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In contrast to qualitative linear temporal logics, which can be used to state that some property will eventually
be satisfied, metric temporal logics allow us to formulate constraints on how long it may take until the
property is satisfied. While most of the work on combining description logics (DLs) with temporal logics
has concentrated on qualitative temporal logics, there is a growing interest in extending this work to the
quantitative case. In this paper, we complement existing results on the combination of DLs with metric
temporal logics by introducing interval-rigid concept and role names. Elements included in an interval-rigid
concept or role name are required to stay in it for some specified amount of time. We investigate several
combinations of (metric) temporal logics with 𝒜ℒ𝒞 by either allowing temporal operators only on the level
of axioms, or also applying them to concepts. In contrast to most existing work on the topic, we consider a
timeline based on the integers and also allow assertional axioms. We show that the worst-case complexity
does not increase beyond the previously known bound of 2-ExpSpace, and investigate in detail how this
complexity can be reduced by restricting the temporal logic and the occurrences of interval-rigid names.
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1 INTRODUCTION

Description logics (DLs) [19] are a well-investigated family of logic-based knowledge representation
languages, which provide the formal basis for theWeb Ontology Language OWL.1 As a consequence,
DL-based ontologies are employed in many application areas, and they are particularly successful
in the medical domain (see, e.g., the medical ontologies Galen and SNOMEDCT2). For example,
the concept of a patient with a concussion can formally be expressed in DLs with the concept

(expression) Patient ⊓ ∃finding.Concussion, which is built from the concept names (i.e., unary
predicates) Patient and Concussion and the role name (i.e., binary predicate) finding using the
concept constructors conjunction (⊓) and existential restriction (∃). Concepts and roles are used
within terminological and assertional axioms to state facts about the application domain, such
as that concussion is a disease (Concussion ⊑ Disease) and that patient Bob has a concussion
(Patient(BOB), ∃finding.Concussion(BOB)).

This example, given by Baader et al. [20], also illustrates a shortcoming of classical DLs. For a
doctor, it is important to know whether the concussed patient has lost consciousness, which is the
reason why SNOMEDCT contains a concept for “concussion with no loss of consciousness” [44].
However, the temporal pattern inherent in this concept (after the concussion, the patient remained
conscious until the examination) cannot be modelled in classical DLs such as in the one used in
SNOMEDCT.
This problem of classical DLs has been generally recognised, and a great variety of temporal

extensions of DLs have been investigated in the literature.3 In this paper, we focus on the DL
𝒜ℒ𝒞 [43] and metric variants of the temporal logic LTL [41], a point-based temporal logic whose
semantics is based on a linear flow of time represented by the set of integers Z. But, even with
these two logics being fixed, there are still several other design decisions to be made. For instance,
the temporal operators can be applied to axioms [20] and/or inside axioms, i.e., to concepts [30, 48]
and to roles [39]. The former, for example, allows us to state that Bob has not lost consciousness
since (𝒮) he had a concussion:

(∃finding.Conscious(BOB))𝒮 (∃finding.Concussion(BOB)).

The latter allows us to formalise “concussion with no loss of consciousness” independently of a
specific individual as a (temporal) concept

(∃finding.Conscious)𝒮 (∃finding.Concussion).

Another decision to be made is whether rigid concepts and roles are considered. In contrast to
flexible concept and role names, whose interpretation can be different at different time points, the
interpretation of rigid names does not change over time. Obviously, it makes sense to consider
concepts like Human and roles like hasFather as rigid, but Conscious and finding as flexible
(i.e., not rigid). If the logic allows temporal operators within concepts, then rigid concepts can be
expressed using terminological axioms, but rigid roles cannot. In fact, the latter usually render the
combined logic undecidable [39]. In contrast, in the setting considered by Baader et al. [20], rigid
roles do not cause undecidability, but adding rigidity leads to an increase in complexity.
In this paper, we address a shortcoming of the purely qualitative temporal DLs mentioned

above. The qualitative 𝒮-operator in our example does not say anything about how long after the
concussion the examination happened. However, the above definition of “concussion with no loss
of consciousness” is only sensible in case the examination took place shortly after the concussion.
Otherwise, an intermediate loss of consciousness could also have been due to other causes. Another
1https://www.w3.org/TR/owl2-overview/
2see http://www.opengalen.org/ and http://www.snomed.org/
3We refer the reader to [30, 39] for an overview of the field of temporal DLs.
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use case where quantitative temporal patterns must be modelled in the medical domain is the
formulation of eligibility criteria in clinical trials [15, 27]. For example, one may want to describe
patients who have a reaction caused by a treatment between 45 and 180 days ago, and who had no
additional treatment since then, which could be done with the following concept:

(∃finding.Reaction) ⊓
(
(¬∃procedure.Treatment)𝒮[45,180](∃procedure.Treatment)

)
.

On the temporal logic side, extensions of LTL by such intervals have been investigated in detail [2, 3,
38]. They can actually be simulated in qualitative LTL using the temporal operator⃝ (see Section 3.2).
However, if the interval boundaries are encoded in binary, this leads to an exponential blowup. The
complexity results by Alur and Henzinger [3] imply that this blowup cannot in general be avoided.
On the other hand, Lutz et al. [38] show that using intervals of a restricted form (where the lower
bound is 0) does not increase the complexity compared to the qualitative case. The combination of
the DL 𝒜ℒ𝒞 with a metric extension of LTL was first investigated by Gutiérrez-Basulto et al. [32].
That paper considers both the case where temporal operators are applied only within concepts and
the case where they are applied both within concepts and outside of terminological axioms. Our
research extends and thus complements these results by considering also assertional knowledge,
past operators with the timeline of integers Z, and, most importantly, interval-rigid names.
By allowing also for assertional axioms, our language can describe the temporal behaviour of

specific individuals, as in the example above. We show that temporal operators on assertional
axioms come at no additional cost. In most cases, assertions can be encoded using temporal concepts
or temporal terminological axioms.

Since domain knowledge often refers to both past and future, we include corresponding temporal
operators and accordingly define the semantics over the integers Z rather than over the natural
numbers N. It is known that, over N, past operators offer no additional expressivity, but can express
temporal properties exponentially more succinctly [37]. As some of our lower bounds also apply to
N, our results are therefore also interesting for this semantics. Defining the semantics over Z is
further motivated by our novel concept of interval-rigid names discussed next, which allows us to
refer to the past even without using past operators.

Interval-rigid names are a recently introduced means of expressiveness [16]. They can be seen as
a metric variant of rigid names and thus fit into our setting of metric temporal DLs. In a nutshell,
they can be used to express that individuals belonging to a concept need to belong to that concept
for at least k consecutive time points, and similarly for roles. For example, one can encode the usual
duration of diseases, e.g., that an influenza infection (usually) lasts at least one week, by making
the role influenzaFinding rigid for 7 days.

The outline of this paper is as follows. In Section 2, we recall the constructors of 𝒜ℒ𝒞 and LTL
withmetric temporal operators, and the combined logic LTLbin𝒜ℒ𝒞 . In Section 3, we show that previous
results [32, 39, 48] also hold in our slightly different setting: we additionally consider assertional
axioms and employ a temporal semantics over the timeline Z instead of N. In Section 4, we further
extend the logic LTLbin𝒜ℒ𝒞 with interval-rigid names. We show that the worst-case complexity of
2-ExpSpace does not increase, and can be reduced to 2-ExpTime under an additional assumption
(see Table 2). In Section 5, we consider the effect of adding both interval-rigid concepts and roles as
well as metric temporal operators to the logic 𝒜ℒ𝒞-LTL [20], where temporal operators can only
be applied to axioms. Interestingly, in the presence of rigid roles, interval-rigid concepts actually
cause undecidability. Without rigid roles, the addition of interval-rigid concepts and roles leaves
the logic decidable, but matches the 2-ExpSpace bound mentioned above, surprisingly even when
metric temporal operators are disallowed. Finally, in Section 6, we investigate the complexity of
this logic without interval-rigid names. Essentially, this extends the analysis of Baader et al. [20] to
quantitative temporal operators.
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This paper is based on the conference paper [16]. Our main contributions are as follows.
• We provide a detailed complexity analysis of LTLbin𝒜ℒ𝒞 and various fragments with and without
(interval-)rigid names (see Tables 1 and 2 for an overview). This comes mainly from [16], but
we adapt these results here for a temporal semantics based on Z instead of N.

• We include a new 2-ExpSpace-hardness result (Theorem 5.4).
• We develop two reductions for encoding assertions as terminological axioms, thereby simpli-
fying many constructions (Theorems 3.1 and 3.2).

• We describe small extensions of existing complexity results for LTLbin𝒜ℒ𝒞 and some fragments,
to deal with integers and assertions (Theorem 3.7).

To provide a better reading experience, the more technical details of our proofs are given in the
appendix.

2 THE TEMPORAL DESCRIPTION LOGIC LTL
bin

𝒜ℒ𝒞

We first introduce the DL 𝒜ℒ𝒞 and its metric temporal extension LTLbin𝒜ℒ𝒞 [32], which augments
𝒜ℒ𝒞 by allowing metric temporal logic operators [2] both within 𝒜ℒ𝒞 axioms and to combine
these axioms. We actually consider a slight extension of LTLbin𝒜ℒ𝒞 (as it was proposed originally) by
assertional axioms, and consider a timeline based on Z instead of N. In Section 3, we show that this
does not change the complexity of reasoning compared to existing results [32].

Syntax. Let NC, NR, and NI be countably infinite sets of concept names, role names, and individual
names, respectively. An 𝒜ℒ𝒞 concept is an expression defined by

C,D F A | ⊤ | ¬C | C ⊓ D | ∃r .C,

where A ∈ NC and r ∈ NR.
LTLbin𝒜ℒ𝒞 concepts extend 𝒜ℒ𝒞 concepts with the temporal concept constructors ⃝C , ⃝−C , C 𝒰ID,

and C 𝒮ID,where I is an interval of the form [c1, c2] or [c1,∞) with c1, c2 ∈ N, c1 ≤ c2, given in
binary. We may use [c1, c2) to abbreviate [c1, c2 − 1], and similarly for the left endpoint.

An LTLbin𝒜ℒ𝒞 axiom is either a general concept inclusion (GCI) of the formC ⊑ D or an assertion of
the form C(a) or r (a,b), where C,D are LTLbin𝒜ℒ𝒞 concepts, r ∈ NR, and a,b ∈ NI. LTLbin𝒜ℒ𝒞 formulae

are expressions of the form

φ,ψ F α | ⊤ | ¬φ | φ ∧ψ | ⃝φ | ⃝−φ | φ 𝒰Iψ | φ 𝒮Iψ ,

where α is an LTLbin𝒜ℒ𝒞 axiom.

Semantics. Description logics semantics is as in first-order logic, meaning that the symbols in
NC, NR, and NI, are interpreted as unary and binary predicates, and constants, respectively. A DL
interpretation ℐ = (∆ℐ, ·ℐ) over a non-empty set ∆ℐ , called the domain, defines an interpretation

function ·ℐ that maps each concept name A ∈ NC to a subset Aℐ of ∆ℐ , each role name r ∈ NR to a
binary relation rℐ on ∆ℐ and each individual name a ∈ NI to an element aℐ of ∆ℐ . As usual, we
extend the mapping ·ℐ from concept names to 𝒜ℒ𝒞 concepts as follows.

⊤ℐ B ∆ℐ (¬C)ℐ B ∆ℐ \Cℐ (C ⊓ D)ℐ B Cℐ ∩ Dℐ

(∃r .C)ℐ B {d ∈ ∆ℐ | there is e ∈ Cℐ such that (d, e) ∈ rℐ}

The temporal semantics we consider here is based on the timelineZ. A (temporal DL) interpretation

is a structure I = (∆I, (ℐi )i ∈Z), where each ℐi = (∆I, ·ℐi ), i ∈ Z, is a DL interpretation over ∆I
(constant domain assumption) and aℐi = aℐj for all a ∈ NI and i, j ∈ Z, i.e., the interpretation of

ACM Trans. Comput. Logic, Vol. 21, No. 4, Article 30. Publication date: August 2020.



Metric Temporal Description Logics with Interval-Rigid Names 30:5

individual names is fixed. The mappings ·ℐi are extended to LTLbin𝒜ℒ𝒞 concepts as follows.

(⃝C)ℐi B Cℐi+1

(⃝−C)ℐi B Cℐi−1

(C 𝒰ID)
ℐi B {d ∈ ∆I | there exists k with k − i ∈ I , d ∈ Dℐk , and d ∈ Cℐj for all j ∈ [i,k)}

(C 𝒮ID)ℐi B {d ∈ ∆I | there exists k with i − k ∈ I , d ∈ Dℐk , and d ∈ Cℐj for all j ∈ (k, i]}

That is, the conceptC 𝒰ID consists of all elements that satisfy D at some point k in the interval I
relative to the current time point i , and satisfy C at all time points between i and k (including i
itself). For example, ∃r .⃝A⊓A𝒰[2,5)B is an LTLbin𝒜ℒ𝒞 concept that describes those domain elements
that have an r -successor that will satisfy the concept nameA at the next time point, and themselves
satisfy A until, after at least 2 and at most 4 time points in the future, they will satisfy B.

Validity of an LTLbin𝒜ℒ𝒞 formula φ in I at i ∈ Z (written I, i |= φ) is inductively defined as follows.

I, i |= C ⊑ D iff Cℐi ⊆ Dℐi .
I, i |= C(a) iff aℐi ∈ Cℐi .
I, i |= r (a,b) iff (aℐi ,bℐi ) ∈ rℐi .
I, i |= ¬φ iff I, i ̸ |= φ.
I, i |= φ ∧ψ iff I, i |= φ and I, i |= ψ .
I, i |= ⃝φ iff I, i + 1 |= φ.
I, i |= ⃝−φ iff I, i − 1 |= φ.
I, i |= φ 𝒰Iψ iff there is k with k − i ∈ I , I,k |= ψ and I, j |= φ for all j ∈ [i,k).
I, i |= φ 𝒮Iψ iff there is k with i − k ∈ I , I,k |= ψ , and I, j |= φ for all j ∈ (k, i].

As usual, we define the abbreviations ⊥ B ¬⊤, C ⊔ D B ¬(¬C ⊓ ¬D), C → D B ¬C ⊔ D,
C ↔ D B (C → D)⊓(D → C),C ≡ D B (C ⊑ D)∧(D ⊑ C),∀r .C B ¬(∃r .¬C),φ∨ψ B ¬(¬φ∧¬ψ ),
φ → ψ B ¬φ ∨ ψ , φ ↔ ψ B (φ → ψ ) ∧ (ψ → φ), ♢Iα B ⊤𝒰Iα , and □Iα B ¬♢I¬α , and the
past operators ♢−

I α B ⊤𝒮Iα , □−
I α B ¬♢−

I ¬α , ♢
−α B ⊤𝒮α , and □−α B ¬♢−¬α , where C,D

are concepts, φ, ψ formulae and α, β are either concepts or formulae [19, 30]. Furthermore, we
may omit the interval I if it is of the form [0,∞), e.g. write α 𝒰β instead of α 𝒰[0,∞)β . Given the
semantics of LTLbin𝒜ℒ𝒞 , ⃝α is equivalent to ♢[1,1]α and □[1,1]α , and ⃝−α is equivalent to ♢−

[1,1]α and
□−
[1,1]α . However, we cannot use this to simulate ⃝α and ⃝−α in all the logics that we investigate.
Given a formula φ, we denote by NC(φ) the set of all concept names occurring in φ, and similarly

for NR(φ) and NI(φ). We denote by subc(φ) the set of all subconcepts occurring in φ, and by subf(φ)
its subformulae. Finally, clc(φ) is the closure of

sub
c(φ) ∪ {C 𝒰D | C 𝒰[c ,∞)D ∈ sub

c(φ)} ∪ {C 𝒮D | C 𝒮[c ,∞)D ∈ sub
c(φ)}

under single negation, and likewise for clf(φ) and sub
f(φ).

Sequences. We use the following notation for sequences. We define a sequence of objects indexed
by integers as a function σ : X → Y , where X is a (possibly infinite) interval in Z, and Y is a set of
objects (e.g., DL interpretations). We use the abbreviation σ ≤i for the subsequence of σ defined on
X ∩ (−∞, i], and similarly for σ>i , σ<i , etc. Assuming that [i, j] ⊆ X , we write σ [i , j] for the finite
subsequence σ (i)σ (i + 1) . . . σ (j). The concatenation of two finite sequences σ1,σ2 is denoted by
σ1σ2. Furthermore, we define σ 1 B σ , σn+1 B (σn)σ , and σω B σσ . . . , and correspondingly for
the other direction ωσ B . . . σσ .

Reasoning. We are interested in the complexity of the satisfiability problem in LTLbin𝒜ℒ𝒞 , i.e., of
deciding whether there exists an interpretation I such that I, 0 |= φ holds for a given LTLbin𝒜ℒ𝒞
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Table 1. Overview over the features of the temporal description logics we investigate.

Temporal Temporal Temporal Metric
concepts assertions GCIs operators

LTLbin𝒜ℒ𝒞 ✓ ✓ ✓ ✓
LTL𝒜ℒ𝒞 ✓ ✓ ✓ –
LTLbin𝒜ℒ𝒞 |дGCI ✓ ✓ – ✓

LTL𝒜ℒ𝒞 |дGCI ✓ ✓ – –

𝒜ℒ𝒞-LTLbin – ✓ ✓ ✓
𝒜ℒ𝒞-LTL – ✓ ✓ –
𝒜ℒ𝒞-LTLbin

|дGCI – ✓ – ✓

𝒜ℒ𝒞-LTL |дGCI – ✓ – –

formula φ. There are applications in which only the state of individuals changes over time, while
the meaning of concepts remains the same throughout the timeline. In these applications, it is
sufficient to use temporal operators only at the level of assertions and concepts, but not at the level
of GCIs, which can lead to a decrease in complexity.

To account for this, we also consider a syntactic restriction from [20]: we say that φ is an LTLbin𝒜ℒ𝒞
formula with global GCIs if it is of the form □□−𝒯 ∧ φ, where 𝒯 is a conjunction of GCIs and φ is
an LTLbin𝒜ℒ𝒞 formula without GCIs. Note that φ may be formulated with arbitrary combinations of
assertions using Boolean and temporal operators. Following the notation in [20], we denote the
resulting logic by LTLbin𝒜ℒ𝒞 |дGCI .

Fragments. Throughout the paper, we discuss several fragments of the logic LTLbin𝒜ℒ𝒞 . An overview
of all these fragments is given in Table 1. Here, by temporal concepts we mean that the logic allows
temporal operators on concepts, by temporal assertions that the logic supports temporal operators
on assertions, by temporal GCIs that the logic supports temporal operators on GCIs (rather than
global GCIs only), and by metric operators that intervals other than [0,∞) may be used in the
temporal operators. For instance, 𝒜ℒ𝒞-LTL supports only the qualitative temporal operators ⃝,
⃝−, 𝒰 , and 𝒮 on GCIs and assertions, but not on concepts. The logic designated as LTLbin𝒜ℒ𝒞 |дGCI
allows temporal operators 𝒰I and 𝒮I on concepts and assertions, but not on GCIs, which means
that only global GCIs are supported. Table 2 summarises our new complexity results, as well as
known complexity results, for the fragments considered. The sets of rigid names and interval-rigid
names, as described in the introduction, are denoted by NRig and NIRig, respectively, and will be
introduced in detail in Section 4. For example, NRig = ∅ describes the case when there are no rigid
names, NRig ⊆ NC means that only concept names can be rigid, and the case NRig ⊆ NC ∪ NR

includes also rigid roles.

3 FIRST RESULTS

Before we introduce and discuss interval-rigid names, we lift several existing results to the setting
we consider in this paper. Specifically, our syntax includes assertional axioms in formulae and
the semantics is defined over the integers. In the literature on temporal DLs, assertions and the
semantics over Z have already been considered [8, 20, 48]. To the best of our knowledge, the latter
has not been investigated in the context of LTLbin𝒜ℒ𝒞 or its fragment LTL𝒜ℒ𝒞 .

