
Vol.:(0123456789)1 3

KI - Künstliche Intelligenz
https://doi.org/10.1007/s13218-020-00655-w

SYSTEMS DESCRIPTION

LETHE: Forgetting and Uniform Interpolation for Expressive
Description Logics

Patrick Koopmann1 

Received: 30 December 2019 / Accepted: 25 March 2020
© The Author(s) 2020

Abstract
Uniform interpolation and forgetting describe the task of projecting a given ontology into a user-specified vocabulary, that
is, of computing a new ontology that only uses names from a specified set of names, while preserving all logical entailments
that can be expressed with those names. This is useful for ontology analysis, ontology reuse and privacy. Lethe is a tool
for performing uniform interpolation on ontologies in expressive description logics, and it can be used from the command
line, using a graphical interface, and as a Java library. It furthermore implements methods for computing logical difference
and performing abduction using uniform interpolation. We present the tool together with an evaluation on a varied corpus
of realistic ontologies.

Keywords  Description logics · Non-classical reasoning · Uniform interpolation · Forgetting

1  Introduction

Description logic (DL) ontologies are used in a range of
application areas as a means to define terminological domain
knowledge via concept and role names. Applications in
medicine, biology and the semantic web often lead to the
development of large and complex ontologies that cover
wide areas of knowledge. Understanding and maintaining
such complex ontologies becomes difficult without appropri-
ate tool support. On the other hand, some information from
existing ontologies might be useful for reuse in new ontolo-
gies, while one does not want to import the complexity of
the whole ontology. Uniform interpolation, also studied
under the name of forgetting, has the potential to approach
these challenges [4, 14]. Given an ontology O and a signa-
ture � of concept and role names, a uniform interpolant for
O over � is a new ontology that covers all logical entail-
ments in � , while using no names that are outside of the sig-
nature � (see Fig. 1 for an example). Uniform interpolation

can be used for ontology reuse by computing a specialised
ontology that only deals with the names that are relevant for
the new application. Furthermore, it can be used to make
implicit, hidden relations between names visible, which can
be helpful for ontology understanding and maintenance. In
addition, uniform interpolation can be used to solve other
non-classical reasoning problems relevant in the context of
ontology maintenance, such as logical difference [19] and
abduction [3, 15].

Lethe is a tool that can be used to compute uniform
interpolants in different expressive DLs.1 Internally, it uses
a resolution method presented in [9] for ALCH TBoxes, and
later extended to SHQ [10] and knowledge bases consist-
ing of both a TBox and an ABox [11]. Since those publica-
tions, a few bugfixes, optimisations and new features have
been implemented. This paper presents the current version
of Lethe: the reasoning services it supports out of the box,
the different user-interfaces, and an evaluation comparing
Lethe with Fame [20], the other state-of-the-art uniform
interpolation tool for expressive DLs.

2 � Preliminaries

We first give an overview about the DLs relevant for Lethe,
and then discuss the supported reasoning services.

Funded by the DFG grant 389793660 as part of TRR 248 (see
https​://www.persp​icuou​s-compu​ting.scien​ce/)

 *	 Patrick Koopmann
	 patrick.koopmann@tu‑dresden.de

1	 Institute of Theoretical Computer Science, Technische
Universität Dresden, 01187 Dresden, Germany 1  https​://lat.inf.tu-dresd​en.de/~koopm​ann/LETHE​.

http://orcid.org/0000-0001-5999-2583
http://crossmark.crossref.org/dialog/?doi=10.1007/s13218-020-00655-w&domain=pdf
https://www.perspicuous-computing.science/
https://lat.inf.tu-dresden.de/%7ekoopmann/LETHE

	 KI - Künstliche Intelligenz

1 3

2.1 � Description Logics

In the DLs we consider, concepts are constructed from
the pair-wise disjoint sets �� , �� and �� of respectively
concept, role- and individual names according to the fol-
lowing syntax rule:

where A ∈ �� and r ∈ �� ∪ {∇} and n ∈ ℕ , n ≥ 1 . ∇ denotes
the universal role. A knowledge base (KB) is a finite set of
concept inclusions (CIs) of the form C ⊑ D , role inclusions
(RIs) of the form r ⊑ s , and assertions of the forms C(a),
r(a, b) where C, D are concepts and r, s ∈ �� and a, b ∈ �� .
CIs, RIs and assertions are collectively called axioms. A KB
without assertions is called ontology or TBox.

