | (8)

is an element of the free Abelian group that is generated by G = {a±i | i =
1, . . . , n, ± ∈ {+,−}}. The elements in G indicate whether the i-th conditional
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is verified (a+i ) or falsified (a−i ). The frequencies of verification and falsification
in I are respectively indicated by the exponents of a+i and a−i .

Example 2. Recall RW from Example 1 and consider the interpretation I in
which each d ∈ ∆ is wealthy (d ∈ WealthyI), successful (d ∈ SuccessfulI), but
not generous (d /∈ GenerousI). Then, σRW

(I) = (a−1 )
|∆| · (a+2 )|∆|.

Conditional structures are important for maximum entropy reasoning as the
MaxEnt distribution PME

R assigns the same probability to interpretations that are
models of T and have the same conditional structure. The same holds for all ap-
proximations of PME

R defined by (7) since σR(I) = σR(I ′) implies fi(I) = fi(I ′)
for all i = 1, . . . , n. We now refine conditional structures with respect to the
so-called conditional impacts of types.

Definition 3 (Type [2]). Let M be a set of concepts such that for every concept
C ∈ M its negation is also in M (modulo removal of double negation). A subset
τ of M is a type for M iff

– for every C ∈ M, either C or ¬C belongs to τ , and
– for every C uD ∈ M it holds that C uD ∈ τ iff C,D ∈ τ .

The set of all types for M is denoted by T(M).

In particular, we are interested in types for a knowledge base R = (T , C),
i.e. types for TR = T(MR) where MR is the closure under negation of the set
of subconcepts of concepts occurring in R, i.e.,

M+
R =

⋃
CvD∈T

(
sub(C) ∪ sub(D)

)
∪

⋃
(F |E)[p]∈C

(
sub(E) ∪ sub(F )

)
,

and MR = M+
R ∪ {¬C | C ∈ M+

R}.

Example 3. There are 16 different types for RW from Example 1 (cf. Table 1).

A type τ can be understood as the concept Cτ that is the conjunction of
all concepts in τ . If τ 6= τ ′ are different types, then Cτ and Cτ ′ are disjoint,
i.e. CI

τ ∩ CI
τ ′ = ∅ for all I ∈ I∆. Every concept D ∈ M can be expressed as a

disjunction of such disjoint type concepts [2]:

D ≡
⊔

τ∈T(M)
D∈τ

Cτ and |DI | =
∑

τ∈T(M)
D∈τ

|CI
τ |. (9)

Additionally, the cardinalities |CI
τ | of all type concepts τ ∈ T(M) sum up to |∆|:⊔

τ∈T(M)

Cτ ≡ > and
∑

τ∈T(M)

|CI
τ | = |∆|. (10)

To prove this, let I ∈ I∆ and consider d ∈ ∆. If we define τ={D ∈ M | d ∈ DI},
then it is easy to see that τ is a type and that d ∈ CI

τ . This shows that
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τ ρRW (τ) τ |= c1?

τ1 = { S, W, G, ∃p.G,¬(¬S u ¬∃p.G)} a−
1 a

−
2 yes

τ2 = { S, W, G,¬∃p.G,¬(¬S u ¬∃p.G)} a−
1 a

−
2 yes

τ3 = { S, W,¬G, ∃p.G,¬(¬S u ¬∃p.G)} a−
1 a

+
2 yes

τ4 = { S, W,¬G,¬∃p.G,¬(¬S u ¬∃p.G)} a−
1 a

+
2 yes

τ5 = { S,¬W, G, ∃p.G,¬(¬S u ¬∃p.G)} 1 no
τ6 = { S,¬W, G,¬∃p.G,¬(¬S u ¬∃p.G)} 1 no
τ7 = { S,¬W,¬G, ∃p.G,¬(¬S u ¬∃p.G)} 1 yes
τ8 = { S,¬W,¬G,¬∃p.G,¬(¬S u ¬∃p.G)} 1 yes