In Section 3.1, we first show that reasoning about LTLbin𝒜ℒ𝒞 formulae can be polynomially reduced
to reasoning about LTLbin𝒜ℒ𝒞 formulae as proposed originally, without assertions. This allows us to
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Table 2. Overview of all complexity results. In the second column, each logic is denoted by a dot, and inclusions

between logics are drawn as arrows. All complexity results except “in 2-ExpTime” are tight. Below the results,

“≤” denotes the references for the upper bounds, and “≥” the lower bounds.
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simplify the presentation in the rest of the paper by disregarding assertions. Second, in Section 3.2 we
consider the sublanguage LTL𝒜ℒ𝒞 of LTLbin𝒜ℒ𝒞 that allows only the qualitative 𝒰- and 𝒮-operators
(without intervals), as well as the intermediate language LTL0,∞𝒜ℒ𝒞 , where intervals are only of the
forms [0, c] or [c,∞), c ∈ N. While LTLbin𝒜ℒ𝒞 is exponentially more succinct than LTL𝒜ℒ𝒞 in general,
reasoning in LTL0,∞𝒜ℒ𝒞 can be polynomially reduced to reasoning in LTL𝒜ℒ𝒞 . Thus, all complexity
results for LTL𝒜ℒ𝒞 also apply to LTL0,∞𝒜ℒ𝒞 , and we do not need to consider the latter in subsequent
sections. In Section 3.3, we extend known complexity results for LTL𝒜ℒ𝒞 and LTLbin𝒜ℒ𝒞 over the
natural numbers N to the integer timeline we consider here.

3.1 Encoding Assertions into GCIs

It turns out that for some of the settings considered in this paper, we can simulate assertions using
GCIs. However, we need to use temporal operators on concepts, and hence this result does not
apply to the logics we study in Sections 5 and 6.

Global GCIs. We first consider the case of an LTLbin𝒜ℒ𝒞 |дGCI formula φ ∧□□−𝒯 , where φ contains
no GCIs and 𝒯 is a conjunction of GCIs. The idea is to dispose of φ entirely, by encoding the
evolution of the named individuals as it is enforced by φ into the evolution of a single individual:

• we represent relevant formulaeψ over assertions using fresh concept names Aψ ,
• we simulate their semantics using additional GCIs, and
• we enforce the existence of an element that satisfies Aφ .

For every role assertion r (a,b) ∈ sub
f(φ), we introduce a fresh concept name Ar (a,b); for every

C ∈ sub
c(φ ∧𝒯 ) and a ∈ NI(φ), a fresh concept nameAC(a); and, for every r ∈ NR(φ) and a ∈ NI(φ),

a fresh role ra . The roles ra are used to relate anonymous r -successors originally required for a to
our representative individual. The semantics of the concept assertions C(a) with C ∈ sub

c(φ ∧ 𝒯 )

and a ∈ NI(φ) is then encoded using the following definitions for the concept names AC(a).
(a) A⊤(a) ≡ ⊤

(b) A(¬C)(a) ≡ ¬AC(a)
(c) A(C⊓D)(a) ≡ AC(a) ⊓AD(a)
(d) A(∃r .C)(a) ≡ ∃ra .C ⊔

⊔
b ∈NI(φ)(Ar (a,b) ⊓AC(b))

(e) A(⃝C)(a) ≡ ⃝AC(a)
(f) A(⃝−C)(a) ≡ ⃝−AC(a)
(g) A(C 𝒰ID)(a) ≡ AC(a) 𝒰IAD(a)
(h) A(C 𝒮ID)(a) ≡ AC(a) 𝒮IAD(a)

Additionally, we add the GCI AC(a) ⊑ AD(a) for every C ⊑ D ∈ 𝒯 and a ∈ NI(φ). To simulate
the rest of φ, we similarly use fresh concept names Aψ for all ψ ∈ sub

f(φ), with the following
definitions.

• A⊤ ≡ ⊤

• A¬ψ ≡ ¬Aψ
• Aψ1∧ψ2 ≡ Aψ1 ⊓Aψ2

• A⃝ψ ≡ ⃝Aψ
• A⃝−ψ ≡ ⃝−Aψ
• Aψ1 𝒰Iψ2 ≡ Aψ1 𝒰IAψ2

• Aψ1 𝒮Iψ2 ≡ Aψ1 𝒮IAψ2

Denote by 𝒯 ′ the conjunction of 𝒯 with all the above GCIs. Then we can show that φ ∧ □□−𝒯
is satisfiable iff □□−(𝒯 ′ ∧ (⊤ ⊑ ∃r0.Aφ )) is satisfiable, where r0 is a fresh role name.
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Theorem 3.1. Satisfiability of LTLbin𝒜ℒ𝒞 |дGCI formulae can be polynomially reduced to satisfiability

of LTLbin𝒜ℒ𝒞 |дGCI formulae without assertions.

Note that □□−(𝒯 ′ ∧ (⊤ ⊑ ∃r0.Aφ )) is an LTLbin𝒜ℒ𝒞-formula with only global GCIs and without
assertions. However, since the semantics of both (temporal) subformulae and assertions are encoded
with the help of (temporal) concepts in GCIs, this construction may introduce temporal concept
operators, even if they are not present in the original formula.

Local GCIs. We next investigate the more general setting and consider φ to be an arbitrary
LTLbin𝒜ℒ𝒞 formula. In contrast to the above, we now encode the temporal assertions into every

individual by means of the concept names Aα as before. As the GCIs to be satisfied are now
changing over time, we cannot use a direct encoding of each GCI C ⊑ D into AC(a) ⊑ AD(a) to
ensure that the local GCIs are also satisfied by the named individuals. Instead, we use the formula

□□−
( (
C ⊑ D

)
→

∧
a∈NI(φ)

(
AC(a) ⊑ AD(a)

) )
for every C ⊑ D occurring in φ to ensure this, i.e., whenever a GCI is satisfied, it also needs to be
satisfied for all (implicitly encoded) individual names. To ensure that all domain elements always
agree on the interpretation of the concept names Aα , we use the formulae

□□−
(
(⊤ ≡ Aα ) ∨ (⊥ ≡ Aα )

)
for all assertions α we consider. We denote the conjunction of all the above formulae by φ𝒜 and
again define a set 𝒯 ′ of global GCIs that contains the axioms defined by Items (a)–(h) above. Finally,
the formula φ ′ is obtained from φ by replacing every assertion α in φ by ⊤ ≡ Aα . Then φ is
satisfiable iff φ ′ ∧ φ𝒜 ∧ □□−𝒯 ′ is satisfiable.

Theorem 3.2. Satisfiability of LTLbin𝒜ℒ𝒞 formulae can be polynomially reduced to satisfiability of

LTLbin𝒜ℒ𝒞 formulae without assertions.

3.2 Relation of LTL
bin

𝒜ℒ𝒞 and LTL
0,∞
𝒜ℒ𝒞 to LTL𝒜ℒ𝒞

We now discuss the relations between LTLbin𝒜ℒ𝒞 and two of its fragments, LTL𝒜ℒ𝒞 and LTL0,∞𝒜ℒ𝒞 .
Recall that the notation ·bin refers to the fact that the endpoints of the intervals are given in binary.
This does not increase the expressivity in comparison to LTL𝒜ℒ𝒞 [39], where only the qualitative 𝒰 -
and 𝒮-operators are allowed. In fact, one can expand any formula φ 𝒰[c1,c2]ψ to∨

c1≤i≤c2

(
⃝
iψ ∧

∧
0≤j<i

⃝
jφ

)
,

where ⃝i denotes i nested ⃝-operators. Likewise, φ 𝒰[c1,∞)ψ is equivalent to( ∧
0≤i<c1

⃝
iφ

)
∧ ⃝

c1 (φ 𝒰ψ ).

Corresponding equivalences hold for concepts and formulae containing the operator 𝒮I . However,
if this transformation is recursively applied to all subexpressions, then the size of the resulting
formula is exponential: ignoring the nested ⃝ and ⃝− operators, its syntax tree has polynomial
depth and an exponential branching factor; and the⃝i - and (⃝−)i formulae have exponential depth,
but introduce no branching. This blowup cannot be avoided, because satisfiability in LTL𝒜ℒ𝒞 is
ExpSpace-complete, while for LTLbin𝒜ℒ𝒞 it is 2-ExpSpace-complete [32]. This gap exists even for
propositional temporal logics, where the complexity jumps from PSpace to ExpSpace when going
from LTL to LTLbin [3].
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Proposition 3.3. Every LTLbin𝒜ℒ𝒞 formula can be translated in exponential time into an equivalent

LTL𝒜ℒ𝒞 formula.

Observe that, if this transformation is applied only to formulae (not to concepts), then the axioms
and concepts occurring in the formula remain the same, but they may occur more often afterwards.
Similarly, if the transformation is applied only to concepts, then the number of subformulae remains
the same, but the axioms and concepts occurring in them may be larger. Nevertheless, it is to be
expected that reasoning in LTLbin𝒜ℒ𝒞 gets harder than in LTL𝒜ℒ𝒞 by an exponential factor. As
mentioned above, this is not the case for LTL0,∞𝒜ℒ𝒞 , where all intervals must be of the form [0, c] or
[c,∞), as we show next.

Previously, it has been shown for a branching temporal logic that 𝒰[0,c] can be simulated by the
classical 𝒰-operator, while the size of the formula is only increased by a polynomial factor [38].
The basic idea is to use, for each formula φ 𝒰[0,c]ψ , a counter that determines the temporal distance
to the nearest occurrence ofψ that makes φ 𝒰ψ true (i.e.,ψ is satisfied at that time point, and φ is
satisfied at all time points in between). The formula φ 𝒰[0,c]ψ is then satisfied iff the counter value
does not exceed c . Note that for each time point satisfying φ 𝒰ψ , there is always a unique nearest
time point satisfying ψ , which uniquely determines the counter value. To satisfy φ 𝒰[0,c]ψ , only
counter values below c are relevant, which is why it is sufficient to encode the counter using n
concept names, where n is the number of bits in the binary representation of c .

To extend this result to formulae of the form φ 𝒰[c ,∞)ψ , we use a similar counter, which however
determines the distance to the furthest occurrence ofψ that makes φ 𝒰ψ true. Then, φ 𝒰[c ,∞)ψ is
satisfied iff the counter value is at least c . Again, only counter values below c are relevant to detect
the satisfaction of φ 𝒰[c ,∞)ψ : if the counter value is higher, the particular value is not relevant to
determine whether φ 𝒰[c ,∞)ψ is satisfied, we only need to remember that we reached this counter
value and that φ remained satisfied. Consequently, we can represent the counter again using only
polynomially many bits. These ideas can be straightforwardly extended to past operators and
temporal concepts. The proof can be found in the appendix.

Theorem 3.4. Every LTL0,∞𝒜ℒ𝒞 formula can be translated in polynomial time into an equisatisfiable

LTL𝒜ℒ𝒞 formula.

Similar to Proposition 3.3, this reduction preserves certain properties of the original formula:
if the LTL0,∞𝒜ℒ𝒞 formula contains only global GCIs or contains no temporal concepts, then so does
the resulting LTL𝒜ℒ𝒞 formula. In fact, the reduction applies to all sublogics of LTLbin𝒜ℒ𝒞 that we
consider in this paper. Hence, in the remainder of this paper we do not explicitly consider logics
with the superscript ·0,∞, because they have the same complexity as the corresponding temporal
DLs that use only 𝒰 and 𝒮 .

3.3 Satisfiability in LTL
bin

𝒜ℒ𝒞 and LTL𝒜ℒ𝒞

The complexity of concept satisfiability in LTLbin𝒜ℒ𝒞 with respect to global TBoxes (corresponding
to LTLbin𝒜ℒ𝒞 |дGCI formulae without assertions) and of satisfiability of LTLbin𝒜ℒ𝒞 temporal TBoxes

(i.e., LTLbin𝒜ℒ𝒞 formulae without assertions) has been investigated previously for semantics defined
over N [32, 39, 48]. We reformulate these results in our setting, that is, for a semantics over Z and
for a syntax including past operators. By Theorems 3.1 and 3.2, these results apply also to formulae
with assertions.

Our constructions are not substantially different to those in [32], and providemainly an adaptation
for temporal past operations and to the semantics over Z. We repeat them here in full mainly in
preparation of our main results in Section 4. Specifically, we introduce well-known proof ideas that
are based on the notion of quasimodels [32, 39, 48]. Quasimodels are abstractions of interpretations

ACM Trans. Comput. Logic, Vol. 21, No. 4, Article 30. Publication date: August 2020.



Metric Temporal Description Logics with Interval-Rigid Names 30:11

in which each time point is represented by a set of types, called a quasistate. Each type describes
the interpretation for a single domain element at some time point, while a quasistate collects the
information about all domain elements at some time point. It is central for the complexity results
that every satisfiable formula has a quasimodel of a certain restricted form that, in particular, can
be guessed and verified using only exponential space. We define quasimodels [32, 39, 48] for the Z
timeline, and then show that this approach also yields ExpSpace- and ExpTime-decision procedures
in our setting.
Let φ be an LTLbin𝒜ℒ𝒞 formula or an LTL𝒜ℒ𝒞 formula without assertions. A concept type for φ is

any subset t of clc(φ) such that
T1 ¬C ∈ t iff C < t , for all ¬C ∈ cl

c(φ), and
T2 C ⊓ D ∈ t iff C,D ∈ t , for all C ⊓ D ∈ cl

c(φ).
Intuitively, concept types are used tomodel the correct behaviour of the basic concept constructors¬
and ⊓. Similarly, we define formula types t as subsets of clf(φ) satisfying the following conditions:
T1’ ¬α ∈ t iff α < t , for all ¬α ∈ cl

f(φ), and
T2’ α ∧ β ∈ t iff α, β ∈ t , for all α ∧ β ∈ cl

f(φ).
A quasistate for φ is a set Q of concept and formula types such that

S1 Q contains exactly one formula type, denoted by tQ ,
S2 if t ∈ Q and ∃s .D ∈ t , then there is t ′ ∈ Q with {D} ∪ {¬E | ¬∃s .E ∈ t} ⊆ t ′, and
S3 for all C ⊑ D ∈ cl

f(φ), we have C ⊑ D ∈ tQ iff C ∈ t implies D ∈ t for all concept types t ∈ Q .
A quasistate represents a single interpretation via the concept types of its domain elements, in
addition to a formula type that specifies the axioms satisfied by this interpretation. In this way, the
seven conditions above deal with the non-temporal part of the semantics of LTLbin𝒜ℒ𝒞 .
To model the temporal dimension, in the following we consider sequences of types that are

infinite in both directions, representing the evolution of domain elements (via concept types) and
axioms (via formula types). We say that a (finite or infinite) sequence r of types realises an until

expression α 𝒰I β at position n if there is a k with k−n ∈ I with β ∈ r (k) and α ∈ r (j) for all j ∈ [n,k).
Similarly, a (finite or infinite) sequence r of types realises a since expression α 𝒮I β at position n if
there is a k with n − k ∈ I with β ∈ r (k) and α ∈ r (j) for all j ∈ (k,n]. We may omit ‘at position n’
if n = 0.

The evolution over the complete timeline is described by concept (formula) runs for φ, which are
sequences . . . r (−1) r (0) r (1) . . . of concept (formula) types that are infinite in both directions and
satisfy the following conditions for all n ∈ Z, where cl∗ is clc for concept runs and cl

f for formula
runs:
R1 for all ⃝α ∈ cl

∗(φ), ⃝α ∈ r (n) iff α ∈ r (n + 1),
R2 for all ⃝−α ∈ cl

∗(φ), ⃝−α ∈ r (n) iff α ∈ r (n − 1),
R3 for all α 𝒰I β ∈ cl

∗(φ), α 𝒰I β ∈ r (n) iff r realises α 𝒰I β at position n, and
R4 for all α 𝒮I β ∈ cl

∗(φ), α 𝒮I β ∈ r (n) iff r realises α 𝒮I β at position n.
It now only remains to combine quasistates and runs into a coherent representation of a temporal

model. A quasimodel for φ is a pair (S,R), where S is a mapping from Z to the set of all quasistates
and R is a possibly infinite set of runs such that
M1 φ ∈ tS (0),
M2 for all r ∈ R and n ∈ Z, r (n) ∈ S(n), and
M3 for all n ∈ Z and t ∈ S(n), there is a run r ∈ R such that r (n) = t .
Intuitively,M1 expresses that φ is satisfied at time point 0. ByM2 andM3, types on a run are

in fact elements of a quasistate at the corresponding position and, conversely, every type in a
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quasistate occurs in some run (at the corresponding time point). By Condition S1, R contains
exactly one formula run.
We now establish a central result for showing the subsequent complexity upper bounds. In

short, to decide satisfiability it suffices to look for a quasimodel of a certain regular shape. The
main difference to previous results [32, 39, 48] is that we need this regularity to be present in both
directions of the timeline given by Z.

Lemma 3.5. An LTLbin𝒜ℒ𝒞 formula φ is satisfiable iff it has a quasimodel (S,R) in which S is of the

form

ω (
S(−k1) . . . S(−k2 − 1)

)
S(−k2) . . . S(0) . . . S(k3)

(
S(k3 + 1) . . . S(k4)

)ω
,

where k1, k2, k3 and k4 are bounded double exponentially in the size of φ.

Consider now an LTLbin𝒜ℒ𝒞 formula φ = ψ ∧ □□−𝒯 with global GCIs, i.e., whereψ contains only
assertions and 𝒯 is a conjunction of GCIs. Recall that, by Theorem 3.1, we can disregard assertions
entirely, so that we may assume w.l.o.g. that φ is of the form □□−𝒯 , with 𝒯 containing only GCIs.
If φ is of that form, we only need one formula type, namely the one that contains □□−𝒯 , □−𝒯 , and
all subformulae of 𝒯 . As a consequence, the formula run maps every time point to the same formula
type. We call such a formula run constant. With a constant formula run, satisfiability coincides with
the existence of a constant quasimodel: a quasimodel (S,R) where S(i) = S(j) for all i, j ∈ Z; that is,
all quasistates are the same.

Lemma 3.6. An LTLbin𝒜ℒ𝒞 |дGCI formula □□−𝒯 is satisfiable iff it has a constant quasimodel.

Note, however, that a regular behaviour as in Lemma 3.5 also shows up in the concept runs,
which represent the evolution of domain elements.

Theorem 3.7 summarises the complexity of the logics LTLbin𝒜ℒ𝒞 and LTL𝒜ℒ𝒞 and their fragments
with only global GCIs. It turns out that their respective complexity remains the same, regardless of
whether we consider Z or N for the temporal semantics.

Theorem 3.7. The satisfiability problem is 2-ExpSpace-complete in LTLbin𝒜ℒ𝒞 , ExpSpace-complete

in LTLbin𝒜ℒ𝒞 |дGCI and LTL𝒜ℒ𝒞 and ExpTime-complete in LTL𝒜ℒ𝒞 |дGCI .

Proof sketch. Membership in 2-ExpSpace is a consequence of a result presented below, in
Theorem 4.4. The lower bound is a consequence of a result in [32, Theorem 5], which shows
2-ExpSpace-hardness for LTLbin𝒜ℒ𝒞 over the natural numbers. To see that it transfers to our case,
note that we can easily reduce satisfiability of LTLbin𝒜ℒ𝒞 formulae without past operators over the
natural numbers to satisfiability over the integers. Indeed, without past operators, φ is satisfiable
over N iff it is satisfiable over Z. The exact same argument can be used to transfer the ExpSpace
lower bound for LTL𝒜ℒ𝒞 using the semantics over the natural numbers [30, 39] to our case. The
other lower bounds follow from the fact that satisfiability is ExpSpace-hard for LTLbin [3, 29] and
ExpTime-hard for𝒜ℒ𝒞 [43]. The remaining upper bounds follow from the our results on the shape
of quasimodels; details are provided in the appendix. □

4 LTL
bin

𝒜ℒ𝒞 WITH INTERVAL-RIGID NAMES

Many temporal DLs allow so-called rigid names, whose interpretation is not allowed to change over
time. To formally define this notion, we fix a countable set NRig ⊆ NC ∪NR of infinitely many rigid

concept names and infinitely many rigid role names, and require interpretations I = (∆I, (ℐi )i ∈Z)
to respect these names, in the sense that Xℐi = Xℐj should hold for all X ∈ NRig and i, j ∈ Z. Note
that LTLbin𝒜ℒ𝒞 can make concepts effectively rigid using (global) axioms of the formA ≡ ⃝A. That is,
rigid concepts are just “syntactic sugar”. On the other hand, rigid roles lead to undecidability even
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in LTL𝒜ℒ𝒞 [39]. For these reasons, for LTLbin𝒜ℒ𝒞 , we do not get interesting results by considering
rigid names explicitly. However, they will become meaningful in the later sections, where we look
at other logics.