The basic DL ALC just supports the constructs ⊤ , ⊥ ,
A, ¬C , C ⊓ D , C ⊔ D , ∃r.C and ∀r.C , no universal roles,
and only axioms of the form C ⊑ D . S additionally allows
for axiom �����(r) . EL restricts ALC by only allowing ⊤ ,
A, C ⊓ D and ∃r.C If L is a DL, LH denotes its exten-
sion with role axioms r ⊑ s , LQ its extension with number
restrictions ≥nr.C , LO its extension with nominals {a} ,
and LU its extension with universal roles. For instance,
ALCH extends ALC with axioms of the form r ⊑ s , and
SHQ supports axioms of the forms r ⊑ s , �����(r) , and
concepts of the form ≥nr.C.

The semantics of DLs is defined in terms of inter-
pretations I = ⟨�I, ⋅I⟩ , with the non-empty set �I as
domain, and the interpretation function ⋅I mapping each
a ∈ �� to aI ∈ �I  , each A ∈ �� to AI ⊆ 𝛥I  , each r ∈ ��
to rI ⊆ 𝛥I × 𝛥I  , ∇I = �I × �I  , and which is extended to
concepts by

C ∶∶= ⊤ ∣ ⊥ ∣ A ∣ ¬C ∣ C ⊔ C ∣ C ⊓ D ∣ ∃r.C ∣ ∀r.C ∣ ≥nr.C ∣ {a},

An axiom � is satisfied in an interpretation I  , in symbols
I ⊧ 𝛼 , if 𝛼 = C ⊑ D and CI ⊆ DI  , 𝛼 = r ⊑ s and rI ⊆ sI  ,
� = �����(r) and rI is transitive, � = A(a) and aI ∈ AI  , or
� = r(a, b) and ⟨aI, bI⟩ ∈ rI . If for a KB K , I ⊧ 𝛼 for all axi-
oms � ∈ K , then I is a model of K . An axiom � is entailed
by a KB K , in symbols K ⊧ 𝛼 , if I ⊧ 𝛼 for all models I of K.

In addition to these classical concept constructors, a less
common concept constructor we use is the greatest fixpoint
�X.C[X] [2], which corresponds to the limit of the sequence
⊤ , C[⊤] , C[C[⊤]] , … , Given a DL L , we denote by L� the
extension with greatest fixpoint operators. For formal details
on the semantics of fixpoint operators, we refer to [2].

2.2 � Uniform Interpolation and Related Tasks

Definition 1  (Uniform interpolation) Let K be a KB, L a DL,
and � be a signature. Then, we call a KB KL,� a uniform
⟨L,�⟩-interpolant of K iff

⊤
I = 𝛥

I,

⊥
I = �,

(¬C)I = 𝛥
I⧵CI,

(C ⊔ D)I = CI ∪ DI,

(C ⊓ D)I = CI ∩ DI,

(∃r.C)I = {x ∣ there exists⟨x, y⟩ ∈ rI s.t. y ∈ CI},

(∀r.C)I = {x ∣ for all⟨x, y⟩ ∈ rI, y ∈ CI}

(≥nr.C)I = {x ∣ #{⟨x, y⟩ ∈ r ∣ y ∈ C} ≥ n} and

{a}I = aI.

Fig. 1   Graphical user interface of Lethe, here showing a uniform interpolant of the pizza ontology for {AmericanHot, Margherita, Mild,
Pizza, PizzaTopping, Spiciness, hasTopping, hasSpiciness}

KI - Künstliche Intelligenz	

1 3

1.	 ���(KL,𝛴) ⊆ 𝛴 , and
2.	 for every L axiom � with ���(𝛼) ⊆ 𝛴 , we have K ⊧ 𝛼 iff

KL,𝛴
⊧ 𝛼.

Note that we do not require KL,� to be a K ontology itself.
If the DL does not allow for fixpoints, already for acyclic
ontologies, there can be signatures, for which no uniform
interpolant exists in that DL [14]. On the other hand, for
the DLs considered here, uniform interpolants of ontolo-
gies always exist in DLs with fixpoints. Furthermore, when
interpolating KBs with assertions, a uniform interpolant
may only exist if we allow for nominals in the result [8,
11]. We often speak of the uniform interpolant, referring
the the logically strongest among the possible options. The
dual notion of uniform interpolation is forgetting: The result
of forgetting a name x from an ontology O is the uniform
⟨L,�⟩-interpolant for � = ���(O)⧵{x}.