τ9 = {¬S, W, G, ∃p.G,¬(¬S u ¬∃p.G)} a−
1 a

−
2 yes

τ10 = {¬S, W, G,¬∃p.G,¬(¬S u ¬∃p.G)} a+
1 a

−
2 yes

τ11 = {¬S, W,¬G, ∃p.G,¬(¬S u ¬∃p.G)} a−
1 a

+
2 yes

τ12 = {¬S, W,¬G,¬∃p.G,¬(¬S u ¬∃p.G)} a+
1 a

+
2 yes

τ13 = {¬S,¬W, G, ∃p.G,¬(¬S u ¬∃p.G)} 1 no
τ14 = {¬S,¬W, G,¬∃p.G, ¬S u ¬∃p.G } 1 no
τ15 = {¬S,¬W,¬G, ∃p.G, ¬S u ¬∃p.G } 1 yes
τ16 = {¬S,¬W,¬G,¬∃p.G, ¬S u ¬∃p.G } 1 yes

Table 1. Types, their conditional impacts w.r.t. the conditionals in RW (cf. Exam-
ple 1), and their satisfaction behavior w.r.t. the concept inclusion c1 in RW . Concept
and role names are abbreviated by their first letter.

⋃
τ∈T(M) C

I
τ ≡ ∆, and thus also |∆| =

∑
τ∈T(M) |CI

τ | due to the fact that
the type concepts are pairwise disjoint.

As a consequence of (10), types can be seen as characterizations of individuals
through the concepts they belong to. Hence, we may say that an individual d ∈ ∆
is of type τ in the interpretation I ∈ I∆ iff d ∈ CI

τ , and two individuals are
equivalent iff they are of the same type. With this, the conditional structure of
interpretations (8) can be broken down to the conditional impact of types. We
define the conditional impact of a type τ for a knowledge base R by

ρR(τ) =

n∏
i=1


a+i iff Ei, Fi ∈ τ

a−i iff Ei,¬Fi ∈ τ

1 iff ¬Ei ∈ τ

.

Example 4. The conditional impacts of the types for RW from Example 1 are
shown in Table 1.

Analogously to the conditional impact of a type, we define the feature

fi(τ) =


1− pi iff Ei, Fi ∈ τ

−pi iff Ei,¬Fi ∈ τ

0 iff ¬Ei ∈ τ

(11)

of τ for i = 1, . . . , n.
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Proposition 1. Let R = (T , C) be a knowledge base. Then, for all I ∈ I∆,

1. σR(I) =
∏

τ∈TR
ρR(τ)|C

I
τ |,

2. fi(I) =
∑

τ∈TR
|CI

τ | · fi(τ) for i = 1, . . . , n.

Proof. To see that 1. holds, note that we have

σR(I) =
n∏

i=1

(a+i )
|EI

i ∩FI
i | · (a−i )

|EI
i ∩(¬Fi)

I |

=

n∏
i=1

(a+i )
|(t τ∈TR

Ei,Fi∈τ

Cτ )
I |
· (a−i )

|(t τ∈TR
Ei,¬Fi∈τ

Cτ )
I |

=

n∏
i=1

(a+i )

∑
τ∈TR

Ei,Fi∈τ

|CI
τ |

· (a−i )
∑

τ∈TR
Ei,¬Fi∈τ

|CI
τ |

=

n∏
i=1

∏
τ∈TR

{
(a+i )

|CI
τ | iff Ei, Fi ∈ τ

(a−i )
|CI

τ | iff Ei,¬Fi ∈ τ

=
∏

τ∈TR

ρR(τ)|C
I
τ |.

The equations in 2. can be shown using the same arguments. �

Proposition 1 advises one to consolidate interpretations with the same counts
|CI

τ | for τ ∈ TR to equivalence classes. We define I ∼R I ′ iff |CI
τ | = |CI′

τ | for
all τ ∈ TR, and obtain the following corollary.

Corollary 1. Let R be a knowledge base, and let I, I ′ ∈ I∆ with I ∼R I ′.