To augment the expressivity of temporal DLs while avoiding undecidability, we propose interval-
rigid names. In contrast to rigid names, interval-rigid names only need to remain rigid for a
limited period of time. Formally, we fix another countably infinite set NIRig ⊆ (NC ∪ NR) \ NRig of
interval-rigid names, and a function iRig : NIRig → N such that, for each n ∈ N, there are infinitely
many concept names A with iRig(A) = n and infinitely many role names r with iRig(r ) = n. An
interpretation I = (∆I, (ℐi )i ∈Z) respects the interval-rigid names if the following holds for all
X ∈ NIRig and i ∈ Z, where iRig(X ) = k .

For each d ∈ Xℐi , there is a j ∈ Z such that i ∈ [j, j +k) and d ∈ Xℐℓ for all ℓ ∈ [j, j +k).
Intuitively, any element (or pair of elements) d in the interpretation of an interval-rigid name must
be in that interpretation for at least k consecutive time points. We call such a name k-rigid. The
names in (NC ∪ NR) \ (NRig ∪ NIRig) are called flexible, and we assume that there are still infinitely
many flexible concept names as well as infinitely many flexible role names. For convenience,
we implicitly consider the function iRig to assign 1 to all flexible names, which does not affect
the semantics. Using this convention, we do not have to distinguish between flexible names and
interval-rigid names. For the complexity analysis, in the following we consider as input not only an
LTLbin𝒜ℒ𝒞 formula φ, but additionally the restriction iRig|φ of the function iRig to those interval-rigid
names that occur in φ. We consider the size of this function to be the size of the largest number in
its codomain (in binary representation).

Example 4.1. To illustrate the effect of interval-rigid names, we make the example given in the
introduction more explicit. We might make the role name influenzaFinding rigid for 7 days to
express that an influenza infection lasts at least one week: iRig(influenzaFinding) = 7. Consider
the following simplified LTLbin𝒜ℒ𝒞 formula, containing a GCI expressing that someone with an
influenza finding is ill, that patient1 was known to have been healthy for a week 3 days ago, and
that he was diagnosed with influenza yesterday:

φ = □□−(∃influenzaFinding.Finding ⊑ ¬HealthyPatient)

∧ □[−3,−10]HealthyPatient(patient1)

∧ ⃝
−influenzaFinding(patient1, finding1).

Due to the interval-rigidity of influenzaFinding, this formula implies that the patient will continue
to have influenza for at least 4 days:

φ |= □[0,4]influenzaFinding(patient1, finding1).

We investigate the complexity of satisfiability with (interval-)rigid names, which is defined
as before, but considers only interpretations that respect (interval-)rigid names. The decision
problem of satisfiability with (interval-)rigid concepts is defined correspondingly, with the re-
striction that NRig ⊆ NC (NIRig ⊆ NC). Note that (interval-)rigid roles can be used to simulate
(interval-)rigid concepts via existential restrictions ∃r .⊤ [20]. Therefore, the case where only role
names can be (interval-)rigid is not easier than the general case.

Interval-rigid concepts A ∈ NC ∩ NIRig, iRig(A) = k , can be simulated by global LTL0,∞𝒜ℒ𝒞 GCIs of
the form

□□−
(
¬A ⊑ ⃝(A → □[0,k)A)

)
.

Thus, Theorem 3.7 directly yields the upper bounds for this case (see Table 2). For the sublogics of
LTLbin𝒜ℒ𝒞 that we investigate later, this is not always so easy.
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The complexity of LTLbin𝒜ℒ𝒞 with interval-rigid roles is harder to establish. We first show in
Section 4.1 themembership in 2-ExpSpace, by extending thewell-known quasimodel construction to
interval-rigid names. 2-ExpSpace-hardness holds already for the case without interval-rigid names
or assertions [32] (see also Theorem 3.7). In Section 4.2, we then show 2-ExpTime-completeness
for the fragment with global GCIs. To simplify the proofs of the upper bounds, in this section we
assume without loss of generality that

• NRig = ∅ since rigid concepts can be simulated and rigid roles make satisfiability undecidable,
• NIRig ⊆ NR since interval-rigid concepts can be simulated as described above (actually we
treat all roles as interval-rigid by using the above convention that iRig(r ) = 1 for all flexible
roles r ), and

• formulae do not contain assertions (see Theorems 3.1 and 3.2 and the following lemma).

Lemma 4.2. In the presence of interval-rigid names, satisfiability of LTLbin𝒜ℒ𝒞 formulae (with global

GCIs) can be polynomially reduced to satisfiability of LTLbin𝒜ℒ𝒞 formulae (with global GCIs and) without

assertions.

4.1 Satisfiability is in 2-ExpSpace

For the 2-ExpSpace upper bound, we extend the quasimodel approach [32, 39] of Section 3. Recall
that quasistates contain types describing the interpretation of the domain elements at one time
point. To capture interval-rigid role relations, we consider quasistates that cover the temporal
evolution of domain elements over a window of fixed width. Satisfiability is still characterised by
the existence of regular quasimodels. We take the notions from Section 3 and extend them to the
new setting. The definitions of concept and formula types remain unchanged.
Let φ be an LTLbin𝒜ℒ𝒞 formula. To put an upper bound on the time window we have to look at,

we consider the largest number occurring in φ and iRig|φ and denote it by ℓφ . For infinite concept
and formula runs, we now consider subsequences of length 2ℓφ + 1 to account for the influence of
the interval-rigid names on the temporal evolution of domain elements and axioms, respectively.
Formally, a concept (formula) run segment for φ is defined as a sequence σ (−ℓφ ) . . . σ (0) . . . σ (ℓφ )
composed exclusively of concept (formula) types, respectively, such that
R1 for all ⃝α ∈ cl

∗(φ), ⃝α ∈ σ (0) iff α ∈ σ (1),
R2 for all ⃝−α ∈ cl

∗(φ), ⃝−α ∈ σ (0) iff α ∈ σ (−1),
R3 for all α 𝒰I β ∈ cl

∗(φ), we have α 𝒰I β ∈ σ (0) iff either (a) σ realises α 𝒰I β at 0 or (b) I is of the
form [c,∞) and α,α 𝒰β ∈ σ (i) for all i ∈ [0, ℓφ ], and

R4 for all α 𝒮I β ∈ cl
∗(φ), we have α 𝒮I β ∈ σ (0) iff either (a) σ realises α 𝒮I β at 0 or (b) I is of the

form [c,∞) and α,α 𝒮β ∈ σ (i) for all i ∈ [−ℓφ , 0],
where cl∗ is either clc or clf (as appropriate). In contrast to Section 3.3, Conditions R1 and R2 now
evaluate the semantics of ⃝ and ⃝− only at time point 0, because run segments will be composed
later into full runs in a quasimodel. Conditions R3 and R4 deal with the semantics of 𝒰 and 𝒮 ,
but only up to the finite horizon of ℓφ and −ℓφ , respectively.

We accordingly redefine concept (formula) runs for φ as sequences r = . . . r (−1) r (0) r (1) . . . such
that each subsequence of length 2ℓφ + 1 is a concept (formula) run segment, and, for all n ∈ Z,
R5 for all α 𝒰β ∈ cl

∗(φ), we have α 𝒰β ∈ r (n) iff r realises α 𝒰β at position n, and
R6 for all α 𝒮β ∈ cl

∗(φ), we have α 𝒮β ∈ r (n) iff r realises α 𝒮β at position n.
These conditions take care of satisfying temporal concepts and formulae over an infinite time
horizon.

We still need to check whether a set of concept runs (or run segments) can actually be composed
into a coherent model. In particular, we have to be aware of (interval-rigid) role connections
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Fig. 1. Illustration of role constraints and compatibility relations.

between elements. In our abstraction, these connections are represented using role constraints,
which connect two run segments with a role, and a counter used to keep track of how long domain
elements corresponding to those run segments have been connected. Formally, a role constraint
for φ is an expression of the form σ s

k σ
′, where σ ,σ ′ are concept run segments, s ∈ NR(φ), and

k ∈ [1, iRig(s)] such that

C1 {¬C | ¬∃s .C ∈ σ (0)} ⊆ σ ′(0).

Intuitively, σ s
k σ

′ states that the domain elements described by σ (0) and σ ′(0) are connected by
the role s at the current time point, have been connected by s in the previous k − 1 time points, and
will remain connected in the next iRig(s) − k time points. If two domain elements are connected
by s for more than iRig(s) time points, then there might be more than one role constraint in the
same quasistate expressing this connection. Condition C1 ensures that, if σ (0) cannot have any
s-successors that satisfy C , then σ ′(0) does not satisfy C .

Quasistates describe the behaviour of a whole interpretation and its elements at a single time
point, and incorporate bounded information about up to ℓφ time points of the past and future.
Formally, a quasistate for φ is a pair Q = (ℛQ , 𝒞Q ), whereℛQ is a set of run segments and 𝒞Q a set
of role constraints over ℛQ such that

S1 ℛQ contains exactly one formula run segment, denoted by σQ in the following,
S2 for all σ ∈ ℛQ and ∃s .D ∈ σ (0), there is σ s

k σ
′ ∈ 𝒞Q with D ∈ σ ′(0) and k ∈ [1, iRig(s)], and

S3 for all C ⊑ D ∈ cl
f(φ), we have C ⊑ D ∈ σQ (0) iff C ∈ σ (0) implies D ∈ σ (0) for all concept run

segments σ ∈ ℛQ .

In order to integrate quasistates into an infinite quasimodel, we need conditions stating when
this is possible. To this end, we consider a pair (Q,Q ′) of quasistates to be compatible if there is a
compatibility relation π ⊆ ℛQ ×ℛQ ′ such that

C2 every run segment inℛQ andℛQ ′ occurs in the domain and range of π , respectively,
C3 each pair (σ ,σ ′) ∈ π satisfies σ>−ℓφ = σ ′<ℓφ ,
C4 for all (σ1,σ ′

1) ∈ π and σ1 s
k σ2 ∈ Q with k < iRig(s), there is σ ′

1
s

k+1 σ
′
2 ∈ Q ′ with (σ2,σ

′
2) ∈ π ,

and
C5 for all (σ1,σ ′

1) ∈ π and σ ′
1
s
k σ

′
2 ∈ Q ′ with k > 1, there is σ1 s

k−1 σ2 ∈ Q with (σ2,σ
′
2) ∈ π .

These relations ensure that we can combine run segments of consecutive quasistates such that the
interval-rigid roles are respected. Observe that C3 also makes sure that the unique formula run
segments match each other. Moreover, the set of all compatibility relations for a pair of quasistates
(Q,Q ′) is closed under union, which means that compatible quasistates always have a unique
maximal compatibility relation (w.r.t. set inclusion).
To illustrate this, consider Figure 1, which shows a finite sequence of pairwise compatible

quasistates, each containing two run segments. Here, ℓφ = iRig(s) = 3. The relations π0, π1, and π2
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satisfy Conditions C2–C5, which, together with C1, ensure that a run going through the types
t4, t5, and t6 can be connected to another run via the role s for at least 3 consecutive time points.

A quasistate is the abstraction of an interpretation at a single time point, and compatibility
describes when two quasistates can capture consecutive interpretations. Consequently, a quasimodel

for φ is a pair (S,R), where S is an infinite sequence of quasistates . . . S(−1) S(0) S(1) . . . with
consecutive quasistates being compatible and R is a set of runs such that

M1 φ ∈ σS (0)(0),
M2 the runs in R are of the form . . . σ−1(0)σ0(0)σ1(0)σ2(0) . . . such that, for every i ∈ Z, we have

(σi ,σi+1) ∈ πi , where πi is the maximal compatibility relation for the pair (S(i), S(i + 1)), and
M3 for every σ ∈ ℛS (i), there exists a run r ∈ R with r [i−ℓφ ,i+ℓφ ] = σ .

ConditionM2 ensures that the runs . . . σ−1(0)σ0(0)σ1(0)σ2(0) . . . contain the run segments . . . ,σ−1,
σ0, σ1, σ2, . . . : because σ−1, σ0, σ1, and σ2 stand in a compatibility relation with each other, we have
σ−1(0) = σ0(−1), σ1(0) = σ0(1), σ2(0) = σ0(2), and so on. Moreover, together withM3, ConditionM2
guarantees that R always contains exactly one formula run, and that every run segment has a
corresponding run. ConditionM1 ensures that φ, the formula we are checking, is present at position
0 of the unique formula run in R.
We can show that every quasimodel describes a satisfying interpretation for φ and, conversely,

that every such interpretation can be abstracted to a quasimodel. Moreover, one can always find a
quasimodel of a regular shape. This is captured by the following lemma, proven in Appendix B.

Lemma 4.3. An LTLbin𝒜ℒ𝒞 formula φ is satisfiable with interval-rigid names iff φ has a quasimodel

(S,R) in which S is of the form

ω (
S(−k1) . . . S(−k2 − 1)

)
S(−k2) . . . S(0) . . . S(k3)

(
S(k3 + 1) . . . S(k4)

)ω
,

where k1, k2, k3 and k4 are bounded triple exponentially in the size of φ and iRig|φ .

Recall that we assume all numbers in the function iRig|φ to be given in binary notation. Lemma 4.3
allows us to devise a 2-ExpSpace decision procedure for satisfiability of a given LTLbin𝒜ℒ𝒞 formula,
similar to the setting without interval-rigid names from Section 3, where we guess the indices k1,
k2, k3, k4, as well as all quasistates, one after the other. Since 2-ExpSpace and 2-NExpSpace coincide,
we can describe the procedure in a non-deterministic manner. The guessed numbers, k1, k2, k3,
and k4, each take at most double exponential space in binary encoding. To verify that the guessed
sequence S(−k1) . . . S(k4) of quasistates corresponds to a quasimodel as in Lemma 4.3, only three
quasistates have to be kept in memory at any time. Observe that the size of each quasistate is double
exponentially bounded in the size of the input. Additionally, for each run segment σ ∈ ℛS (k3), we
keep in memory a list of the 𝒰-expressions in σ (0), which need to be satisfied in the repeating part
of the quasimodel (for details, see Appendix B). The size of each list is polynomial in the size of
the input, and since there are at most double exponentially many run segments in ℛS (k3), this also
requires (at most) double exponential space. We do the same with ℛS (−k2) and 𝒮-expressions.
A matching hardness result without interval-rigid names was shown by Artale et al. [12].

Theorem 4.4. Satisfiability in LTLbin𝒜ℒ𝒞 with interval-rigid names is 2-ExpSpace-complete.

4.2 Satisfiability with Global GCIs is 2-ExpTime-complete

Wenow consider LTLbin𝒜ℒ𝒞 |дGCI , that is, we disallow the use of temporal operators on GCIs. Temporal
operators on GCIs are very powerful because they allow universal constraints to change over time.
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For example,

□(∞,−365)
(
∃finding.Pneumonia ⊑ ∃recommended.(Aminopenicillin ⊔ Fluoroquinolone)

)
∧

□[−365,0]
(
∃finding.Pneumonia ⊑ ∃recommended.Aminopenicillin

)
expresses that fluoroquinolones were removed from the list of recommended antibiotics for pneu-
monia treatment one year ago. If we allow only global GCIs, we cannot express such changing
recommendations; however, as we show in this section, the complexity drops from 2-ExpSpace to
2-ExpTime. Here, we can still use temporal operators on assertions, which is central if we want
to reason about temporal data, as well as on concepts. Note that Example 4.1 uses only temporal
operators on assertions.

For satisfiability of LTLbin𝒜ℒ𝒞 |дGCI formulae, we show 2-ExpTime-completeness. By Theorem 3.1,
we can w.l.o.g. consider LTLbin𝒜ℒ𝒞 formulae of the form φ = □□−𝒯 , where 𝒯 is a conjunction of
GCIs. Due to the definition of quasimodels, this means that all formula types in a quasimodel
must contain all GCIs from 𝒯 . To prove our upper bound (Theorem 4.6), we show that, to check
satisfiability of φ with interval-rigid roles, it suffices to consider constant quasimodels (S,R) with S
of the form ωQω , where Q is a quasistate (cf. Lemma 3.6).

Lemma 4.5. An LTLbin𝒜ℒ𝒞 |дGCI formula φ is satisfiable over Z with interval-rigid names iff there is a

constant quasimodel for φ.

Proof. By Lemma 4.3, it suffices to look for a quasimodel for φ. Given such a quasimodel (S,R),
we can modify all S(n) by adding to S(n) all concept run segments and role constraints in S(i), with
i , n. Denote the resulting sequence by S ′. Since each S(i) satisfies S2, each modified S ′(n) satisfies
S2. As all GCIs are global, S3 holds. Since we do not change formula run segments, Conditions S1
andM1 for the existence of a quasimodel still hold. Thus, S ′ is a sequence of quasistates. Moreover,
each S ′(n) is compatible with S ′(n + 1) = S ′(n). To satisfy Conditions M2 and M3, we add to R all
runs in

{r→i | r ∈ R a concept run, i ∈ Z},
where r→i (n) := r (n + i) for all r ∈ R and n ∈ Z, resulting in the set R′ of runs. The tuple (S ′,R′) is
still a quasimodel and satisfies S ′(i) = S ′(j) for all i, j ∈ Z, as required. □

To solve the satisfiability problem, we describe a type elimination procedure for checking the
existence of a constant quasimodel. We first compute in 2-ExpTime the set rs(φ) of concept run
segments σ for φ such that C ∈ σ (0) implies D ∈ σ (0), for all C ⊑ D ∈ cl

f(φ). We then compute the
set rc(φ) of all possible role constraints over rs(φ). We initialise Q = (ℛQ , 𝒞Q ) with ℛQ = rs(φ)
and 𝒞Q = rc(φ).

We then proceed as follows. Given a concept run segment σ ∈ ℛQ , let Xσ be the set of all images
of functions mapping each concept of the form ∃s .D ∈ σ (0) to a role constraint σ s

k σ
′ ∈ 𝒞Q with

D ∈ σ ′(0). Given xσ ∈ Xσ and xσ ′ ∈ Xσ ′ , we say that (xσ , xσ ′) is suitable if σ>−ℓφ = σ ′<ℓφ and

• σ s
k σ1 ∈ xσ with k < iRig(s) implies that there is σ ′ s

k+1 σ2 ∈ xσ ′ with σ>−ℓφ
1 = σ

<ℓφ
2 ; and

• σ ′ s
k σ2 ∈ xσ ′ with k > 1 implies that there is σ s

k−1 σ1 ∈ xσ with σ>−ℓφ
1 = σ

<ℓφ
2 .

We define a relation π ⊆ ℛQ ×ℛQ , where π is a set of pairs (σ ,σ ′) such that, for some xσ ∈ Xσ
and xσ ′ ∈ Xσ ′ , the pair (xσ , xσ ′) is suitable. We then exhaustively eliminate each run segment σ
fromℛQ that violates one of the following conditions:
E1 there are σ1,σ2 ∈ ℛQ such that (σ1,σ ) ∈ π and (σ ,σ2) ∈ π ,
E2 for allC 𝒰ID ∈ σ (0), there isk > 1 and a sequenceσ2, . . . ,σk ∈ ℛQ such thatσ (0)σ2(0) · · ·σk (0)

realises C 𝒰ID, (σ ,σ2) ∈ π , and (σℓ,σℓ+1) ∈ π , for all 1 < ℓ < k , and
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E3 for allC 𝒮ID ∈ σ (0), there isk > 1 and a sequence σk , . . . ,σ2 ∈ ℛQ such that σk (0) · · ·σ2(0)σ (0)
realises C 𝒮ID, (σ2,σ ) ∈ π , and (σℓ+1,σℓ) ∈ π , for all 1 < ℓ < k .

We assume that, whenever σ ∈ ℛQ is eliminated, we remove all role constraints involving σ
from 𝒞Q and, for all remaining σ ′ ∈ ℛQ , we updateXσ ′ accordingly. We also remove (σ1,σ2) from π
if there is no xσ1 ∈ Xσ1 and xσ2 ∈ Xσ2 such that (xσ1, xσ2 ) is suitable.