Fixpoint operators are not supported by the web ontology
standard OWL, which is why Lethe offers two ways to elimi-
nating them when producing the result: by either approxima-
tion, or by using auxiliary concept names, so-called definers,
that simulate the behaviour of greatest fixpoints and make
sure all logical entailments of the uniform interpolant are
kept. (For details, see [9].)

If we want to reuse a uniform interpolant in a different
context, it may be useful to compute it in a DL with univer-
sal roles. The following theorem is an easy consequence of
[6, Theorem 3].

Theorem 1  Let L ∈ {ALC,ALCQ} , O an L-ontology, �
a signature, and O� a uniform ⟨LU,�⟩ -interpolant of O .
Then, for L -every ontology O2 with (���(O2) ∩ ���(O1)) ⊆ 𝛴
and every L-axiom � s.t. ���(𝛼) ⊆ 𝛴,we have (O ∪O2) ⊧ 𝛼
iff (O𝛴 ∪O2) ⊧ 𝛼.

Intuitively, if we want to reuse an ALC - or an
ALCQ-ontology O in another context that speaks about � ,
we can replace O by its uniform ⟨LU,�⟩-interpolant and still
preserve all consequences over � . A corresponding property
does not hold for uniform ⟨L,�⟩-interpolants in general.

In addition to uniform interpolation, Lethe implements
logical difference and abduction by reduction to uniform
interpolation with some dedicated optimisations.

Definition 2  (Logical difference) Let O1 , O2 be two ontolo-
gies, � a signature and L a DL. The logical difference of O1
to O2 over ⟨�,L⟩ is the set of all L-axioms � with ���(𝛼) ⊆ 𝛴
s.t. O1 ⊧ 𝛼 and O2 ⊭ 𝛼 . If � = (���(O1) ∩ ���(O2)) ,
it is called logical difference of O1 to O2 over L . A rep-
resentation of the logical difference is an ontology
������� (O1,O2,�) s.t. for every axiom � in the logical dif-
ference, ������� (O1,O2,𝛴) ∪O2 ⊧ 𝛼.

Lethe uses computes representations of logical differ-
ence by checking for entailments of axioms in the uniform
interpolant. Additional optimisations are used to restrict the
number of reasoner calls and forgetting steps performed for
comparing large ontologies with large syntactical overlap.
Uniform interpolation is also used for computing representa-
tives of logical differences in [12, 19].

Definition 3  (Abduction) Let O1 be an ontology, � an axiom
s.t. O ⊭ 𝛼 (the observation), and � a signature (the set of
abducibles). Then, a hypothesis for O ⊧ 𝛼 in � is an ontol-
ogy H s.t.

1.	 O ∪H ⊧ 𝛼,
2.	 ���(H) ⊆ 𝛴 , and
3.	 for every ontology H′ satisfying the above conditions,

O ∪H�
⊧ H.

Lethe solves this abduction problem for ALCH ontolo-
gies and signatures � s.t. (���(O) ∩ ��) ⊆ 𝛴 . For an exten-
sion of our abduction setting (also using Lethe), see [3].

3 � User Interfaces of Lethe

Lethe implements three different algorithms for computing
uniform interpolants, one for ALCH ontologies based on [9]
(ALCHForgetter), one for SHQ ontologies based on [10]
(SHQForgetter) and one for forgetting in SH knowledge
bases based on [8, 11] (KBForgetter). The general approach
and implementation idea of these methods is described
in Sect. 4. Uniform interpolation is always performed by
forgetting one name after the other. While the logic sup-
ported by KBForgetter is more general than the one by
ALCH-Forgetter, the implementations differ substantially,
and thus may perform differently well on the same input.

Graphical User Interface. With the application of ontol-
ogy analysis in mind, Lethe comes with a simple graphical
user interface that can be used to quickly try out the tool
(see Fig. 1 illustrating uniform interpolation with the pizza
ontology2). Ontologies in OWL syntax can be loaded and
are displayed in DL syntax. The user then selects the tar-
get signature, the method to be used, and whether greatest
fixpoint operators should approximated or simulated with
helper concepts. During computation, the user is presented
with a progressbar where he sees the current name being
forgotten. The first 80–90% of names are usually forgotten
very fast, while the more difficult names are forgotten in

2  https​://githu​b.com/owlcs​/pizza​-ontol​ogy/.

https://github.com/owlcs/pizza-ontology/

	 KI - Künstliche Intelligenz

1 3

the end. If the user does not want to wait, he can cancel the
forgetting process, in which case he sees the currently com-
puted uniform interpolant.