1. Then, σR(I) = σR(I ′) and fi(I) = fi(I ′) for i = 1, . . . , n.
2. If R is consistent and additionally I and I ′ are models of T , then

(a) PME
R (I) = PME

R (I ′),
(b) Pβ

R(I) = Pβ
R(I ′) for any approximation Pβ

R of PME
R defined by (7).

We close this section with a rough estimation of the number of equivalence
classes in I∆/∼R. These equivalence classes [I]∼R can differ in the numbers
|CI

τ | for τ ∈ TR, all of which can vary between zero and |∆|. Hence, |I∆/∼R| is
bounded by (|∆| + 1)|TR|, which is polynomial in |∆|. Note that this bound is
not sharp.

4 Counting Strategies for ALCME

We give combinatorial arguments that allow us to compute the equivalence
classes in I∆/∼R as well as their cardinalities in time polynomial in |∆|.

By definition, the equivalence classes [I]∼R ∈ I∆/∼R differ in the num-
ber of individuals from ∆ that have the types τ ∈ TR, i.e., that belong to
CI

τ . No other properties of these individuals are relevant. Hence, specifying all
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equivalence classes in I∆/∼R is related to the combinatorial problem of classi-
fying |∆|-many elements into |TR|-many categories. For the rest of the paper
let k = |∆|, TR = {τ1, . . . , τm}, and ki = k(τi) = |CI

τi |, if it is clear from the
context which interpretation I is considered. Then, [I]∼R is in a one-to-one cor-
respondence with the vector k = (k1, . . . , km) ∈ Nm

0 , and we may define [I]k
as the unique equivalence class corresponding to k. Due to (10), for all [I]k we
have that

m∑
i=1

ki = k (12)

holds. However, not every vector k ∈ Nm
0 that satisfies (12) leads to an equiva-

lence class in I∆/∼R. This is due to the fact that existential restrictions relate
individuals to each other and may force the existence of further individuals of a
certain type.

Example 5. Consider the knowledge base

Rsmk = (∅, {(∃friend.Smoker|Smoker)[0.9]}

stating that smokers typically have at least one friend that is a smoker, too.
There are four types for Rsmk (concept and role names are abbreviated by their
first letter):

t1 = { S, ∃f.S}, t2 = { S,¬∃f.S},
t3 = {¬S, ∃f.S}, t4 = {¬S,¬∃f.S}.

If there is an individual of type t3, i.e. a non-smoker who has a friend that
smokes, then there must be a second person who is a smoker, i.e., an individual
of type t1 or t2. Hence, k3 > 0 enforces k1 + k2 > 0.

To deal with this phenomenon, we adopt the following definition from [2].

Definition 4. Let τ be a type that contains an existential restriction ∃r.A, and
let ¬∃r.B1, . . . ,¬∃r.Bl be all the negated existential restrictions for the role r in
τ . A type τ ′ satisfies ∃r.A in τ iff A,¬B1, . . . ,¬Bl ∈ τ ′.

It is now easy to see that, for every type τ ∈ TR and for every existential
restriction ∃r.A ∈ τ ,

k(τ) = 0 or
∑

τ ′∈TR
τ ′ satisfies ∃r.A in τ

k(τ ′) > 0 (13)

must hold. Conversely, using ideas from [2], it is not hard to show that any
vector k satisfying

∑m
i=1 ki = k and (13) is realized by an interpretation. Thus,

we have

I∆/∼R = {[I]k | k ∈ Nm
0 ,

m∑
i=1

ki = k, and (13) holds}. (14)
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Equation (14) allows us to enumerate the equivalence classes in I∆/∼R in time
polynomial in |∆|, as Condition (13) is independent of ∆ and iterating through
all k ∈ Nm

0 that satisfy
∑m

i=1 ki = k is possible in time polynomial in |∆|.
Furthermore, note that we are interested in only those interpretations that satisfy
all concept inclusions in T . In these interpretations there must not exist an
individual d ∈ ∆ with d ∈ CI and d 6∈ DI for any C v D ∈ T . Due to (9) and
(10), this constraint is equivalent to