When this process terminates, we have found the maximal sets of concept run segments and role
constraints to form the quasistate of a constant quasimodel (if a quasimodel exists). Our algorithm
returns “satisfiable” iff there is a surviving concept run segment inℛQ . Theorem 4.6 formalises the
upper bound obtained using this algorithm.

Theorem 4.6. Satisfiability in LTLbin𝒜ℒ𝒞 |дGCI with interval-rigid names is in 2-ExpTime.

Proof. SinceℛQ and π contain at most double exponentially many elements, Condition E1 can
be checked in double exponential time. For Conditions E2 and E3, the algorithm performs a series
of reachability checks in the graph (ℛQ , π ), which is of double exponential size. We explain in
more detail how to deal with 𝒰-expressions. The procedure for 𝒮-expressions is analogous. For
each σ ∈ ℛQ , we consider the set U that contains all (polynomially many) until expressions in
σ (0). We enumerate all possible total orders C1 𝒰I1D1 < C2 𝒰I2D2 < · · · < C |U | 𝒰I |U |

D |U | over U ,
of which there are exponentially many. For a fixed such order, we enumerate all possible choices
of run segments σ 1, . . . ,σ |U | ∈ ℛQ such that each σ i+1 is reachable from σ i , for all i ∈ [1, |U |),
and the 𝒰-expression Ci 𝒰IiDi is satisfied on the path to σ i , for all i ∈ [1, |U |]. As before, there
are double exponentially many possibilities for these run segments (since |U | is polynomial), and
the reachability checks can also be done in double exponential time. As there are initially double
exponentially many run segments and in every step some run segment is eliminated, the procedure
terminates in double exponential time.

Correctness of the procedure is given by the following claim.

Claim. The algorithm returns “satisfiable” iff φ is satisfiable with interval-rigid names.

By Lemma 4.5, it suffices to check the existence of a constant quasimodel. (⇒) It is straightforward
to verify that any sequence resulting from a successful series of the checks described above satisfies
the conditions of Lemma 4.5. In particular, any two consecutive quasistates are compatible by
Condition E1 and the definition of π . Moreover, the required runs exist by Conditions E2 and E3.
(⇐) Let S be a sequence as in Lemma 4.5. Then the concept run segments and role constraints of
all S(i) must be included in Q as constructed by the algorithm, because the conditions checked by
the algorithm are satisfied by any such constant quasimodel. □

The matching lower bound can be shown even without metric temporal operators by an easy
adaptation of an existing proof [20], which uses a rigid role to fix an interpretation structure
over which information can be transferred. However, this structure only needs to stay fixed for
exponentially many time points, which can be ensured using an interval-rigid role instead.

Theorem 4.7. Satisfiability in LTL𝒜ℒ𝒞 |дGCI with interval-rigid names is 2-ExpTime-hard.

5 𝒜ℒ𝒞-LTLbin
WITH INTERVAL-RIGID NAMES

After considering the very expressive DL LTLbin𝒜ℒ𝒞 , we now focus on its sublogic 𝒜ℒ𝒞-LTLbin, the
fragment of LTLbin𝒜ℒ𝒞 that does not allow temporal concept operators. The first study on the even
smaller logic𝒜ℒ𝒞-LTL [20] provided tight complexity bounds for all possible combinations of rigid
concept and role names over the natural numbers. In contrast to LTL𝒜ℒ𝒞 , rigid concepts cannot
be simulated by GCIs, and rigid roles do not immediately lead to undecidability. In this section,
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we consider interval-rigid names in addition to rigid names, and show several new complexity
lower bounds that already apply to 𝒜ℒ𝒞-LTL, i.e., without metric temporal operators. We prove
our lower bounds for 𝒜ℒ𝒞-LTL with past operators over the integers, but similar arguments also
apply for the case where we have natural numbers and no past operators [16]. Following the first
work on 𝒜ℒ𝒞-LTL [20], we denote restriction of 𝒜ℒ𝒞-LTLbin to global GCIs by 𝒜ℒ𝒞-LTLbin

|дGCI .
The insight that interval-rigid concepts can express the operator ⃝ on the concept level is

central for our hardness proofs. This directly yields our first result, namely ExpSpace-hardness for
𝒜ℒ𝒞-LTL with interval-rigid concepts, in Section 5.1. This observation is also central to Section 5.2,
where we show 2-ExpSpace-hardness for 𝒜ℒ𝒞-LTL with interval-rigid roles, matching the upper
bound provided by Theorem 4.4. We leave open the precise complexity if only global GCIs are
allowed in that setting. Finally, if interval-rigid concepts and rigid roles are allowed, we are able to
show undecidability (see Section 5.3).

5.1 Rigid and Interval-Rigid Concepts

As the first setting, we consider the case where only concept names can be rigid or interval-rigid
(but not role names). Recall from Section 4 that rigid concepts and interval-rigid concepts are
expressible in LTL0,∞𝒜ℒ𝒞 via global GCIs, and hence by Theorems 3.4 and 3.7 we can transfer all
upper bounds from LTLbin𝒜ℒ𝒞 without (interval-)rigid roles. Moreover, the ExpTime-hardness from
𝒜ℒ𝒞 [43] and the ExpSpace-hardness from LTLbin [3] still apply, which already gives us tight
bounds for satisfiability in 𝒜ℒ𝒞-LTL |дGCI and 𝒜ℒ𝒞-LTLbin

|дGCI . This leaves only two gaps to fill.
First, for 𝒜ℒ𝒞-LTL with (interval-)rigid concepts, the best known lower bound from the literature
is NExpTime [20] (for the natural numbers and without past operators), which we improve here to
a tight ExpSpace lower bound (see Theorem 5.2). Second, we show that, in contrast to LTLbin𝒜ℒ𝒞 ,
this complexity does not increase when we add metric temporal operators. That is, satisfiability in
𝒜ℒ𝒞-LTLbin with (interval-)rigid concepts is also ExpSpace-complete (see Theorem 5.3).

As a first step, we describe how to simulate the operator ⃝ on concepts by using interval-rigid
concept names. For this purpose, we consider 𝒜ℒ𝒞-LTL⃝ formulae, which extend 𝒜ℒ𝒞-LTL by
allowing the concept constructor ⃝C . However, since we do not need past operators for our
hardness proofs, in the following we consider 𝒜ℒ𝒞-LTL⃝ formulae only without past operators
and w.r.t. a temporal semantics based on N.

Lemma 5.1. Any 𝒜ℒ𝒞-LTL⃝
formula φ can be translated in polynomial time into an 𝒜ℒ𝒞-LTL

formulaψ ′
with interval-rigid concept names such that φ is satisfiable overN iff φ ′

is satisfiable over Z.

Proof. The basic idea is to use 2-rigid concept names A⃝D to transfer the information that
a concept ⃝D should be satisfied at time point i to the next time point i + 1, at which we then
enforce that D is satisfied. However, due to the definition of interval-rigid concept names, we have
to ensure that A⃝D was not already satisfied at i − 1, because then it does not need to be satisfied
at i + 1. To solve this problem, we use three concept names Aj

⃝D , 0 ≤ j ≤ 2. Each of them can be
used only to transfer information from any time point i that is congruent to j modulo 3 to the next
time point i + 1. At time point i + 2, we then enforce that Aj

⃝D is unsatisfiable, which means that
we can reuse it at time point i + 3, which is again congruent to j modulo 3. For the transitions from
i + 1 to i + 2 and from i + 2 to i + 3, we can use the other two concept names (see Figure 2).

To start, we set up a counter modulo 3, by marking all domain elements of a model of our formula
with the concept name A(i mod 3). For convenience, we consider all superscripts modulo 3, i.e., we
have A3 = A0 and A−1 = A2:

ψcounter :=
(
⊤ ⊑ A0) ∧ □□−

∧
0≤i≤2

( ( (
⊤ ⊑ Ai ) → ⃝

(
⊤ ⊑ Ai+1) ) ∧ (

Ai ⊑ ¬Ai+1) ) .
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A0 A1 A2 A0

A0
⃝D A0

⃝D

ℐ0 ℐ1 ℐ2 ℐ3 . . .

A1
⃝D A1

⃝D

. . .

Fig. 2. A model with an element in (A0
⃝D )

ℐ0
(upper rectangle) and an element in (A1

⃝D )
ℐ1

(lower rectangle).

This formula implies that all domain elements satisfy exactly one of the concept names A0,A1,A2:
at time point 0, all of them satisfy A0, afterwards A1, and so on (see Figure 2).
We now define the operator ·−⃝ that transforms any 𝒜ℒ𝒞-LTL⃝ formula φ or concept C into

a formula or concept of 𝒜ℒ𝒞-LTL. Consider first the case of an 𝒜ℒ𝒞-LTL⃝ concept C , i.e., an
LTL𝒜ℒ𝒞 concept that contains no temporal operators except ⃝. We replace all its subconcepts
of the form ⃝D, starting from the outermost ones, i.e., the ones that do not occur in the scope of
another ⃝-operator. To obtain C−⃝ , we replace each outermost subconcept ⃝D by⊔

0≤i≤2
(Ai

⃝D ⊓Ai ),

where Ai
⃝D , 0 ≤ i ≤ 2, are fresh 2-rigid concept names. The resulting concept C−⃝ is a classical

𝒜ℒ𝒞 concept. As described above, Ai
⃝D indicates that D should hold at the next time point, but

it can only be used at time points marked with Ai . We can thus simulate the semantics of ⃝D as
follows:

ψ⃝D := □□−
∧

0≤i≤2

( (
Ai−1 ⊑ ¬Ai

⃝D
)
∧

(
Ai+1 ⊑ Ai

⃝D ↔ D−⃝
) )
.

Note that the replacement operator ·−⃝ is applied here to the inner concept D, which may still
contain more occurrences of ⃝. As observed above,D−⃝ , and therefore alsoψ⃝D , can be formulated
in pure 𝒜ℒ𝒞-LTL.
The formula ψ⃝D says that Ai

⃝D is unsatisfiable at time points marked by Ai−1. Since Ai
⃝D is

2-rigid, ifAi
⃝D ⊓Ai is satisfied by some individual, then at the next time point (marked byAi+1) this

individual must still satisfy Ai
⃝D , and hence also D−⃝ . Conversely, if an individual satisfies D−⃝

andAi+1, then it must also satisfyAi
⃝D , and therefore it must have satisfiedAi

⃝D at the previous time
point. This means that satisfyingAi

⃝D at any time point marked byAi is equivalent to satisfyingD−⃝

at the next time point. It is easy to show by induction on the structure of concepts that, under the
constraints given by ψ and all formulae ψ⃝D for which ⃝D ∈ sub

c(C), the concept C−⃝ is thus
equivalent to C .

Given any 𝒜ℒ𝒞-LTL⃝
formula φ, we obtain φ−⃝ by replacing all outermost concepts C by C−⃝ .

It is easy to see that φ is satisfiable iff the 𝒜ℒ𝒞-LTL formula

φ−⃝ ∧ψcounter ∧
∧

⃝D∈subc(φ)

ψ⃝D

is satisfiable. Since satisfiability of φ is considered w.r.t. N, and we need the past operator □− here
only to ensure that A0

⃝D cannot be satisfied at time point −1, the time points before −1 can be
ignored. □
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We now obtain our first lower bound via a result from [30], which shows that satisfiability in
𝒜ℒ𝒞-LTL⃝ is ExpSpace-hard.

Theorem 5.2. Satisfiability in 𝒜ℒ𝒞-LTL with interval-rigid concepts is ExpSpace-hard.

Proof. The temporal logic 𝒬𝒯 ℒ1 is the 1-variable fragment of the extension of first-order logic
with the strict version of the 𝒰-operator [30], which can equivalently be expressed by the non-strict
𝒰 (as we use it here) and ⃝. Furthermore,𝒬𝒯 ℒ1

1 is the fragment of𝒬𝒯 ℒ1 in which only ⃝ can be
applied to open formulae, while 𝒰 can be applied to sentences only. It is known that satisfiability in
𝒬𝒯 ℒ1

1 is ExpSpace-complete, and moreover the proof of that result uses only unary predicates [30,
Theorem 11.33]. Monadic𝒬𝒯 ℒ1

1 formulae can be expressed as𝒜ℒ𝒞-LTL⃝ formulae in the obvious
way, where open formulae correspond to concepts and sentences correspond to formulae. For
example, a formula of the form (∀x .φ) can be expressed as the GCI ⊤ ⊑ Cφ , whereCφ is the concept
equivalent to the open formula φ. The translation of the other constructors is straightforward.
Together with Lemma 5.1, this shows the claim. □

To show the matching upper bound for 𝒜ℒ𝒞-LTLbin, we employ a simple reduction to use the
results shown for LTL𝒜ℒ𝒞 [48] (see also Theorem 3.7). The idea is that we first eliminate the
metric temporal operators from the 𝒜ℒ𝒞-LTLbin formula by using Proposition 3.3, which yields an
𝒜ℒ𝒞-LTL formula with an exponential number of subformulae. Moreover, as described in Section 4,
we can express (interval-)rigid concept names by using LTL0,∞𝒜ℒ𝒞 concepts. Using Theorem 3.4, we
can obtain an LTL𝒜ℒ𝒞 formula with only an additional polynomial blow-up. It then suffices to
observe that the complexity of this approach is not affected by the exponential blow-up in the
number of subformulae.

Theorem 5.3. Satisfiability in 𝒜ℒ𝒞-LTLbin with rigid concepts and interval-rigid concepts is in

ExpSpace.

Proof. Let φ be an 𝒜ℒ𝒞-LTLbin formula, and φ† the 𝒜ℒ𝒞-LTL formula obtained from φ by
the construction of Proposition 3.3. Since φ does not contain any temporal concepts, the number
of subformulae of φ increases at most exponentially, but the subconcepts of φ stay the same
(although they can occur more often). More precisely, we have |subf(φ†)| ≤ (ℓφ + 1)3 |subf(φ)| and
sub

c(φ†) = sub
c(φ), where ℓφ again denotes the maximal number occurring in temporal operators

or interval-rigidity constraints. For example, the translation of ρ 𝒰[c1,c2]ψ uses formulae of the form
⃝iψ (with i ≤ ℓφ ), which have at most ℓφ + 1 subformulae ⃝iψ ,⃝i−1ψ , . . . ,⃝ψ ,ψ , where before
we had onlyψ itself. These formulae are further used in a disjunction of conjunctions (each with at
most ℓφ + 1 components), hence the factor of (ℓφ + 1)3 above. Note that the subformulae of ρ andψ
remain the same during this replacement step. If we do this in a “bottom-up” way, starting with the
innermost subformulae, in each step we replace one subformula by (ℓφ + 1)3 new ones, and can do
this at most once for each 𝒰-formula, i.e., at most |subf(φ)| times.

We extend φ† by global GCIs that simulate the (interval-)rigidity constraints using LTL0,∞𝒜ℒ𝒞 con-
cepts, as described in Section 4, and denote the result by φ‡. We have |subf(φ‡)| ≤ p(|subf(φ†)| +m)

and |subc(φ‡)| ≤ p(|subc(φ†)| +m), wherem ≤ |subc(φ)| is the number of (interval-)rigid concept
names occurring in φ and p is a polynomial. We can now assume that NRig and NIRig are empty.
By Theorem 3.4, we can express φ‡ as an LTL𝒜ℒ𝒞 formula φ≀ with |subc(φ≀)| ≤ p ′(|subc(φ‡)|) and
|subf(φ≀)| ≤ p ′(|subf(φ‡)|) for some polynomial p ′. In summary, we have obtained a formula φ≀ that
is equisatisfiable to φ, and to which we can apply Theorem 3.7 (where we state that the well-known
quasimodel algorithm [48] can be adapted to Z) in order to decide satisfiability. Moreover, the
number of subformulae of φ≀ is bounded exponentially in the size of the original formula, while the
number of subconcepts increased only by a polynomial. It thus suffices to find a regular quasimodel
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for which the length of the initial and repeating parts is bounded by a function that is double
exponential in the size of subc(φ≀), exponential in the size of subf(φ≀), and polynomial in the size of
NI(φ

≀) = NI(φ), which is overall at most double exponential in the size of the original formula φ [48,
Theorem 24] [30, Theorem 11.30]. Since the size of each quasistate is bounded exponentially in the
size of φ [48, Definition 10], we only need exponential space to search for such a quasimodel. □

5.2 Interval-Rigid Roles

We now additionally allow interval-rigid roles and obtain a 2-ExpSpace-hardness result matching
the upper bound given by Theorem 4.4. By Lemma 5.1, it suffices to prove hardness for 𝒜ℒ𝒞-
LTL⃝ over N. The proof uses a reduction from the word problem for double exponentially space
bounded deterministic Turing machines. We encode the computation of the machine along the
temporal dimension using double exponentially many time points for each configuration. The main
problem is that we need to transfer information about the tape cells double exponentially far to the
next configuration. We solve this by encoding a double exponential counter with exponentially
many bits, where each time point corresponds to a bit position, and the counter is incremented
using names that are interval-rigid for exponentially many time points. To transfer information
over double exponentially many steps, we use a domain element for each tape address and check
whether there is a match between the current value of the double exponential counter and the
address represented by this domain element. Lower bounds using double exponential counters
have already been studied [33, Theorem 4.2]. However our proof using interval-rigid roles uses
different constructions, presented in full detail in Appendix C.

Theorem 5.4. Satisfiability in 𝒜ℒ𝒞-LTL with interval-rigid names is 2-ExpSpace-hard.

5.3 Rigid Roles and Interval-Rigid Concepts

Finally, we show that further adding rigid roles makes satisfiability in 𝒜ℒ𝒞-LTL undecidable, even
if temporal operators are only used on assertions and no interval-rigid roles are used. Our proof is
by a reduction from the following tiling problem, which is Σ1

1-hard [34].4

Given a finite set of tile types T with horizontal and vertical compatibility relations H
and V , respectively, and t0 ∈ T , decide whether one can tile Z × N with t0 appearing
infinitely often in the first row to the right of position (0, 0).

We define an 𝒜ℒ𝒞-LTL |дGCI formula φT ,t0 that expresses this property. The vertical dimension (N)
is expressed using an infinite rigid role chain. For the horizontal dimension (Z), we use the temporal
dimension and simulate the constructor ⃝ by using ideas similar as in Lemma 5.1. Since we can
use only global GCIs, however, we cannot express the progression of the counter (using A0,A1,A2)
over all domain elements simultaneously. However, it is sufficient to do this for all elements on the
rigid role chain mentioned above, which can be done by transferring the value of the counter using
value restrictions.

More precisely, our reduction uses the following symbols:
• a rigid role name r to encode the vertical dimension of the Z × N grid;
• flexible concept namesA0,A1,A2 to encode a counter modulo 3 along the horizontal (temporal)
dimension;

• flexible concept names Pt (with t ∈ T ) to denote the current tile type;
• 2-rigid concept names N 0

t ,N
1
t ,N

2
t for the horizontally adjacent tile type; and

4In [34], the problem is shown to be Σ11-hard for the quadrant N × N, but this result can be extended to Z × N exactly as
in the proof of Theorem 6.3 in the same paper. Essentially, the runs of Turing machines are extended to trivial infinite
“backward” computations, which do not otherwise affect the behaviour of the machines.
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• an individual name a that denotes the first row of the grid.
We define φT ,t0 as the conjunction of the following𝒜ℒ𝒞-LTL |дGCI formulae. First, every domain

element must have exactly one tile type:

□□−
(
⊤ ⊑

⊔
t ∈T

(
Pt ⊓

l

t ′∈T , t,t ′
¬Pt ′

))
.

For the vertical dimension, we enforce an infinite rigid r -chain starting from a and restrict
adjacent tile types to be compatible:

□□−(⊤ ⊑ ∃r .⊤), □□−
(
Pt ⊑

⊔
(t ,t ′)∈V

∀r .Pt ′
)
.

For each time point i , we want to mark all individuals along the r -chain with the concept name
A(i mod 3). Instead of expressing this for all domain elements, we describe the progression of the
counter only for a, and then transfer the counter value to all r -connected elements, using the
following formulae for all 0 ≤ i ≤ 2:

A0(a), □□−
(
Ai (a) → ⃝Ai+1(a)

)
, □□−

(
Ai ⊑ ¬Ai+1 ⊓ ∀r .Ai ) .

The last GCI states two things simultaneously: first, Ai and Ai+1 are disjoint, and, second, the value
of Ai is transferred to all r -successors.