Console Interface. Lethe furthermore allows to be used as
a command line tool. Here, the user can also set a time out,
after which the partial uniform interpolant is saved if the
computation did not terminate yet. A second command is
provided for computing logical differences.

Use as Java Library. Probably the most relevant for prac-
tical applications is the possibility to use Lethe as a Java
library. Though implemented in Scala, Lethe provides for a
facade supporting standard Java data structures that is com-
patible with the OWL API 5.1.7 [5]. The use of this facade
is documented on the website. Classes and interfaces are
provided for the three different forgetting methods, and for
performing uniform interpolation, logical difference com-
putation and abduction with abducibles.

4 � Method and Implementation

4.1 � General Method

In order to forget a specific name, Lethe performs the fol-
lowing steps:

1.	 normalise the input,
2.	 compute all inferences on the name to forget,
3.	 filter out occurrences of the name, and
4.	 denormalise.

For illustration, we describe the method for ALC TBoxes—
the underlying idea is the same for the more expressive DLs
(for details, see [8–11]). In our normal form, every axiom
is of the form

where A ∈ �� , r ∈ �� , and D is taken from a special set
�� ⊆ �� of definers. We call the Li literals and normalised
axioms clauses, usually omit the leading ⊤ ⊑ and treat them
as sets, that is, no literal occurs twice and the order is not
important. We further have the restriction that no clause con-
tains more than one literal of the form ¬D , where D ∈ ��.

In Step 2, we make use of the calculus shown in Fig. 2.
In r-Prop, the definer D12 is a definer representing D1 ⊓ D2 ,
which we introduce if not existent yet. In r-Res, O refers
to the current set of clauses. Here, Lethe uses HermiT to
decide the entailment. The rules A-Res and r-Res are used
to perform the inferences on the symbol to forget (concept
name A or role name r). Since a clause may contain at most

⊤ ⊑ L1 ⊔… ⊔ Ln Li ∶∶= A ∣ ¬A ∣ ∃r.D ∣ ∀r.D,

one negative definer literal, the rules are not applicable if
the premises contain different negative definer literals, for
instance ¬D1 and ¬D2 . The rule r-Prop is a so-called com-
bination rule and may combine the different definers D1 and
D2 into a new definer D12 , resulting in new clauses which
contain ¬D12 instead of ¬D1 and ¬D2 , which makes new
inferences with A-Res and r-Res possible (recall that clauses
may contain at most one negative definer literal). The calculi
for more expressive DLs have additional combination rules
that reflect the additional expressivity. Our method makes
sure that in the worst case, at most exponentially many new
definers are introduced, which ensures termination of the
forgetting procedure.

In the denormalisation step, the definers are eliminated
again using standard rewriting rules. It is in this step that we
may introduce fixpoint operators into the ontology. Alterna-
tively, if fixpoints are not desired in the output, we keep the
definers for which the corresponding fixpoint cannot be simpli-
fied away (see below), or we approximate the fixpoint expres-
sion by unfolding the fixpoint expression up to a certain depth.

4.2 � Implementation of Forgetting Calculus

The implemented forgetting methods use different strate-
gies of determining when a combination rule has to be
applied: ALCHForgetter keeps a map for each definer that
stores its “distance” to the name to be forgotten. A combi-
nation rule then only combines definers that have the same
distance. SHQForgetter and KBForgetter instead use a
“lazy” approach: they first apply resolution unrestricted,
allowing more than one negative definer. If a clause with
negative definers ¬D1 , … , ¬Dn is inferred, clauses containing
D1 , … , Dn under a role restriction are determined, and com-
bination rules are tried to introduce a definer representing
D1 ⊓… ⊓ Dn . In the first approach, we try to predict when
definer combination is necessary. In the second approach, we
apply combination on demand. In addition, we use a set of
usual techniques from resolution methods, such as indexing,
forward- and backward subsumption.