C,¬D ∈ τ ⇒ k(τ) = 0 ∀τ ∈ TR, C v D ∈ T . (15)

We say that a type τ ∈ TR for which C ∈ τ implies D ∈ τ for all C v D ∈ T
satisfies T , written τ |= T . Hence, (15) states that k(τ) > 0 holds for only those
types that satisfy T . Consequently, the set of all equivalence classes of those
interpretations that satisfy T is

I∆T/∼R = {[I]k ∈ I∆/∼R | (15) holds}

and can be determined in time polynomial in |∆|, too.

Example 6. Recall RW from Example 1. All types τ ∈ TRW
satisfy TW except

for τ5, τ6, τ13, and τ14 (cf. Table 1).

It still remains to determine the cardinalities |[I]k|. These cardinalities de-
pend on two factors. First, the k individuals in ∆ have to be allocated to the
types for R. This is the combinatorial problem of classifying elements into cat-
egories mentioned at the beginning of this section, and for which there are(

k

k1, . . . , km

)
=

k!

k1! · · · km!

many possibilities if ki = |τi| for every τi ∈ TR. Put differently, one can also say
that this is the task of specifying CI

τ for every τ ∈ TR when previously only the
cardinalities |CI

τ | were known.
Second, once this allocation is given, the sets CI

τ for every τ ∈ TR still do not
determine a unique interpretation. There remains some degree of freedom when
picking a single interpretation from [I]k. To see this, recall that an interpretation
I ∈ I∆ is fully specified iff for all concept names C ∈ NC and for all role names
r ∈ NR the sets CI and rI are fixed. As every concept name A that is mentioned
in R also occurs in every single type for R as either A or ¬A, the sets AI for
these concept names are uniquely determined by the types. However, this does
not hold for concept names that are not mentioned in R. Actually, given a
concept name in NC \ sigC(R), one can choose freely for every individual in
∆ whether it belongs to this concept name or not. There are 2k·|NC\sigC(R)|

possibilities of allocating the k individuals in ∆ to the concepts in NC \ sigC(R).
Determining the degree of freedom that arises from role memberships is more
difficult. Again, for the roles that are not mentioned in R, there is free choice
such that there are 2k

2·|NR\sigR(R)| possible combinations of allocating k2 many
tuples of individuals to them. For the membership to roles that are mentioned
in R, we first define the degree of freedom of a role and discuss it afterwards.
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Definition 5. Let R = (T , C) be a knowledge base, and let τ ∈ TR be a type.
Further let ∃r.A1, . . ., ∃r.Al be all the existential restrictions and let ¬∃r.B1, . . .,
¬∃r.Bh be all the negated existential restrictions for the role r in τ . We define
the degree of freedom of r in τ with respect to [I]k ∈ I∆/∼R as

φk(τ, r) =
( ∑

I⊆{1,...,l}

(−1)|I| ·
∏

j=1,...,m,
¬B1,...,¬Bh∈τj ,
¬Ai∈τj ∀i∈I

2kj

)k(τ)

. (16)

Definition 5 is a generalization of Definition 4 that takes counting aspects
into account by making use of the well-known inclusion-exclusion principle. In
this way, it keeps track of which individual guarantees that a certain existen-
tial restriction holds. To understand the good behavior of Definition 5, assume
that there is no positive existential restriction ∃r.A for r in τ . Then, for every
d ∈ AI

τ and for every individual d′ in any AI
τ ′ with ¬B1, . . . ,¬Bh ∈ τ ′, whether

(d, d′) ∈ rI or not can be chosen freely, which results in the factor (2k(τ
′))k(τ)

in φk(τ, r). Now, assume there is one (positive) existential restriction ∃r.A in
τ . For individuals d′ ∈ τ ′ with τ ′ such that ¬A,¬B1, . . . ,¬Bh ∈ τ ′, again the
belonging of (d, d′) to rI is optional. However, there must be at least one indi-
vidual d′′ among the individuals of a type τ ′′ with A,¬B1, . . . ,¬Bh ∈ τ ′′ such
that (d, d′′) ∈ rI . This results in the degree of freedom