To encode the compatibility of horizontally adjacent tiles, we add the following formulae for all
0 ≤ i ≤ 2 and t ∈ T :

□□−
(
Pt ⊓Ai ⊑

⊔
(t ,t ′)∈H

N i
t ′

)
, □□−

(
N i
t ⊓Ai+1 ⊑ Pt

)
, □□−

(
Ai−1 ⊑ ¬N i

t
)
.

Similar to the proof of Lemma 5.1, these express that any domain element with tile type t (expressed
by Pt ) at a time point marked with Ai must have a compatible type t ′ at the next time point
(expressed by N i

t ′). Since all N i
t ′ are false at the previous time point (designated by Ai−1) and

iRig(N i
t ′) = 2, any N i

t ′ that holds at the current time point is still satisfied at the next time point
(marked by Ai+1), where it then implies Pt ′ .

Finally, we express the condition on t0 via the formula

□♢Pt0 (a).

We now obtain the claimed undecidability from known results about the tiling problem [34].

Theorem 5.5. Satisfiability in𝒜ℒ𝒞-LTL |дGCI with rigid roles and interval-rigid concepts is Σ
1
1-hard,

and thus not recursively enumerable.

6 𝒜ℒ𝒞-LTLbin
WITHOUT INTERVAL-RIGID NAMES

To conclude our investigation of metric temporal DLs, we consider the setting of 𝒜ℒ𝒞-LTLbin
without interval-rigid names. Observe that all lower bounds follow from known results, since they
hold already without past operators over a timeline given by N. In particular, ExpSpace-hardness
for 𝒜ℒ𝒞-LTLbin

|дGCI is inherited from LTLbin [3, 29], while rigid role names increase the complexity
to 2-ExpTime in 𝒜ℒ𝒞-LTL |дGCI [20] (see Table 2).

The upper bounds can be shown using an existing approach [20]. The idea is to split the satisfia-
bility test into two parts: one for the temporal and one for the DL dimension. In what follows, let φ
be an 𝒜ℒ𝒞-LTLbin formula. The propositional abstraction φp is the propositional LTLbin formula
obtained from φ by replacing every 𝒜ℒ𝒞 axiom by a propositional variable in such a way that
there is a one-to-one relationship between the 𝒜ℒ𝒞 axioms α1, . . . ,αm occurring in φ and the
propositional variables p1, . . . ,pm in φp.
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The general idea is to first verify the existence of a model of φp, and then to use it to construct
a model of φ (if it exists). While satisfiability of φ implies that φp is also satisfiable, the converse
is not true. For example, the propositional abstraction p ∧ q ∧ ¬r of φ = A ⊑ B ∧A(a) ∧ ¬B(a) is
satisfiable, while φ is not. To rule out such cases, we collect the propositional worlds occurring in a
model of φp into a (non-empty) set𝒲 ⊆ 2{p1, ...,pm } , which is then used to check the satisfiability
of the original formula (with rigid names). This is captured by the LTLbin formula φp𝒲 := φp ∧ φ𝒲 ,
where φ𝒲 is the (exponential) LTL formula

□□−
∨

W ∈𝒲

©­«
∧
p∈W

p ∧
∧
p∈W

¬p
ª®¬ ,

in whichW := {p1, . . . ,pm} \W denotes the complement ofW . The formula φp𝒲 states that, when
looking for a propositional model of φp, we are only allowed to use worlds from𝒲 .
Since satisfiability of φ implies satisfiability of φp𝒲 for some𝒲 , we can proceed as follows: we

first choose a set𝒲 of worlds, test whether φp𝒲 is satisfiable, and then check whether a model with
worlds from𝒲 can indeed be lifted to a temporal DL interpretation (respecting rigid names). To
check the latter, we consider the conjunction

∧
pj ∈W α j ∧

∧
pj ∈W ¬α j for everyW ∈ 𝒲 . Note that

the rigid names require that all these conjunctions are simultaneously checked for satisfiability. To
tell apart the flexible names X occurring in different elements of 𝒲 = {W1, . . . ,Wk }, we introduce
copiesX (i) for all i ∈ [1,k]. The axioms α (i)

j are obtained from α j by replacing every flexible nameX
by X (i), which yields the following conjunction of exponential size:

χ𝒲 :=
k∧
i=1

( ∧
pj ∈Wi

α (i)
j ∧

∧
pj ∈Wi

¬α (i)
j

)
.

The following known characterisation [20] can be easily adapted to our setting.

Lemma 6.1 ([20]). An 𝒜ℒ𝒞-LTLbin formula φ is satisfiable with rigid names iff there is a set

𝒲 ⊆ 2{p1, ...,pm }
such that φp𝒲 and χ𝒲 are both satisfiable.

From this, we can easily obtain the upper bounds for𝒜ℒ𝒞-LTLbin. Note that the ExpSpace upper
bound already follows from Theorem 5.3.

Theorem 6.2. Satisfiability in 𝒜ℒ𝒞-LTLbin is in 2-ExpTime with rigid names, and in ExpSpace

with rigid concepts.

Proof. By Lemma 6.1, the satisfiability of φ can be decided using the following steps:
(1) find a set 𝒲 ⊆ 2{p1, ...,pm } ,
(2) check the satisfiability of χ𝒲 , and
(3) check the satisfiability of φp𝒲 = φ

p ∧ φ𝒲 .
Depending on the targeted complexity class, Step (1) can be handled in the following different
ways [20]:

• one can guess a set𝒲 in (non-deterministic) exponential time, or
• one can enumerate all sets 𝒲 in (deterministic) double exponential time.

Moreover, Step (2) is exactly the same as for 𝒜ℒ𝒞-LTL, which means that the know complexity
upper bounds [20] directly apply to Steps (1) and (2). In particular, they are possible in 2-ExpTime
in general and in NExpTime if we only allow rigid concepts. It only remains to determine the
complexity of Step (3), and take the union of the obtained complexity classes.
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For this, we translate φp into an exponentially larger LTL formula φp ′ using Proposition 3.3. Since
the exponentially large φ𝒲 is already an LTL formula, the satisfiability of φp ′ ∧φ𝒲 can be checked
in exponential space. This yields the claimed results since NExpTime ⊆ (N)ExpSpace ⊆ 2-ExpTime.

□

As a result, in most cases, the complexity of the DL part is dominated by the ExpSpace complexity
of the temporal part. The only exception is the 2-ExpTime bound for𝒜ℒ𝒞-LTLbin with rigid names.

7 DISCUSSION AND RELATEDWORK

Temporal DLs have been extensively studied (see [39] for an overview). The most closely related
works [16, 20, 32] were already mentioned in the introduction. Our main contribution, presented in
Section 4, is a non-trivial extension of LTLbin𝒜ℒ𝒞 [32] with interval-rigid names and assertions, and
its complexity landscape. We also studied, in Sections 5 and 6, combinations of 𝒜ℒ𝒞-LTL [20] with
interval-rigid names and metric temporal logic, respectively. Our results are based on a previous
conference paper [16], the main difference being the change of temporal semantics from N to Z,
the encoding of assertions into GCIs (Section 3.1), and the proof that satisfiability in 𝒜ℒ𝒞-LTL
with interval-rigid names is 2-ExpSpace-hard (Section 5.2). We now discuss the relation with some
other works on (metric) temporal (description) logic.

Temporal Roles. A temporal operator □ applied to a single role leads to undecidability in LTLbin𝒜ℒ𝒞 ,
since one could then easily adapt the undecidability proof for satisfiability of LTL𝒜ℒ𝒞 with rigid
roles [39]. Artale et al. [11] show that one can combine𝒜ℒ𝒞 concepts with the qualitative operators
♢ and □ on roles by disallowing the ⃝-operator, but they do not consider quantitative variants.

Interval Temporal Logic. There are works combining DLs with (sublogics of) Halpern and
Shoham’s interval logic [4, 9, 42], which uses Allen’s 13 relations between intervals to reason
about the relative temporal position of different events. This setting is quite different from ours,
since it uses intervals (rather than time points) as the basic time units.

Metric Temporal Logic. Extensions of propositional logic with metric temporal operators have
been proposed for both linear [2, 3] and branching time [28]. In linear time, two semantics have been
studied: continuous and pointwise [40]. In the pointwise semantics, a monotonic function associates
each state with a time point. This mapping may not be continuous, as there may be time points
not associated with any state whereas in the continuous semantics each time point is associated
with a state (and vice-versa). One can polynomially translate a metric temporal logic formula
under the pointwise semantics into a formula under the continuous semantics over the natural
numbers [32, 35]. Once the semantics is chosen, there is the choice of timeline. In both semantics,
propositional metric temporal logic over the reals is undecidable [3], but decidable fragments have
been identified [1, 24]. In this work, we adopted a linear continuous semantics over the integers.
Recently, an interesting metric temporal extension of Datalog over the reals was proposed, which
however can express neither interval-rigid names nor existential restrictions [25, 26, 47].

Timeline. The complexity of temporal 𝒜ℒ𝒞 has been extensively studied over the natural num-
bers [20, 30, 48] and, more recently, over finite intervals of natural numbers [12–14]. As already
mentioned, our results build on our previous work [16] for a timeline given by N. The satisfiability
of formulae in the logics we consider may change depending on the chosen timeline. For instance, if
A is a 2-rigid concept name, then the formulaA(a)∧⃝□(⊤ ⊑ ¬A) is only satisfiable over Z, whereas
the formula B(a) ∧ □−(⊤ ⊑ ¬⃝B) cannot be satisfied over Z, but is satisfiable over N. Regarding
the quasimodel construction in Section 4.2, a central observation was that, with a semantics over Z,
every satisfiable formula has a constant quasimodel. This is not the case if the semantics is defined
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for N, since formulae of the form □(⊤ ⊑ ¬⃝C) enforce that a concept type can only contain C
at time point 0. Also, over Z, a quasistate at time point 1 can contain role constraints σ s

k σ
′ with

k > 1, which cannot happen over N.

Other Description Logics and Reasoning Problems. In principle, the arguments for 𝒜ℒ𝒞-LTLbin in
Section 6 are also applicable if we replace𝒜ℒ𝒞 by the lightweight DLs DL-Lite or ℰℒ, yielding tight
complexity bounds based on known results [7, 23]. The complexity of temporal extensions of DL-
Lite with interval-rigid roles and metric operators has been investigated in detail [46]. Apart from
satisfiability, the complexity of a variety of combinations of temporalised DLs and query languages,
in particular based on conjunctive queries, has been investigated previously [5, 10, 17, 18, 21–23, 31];
for a recent survey, see [6]. Probabilistic extensions of temporalised conjunctive queries are also
becoming the subject of investigations [36].

8 CONCLUSIONS

We have investigated a series of extensions of LTL𝒜ℒ𝒞 and 𝒜ℒ𝒞-LTL with interval-rigid names
and metric temporal operators, with complexity results ranging from ExpTime to 2-ExpSpace.
This paper provides a comprehensive guide to the complexities faced by applications that want
to combine ontological reasoning with quantitative temporal logics. There are several interesting
dimensions to explore further, guided by practical applications. These include using DLs other than
𝒜ℒ𝒞, metric temporal extensions of conjunctive queries, combinations with concrete domains and
probabilistic reasoning to model (uncertain) measurements, and using metric temporal semantics
based on bounded, finite, and dense timelines. An interesting extension of interval-rigid roles would
be to make the length of the interval-rigidity dependent on the role fillers. For example, a finding
of Influenza will typically have a different duration than one of ChickenPox, so one could require
any pair of elements (d, e) ∈ findingℐi with e ∈ Influenzaℐi to keep these two properties for at
least 7 days, and choose a longer duration in the case of ChickenPox. We conjecture that such an
extension would not affect our complexity results.
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A PROOFS FOR SECTION 3

Theorem 3.1. Satisfiability of LTLbin𝒜ℒ𝒞 |дGCI formulae can be polynomially reduced to satisfiability

of LTLbin𝒜ℒ𝒞 |дGCI formulae without assertions.

Proof. We show that φ ∧□□−𝒯 is satisfiable iff □□−(𝒯 ′∧ (⊤ ⊑ ∃r0.Aφ )) is satisfiable, where r0
is a fresh role name.
(⇐) Let I = (∆I, (ℐi )i ∈Z) be a model of □□−(𝒯 ′ ∧ (⊤ ⊑ ∃r0.Aφ )). Since 𝒯 ⊆ 𝒯 ′, we have

I, 0 |= □□−𝒯 . We extend I to an interpretation I′ = (∆I
′

, (ℐ ′
i )i ∈Z) for which additionally I′, 0 |= φ.

Since I, 0 |= ⊤ ⊑ ∃r0.Aφ and the domain must not be empty by definition, there exists a domain
element d⋆ ∈ ∆I such that d⋆ ∈ (Aφ )

ℐ0 . Based on d⋆, we extend I as follows.
• ∆I

′

B ∆I ∪
{
da fresh | a ∈ NI(φ)

}
.

• For all a ∈ NI(φ), set aI
′

B da .
• For all i ∈ Z and A ∈ NC, set Aℐ′

i B Aℐi ∪
{
da | d⋆ ∈ Aℐi

A(a)

}
.
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• For all i ∈ Z and r ∈ NR, set rℐ
′
i B rℐi ∪

{
(da,db ) | d

⋆ ∈ Aℐi
r (a,b)

}
∪

{
(da, e) | (d

⋆, e) ∈ rℐia
}
.

It is easy to show by structural induction on C that Cℐ′
i ∩ ∆I = Cℐi for all concepts C and i ∈ Z;

that is, the interpretation of all concepts on the original domain remains unchanged. In particular,
all GCIs in 𝒯 remain satisfied on the elements of ∆I. It is also straightforward to show by structural
induction that, for all assertions α over the concepts in sub

c(φ) ∪ sub
c(𝒯 ) and the individual names

NI(φ), it holds that I′, i |= α iff d⋆ ∈ Aℐi
α , for all i ∈ Z. We only describe the case of existential

restrictions here in detail. The other cases can be handled similarly.
Consider an assertion of the form (∃r .C)(a). First, if da ∈ (∃r .C)ℐ

′
i , then there is e ∈ ∆I

′ such that
(da, e) ∈ rℐ

′
i and e ∈ Cℐ′

i . If e = db for some b ∈ NI(φ), then I′, i |= r (a,b) ∧C(b), d⋆ ∈ Aℐi
r (a,b) and

d⋆ ∈ Aℐi
C(b), and because I, i |= A(∃r .C)(a) ≡

⊔
b ∈NI(φ)(Ar (a,b) ⊓AC(b)) ⊔ ∃ra .C , also d⋆ ∈ Aℐi

(∃r .C)(a).
Otherwise, e , db for all b ∈ NI(φ), which implies (d⋆, e) ∈ rℐia by the definition of I′. Since e ∈ Cℐ′

i

and e ∈ ∆I, also e ∈ Cℐi . But then, d⋆ ∈ (∃ra .C)
ℐi , which together with our equivalence axiom

implies d⋆ ∈ Aℐi
(∃r .C)(a). We obtain that I′, i |= (∃r .C)(a) implies d⋆ ∈ Aℐi

(∃r .C)(a).
Now assume that d⋆ ∈ Aℐi

(∃r .C)(a). Because I, i |= A(∃r .C)(a) ≡
⊔

b ∈NI(φ)(Ar (a,b) ⊓AC(b)) ⊔ ∃ra .C ,
either i) for someb ∈ NI(b), we haved⋆ ∈ Aℐi

r (a,b) andd
⋆ ∈ AC(b), or ii)d⋆ ∈ (∃ra .C)

ℐi . In both cases,
it follows by our inductive hypothesis and by construction that da ∈ (∃r .C)ℐ

′
i and I′, i |= (∃r .C)(a).

This concludes our induction, which also shows that the GCIs C ⊑ D from 𝒯 are satisfied by the
new domain elements of the form da , due to the axioms AC(a) ⊑ AD(a) in 𝒯 ′, which are satisfied
by I. A similar induction over the subformulae of φ can be used to show that I′, 0 |= φ. As a
consequence, we obtain I′, 0 |= φ ∧ □□−𝒯 .
(⇒) Let I = (∆I, (ℐi )i ∈Z) be a model of φ ∧ □□−𝒯 . Based on I, we construct a model I′ of

□□−(𝒯 ′ ∧ (⊤ ⊑ ∃r0.Aφ )) as follows, where I′ = (∆I
′

, (ℐ ′
i )i ∈Z). Note that ⊤ ⊑ ∃r0.Aφ requires us

to model the satisfaction of φ not only at time point 0, but actually at every time point. To this end,
the domain of the new interpretation basically consists of multiple copies of ∆I, regarded as fresh
at each time point. The model I′ is now defined as follows.

(a) ∆I′ B
{
di | d ∈ ∆I, i ∈ Z

}
.

(b) For every i, j ∈ Z and A ∈ NC(φ), set Aℐ′
i B

{
dj | j ∈ Z,d ∈ Aℐi+j

}
.

(c) For every i, j ∈ Z and r ∈ NR(φ), set rℐ
′
i B

{
(dj , ej ) | j ∈ Z, (d, e) ∈ rℐi+j

}
.

(d) For every i ∈ Z, set rℐi0 B
{
(d, ei ) | d ∈ ∆I

′

, e ∈ ∆I
}
.

(e) For every i, j ∈ Z and concept name Aψ , set A
ℐ′
i
ψ B

{
dj | d ∈ ∆I, j ∈ Z, I, i + j |= ψ

}
.

(f) For every i, j ∈ Z, a ∈ NI(φ), and r ∈ NR, set r
ℐ′
i

a B
{
(dj , ej ) | d ∈ ∆I, j ∈ Z, (aℐ, e) ∈ rℐi+j

}
.

Items (a)–(c) ensure that, for each i ∈ Z, I′ contains a copy of interpretation I shifted by i
time units; for instance, if e ∈ Aℐ5 , then, by definition, e6 ∈ Aℐ′

−1, e5 ∈ Aℐ′
0, e4 ∈ Aℐ′

1 , e3 ∈ Aℐ′
2 ,

etc. This yields I′, 0 |= □□−𝒯 , because the remaining items refer to names that do not occur
in 𝒯 . Additionally, all domain elements encode the timeline of the assertions, where again each di
represents the assertions that are to be satisfied shifted by i time points. The GCI ⊤ ⊑ ∃r0.Aφ can
thus be satisfied at every time point, which is established by Items (d) and (e). Finally, given the
semantics of LTLbin𝒜ℒ𝒞 , Items (e) and (f) yield that the remaining axioms in 𝒯 ′ are also satisfied at
every time point, because no other item refers to the freshly introduced concept and role names.
Hence, we obtain I′, 0 |= □□−(𝒯 ′ ∧ (⊤ ⊑ ∃r0.Aφ )). □

Theorem 3.2. Satisfiability of LTLbin𝒜ℒ𝒞 formulae can be polynomially reduced to satisfiability of

LTLbin𝒜ℒ𝒞 formulae without assertions.

Proof. We show that φ is satisfiable iff φ ′ ∧ φ𝒜 ∧ □□−𝒯 ′ is satisfiable.
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(⇒) Assume that φ is satisfiable, and let I = (∆I, (ℐi )i ∈Z) be a model of φ. We extend I to a
model I′ = (∆I, (ℐ ′

i )i ∈Z) of φ
′ ∧ φ𝒜 ∧ □□−𝒯 ′. To this end, for every i ∈ Z, we extend ℐi to ℐ ′

i as
follows.
(1) For every X ∈ NC(φ) ∪ NR(φ), set Xℐ′

i B Xℐi .
(2) For every introduced concept name Aα , set A

ℐ′
i
α B ∆I if I, i |= α , and otherwise Aℐ′

i
α B ∅.

(3) For every r ∈ NR(φ) and a ∈ NI(φ), set r
ℐ′
i

a B
{
(d, e) | d ∈ ∆I, (aI, e) ∈ rℐi

}
.