4.3 � Implementation of Uniform Interpolation

To compute the uniform interpolant, we apply Steps 1–4 for
each name in the ontology that is not in the desired signature.

Fig. 2   Forgetting calculus for ALC

KI - Künstliche Intelligenz	

1 3

These steps are only applied to the axioms that contain the
name to be forgotten, which are then replaced by the forgetting
result. It turns out that the order in which we forget is very
crucial to the performance: our heuristics take into account the
positive and negative occurrences of the name to be forgotten
and we generally start with the least frequent ones.

In addition, we use pre- and post-processing to reduce the
number of axioms to be processed, and to improve the shape
of the computed uniform interpolant. First, we use module
extraction as in [18], and as implemented in the OWL API,
to compute a subset of the ontology that contains all relevant
axioms for the uniform interpolant. Second, we use purifica-
tion to quickly forget all names which occur either only posi-
tively or only negatively, in which case they can be replaced
by respectively ⊤ and ⊥ . As post-processing, we use a set of
beautification rules that improve the syntactic shape of the
axioms, by detecting tautological or contradictory subex-
pressions (including fixpoints), detecting redundancies or
applying associativity. A cheaper version of beautification
is used during the forgetting phase to keep the size of the
current uniform interpolant small. A more expensive form is
applied at the end to make the final uniform interpolant more
human-readable and to keep the expressivity of the used
DL small. For instance, an EL ontology might be preferable
over an equivalent ALC ontology, if this transformation is
possible in simple steps.

5 � Evaluation

We evaluate Lethe and compare it with Fame, the other
state-of-the-art tool for uniform interpolation in expressive
DLs. While being faster, later versions of Fame compute
uniform interpolants in a very expressive DL not supported
by OWL, which explains why we could not produce OWL
files for most inputs with Fame 2.0, the latest version. For
this reason, we used the ALCOIQ-forgetter of Fame 1.0 in
our experiments.3

Evaluations of older versions of Lethe [8–11] and com-
parisons with other tools [1, 20, 21] can be found in the
literature. Since then, additional optimisations and features
have been implemented, as well as some bugs fixed. The
evaluation presented differs in three further aspects from
earlier evaluations. (1) We compute uniform interpolants
with universal roles, which are now directly supported by
Lethe. Fame always does this, and since it makes forget-
ting roles much easier, this provides for a fairer comparison.
Furthermore, universal roles in the uniform interpolant can
be useful in practice (see Theorem 1). (2) We do not discard

computations that caused timeouts, but instead evaluate the
uniform interpolants computed within the given time frame,
since in many applications, a fast computed uniform inter-
polant with a few more symbols is sufficient and preferable
over long waiting times. (3) We use different heuristics for
selecting samples of signatures.

System Specification. The experiments where run on an
Intel Core i5-4590 CPU machine with 3.30 GHz and 32 GB
RAM, using Debian/GNU Linux 9 and OpenJDK 11.0.5.

Corpus. We use the ontologies from the OWL Reasoner
Evaluation 2015 [17], for the track DL Classification, which
has been balanced in terms of size, expressivity and com-
plexity of ontologies. From each ontology, we removed axi-
oms outside of ALCH , where we translated n-ary equiva-
lence and disjointness axioms, as well as domain and range
axioms, into corresponding ALCH concept inclusions. From
the resulting corpus, we removed all ontologies that had less
than 100 names and more than 100,000 axioms. Figure 3
shows sizes and expressivity of the ontologies in the result-
ing corpus of 198 ontologies.

Signatures. We focused on uniform interpolants for small
signatures, which are particularly useful for ontology analy-
sis, and thus selected signatures of 100 names for each com-
puted uniform interpolant. We used different strategies to
select signatures: (1) fully random signatures by selecting
each name with equal probability, (2) weighted signatures
by selecting each name weighted with the frequency of its
occurrences in the ontology, and (3) coherent signatures by
selecting names related to each other using genuine mod-
ules [18]. A genuine module is a module extracted for the
signature of some axiom, and thus has as signature names
that are related to that axiom in the ontology, and are conse-
quently related to each other. To obtain a coherent signature,
we took the union of randomly selected genuine modules
until the overall signature size was above 100, and then ran-
domly selected names from the resulting signature.