φk(τ, r) =
( ∏

τ ′∈TR
¬B1,...,¬Bh∈τ ′

2k(τ
′) −

∏
τ ′∈TR

¬B1,...,¬Bh,¬A∈τ ′

2k(τ
′)
)k(τ)

=
(
(

∏
τ ′∈TR

¬B1,...,¬Bh,¬A∈τ ′

2k(τ
′)) · (

∏
τ ′∈TR

¬B1,...,¬Bh,A∈τ ′

2k(τ
′) − 1)

)k(τ)

.

If there are more than one (positive) existential restrictions, then all of them
could be satisfied by the same tuple of individuals. Alternatively, there may exist
several tuples of individuals each satisfying only some of the restrictions. Then,
a combination of tuples is needed to satisfy all of the existential restrictions.
This makes the application of the inclusion-exclusion principle necessary.

Altogether, for every [I]k ∈ I∆/∼R, one has

|[I]k| =
(

k

k1, . . . , km

)
·
( m∏

j=1

∏
r∈sigR(R)

φk(τj , r)
)

· 2(|NC\sigC(R)|)·k · 2(|NR\sigR(R)|)·k2

, (17)

which can be calculated in time polynomial in |∆|.
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5 Consistency Check and Drawing Inferences in ALCME

We build upon the results from Section 3 and Section 4 and prove that both
checking consistency and drawing inferences from approximations of the MaxEnt
distribution is possible in ALCME in time polynomial in |∆|.

Proposition 2. Let R be a knowledge base and ∆ a finite domain. Then, con-
sistency of R in a probabilistic model with domain ∆ can be checked in time
polynomial in |∆|.

Proof. The knowledge base R = (T , C) is consistent iff there is a probability
distribution P ∈ P∆ such that I 6|= T implies P(I) = 0 for all I ∈ I∆, and∑

I∈I∆ |EI
i ∩ F I

i | · P(I)∑
I∈I∆ |EI

i | · P(I)
= pi, i = 1, . . . , n.

Alternatively, R is consistent iff the MaxEnt distribution PME
R exists. Hence, it

is legitimate to limit the search space to any subset of P∆ that contains PME
R

when searching for a model of R. Thus, it is sufficient to search for a model of
R that satisfies P(I) = P(I ′) if I ∼R I ′ and I, I ′ |= T , like PME

R does. In other
words, it is sufficient to find a probability distribution P : I∆T/∼R → [0, 1] that
satisfies ∑

[I]k∈I∆
T/∼R

(∑
τ∈TR

Ei,Fi∈τ
k(τ)

)
· P([I]k)∑

[I]k∈I∆
T/∼R

(∑
τ∈TR
Ei∈τ

k(τ)
)
· P([I]k)

= pi, i = 1, . . . , n. (18)

Then, P can be extended to a probability distribution on I∆ and thereby to a
model of R by defining for all I ∈ I∆

P(I) =

{
P([I]k) · (|[I]k|)−1 [I]k ∈ I∆T/∼R

0 otherwise.
,

The equations in (18) and the conditions 0 ≤ P([I]k) ≤ 1 for all [I]k ∈ I∆T/∼R
can easily be transformed into a system of linear inequalities with integer co-
efficients. Both the number of inequalities and the number of variables of this
system is in O(|I∆T/∼R|) and, hence, polynomially bounded in |∆|. It follows,
that satisfiability of this system can be decided in time polynomial in |∆|. �

Proposition 3. Let R be a consistent knowledge base, β ∈ Qn
>0, and let C, D,

E, F be concepts.