Note that ra again captures the r -successors of a, which are now reachable by all domain elements,
since the concept names Aα encoding the assertional behaviour are now satisfied equally by all
domain elements, or by none. Since the interpretation of the names in NC(φ) ∪ NR(φ) remains
unchanged, for every GCI C ⊑ D occurring in φ and i ∈ Z, we have I′, i |= C ⊑ D iff I, i |= C ⊑ D.
Item (2) yields that, for all i ∈ Z and assertions α occurring in φ, I′, i |= ⊤ ≡ Aα iff I, i |= α .
Since I, 0 |= φ, a standard structural induction yields that I′, 0 |= φ ′. We now consider any of the
formulae

□□−
( (
C ⊑ D

)
→

∧
a∈NI(φ)

(
AC(a) ⊑ AD(a)

) )
in φ𝒜. Assume that I′, i |= C ⊑ D for any i ∈ Z, and let a ∈ NI(φ). Since both AC(a) and AD(a)
are equivalent to either ⊤ or ⊥ in ℐ ′

i , the only interesting case is where I′, i |= ⊤ ≡ AC(a). By the
arguments above, we obtain I, i |= C ⊑ D as well as I, i |= C(a), and hence I, i |= D(a), which
again yields I′, i |= ⊤ ≡ AD(a), and finally I′, i |= AC(a) ⊑ AD(a).
The remaining axioms in φ𝒜 of the form □□−

(
(⊤ ≡ Aα ) ∨ (⊥ ≡ Aα )

)
are clearly also satisfied.

Finally, I′, 0 |= □□−𝒯 ′ follows by comparing the axioms to the semantic conditions of LTLbin𝒜ℒ𝒞 .
(⇐) Let I = (∆I, (ℐi )i ∈Z) be a model of φ ′ ∧ φ𝒜 ∧ □□−𝒯 ′. We choose an arbitrary individual

d⋆ ∈ ∆I and adapt I to a model I′ = (∆I
′

, (ℐ ′
i )i ∈Z) of φ as follows.

(1) ∆I′ B ∆I ∪
{
da fresh | a ∈ NI(φ)

}
.

(2) For every a ∈ NI(φ), set aI
′

B da .
(3) For every i ∈ Z, A ∈ NC, and a ∈ NI(φ), set Aℐ′

i B Aℐi ∪
{
da | d⋆ ∈ Aℐ

A(a)

}
.

(4) For every i ∈ Z and r ∈ NC, set rℐ
′
i = rℐi ∪

{
(da,db ) | d

⋆ ∈ Aℐi
r (a,b)

}
∪

{
(da, e) | (d

⋆, e) ∈ rℐia
}
.

Since I, 0 |= φ𝒜, all domain elements must agree on the concept names Aα , and hence which d
we choose is irrelevant, and we can show similarly as in the proof of Lemma 3.1 that I′, i |= α
iff d⋆ ∈ Aℐi

α iff Aℐi
α = ∆I iff I, i |= ⊤ ≡ Aα , for all relevant assertions α . Since I, 0 |= φ ′, it only

remains to show that the same holds for GCIs, i.e., we have I′, i |= C ⊑ D iff I, i |= C ⊑ D, and the
claim then follows by straightforward structural induction. Again as in the proof of Lemma 3.1,
Cℐ′

i ∩ ∆I = Cℐi can be shown for all concepts C . Hence, if I′, i |= C ⊑ D, then we immediately
have I, i |= C ⊑ D. On the other hand, if I, i |= C ⊑ D, then because of I, 0 |= φ𝒜 the GCI is also
satisfied on the new domain elements. □

Theorem 3.4. Every LTL0,∞𝒜ℒ𝒞 formula can be translated in polynomial time into an equisatisfiable

LTL𝒜ℒ𝒞 formula.

Proof. We first describe the reduction of temporal concepts. As already mentioned, the basic
idea [38] is to use a counter to determine the distance to the nearest time point that makes a concept
of the form C 𝒰[0,c]D true (i.e., it satisfies D, and C is satisfied at all time points in between). This
counter is initialised whenever D is satisfied, counts (backwards in time) from 0 up to c + 1 as long
asC is satisfied, and then stays at c + 1. The conceptC 𝒰[0,c]D is satisfied iff the counter value is ≤ c .
The counter is represented by fresh concept names, one for each bit in the binary representation,
of which there are polynomially many. This suffices since, for each individual and each time point,
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there is a unique nearest time point satisfying D, which uniquely determines the counter value. For
a concept of the formC 𝒰[c ,∞)D, we can use a similar counter, which however counts the distance to
the furthest occurrence of D that makes C 𝒰[c ,∞]D true. Then, C 𝒰[c ,∞)D is satisfied iff the counter
value is ≥ c . The idea for C 𝒮[0,c]D and C 𝒮[c ,∞)D is the same, but the counter is increased in the
other direction of the timeline.
More formally, let φ be an LTL0,∞𝒜ℒ𝒞 formula. For each subconcept of the form F = C 𝒰ID or

F = C 𝒮ID occurring in φ, where I is either [0, c] or [c,∞), we introduce fresh concept names
AF
0 , . . . ,A

F
ℓF
, where ℓF = ⌈log(c + 1)⌉ − 1. Then, concepts such as

(
AF ≤ c

)
are used to compare the

counter value represented by the concept names AF
i to the value of c . More precisely, we define the

following abbreviations, where for any d ∈ [0, . . . , 2ℓF ) and 0 ≤ i ≤ ℓF , we have that di denotes the
i-th bit of the binary representation of d .(

AF
i = di

)
B

{
AF
i if di = 1

¬AF
i otherwise

(
AF
i < di

)
B

{
¬AF

i if di = 1
⊥ otherwise(

AF = d
)
B

ℓFl

i=0

(
AF
i = di

) (
AF < d

)
B

ℓF⊔
i=0

((
AF
i < di

)
⊓

ℓFl

j=i+1

(
AF
i = di

))
(
AF ≤ d

)
B

(
AF = d

)
⊔

(
AF < d

) (
AF > d

)
B ¬

(
AF ≤ d

) (
AF ≥ d

)
B ¬

(
AF < d

)
To express that the counter value is decremented along the temporal dimension, we use the concept

(AF−−) :=
ℓFl

i=0

((
i−1l

j=0
⃝AF

j

)
↔

( (
⃝AF

i
)
↔

(
¬AF

i
) ))
,

which flips the i-th bit of AF iff all lower bits at the next time point are set. We now define a
recursive transformation ·∗ on LTL0,∞𝒜ℒ𝒞 concepts as follows.

A∗ B A for all A ∈ NC ∪ {⊤} (¬C)∗ B ¬C∗

(∃r .C)∗ B ∃r .C∗ (C ⊓ D)∗ B C∗ ⊓ D∗

(⃝C)∗ B ⃝C∗ (⃝−C)∗ B ⃝
−C∗

(C 𝒰[0,c]D)
∗ B (C∗𝒰D∗) ⊓

(
AC 𝒰[0,c ]D ≤ c

)
(C 𝒰[c ,∞)D)

∗ B (C∗𝒰D∗) ⊓
(
AC 𝒰[c ,∞)D ≥ c

)
(C 𝒮[0,c]D)

∗ B (C∗𝒮D∗) ⊓
(
AC 𝒮[0,c ]D ≤ c

)
(C 𝒮[c ,∞)D)

∗ B (C∗𝒮D∗) ⊓
(
AC 𝒮[c ,∞)D ≥ c

)
The concepts C∗𝒰D∗ and C∗𝒮D∗ ensure that the counter value is well-defined, i.e., that there
actually exists a future or past time point that satisfies D andC is satisfied in the meantime. Finally,
we obtain φ∗ from φ by replacing every concept C by C∗.

To describe the behaviour of the counter, we use the global GCI ⊤ ⊑ BF0 ⊓ BF1 ⊓ BF2 , where for
F = C 𝒰[0,c]D, the three concepts are defined as follows.

BF0 B D∗ ↔
(
AF = 0

)
BF1 B

(
C∗ ⊓ ¬D∗ ⊓ ⃝

(
AF ≤ c

) )
→ (AF−−)

BF2 B
(
C∗ ⊓ ¬D∗ ⊓ ⃝

(
AF = c + 1

) )
→

(
AF = c + 1

)
These concepts express that the counter AF is reset to 0 whenever we encounter D (enforced

by BF0 ), it is increased (backwards in time) up to c + 1 as long asC remains satisfied (BF1 ), and it then
remains at c + 1 until we encounter a previous occurrence of D, or C is not satisfied anymore (BF2 ).
We thus formalise the intuition described in the beginning of this proof, that is, that the counter AF

represents the (unique) amount of time that has to elapse until the nearest occurrence of D such
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that C is satisfied in the meantime. Thus, instead of F = C 𝒰[0,c]D, we can thus equivalently use
the concept F ∗ = (C∗𝒰D∗) ⊓

(
AF ≤ c

)
, which checks whether the counter value does not exceed c .

For F = C 𝒮[0,c]D, we define BF0 , B
F
1 and BF2 accordingly, where we replace each ⃝ with ⃝− (also

within (AF−−)).
For F = C 𝒰[c ,∞)D, we define

BF0 B
(
D∗ ⊓ ⃝¬(C∗𝒰D∗)

)
↔

(
AF = 0

)
,

BF1 B
(
C∗ ⊓ ⃝

(
AF ≤ c

) )
→ (AF−−),

BF2 B
(
C∗ ⊓ ⃝

(
AF = c + 1

) )
→

(
AF = c + 1

)
.

The differences to the previous case are that the counter is only reset to 0 at the last possible D,
i.e., whenever C 𝒰D does not hold afterwards, and that the counter is increased regardless of D.
This again reflects the intuition described above, that AF marks the distance to the last possible
occurrence of D that makes F true. Intermediate occurrences of D can simply be ignored, as long
asC remains satisfied. Again, for F = C 𝒮[c ,∞]D, we have the same definitions only with ⃝ replaced
by ⃝− and 𝒰 replaced by 𝒮 .

It is easy to check that φ is satisfiable iff φ∗ ∧
∧

F □□−
(
⊤ ⊑ BF0 ⊓ BF1 ⊓ BF2

)
is satisfiable, where F

ranges over all 𝒰- and 𝒮-concepts in φ that are not already of the form C 𝒰D or C 𝒮D.
To simulate 𝒰- and 𝒮-formulae ψ in φ, we use a very similar construction, where we replace

concepts by formulae, i.e.,
• we define the translation ·∗ similarly on formulae,
• instead of concept names we have axioms,
• instead of ⊓ we use ∧,
• instead of AF

i we use the assertion A
ψ
i (a), where a is a fresh individual name,

• instead of ⊤ ⊑ BF0 ⊓ BF1 ⊓ BF2 we use Bψ0 ∧ B
ψ
1 ∧ B

ψ
2 .

Overall, this yields an LTL𝒜ℒ𝒞 formula of polynomial size that is satisfiable iff φ is satisfiable.
To apply this construction to sublogics of LTL0,∞𝒜ℒ𝒞 , observe that we only introduce global

GCIs, and hence satisfiability in LTL0,∞𝒜ℒ𝒞 |дGCI can be polynomially reduced to satisfiability in
LTL𝒜ℒ𝒞 |дGCI . Moreover, the reduction is not affected by the rigidity of the used names, and temporal
operators on the concept level are only used in the translation if they are present in φ. □

To prove Lemma 3.5, we first show the following basic result.

Lemma A.1. An LTLbin𝒜ℒ𝒞 formula φ without assertions is satisfiable iff there is a quasimodel for φ.

Proof. (⇒) Given an interpretation I = (∆, (ℐi )i ∈Z) such that I, 0 |= φ, we define quasistates
S(i) for all i ∈ Z and a corresponding set R of runs as follows:

S(i) B {tℐi (e) | e ∈ ∆I} ∪ {{ψ ∈ cl
f(φ) | ℐi |= ψ }},

R B {(tℐi (e))i ∈Z | e ∈ ∆I},

where tℐi (e) B {C ∈ cl
c(φ) | e ∈ Cℐi }. Taking the above definitions into account, it can be readily

checked that every S(i) indeed represents a quasistate, R is a set of runs, and (S,R) is a quasimodel
for φ.

(⇐) Let (S,R) be a quasimodel for φ. Let I = (∆I, (ℐi )i ∈Z) be an LTLbin𝒜ℒ𝒞 interpretation, where

∆I B {dr | r ∈ R is a concept run},

Aℐi B {dr | A ∈ r (i), r ∈ R},

sℐi B {(dr ,dr ′) | ∃s .C ∈ r (i),C ∈ r ′(i), {¬E | ¬∃s .E ∈ r (i)} ⊆ r ′(i)}.
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By structural induction and based on the shape of quasistates and runs in quasimodels, it is easy to
show that, for all runs r ∈ R, concepts C ∈ cl

c(φ), and i ∈ Z, we have C ∈ r (i) iff dr ∈ Cℐi . Using
the above conditions for quasistates and runs,M2,M3, and structural induction on formulae, one
can show that, for all i ∈ Z and ψ ∈ cl

f(φ), it holds that I, i |= ψ iff ψ ∈ tS (i), where tS (i) is the
formula type in S(i). Hence, byM1, I, 0 |= φ. □

Lemma 3.5. An LTLbin𝒜ℒ𝒞 formula φ is satisfiable iff it has a quasimodel (S,R) in which S is of the

form

ω (
S(−k1) . . . S(−k2 − 1)

)
S(−k2) . . . S(0) . . . S(k3)

(
S(k3 + 1) . . . S(k4)

)ω
,

where k1, k2, k3 and k4 are bounded double exponentially in the size of φ.

Proof. There can be at most exponentially many types for φ, and consequently at most double
exponentially many quasistates. One can use an argument similar to the one that has been used
for monodic first-order temporal logic, 𝒬𝒯 ℒ𝒰□1 [30, Theorem 11.30]. Since here we deal with the
timeline Z, the regularity needs to be present in both directions, which can easily be proven as in
the proof of 𝒬𝒯 ℒ𝒰□1, except that we need to apply the argument in both directions. □

Lemma 3.6. An LTLbin𝒜ℒ𝒞 |дGCI formula □□−𝒯 is satisfiable iff it has a constant quasimodel.

Proof. We consider the non-trivial direction (⇒). Assume that there exists a quasimodel (S,R)
for □□−𝒯 . We modify S(n) by adding to S(n) all concept types in S(i), for all i ∈ Z with i , n. We
also add to R all runs in

{r→i | r ∈ R a concept run, i ∈ Z},

where r→i (n) B r (n + i) for all r ∈ R and n ∈ Z. That is, now S is a sequence with only one set of
types. Since we had a single formula type in (S,R), by the definition of quasimodels and the fact
that the formula is of the form □□−𝒯 , this set is in fact a quasistate satisfying Conditions S1–S3.
We modify R by adding runs which are the result of shifting the runs in R. This does not change
the fact that they satisfy Conditions R1–R4. Finally, one easily checks that our modified (S,R)
satisfies Conditions M1–M3 and thus is a constant quasimodel for □□−𝒯 . □

To prove Theorem 3.7, we need to show that satisfiability of LTL𝒜ℒ𝒞 and LTLbin𝒜ℒ𝒞 |дGCI formulae
is ExpSpace-complete (Lemmas A.2 and A.5); and satisfiability of LTL𝒜ℒ𝒞 |дGCI formulae is ExpTime-
complete (Lemma A.5). By Theorems 3.2 and 3.1, we can assume w.l.o.g. that formulae do not
contain assertions.

Lemma A.2. Satisfiability in LTL𝒜ℒ𝒞 is ExpSpace-complete.

Proof. The ExpSpace lower bound follows from known results [30, 39], since without past
operators a formula is satisfiable over N iff it is satisfiable over Z. We prove the upper bound.
By Lemma 3.5, we only need to check for the existence of a regular quasimodel. We can use an
NExpSpace algorithm like the one for 𝒬𝒯 ℒ𝒰□1 [30, Theorem 11.30], adapted so that it checks for
the existence of a quasimodel which is regular in both directions. □

We now describe a decision procedure for checking satisfiability of LTLbin𝒜ℒ𝒞 formulae of the
form □□−𝒯 , i.e., for detecting the existence of a constant quasimodel (cf. Lemma 3.6): first we find
a single quasistate Q that satisfiesM1 and then determine whether, for every concept type t ∈ Q ,
there exists a run r : Z→ Q , thus verifying Condition M3. Condition M2 is satisfied trivially. The
next lemmas show that this can be decided using only exponential space, only exponential time
when we restrict 𝒯 to LTL𝒜ℒ𝒞 .
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Lemma A.3. Let Q be a quasistate for □□−𝒯 and t ∈ Q . Then there exists a run r : Z→ Q with

r (0) = t iff there exists such a run of the following form:

ω (
r (−k1) . . . r (−k2 − 1)

)
r (−k2) . . . r (0) . . . r (k3)

(
r (k3 + 1) . . . r (k4)

)ω
,

where k1, k2, k3 and k4 are double exponentially bounded in the size of □□−𝒯 . Moreover, if □□−𝒯
contains only LTL𝒜ℒ𝒞 concepts, then k1, k2, k3 and k4 are single exponentially bounded.

Proof. The argument is based on the argument for PSpace-membership of satisfiability of
propositional LTL formulae [45]. We are going to use the following claim.

Claim. If r is a run r : Z→ Q such that r [s ,s+ℓ𝒯 ] = r [t ,t+ℓ𝒯 ]
for some s, t ∈ N with s < t , where ℓ𝒯

is the largest number occurring in any interval in 𝒯 (or ℓ𝒯 = 1 if no number occurs), then r ′ = r ≤s ·r>t

is also a run.

Proof of the claim. We show that r ′ satisfies Conditions R1–R4. Conditions R1 and R2 focus
on concepts of the form ⃝C and ⃝−C and, especially regarding r ′(s) and r ′(s + 1), they hold by the
fact that r (s + 1) = r (t + 1). Concerning Condition R3, which regards concepts of the form C 𝒰ID,
we distinguish between whether I is of the form [c1, c2] or [c1,∞). In the first case, we note that,
since c2 ≤ ℓ𝒯 any concept of this form that occurs before r (s) in r has to be realised in r ≤s+ℓ𝒯 , and
since r [s ,s+ℓ𝒯 ] = r [t ,t+ℓ𝒯 ], it is also realised in r ′. For concepts of the form C 𝒰[c1,∞]D, if they occur
before r (s) and are realised after r (s + ℓ𝒯 ), then we have C 𝒰[c1,∞]D ∈ r (s + ℓ𝒯 ) = r (t + ℓ𝒯 ), which
means that they are realised again after r (t + ℓ𝒯 ), and consequently also in r ′. The argument for
Condition R4 is accordingly. □

By the claim, we can eliminate any repetition of a sequence of length ℓ𝒯 in a run. Now, let r be
any run and 0 < k ′

3 < k ′
4 be two integers such that r [k ′3−ℓ𝒯 ,k ′3] = r [k

′
4−ℓ𝒯 ,k ′4] and

for every C 𝒰D ∈ r (k ′
3), there is i ∈ [k ′

3,k
′
4] such that D ∈ r (i) and C ∈ r (j) for all j ∈ [k ′

3, i]. (∗)
It already follows that the infinite sequence

. . . r (0) . . . r (k ′
3)

(
r (k ′

3 + 1) . . . r (k
′
4)
)ω

is also a run. By Claim, we can remove any repeating sequences of length ℓ𝒯 from r [0,k
′
3] and r (k ′3,k ′4]

such that (∗) does not get invalidated. Denote the resulting sequence by r ′ and the resulting new
integers by k3 and k4 (as in the statement of the lemma). We give upper bounds on k3 and k4. First,
r ′[0,k3] contains no sequence of length ℓ𝒯 twice, and since the number of types is bounded by 2 |φ | ,
we obtain k3 ≤ 2 |φ | ·ℓ𝒯 , which is a double exponential bound on φ (assuming binary encoding
for ℓ𝒯 ), and a single exponential bound if ℓ𝒯 = 1, which is the case if φ contains only LTL𝒜ℒ𝒞
concepts. Now consider k4. For any i1, i2 ∈ [k3,k4], such that i1 ≤ i2 and r ′[i1−ℓ𝒯 ,i1] = r ′[i2−ℓ𝒯 ,i2],
there must exist some C 𝒰D ∈ r ′(k3) such that, for some j ∈ [i1, i2], D ∈ r ′(j), since otherwise, we
could have applied Claim on r ′[i1−ℓ𝒯 ,i1] = r ′[i2−ℓ𝒯 ,i2] without invalidating (∗). As there are at most
|φ | different concepts of the form C 𝒰ID in φ, it follows that every subsequence of r ′ of length ℓ𝒯
can be repeated at most |φ | times in r ′[k3−ℓ𝒯 ,k4]. As there are at most 2 |φ | different possible types
and at most 2 |φ | ·ℓ𝒯 different type sequences of this length, it follows that k4 ≤ k3 + 2 |φ | ·ℓ𝒯 · |φ |,
and thus k4 is also double exponentially bounded in |φ |, and single exponentially bounded if φ is in
LTL𝒜ℒ𝒞 . It follows that there exists a run of the following form through t :

. . . r ′(0) . . . r ′(k3)
(
r ′(k3 + 1) . . . r ′(k4)

)ω
,

where k3 and k4 are double exponentially bounded, and single exponentially bounded if □□−𝒯
contains only LTL𝒜ℒ𝒞 concepts. We can apply the same argument regarding C 𝒮ID and on the
subsequence r (−∞,0] to show that there is also a run which is regular in both directions, and of the
shape required by the lemma. □
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Lemma A.4. Given a quasistateQ for □□−𝒯 and t ∈ Q , it can be decided in exponential space w.r.t.

the size of 𝒯 whether there exists a run r : Z → Q such that r (0) = t . If 𝒯 contains only LTL𝒜ℒ𝒞
concepts, it can be decided in exponential time in the size of 𝒯 .