EL ELH ALC ALCH
17.4% 15.1% 27.9% 39.6%

102

104

106

#A
xi
om

s

Fig. 3   Distribution of sizes and expressivity of the input ontologies

3  http://www.cs.man.ac.uk/~schmi​dt/sf-fame/.

http://www.cs.man.ac.uk/%7eschmidt/sf-fame/

	 KI - Künstliche Intelligenz

1 3

The results of the evaluation are shown in Figs. 5 and 4.
For the coherent signatures, Lethe produced an out of mem-
ory error each time for 7 of the ontologies. Apart from these
cases, Lethe always computed a uniform interpolant, and in
most cases completely for the desired signature. Fame does
not have a timeout functionality as Lethe, and was termi-
nated after the timeout passed, which is why we have less
results for it. Still, one can see that Lethe was more often
able to compute the uniform interpolant for the required sig-
nature size of 100. Note that Fame can also produce uniform
interpolants with more than 100 symbols, due to definer
symbols used to simulate fixpoints, and because the method
used is incomplete and sometimes fails to forget some of
the names.

6 � Related Work

For an overview on forgetting in logics see [4]. Theoretical
properties of uniform interpolation in expressive description
logics have been investigated in [14]. The main competing

tool for uniform interpolation in expressive DLs is Fame [20,
21], which we used in our evaluation. Which tool is recom-
mended to use depends on the application, as Fame can be
faster and supports more expressive DLs. The faster versions
however often fail to compute results in OWL, as interpo-
lants may use non-classical constructs. Another difference
to Lethe is that the method underlying Fame is incomplete
in the sense that it is not guaranteed to compute a uniform
interpolant for every given signature. A very recent tool that
can be used for forgetting in expressive DLs is DLS-For-
getter [1], which applies the DLS algorithm on first order
logic formulae. More similar to Lethe is the resolution-
based method for ALC presented in [12], which however is
not able to deal with cyclic ontologies. For the light-weight
DL EL , there exist an implemented method for acyclic ter-
minologies [7], and one for general ontologies [13].

EL ALC ALCI
random 34.6% 58.1% 7.3%
weighted 36.1% 55.9% 7.9%
coherent 33.8% 63.0% 3.1%

0 500 1,000 1,500 2,000
100

101

102

103

104

105

#A
xi
om

s

random
weighted
coherent

0 500 1,000 1,500 2,000
100

101

102

103

104

105

A
vg
.A

xi
om

s
Si
ze

random
weighted
coherent

0 500 1,000 1,500 2,000
100

101

102

103

104

105

Si
gn
at
ur
e
Si
ze

random
weighted
coherent

Fig. 4   Uniform interpolants computed by Fame 

EL ELH ALC ALCH
random 29.3% 1.6% 67.1% 1.9%
weighted 24.1% 2.3% 71.4% 2.1%
coherent 39.7% 3.4% 56.2% 0.7%

0 500 1,000 1,500 2,000
100

101

102

103

104

105

#A
xi
om

s

random
weighted
coherent

0 500 1,000 1,500 2,000
100

101

102

103

104

105

A
vg
.A

xi
om

s
Si
ze

random
weighted
coherent

0 500 1,000 1,500 2,000
100

101

102

103

104

105
Si
gn
at
ur
e
Si
ze

random
weighted
coherent

Fig. 5   Uniform interpolants computed by Lethe 

KI - Künstliche Intelligenz	

1 3

7 � Outlook

We are currently investigating further reasoning services
that are based on forgetting, and which will be implemented
in future versions of Lethe. Specifically, we are looking at
module extraction, abduction, and using forgetting to explain
entailments in an ontology. Regarding abduction, we want
to support arbitrary signatures and ABox assertions. For
this generalised abduction problem, we have to adapt the
forgetting procedure as well, as it has for instance to handle
negated role assertions. Furthermore, we noticed that uni-
form interpolants are often smaller than modules extracted
with the OWL API, but in some cases also larger and with
more complex axioms. Another line of research to pursue is
to develop a method that sits in between uniform interpola-
tion and module extraction, and is optimised to compute
small and simple ontologies that captures the entailments
of a given signature, similar to [16].