1. Calculating the probability p for which Pβ
R |= (F |E)[p] holds, and

2. deciding whether Pβ
R |= C v D holds

is possible in time polynomial in |∆|.
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Proof. As Pβ
R |= C v D iff Pβ

R |= (D|C)[1], the second statement of the propo-
sition follows from the first. To prove the first statement, we write pi =

si
ti

with
si, ti ∈ N>0 for i = 1, . . . , n, and q = (F |E)[p]. Then,

p =

∑
I∈I∆ |EI ∩ F I | · Pβ

R(I)∑
I∈I∆ |EI | · Pβ

R(I)
=

∑
I∈I∆

I|=T
|EI ∩ F I | · β0 ·

∏n
i=1 β

fi(I)
i∑

I∈I∆

I|=T
|EI | · β0 ·

∏n
i=1 β

fi(I)
i

=

∑
I∈I∆

I|=T
|EI ∩ F I | ·

∏n
i=1 β

|EI∩FI |− si
ti

·|EI |
i∑

I∈I∆

I|=T
|EI | ·

∏n
i=1 β

|EI∩FI |− si
ti

·|EI |
i

=

∑
I∈I∆

I|=T
|EI ∩ F I | ·

∏n
i=1 β

ti·|EI∩FI |−si·|EI |+si·|∆|
i∑

I∈I∆

I|=T
|EI | ·

∏n
i=1 β

ti·|EI∩FI |−si·|EI |+si·|∆|
i

. (19)

Note that

ti · |EI
i ∩ F I

i | − si · |EI
i |+ si · |∆| ≥ 0 ∀I ∈ I∆, i = 1, . . . , n.

Hence, the last fraction in (19) mentions sums over products of integers (|EI∩F I |
and |EI |, respectively) and rational numbers (βi) with integer exponents only
and can be computed exactly.

It remains to show that (19) can be calculated in time polynomial in |∆|. To
prove this, we aggregate interpretations into equivalence classes as discussed in
Section 3. However, we have to modify the set of types the equivalence classes are
based on since the query conditional q may mention additional subconcepts that
are not considered by the types in TR. Let M+

q = {C | C ∈ sub(E) ∪ sub(F )},
Mq = M+

q ∪ {¬C | C ∈ M+
q }, and Tq

R = T(MR ∪ Mq). For interpretations
I, I ′ ∈ I∆, we define the equivalence relation I ∼q

R I ′ iff CI
τ = CI′

τ for all
τ ∈ Tq

R in analogy to ∼R. Every type τ ∈ Tq
R is a refinement of a unique type

τ ′ ∈ TR, i.e. τ ′ ⊆ τ , and we may define ρR(τ ′) = ρR(τ). In plain words, τ ′

inherits its conditional impact from τ . Accordingly, we define fi(τ
′) = fi(τ) for

i = 1, . . . , n. Then Proposition 1 as well as Corollary 1 still hold when replacing
the underlying set of types TR by Tq

R. Also, the counting strategies and the
complexity results for I∆/∼q

R are the same as for I∆/∼R. Hence, (19) can be
simplified to

p =

∑
[I]k∈I∆

T/∼
q
R
k+i ·

∏n
i=1 β

ti·k+
i −si·ko

i +si·|∆|
i∑

I∈I∆

I|=T
koi ·

∏n
i=1 β

ti·k+
i −si·ko

i +si·|∆|
i

where k+i =
∑

τ∈Tq
R

Ei,Fi∈τ

k(τ) and koi =
∑

τ∈Tq
R

Ei∈τ

k(τ). This fraction can clearly be

calculated in time polynomial in |∆|. �
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Proposition 3 states that inferences in Pβ
R are domain-lifted (cf. [6]). Hence,

the message of Proposition 3 is that the crucial part of drawing inferences at
maximum entropy from R according to (2) is the approximation of PME

R by
Pβ
R. Once this approximation is given, all further calculations can be performed

exactly without additional inaccuracies and in time polynomial in |∆|.

6 Conclusion and Future Work

We have presented ALCME, a probabilistic variant of the Description Logic ALC,
which allows one to express uncertain knowledge by probabilistic conditional
statements of the form “if E holds, then F is true with probability p”. Probabili-
ties are understood as degrees of beliefs and a reasoner’s belief state is established
by the principle of maximum entropy based on the aggregating semantics. We
have proved that both checking consistency and drawing inferences from ap-
proximations of the maximum entropy distribution is possible in ALCME in time
polynomial in the domain size |∆|.