Proof. By Lemma A.3, it suffices to determine the existence of such a run of the form
ω (
r (−k1) . . . r (−k2 − 1)

)
r (−k2) . . . r (0) . . . r (k3)

(
r (k3 + 1) . . . r (k4)

)ω
with k1, k2, k3 and k4 double exponentially bounded in the size of 𝒯 .

We verify the existence of this run by considering both directions from r (0), first showing
the existence of a sequence r (0) . . . r (k3)

(
r (k3 + 1) . . . r (k4)

)ω , and afterwards the existence of a
sequence ω

(
r (−k1) . . . r (−k2−1)

)
r (−k2) . . . r (0). In order to verify in non-deterministic exponential

space the existence of the path r (0) . . . r (k3)
(
r (k3 + 1) . . . r (k4)

)ω , we first guess the numbers k3
and k4, which both can be stored in exponential space, and then each type r (i), one after the other,
keeping a window of ℓ𝒯 consecutive types in memory at each point, where ℓ𝒯 is the maximal
number occurring in 𝒯 , and verifying Conditions R1–R4 in each step. When we reach the window
r [k3−ℓ𝒯 ,k3], we additionally store it in memory, so that we can verify r [k3−ℓ𝒯 ,k3] = r [k4−ℓ𝒯 ,k4] after
we have reached the last window.

For temporal concepts of the form ⃝C and ⃝−C , C 𝒰[c1,c2]D and C 𝒮[c1,c2]D, our window size is
sufficient for determining if Conditions R1–R4 are satisfied. For concepts of the form C 𝒮[c1,∞)D,
we just verify that C 𝒮[0,∞)D is present c1 types before, and that every C 𝒮[0,∞)D is preceded by
either D orC 𝒮[0,∞)D. (Whether these 𝒮-expressions are eventually realised by an occurrence of the
conceptD in the past is checked when we verify the run in the other direction.) Concepts of the form
C 𝒰[c ,∞)D are kept in memory until they are realised. In addition, we verify that every concept of the
formC 𝒰[c ,∞)D ∈ r (k3) is realised before we reach r (k4), thus ensuring that any of these concepts in
r (k4) can be realised in the repetition of the sequence

(
r (k3 + 1) . . . r (k4)

)ω . Note that, in each step,
we only need to store an exponential amount of information. Therefore, this approach can be imple-
mented by a non-deterministic exponentially-space bounded Turing machine. In a similar manner,
but treating 𝒮 as 𝒰 and vice versa, we can show that, starting from the initial window r [0,k3], we can
find a regular sequence into the past of the form ω (

r (−k1) . . . r (−k2 − 1)
)
r (−k2) . . . r (0) . . . r (k3) so

that the whole procedure runs in exponential space.
If 𝒯 contains only LTL𝒜ℒ𝒞 concepts, then, by Lemma A.3, k1, k2, k3 and k4 can be bounded single

exponentially in the size of □□−𝒯 . Furthermore, ℓ𝒯 is 1, and thus instead of sequences of types
we need to keep in memory only three single types (the current type, the next type, and the first
repeating types r (k3 + 1) and r (−k2 − 1)), each of which is of polynomial size. Finally, checking
that the types we guess belong to the exponentially large quasistate Q can be done in exponential
time, and hence the whole procedure runs in exponential time. □

Lemma A.5. Satisfiability is ExpSpace-complete in LTLbin𝒜ℒ𝒞 |дGCI . Moreover, it is ExpTime-complete

in LTL𝒜ℒ𝒞 |дGCI .

Proof. The first lower bound follows from the fact that satisfiability of propositional LTLbin
formulae over the integers is already ExpSpace-complete [29], while the second lower bound
follows from the complexity of 𝒜ℒ𝒞 TBox satisfiability [43]. The upper bounds are established by
the following procedure. Let □□−𝒯 be an LTLbin𝒜ℒ𝒞 |дGCI formula. Since we only need to verify the
existence of a constant quasimodel, it suffices to construct a single quasistate, which we do by type
elimination. For this, we start with the set of all possible concept types, from which we step-by-step
remove those that do not satisfy the conditions for the quasistate in a constant quasimodel. It is
easy to verify that, for each concept type, this can be decided deterministically, and that for all but
Condition M3, we only have to check the remaining other concept types in the current set. For
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Condition M3, we have to check that for every concept type t in the current quasistate Q , there is
a run over Q that goes through t . By Lemma A.4, this can be verified in exponential space, and
in exponential time provided that 𝒯 contains only LTL𝒜ℒ𝒞 concepts. We thus obtain the desired
complexity bounds. □

B PROOFS FOR SECTION 4

Lemma 4.2. In the presence of interval-rigid names, satisfiability of LTLbin𝒜ℒ𝒞 formulae (with global

GCIs) can be polynomially reduced to satisfiability of LTLbin𝒜ℒ𝒞 formulae (with global GCIs and) without

assertions.

Proof. We can use the same constructions as for Theorems 3.1 and 3.2, provided that we make
the new concept names AB(a) interval-rigid whenever B ∈ NC is (with iRig(AB(a)) B iRig(B)), and
similarly for Ar (a,b), ra and r ∈ NR (with iRig(Ar (a,b)) = iRig(ra) = iRig(r )). All interpretations
constructed in the respective proofs then respect all interval-rigid names. □

To prove Lemma 4.3, we first show that the existence of quasimodels completely captures
satisfiability of LTLbin𝒜ℒ𝒞 formulae.

Lemma B.1. An LTLbin𝒜ℒ𝒞 formula φ is satisfiable with interval-rigid names iff there is a quasimodel

for φ.

Proof. (⇒) Assume there is a model I = (∆I, (ℐi )i ∈Z) of φ that respects interval-rigid names.
We associate a concept run rd to every domain element d ∈ ∆I by setting

rd (i) B {C ∈ cl
c(φ) | d ∈ Cℐi }.

We define the formula run rI by rI(i) B {ψ ∈ cl
f(φ) | I, i |= ψ } for all i ∈ Z. We now set

R B {rd | d ∈ ∆I} ∪ {rI}, and define the infinite sequence of quasistates S(i), i ∈ Z, as follows.
For i ∈ Z, the set ℛS (i) contains all run segments r [i−ℓφ ,i+ℓφ ] with r ∈ R. Furthermore, 𝒞S (i) is the
set of role constraints σ s

k σ
′, such that σ = r

[i−ℓφ ,i+ℓφ ]
d , σ ′ = r

[i−ℓφ ,i+ℓφ ]
d ′ and k ∈ [1, iRig(s)]. It

is straightforward to show that (S,R) is a quasimodel. In particular, the maximal compatibility
relations πi , i ∈ Z, contain the pairs (r [i−ℓφ ,i+ℓφ ], r [i+1−ℓφ ,i+1+ℓφ ]) with r ∈ R.
(⇐) Assume there is a quasimodel (S,R) for φ. We define the temporal DL interpretation

I = (∆I, (ℐi )i ∈Z) as follows.

∆I B {dr | r ∈ R is a concept run}

Aℐi B {dr | A ∈ r (i), r ∈ R}

sℐi B {(dr ,dr ′) | r
[j−ℓφ , j+ℓφ ] s

1 r
′[j−ℓφ , j+ℓφ ] ∈ S(j), i − j ∈ [0, iRig(s)), r , r ′ ∈ R}

By referring to the role constraint r [j−ℓφ , j+ℓφ ] s
1 r

′[j−ℓφ , j+ℓφ ], which may lie in the past of time
point i , we make sure that we always connect the domain elements for the same two runs for iRig(s)
consecutive time points, and do not use a different pair of runs for every time point. To see that I
respects interval-rigid names, consider any (dr ,dr ′) ∈ sℐi . There must be a j with i − j ∈ [0, iRig(s))
and r [j−ℓφ , j+ℓφ ] s

1 r
′[j−ℓφ , j+ℓφ ] ∈ S(j). But then (dr ,dr ′) ∈ sℐℓ for all ℓ ∈ [j, j + iRig(s)), and this

interval includes i .
To show that I is also a model of φ, we prove the following claim.

Claim. For all concept runs r ∈ R, C ∈ cl
c(φ) and i ∈ Z, we have

C ∈ r (i) iff dr ∈ Cℐi .
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Proof of the claim. We argue by structural induction. If C is a concept name, then the claim
holds by construction. Moreover, the cases C = ¬D and C = D ⊓ E are straightforward. It remains
to consider ∃, ⃝, ⃝−, 𝒰I , and 𝒮I .

• Assume C = ∃s .D: if ∃s .D ∈ r (i), then, by M2 and S2, there is a run segment σ ∈ ℛS (i)

such that r [i−ℓφ ,i+ℓφ ] s
k σ ∈ 𝒞S (i), D ∈ σ (0), and k ∈ [1, iRig(s)]. By repeated applica-

tion of M2, C3, and C5, we can find another run segment σ ′ ∈ ℛS (i−(k−1)) such that
r [i−(k−1)−ℓφ ,i−(k−1)+ℓφ ] s

1 σ
′ ∈ 𝒞S (i−(k−1)) and σ ′≥k−1 = σ ≤ℓφ−(k−1). By M3, there must be

a run r ′ ∈ R such that r ′[i−(k−1)−ℓφ ,i−(k−1)+ℓφ ] = σ ′ and D ∈ r ′(i). By the induction hypothesis
and the definition of sℐi , we obtain dr ′ ∈ Dℐi and (dr ,dr ′) ∈ sℐi , and hence dr ∈ (∃s .D)ℐi .
Conversely, if dr ∈ (∃s .D)ℐi , then there is r ′ ∈ R such that (dr ,dr ′) ∈ sℐi and dr ′ ∈ Dℐi . By
the induction hypothesis and the definition of sℐi , we have D ∈ r ′(i) and furthermore also
r [j−ℓφ , j+ℓφ ] s1 r

′[j−ℓφ , j+ℓφ ] ∈ 𝒞S (j) for some j with i − j ∈ [0, iRig(s)). By repeated application
of C3 and C4, we obtain a role constraint r [i−ℓφ ,i+ℓφ ] s

i−j+1 σ ′, where σ ′ ∈ ℛS (i) is such that
σ ′≤j+ℓφ−i = r ′[i−ℓφ , j+ℓφ ]. Hence, we have D ∈ r ′(i) = σ ′(0), and thus ∃s .D ∈ r (i) by C1.

• AssumeC = ⃝D: we have that ⃝D ∈ r (i) iff D ∈ r (i + 1) (by R1) iff dr ∈ Dℐi+1 (by induction)
iff dr ∈ (⃝D)ℐi .

• Assume C = ⃝−D: we have that ⃝−D ∈ r (i) iff D ∈ r (i − 1) (by R2) iff dr ∈ Dℐi−1 (by
induction) iff dr ∈ (⃝−D)ℐi .

• Assume C = D 𝒰IE: we have that D 𝒰IE ∈ r (i) iff there is j such that j − i ∈ I , E ∈ r (j) and
D ∈ r (ℓ) for all ℓ ∈ [i, j) (by R3 and R5); by induction, this happens iff dr ∈ Eℐj and dr ∈ Dℐi

for all ℓ ∈ [i, j), which is equivalent to dr ∈ (D 𝒰IE)
ℐi .

• Assume C = D 𝒮IE: we have that D 𝒮IE ∈ r (i) iff there is j such that i − j ∈ I , E ∈ r (j) and
D ∈ r (ℓ) for all ℓ ∈ (j, i] (by R4 and R6); by induction, this happens iff dr ∈ Eℐj and dr ∈ Dℐi

for all ℓ ∈ (j, i], which is equivalent to dr ∈ (D 𝒮IE)ℐi .
Using S3 and similar arguments as above, we can now show that I, i |= ψ iff ψ ∈ rI(i) for all

ψ ∈ cl
f(φ), where rI is the unique formula run in R. Hence, byM1, we obtain that I, 0 |= φ. □

This concludes the proof of Lemma B.1. □

Before we show Lemma 4.3, we prove the following two auxiliary results.

Lemma B.2. Let (S,R) be a quasimodel for φ such that S(n) = S(m) for n < m. Then (S ′,R′) with

S ′ B S ≤n · S>m and

R
′ B {r ≤n1 · r>m2 | r1, r2 ∈ R, r

[n−ℓφ ,n+ℓφ ]
1 = r

[m−ℓφ ,m+ℓφ ]
2 }

is also a quasimodel for φ.

Proof. We show that (S ′,R′) satisfies Conditions M1–M3. First note that, since (S,R) is a
quasimodel for φ, (S ′,R′) satisfies M1. Also, for any r1, r2 ∈ R with r

[n−ℓφ ,n+ℓφ ]
1 = r

[m−ℓφ ,m+ℓφ ]
2 ,

r ≤n1 · r>m2 is also a run. Consequently, R′ is a set of runs. Since S(n) = S(m), for every r1 ∈ R there
is a run r2 ∈ R that satisfies r [n−ℓφ ,n+ℓφ ]1 = r

[m−ℓφ ,m+ℓφ ]
2 and vice versa (by swapping n andm). It

follows that (S ′,R′) satisfiesM3. Finally, as S(n) = S(m), the pair (S(n), S(m + 1)) is compatible, and
since we require r [n−ℓφ ,n+ℓφ ]1 = r

[m−ℓφ ,m+ℓφ ]
2 , we haveM2 for (S ′,R′). □

In the following, let ♯φ denote the size of the (double exponential) set of all possible run segments
and role constraints for φ.

Lemma B.3. Formula φ has a quasimodel iff there is a sequence of quasistates

S(−k1) . . . S(−k2 − 1) S(−k2) . . . S(0) . . . S(k3) S(k3 + 1) . . . S(k4)
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such that

• k1,k2,k3,k4 ≤ (|φ | · ♯2φ + 1) · 2♯φ ;
• for all i ∈ [−k1,k4), the pair (S(i), S(i+1)) is compatible, with πi being the maximal compatibility

relation witnessing this (cf. C2–C5);
• S(−k1) = S(−k2) and S(k3) = S(k4);
• S(0) satisfies M1;
• for every σ1 ∈ ℛS (k3), there is a sequence r = σ1(0)σ2(0) . . . σk4−k3 (0) that realises all 𝒰-
expressions in σ1(0) such that (σi ,σi+1) ∈ πk3+i for all i ∈ [0,k4 − k3);

• for every σ1 ∈ ℛS (−k2), there is a sequence r = σk1−k2 (0) . . . σ2(0)σ1(0) that realises all 𝒮-
expressions in σ1(0) such that (σi+1,σi ) ∈ π−k2−i for all i ∈ [0,k1 − k2).

Proof. (⇒) Let (S,R) be a quasimodel for φ. Observe that the number of possible quasistates is
bounded by 2♯φ . We can assume w.l.o.g. that there are some k2,k3 ≤ 2♯φ such that all quasistates in
S ≤k2 and S ≥k3 occur infinitely often. If this is not the case, we can simply take k2 as the minimal
number such that S(m) , S(k2) holds for all m < k2, and use Lemma B.2 to remove repeating
quasistates in S [−k2,0]. For the right side of the sequence, we can similarly take k3 as the maximal
number such that S(m) , S(k3) holds for all m > k3, and use Lemma B.2 to remove repeating
quasistates in S [0,k3].
Consider now an arbitrary α 𝒰I β ∈ σ (0) for some σ ∈ ℛS (k3), and take any r ∈ R with

r [k3−ℓφ ,k3+ℓφ ] = σ , which must exist byM3. Letm′ ≥ k3 be the minimal number such that r [k3,k3+m′]

realises α 𝒰I β . Assume now that there are i, j such that k3 < i < j < m′, r [i−ℓφ ,i+ℓφ ] = r [j−ℓφ , j+ℓφ ],
and S(i) = S(j). By Lemma B.2, there is a quasimodel (S ′,R′) for φ such that S ′ = S ≤i · S>j and
r ≤i · r>j is a run in R′. It follows that we can construct a quasimodel (S1,R1) for φ with S ≤k3

1 = S ≤k3

and a run r1 ∈ R1 such that r [k3−ℓφ ,k3+ℓφ ]1 = σ ∈ ℛS1(k3) = ℛS (k3) and α 𝒰I β is realised by the
subsequence r [k3,k3+m1]

1 , for somem1 ≤ ♯φ · 2♯φ (2♯φ is the number of possibilities for S(i), and ♯φ is
the number of possibilities for r [i ,i+ℓφ ]).
Then, we consider the next expression of the form α ′ 𝒰I ′β

′ ∈ σ (0) and assume that r [k3,k3+m
′′]

1
realises it for someminimalm′′ ≥ m1. Using the same construction as above, we obtain a quasimodel
(S2,R2) for φ with S ≤k3+m1

2 = S ≤k3+m1
1 and a run r2 ∈ R2 such that r [k3−ℓφ ,k3+ℓφ ]2 = σ ∈ ℛS (k3) and

r [k3,k3+m2]
2 realises both α 𝒰I β and α ′ 𝒰I ′β

′, for somem2 ≤ 2 · ♯φ · 2♯φ . We can proceed in this way
and construct a quasimodel containing a run through σ that realises all 𝒰-expressions in σ (0) after
at most |φ | · ♯φ · 2♯φ steps.
After that, we consider in the same manner another run segment σ ′ ∈ ℛS (k3). To realise all

𝒰-expressions in some run through σ ′, we need at most |φ | · ♯φ · 2♯φ additional steps. Since there
are at most ♯φ run segments in ℛS (k3), we require at most |φ | · ♯2φ · 2♯φ steps to realise all until-
expressions in all run segments in ℛS (k3). We now take another 2♯φ steps to find a time point
k4 ≤ (|φ | · ♯2φ + 1) · 2♯φ such that S∗(k3) = S∗(k4) in the resulting quasimodel (S∗,R∗) (since we
assumed that S(k3) occurs infinitely often). By our construction, all 𝒰-expressions in S∗(k3) can be
realised by runs through S∗[k3,k4]. With a similar argument we can modify the quasimodel (S∗,R∗) so
that all 𝒮-expressions in S∗(−k2) realised by runs through S∗[−k1,−k2], for some k1 ≤ (|φ | ·♯2φ +1) ·2♯φ .
Hence, the sequence S∗[−k1,k4] satisfies all conditions required by the lemma.

(⇐) Let now S∗(−k1) . . . S
∗(−k2−1) S∗(−k2) . . . S∗(0) . . . S∗(k3) S∗(k3+1) . . . S∗(k4) be a sequence

with the given properties. We construct a quasimodel (S,R) for φ, where S is defined by

S = ω (
S∗(−k1) . . . S

∗(−k2 − 1)
)
S∗(−k2) . . . S

∗(0) . . . S∗(k3)
(
S∗(k3 + 1) . . . S∗(k4)

)ω
,
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and R contains all sequences of types of the form

. . . · σ−2
−k1 (0) . . . σ

−2
−k2−1(0) ·

σ−1
−k1 (0) . . . σ

−1
−k2−1(0) ·

σ 0
−k1

(0) . . . σ 0
−k2−1(0) · σ 0

−k2
(0) . . . σ 0

0 (0) . . . σ
0
k3
(0) · σ 0

k3+1(0) . . . σ
0
k4
(0) ·

σ 1
k3+1(0) . . . σ

1
k4 (0) ·

σ 2
k3+1(0) . . . σ

2
k4 (0) · . . . ,

where each σ j
i is an element of S∗(i), each pair of adjacent run segments in this sequence is contained

in the corresponding compatibility relation (for σ j
k4

and σ j+1
k3+1

we consider πk3 , and for σ j−1
−k2−1

and σ j
−k1

we consider π−k2 ), and there are infinitely many j ≥ 1 for which σ j−1
k4

(0)σ j
k3+1

(0) . . . σ j
k4
(0)

realises all 𝒰-expressions in σ j−1
k4

(0), and infinitely many −j ≤ −1 for which all 𝒮-expressions
in σ−j+1

−k1
(0) are realised by σ−j

−k1
(0) . . . σ−j

−k2−1
(0)σ−j+1

−k1
(0).

Due to C3, for all r ∈ R, each subsequence of length ℓφ + 1 is a run segment from one of
the sets S∗(i). To show that r is a run, we verify Condition R5. But this follows from the local
Condition R3, which states that each 𝒰-expression is either satisfied by the next ℓφ types in r ,
or it is deferred; an analogous argument holds for 𝒮-expressions. If they are deferred, then our
construction ensures that 𝒰- and 𝒮-expressions are not deferred indefinitely.

It remains to show that (S,R) satisfies ConditionsM1–M2. ConditionM2 is immediately satisfied
by our construction of R. Condition M1 only concerns S(0), and is also satisfied since S(0) = S∗(0)
by construction. For Condition M3, for every i ∈ Z and σ ∈ S(i), we need to find a run r ∈ R with
r [i−ℓφ ,i+ℓφ ] = σ . By C2 and C3, we can extend σ to the left and to the right. When we extend to
the right direction, we need to make sure that, whenever we reach a σ ′ ∈ S∗(k4), we continue it in
such a way that all 𝒰-expressions in σ ′ are realised by the next k4 − k3 types; and similarly for the
left direction, where we check whether the 𝒮-expressions are realised. Note that the resulting run
is contained in our set R of runs by construction. This is always possible by our assumptions on
the sequence S∗(−k1) . . . S∗(−k2 − 1) S∗(−k2) . . . S∗(0) . . . S∗(k3) S∗(k3 + 1) . . . S∗(k4). □

One side result of the constructions in the above proof is that, for a satisfiable formula, we can
always find a regular quasimodel.

Corollary B.4. If φ has a quasimodel, then it has a quasimodel (S,R) in which S is of the form

ω (
S(−k1) . . . S(−k2 − 1)

)
S(−k2) . . . S(0) . . . S(k3)

(
S(k3 + 1) . . . S(k4)

)ω
,

such that k1, k2, k3 and k4 are bounded triple exponentially in the size of φ and iRig|φ .

Lemma 4.3 directly follows from Lemma B.1 and Corollary B.4. Based on this result, we can show
2-ExpSpace-completeness of satisfiability of LTLbin𝒜ℒ𝒞-formulae.

Theorem 4.4. Satisfiability in LTLbin𝒜ℒ𝒞 with interval-rigid names is 2-ExpSpace-complete.

Proof. Since the lower bound follows from a known result [32] (with an adaptation to Z), we
only need to prove the upper bound. By Lemmas B.1 and B.3, it suffices to decide the existence
of a sequence of quasistates with certain properties. We show how the latter can be decided
non-deterministically in double exponential space by guessing such a sequence, quasistate after
quasistate. The basic observation is that storing a single quasistate requires at most double expo-
nential space, and that we only require a constant number of quasistates in memory at any point of
the computation.
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Since we deal with the timeline Z, we need to check the regularity conditions in both directions.
We explain how to check the conditions for the right side of the quasimodel. The conditions for the
left side are analogous. We first guess the four numbers k1, k2, k3 and k4 from Lemma B.3, which
can be stored using double exponentially many bits. We then guess and store the quasistate S(k3),
and for each σ ∈ ℛS (k3) we keep a list of 𝒰-expressions that need to be satisfied, which initially
contains all α 𝒰β ∈ σ (0).
We now guess the first k3 quasistates S(i) one after another, so that Condition M1 is satisfied

for S(0), and each pair (S(i), S(i + 1)) of consecutive quasistates is compatible. For this, we only
need to keep two consecutive quasistates in memory at any point. We then guess the next k4 − k3
quasistates as before, where we additionally test whether there are runs satisfying all required
𝒰-expressions. For this, it suffices to guess which run segment of the next quasistate corresponds
to a run starting with σ ; this, of course, has to be compatible with the run segment guessed for the
previous quasistate. We remove any 𝒰-expression from our list that is satisfied by this guessed
run segment, and require that all 𝒰-expressions must have been removed when we reach S(k4).
This can be done in double exponential space. Finally, after we have guessed S(k4), we verify that
S(k4) = S(k3). The procedure to check the conditions on the left side is similar, but we check whether
the 𝒮-expressions are satisfied when we go from the quasistate S(−k2) to the quasistate S(−k1). By
Lemmas B.1 and B.3, our algorithm is sound and complete. Since at each step, we only require double
exponential space, we thus establish that satisfiability of LTLbin𝒜ℒ𝒞 formulae with interval-rigid
names is in 2-ExpSpace. □

Theorem 4.7. Satisfiability in LTL𝒜ℒ𝒞 |дGCI with interval-rigid names is 2-ExpTime-hard.

Proof. We consider the reduction used for the sublogic 𝒜ℒ𝒞-LTL of LTL𝒜ℒ𝒞 [20, Lemma 4.2],
and observe that the rigid concept and role names used in that reduction need to stay rigid only
from time point 0 to time point 2k − 1, where k is polynomial in the size of the original problem.
Since 2k can be written using polynomially many bits, we can designate these names to be 2k -rigid.
However, we also need to do this for all negations of the rigid concept namesA to ensure that ifA is
implied to hold at a domain element d at some point in the interval [0, 2k − 1], then this information
is also propagated backwards in time, i.e., d satisfies A also at time point 0. One can make ¬A
2k -rigid by introducing a fresh 2k -rigid concept name A′ and adding the global GCI A′ ≡ ¬A to
the formula. This is not needed for the single rigid role r used in the proof, since all necessary
r -connections are already implied at time point 0.

The main structure used in the proof is a tree whose root is described by the individual name a
and whose edges are described by the rigid role r . This role connects all domain elements relevant
for the reduction. All these r -connections are already declared at time point 0, but to ensure that
they are present throughout the whole time interval [0, 2k − 1], we further need to encode that
none of these r -connections can exist at time point −1. Since we are only interested in the domain
elements reachable via r from a, we can use r to propagate a fresh concept name B to all relevant
domain elements via the assertion B(a) and the global GCI B ⊑ ∀r .B, and then use the global GCI
⃝B ⊑ ¬∃r .⊤ to enforce that these r -connections do not exist at time point −1, and hence must
exist in the whole interval [0, 2k − 1] since r is 2k -rigid. Similarly, we can express that the value
of a 2k -rigid concept name A (where ¬A is also 2k -rigid) must stay constant in [0, 2k − 1] via the
global GCIs ⃝B ⊑ (¬A) ↔ (⃝A). □

C PROOFS FOR SECTION 5

Theorem 5.4. Satisfiability in 𝒜ℒ𝒞-LTL with interval-rigid names is 2-ExpSpace-hard.
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A = 0, Tape A = 1 A = 2n − 1 A = 0, Tape

Match Match

ℐ0 ℐ1 ℐ2n−1 ℐ2n . . .

. . .

Match

Match

Fig. 3. A model of the 𝒜ℒ𝒞-LTL formula φℳ,w (for simplicity, some symbols have been omitted).

Proof. The proof is by reduction from the word problem for double exponentially space bounded
DTMs. Let ℳ = (Q, Σ, Γ,Θ,q0, F ) be a DTM, where

• Q is a finite set of states,
• Σ is the input alphabet,
• Γ ⊇ Σ is the work alphabet containing the blank symbol b < Σ,
• Θ : Q × Γ → Q × Γ × {l, r } is the transition function,
• q0 is the initial state, and
• F ⊆ Q is the set of accepting states.

As usual, a configuration ofℳ is a wordwqw ′ withw,w ′ ∈ Γ∗ and q ∈ Q , meaning that the tape
contains the wordww ′, the machine is in state q and the head is on the position of the left-most
symbol ofw ′. To reflect the space bounds ofℳ, we assume that all configurationswqw ′ satisfy
|ww ′ | ≤ 22n , where n = p(m) for inputs of length m and some fixed polynomial p. We further
assume w.l.o.g. thatℳ does not attempt to move to the left (right) when the head is on the left-most
(right-most) tape position.

We construct an𝒜ℒ𝒞-LTL⃝ formula φℳ,w that is satisfiable with interval-rigid names iffℳ ac-
ceptsw . Using Lemma 5.1, we can then transform φℳ,w into an equisatisfiable𝒜ℒ𝒞-LTL formula of
polynomial size. For convenience, we also use assertions using the 𝒰-operator, e.g., (A⊓(B 𝒰C))(a),
which can equivalently be expressed using the formula A(a) ∧ (B(a)𝒰C(a)). In all cases where we
use such expressions, it is easily verified that they are equivalent to some 𝒜ℒ𝒞-LTL formulae.
The general idea of the construction is as follows. We encode the sequence of configurations

along the timeline, where each configuration is represented by 2n · 22n successive time points. Each
tape cell is represented by 2n successive time points, in which the double exponential tape address
is stored and the first time point is marked with the concept Tape. To represent the tape address,
we use a binary counter to mark each time point with a bit position, and use a concept nameCBit to
store the bit value of the tape address at this bit position. Using a 2n + 1-rigid role r and another
binary counter, we can link each bit position with the corresponding bit position for the next tape
cell, which is used to implement the double exponential counter for the tape addresses.

To transfer information between successive configurations, we additionally represent all different
tape addresses using a set of 22n designated domain elements which we call matcher objects. Each
matcher object stores its associated tape address using 2n r -successors for the different bit positions.
A concept Match is used to identify which matcher object is associated with the current tape
address. This way, we can use the matcher objects to transfer the information of each tape cell to
the next configuration (see Figure 3).

In the reduction, we use the following symbols:
• an individual name a for a domain element associated with the double exponential counter,
• a concept name Tape to mark tape cells,
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• a concept name Init to mark the beginning of a configuration,
• a concept name Head to mark the head position of a configuration,
• concept names Cσ and Nσ , with σ ∈ Γ, to represent the symbol at the current tape cell and
the next tape cell to the right, respectively,

• concept names Cq and Nq , with q ∈ Q ′ := Q ∪ {q}, to represent the states associated with
the current tape cell and the next tape cell to the right, respectively, where q expresses that
the head is at another tape position,

• concept names A0, . . . ,An−1 to encode the binary representation of the bit positions of the
double exponential values of the tape addresses, where A0 encodes the least significant bit,

• the bit values of the current double exponential tape address are represented using a concept
name CBit,

• a 2n + 1-rigid concept name NBit is used to encode the value of CBit in the corresponding bit
position of the next tape address,

• a concept name C ′
Bit
, which we make rigid using the expressivity of 𝒜ℒ𝒞-LTL⃝ , to store the

bit values for the matcher objects,
• a 2n + 1-rigid role r and concept names B0, . . . ,Bn to transfer the truth values of NBit andC ′

Bit

exponentially far away (the 2n + 1-rigid role ensures that we can reach the same bit position
exponentially far way and encode a counter with exponentially many bits),

• a concept nameMatch, to mark matcher objects representing the current tape address, and
• concept names C ′

σ ,N
′
σ and C ′

q,N
′
q to mark the matcher objects with information about the

current state and next state for the associated tape cell.
We are now ready to start our construction. The formula φℳ,w is defined as the conjunction of

a set of formulae which we describe one after the other.
We first describe how we implement the double exponential counter for the tape addresses. We

denote by (A = k) the polynomial-sized concept that identifies the value of the A-counter with
k , i.e., that refers to the k-th bit position of the double exponential counter. We implement the
behaviour of Tape and A0, . . . ,An−1 with

(⊤ ⊑ Tape) ∧ □
(
Tape ≡ (A = 0)

)
, (1)∧

i<n

□
( l

j<i

Aj ⊑ (Ai ↔ ⃝¬Ai )

)
, (2)∧

i<n

□
( ⊔
j<i

¬Aj ⊑ (Ai ↔ ⃝Ai )

)
. (3)

These axioms express that
• Tape is satisfied by all domain elements at time point 0, which also starts the A-counter at all
domain elements in a synchronised fashion;

• the A-counter is incremented in each time step, which also happens synchronously at all
domain elements (cf. the concepts (AF−−) in the proof of Theorem 3.4); and

• Tape is satisfied (by all domain elements) exactly after each 2n time points, namely every
time the A-counter overflows from 2n − 1 to 0.

Moreover, each time point stores the bit value of the bit position given by the A-counter, using the
concept name CBit. This information is shared by all domain elements:

□
(
(⊤ ⊑ CBit) ∨ (CBit ⊑ ⊥)

)
.

To transfer the value ofCBit to the next time point where the current value of theA-counter reoccurs,
we use the 2n + 1-rigid role r and concept names B0, . . . ,Bn to implement a fresh counter for each
bit position. To increment the B-counter, we include in our formulation of φℳ,w conjuncts which
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are the result of replacing Al by Bl and n by n + 1 in (2) and (3). Similar to our notation for the
A-counter, we denote by (B = k) the concept that expresses that the B-counter has the value k . We
now use

□
(
⊤ ⊑ ∃r .(B = 0)

)
∧ □

(
∃r .⃝(B = 0) ⊑ ⊥

)
to ensure that

• at each time point, every element has an r -successor encoding the “start” of the B-counter,
and

• this r -connection “starts” to exist exactly when the B-counter starts (and exists for at least
2n + 1 and at most 2n+1 time points afterwards).

This way, each domain element can distinguish between 2n+1 different r -successors using their
B-counter value, which is later also used for the matcher objects. We use the formula

□
(
(B = 2n) ⊑ NBit ↔ CBit

)
∧ □

(
NBit ⊓ ⃝(B = 0) ⊑ ⊥

)
∧ □

(
NBit ⊓ ⃝(B = 2n + 1) ⊑ ⊥

)
to bring to the current time point the corresponding bit value in the next tape address. The following
formulae increment our double exponential counter:

□
(
⃝(CBit 𝒰Tape) → ∀r .

(
(B = 0) → (CBit ↔ ¬NBit)

) )
(a),

□
(
¬⃝(CBit 𝒰Tape) → ∀r .

(
(B = 0) → (CBit ↔ NBit)

) )
(a).

Intuitively, these formulae express that the current bit is flipped iff all following bits are true (until
the next time point where Tape holds).
We now implement the matcher objects that are used to transfer information between succes-

sive configurations. Each matcher object has an associated address, the bit values of which are
represented using the concept C ′

Bit
, which is made rigid using the following formula:

□(C ′
Bit

≡ ⃝C ′
Bit
).

The different bits of the address are stored using 2n r -successors of the matcher object, which
are differentiated using their B-counter values. We make sure that the value of C ′

Bit
is uniquely

determined by the B-counter value of an r -successor:

□
(
∃r .

(
C ′
Bit

⊓ (B = 0)
)
⊑ ∀r .

(
(B = 0) → C ′

Bit
)
) )
.

The following formula now ensures that we have a matcher object for each tape address, and
that this domain element is marked with the conceptMatch if it corresponds to the current tape
address:

□¬(Match ⊑ ⊥) ∧ □
(
Match ≡ ⃝(Match ⊔ Tape) ⊓ ∃r .((B = 0) ⊓ (CBit ↔ C ′

Bit
))
)
.

Since r is only 2n + 1-rigid, we have to make sure that the address remains associated to the
matcher object during successive configurations, which is done by the following formulae:

□
(
∃r .((B = 2n) ⊓C ′

Bit
) ⊑ ∃r .((B = 0) ⊓C ′

Bit
)
)
,

□
(
∃r .((B = 2n) ⊓ ¬C ′

Bit
) ⊑ ∃r .((B = 0) ⊓ ¬C ′

Bit
)
)
.

After we have implemented the required tools, we can now describe the actual mechanism of
the Turing machine. We encode that all elements of the domain share the information about the
tape content and state in the time points marked with the concept name Tape:

□
∨
σ ∈Γ

(
Tape ⊑ Cσ ⊓

l

τ ∈Γ\{σ }

¬Cτ
)
,
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□
∨
q∈Q ′

(
Tape ⊑ Cq ⊓

l

p∈Q ′\{q }

¬Cp

)
.

We use auxiliary concept names Np,Nσ to bring to the current tape cell the state and tape content
of the next tape cell. In addition, we check, using the concept name Init, whether we have reached
the end of the tape, i.e., if the next tape cell is the beginning of the next configuration:

□
(
(Tape ⊓ Nσ ) ↔ ⃝

(
¬Tape𝒰(Tape ⊓Cσ ⊓ ¬Init)

) )
(a),

□
(
(Tape ⊓ Nq) ↔ ⃝

(
¬Tape𝒰(Tape ⊓Cq ⊓ ¬Init)

) )
(a).

We also have concept names C ′
p,C

′
σ and N ′

p,N
′
σ , which are used by the matcher objects to carry

information to the next configuration. Whenever there is a match, we synchronise the state and
tape content of the corresponding matcher object with the information of the current tape cell. For
this, we use the axioms

□(Tape ⊓Match ⊑ Y ↔ Y ′), (4)

where Y ranges over 𝒮 := {Nσ ,Cσ | σ ∈ Γ} ∪ {Nq,Cq | q ∈ Q ′}. We made sure that these concept
names are always satisfied by all or none of the domain elements in the current time point, so that
the matcher object satisfying Match has access to this information.

This concludes the main technical setup of our reduction. We now encode the transitions in Θ as
follows.

For Θ(q,σ ) = (p, τ , l): □
(
Tape ⊓Match ⊓ N ′

q ⊓ N ′
σ ⊑ ⃝(C ′

p ⊓ N ′
τ )

)
.

For Θ(q,σ ) = (p, τ , r ): □
(
Tape ⊓Match ⊓C ′

q ⊓C ′
σ ⊑ ⃝(N ′

p ⊓C ′
τ )

)
.

For q and σ ∈ Γ: □
(
Tape ⊓Match ⊓C ′

q ⊓C ′
σ ⊑ ⃝C ′

σ
)
.

The matcher object for the current tape cell thus contains the necessary information for the next
configuration at the next time point. To actually propagate this information to the next configuration,
we use the axioms

□
(
Y ′ ⊑ ⃝Y ′ ⊔ (Tape ⊓Match)

)
,

where Y ranges over 𝒮 . As soon as the matcher object satisfiesMatch again, this information is
synchronised to the current tape cell using Axiom (4).

It remains to ensure that the non-head worlds are labelled with q. For this, we mark the beginning
of a configuration with the concept name Init and the position of the head with the concept
name Head:

□
(
Init ↔

(
Tape ⊓ ¬CBit ⊓ ⃝(¬CBit 𝒰Tape)

) )
(a),

□
(
Init →

(
Head ⊔ ⃝(¬Init𝒰Head)

) )
(a),

□
(
Head ↔ (¬Cq ⊓ Tape)

)
(a),

□
(
Head → ⃝(¬Head𝒰 Init)

)
(a).

We now encode the initial configuration. Letw = σ1 · · ·σm be the input word forℳ. We define the
shorthand (φ 𝒰 iγ , χ ) inductively by setting (φ 𝒰1γ , χ ) := φ 𝒰(γ ⊓ χ ) and φ 𝒰(γ ⊓ ⃝(φ 𝒰 i−1γ , χ ))
for i > 1. We use the axioms(

Cq0 ⊓Cσ1 ⊓

m−1l

i=1
⃝

(
¬Tape𝒰 i (Tape,Cσi+1 )

) )
(a),
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⃝
(
¬Tape𝒰m(Tape,Cb 𝒰 Init)

)
(a),

♢
∨
q∈F

(
Tape ⊓Cq

)
(a).

Intuitively, Cσ1 and the big conjunction enforce that the input word is written on the tape, and
Cb 𝒰 Init ensures that the remaining cells are labelled with the blank symbol. Finally, the last axiom
expresses that a final state is reachable.

This finishes the description of φℳ,w . Given this construction, one can show that ℳ acceptsw
iff φℳ,w is satisfiable. □
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