In future work, we want to investigate, on the one hand, complexity results
for approximate inference at maximum entropy in ALCME. For this, we need
error estimations and complexity results for calculating approximations Pβ

R of
the maximum entropy distribution PME

R in addition to the results presented
here. Note that the size of the equation system that is generated as input for the
methods used to approximate PME

R by Pβ
R (cf. (5)) can be bounded polynomially

in |∆|, using the same counting strategies as presented in Section 4.
On the other hand, we want to extend our complexity results to more general

ALCME-knowledge bases containing also assertional knowledge, and to Descrip-
tion Logics that are more expressive than ALC.

Finally, we intend to make a more fine-grained complexity analysis that in-
vestigates the complexity of reasoning not only w.r.t. the domain size, but also
in terms of the size of the knowledge base.

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press (2003)

2. Baader, F., Ecke, A.: Extending the description logic ALC with more expressive
cardinality constraints on concepts. In: Proceedings of the 3rd Global Conference
on Artificial Intelligence (GCAI). pp. 6–19. EasyChair (2017)

3. Baader, F., Horrocks, I., Sattler, U.: Description Logics. In: van Harmelen, F.,
Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation. Elsevier
(2007)

4. Baader, F., Koopmann, P., Turhan, A.: Using ontologies to query probabilistic
numerical data. In: Proceedings of the 11th International Symposium on Frontiers
of Combining Systems (FroCoS). Lecture Notes in Computer Science, vol. 10483,
pp. 77–94. Springer (2017)

15



5. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press
(2004)

6. Van den Broeck, G., Taghipour, N., Meert, W., Davis, J., De Raedt, L.: Lifted prob-
abilistic inference by first-order knowledge compilation. In: Proceedings of the 22th
International Joint Conference on Artificial Intelligence (IJCAI). pp. 2178–2185.
AAAI Press (2011)

7. Halpern, J.Y.: An analysis of first-order logics of probability. Artificial Intelligence
46(3), 311–350 (1990)

8. Kern-Isberner, G.: Conditionals in Nonmonotonic Reasoning and Belief Revision.
Springer (2001)

9. Kern-Isberner, G., Thimm, M.: Novel semantical approaches to relational proba-
bilistic conditionals. In: Proceedings of the 12th International Conference on the
Principles of Knowledge Representation and Reasoning (KR). pp. 382–392. AAAI
Press (2010)

10. Lutz, C., Schröder, L.: Probabilistic description logics for subjective uncertainty.
In: Proceedings of the 12th International Conference on Principles of Knowledge
Representation and Reasoning (KR). pp. 393–403. AAAI Press (2010)

11. Paris, J.B.: Common sense and maximum entropy. Synthese 117(1), 75–93 (1999)
12. Paris, J.B.: The Uncertain Reasoner’s Companion: A Mathematical Perspective.

Cambridge University Press (2006)
13. Peñaloza, R., Potyka, N.: Towards statistical reasoning in description logics over

finite domains. In: Proceedings of the 11th International Conference on Scalable
Uncertainty Management (SUM). Lecture Notes in Computer Science, vol. 10564,
pp. 280–294. Springer (2017)

14. Pratt, V.R.: Models of program logics. In: Proceedings of the 20th Annual Sympo-
sium on Foundations of Computer Science (FOCS). pp. 115–122. IEEE Computer
Society (1979)

15. Rudolph, S., Krötzsch, M., Hitzler, P.: Type-elimination-based reasoning for the
description logic SHIQbs using decision diagrams and disjunctive datalog. Logical
Methods in Computer Science 8(1) (2012)

16. Thimm, M., Kern-Isberner, G.: On probabilistic inference in relational conditional
logics. Logic Journal of the IGPL 20(5), 872–908 (2012)

16