Acknowledgements  Open Access funding provided by Projekt DEAL.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

References

	 1.	 Alassaf R, Schmidt RA (2019) Dls-forgetter: an implementation of
the DLS forgetting calculus for first-order logic. In: Proceedings
of GCAI 2019, EPiC series in computing, vol 65. EasyChair, pp
127–138

	 2.	 Calvanese D, De Giacomo G, Lenzerini M (1999) Reasoning in
expressive description logics with fixpoints based on automata on
infinite trees. In: Proceedings of IJCAI 1999. Morgan Kaufmann,
pp 84–89

	 3.	 Del-Pinto W, Schmidt RA (2019) ABox abduction via forgetting
in ALC . In: Proceedings of AAAI 2019. AAAI Press, pp 2768–
2775. https​://doi.org/10.1609/aaai.v33i0​1.33012​768

	 4.	 Eiter T, Kern-Isberner G (2019) A brief survey on forgetting
from a knowledge representation and reasoning perspective. KI
33(1):9–33. https​://doi.org/10.1007/s1321​8-018-0564-6

	 5.	 Horridge M, Bechhofer S (2011) The OWL API: a Java API for
OWL ontologies. Semant Web 2(1):11–21

	 6.	 Konev B, Lutz C, Walther D, Wolter F (2009) Formal proper-
ties of modularisation. Modular ontologies: concepts, theories
and techniques for knowledge modularization, LNCS, vol 5445.

Springer, Berlin, pp 25–66. https​://doi.org/10.1007/978-3-642-
01907​-4_3

	 7.	 Konev B, Walther D, Wolter F (2009) Forgetting and uniform
interpolation in large-scale description logic terminologies. In:
Proceedings of IJCAI 2009, pp 830–835

	 8.	 Koopmann P (2015) Practical uniform interpolation for expressive
description logics. Ph.D. thesis, University of Manchester, UK

	 9.	 Koopmann P, Schmidt RA (2013) Forgetting concept and role
symbols in ALCH-ontologies. Logic for programming, artificial
intelligence, and reasoning–LPAR-19, LNCS, vol 8312. Springer,
Berlin, pp 552–567. https​://doi.org/10.1007/978-3-642-45221​
-5_37

	10.	 Koopmann P, Schmidt RA (2014) Count and forget: uniform inter-
polation of SHQ-ontologies. In: Automated reasoning—7th inter-
national joint conference, IJCAR 2014, LNCS, vol 8562. Springer,
pp 434–448. https​://doi.org/10.1007/978-3-319-08587​-6_34

	11.	 Koopmann P, Schmidt RA (2015) Uniform interpolation and
forgetting for ALC ontologies with ABoxes. In: Proceedings of
AAAI 2015. AAAI Press, pp 175–181

	12.	 Ludwig M, Konev B (2014) Practical uniform interpolation and
forgetting for ALC tboxes with applications to logical difference.
In: Principles of knowledge representation and reasoning: pro-
ceedings of KR 2014. AAAI Press

	13.	 Ludwig M, Walther D (2016) Towards a practical decision pro-
cedure for uniform interpolants of EL-TBoxes—a proof-theoretic
approach. In: Proceedings of GCAI 2016, EPiC series in comput-
ing, vol 41. EasyChair, pp 147–160

	14.	 Lutz C, Wolter F (2011) Foundations for uniform interpolation
and forgetting in expressive description logics. In: Proceed-
ings of IJCAI 2011. IJCAI/AAAI, pp 989–995. https​://doi.
org/10.5591/978-1-57735​-516-8/IJCAI​11-170

	15.	 Möller R, Özçep ÖL, Haarslev V, Nafissi A, Wessel M (2016)
Abductive conjunctive query answering wrt ontologies. KI
30(2):177–182. https​://doi.org/10.1007/s1321​8-015-0399-3

	16.	 Nikitina N, Glimm B (2012) Hitting the sweetspot: economic
rewriting of knowledge bases. The semantic web–ISWC 2012,
LNCS, vol 7649. Springer, Berlin, pp 394–409. https​://doi.
org/10.1007/978-3-642-35176​-1_25

	17.	 Parsia B, Matentzoglu N, Gonçalves RS, Glimm B, Steigmiller
A (2017) The OWL reasoner evaluation (ORE) 2015 competition
report. J Autom Reason 59(4):455–482. https​://doi.org/10.1007/
s1081​7-017-9406-8

	18.	 Vescovo CD, Parsia B, Sattler U, Schneider T (2011) The modu-
lar structure of an ontology: atomic decomposition. In: Proceed-
ings of IJCAI 2011. IJCAI/AAAI, pp 2232–2237. https​://doi.
org/10.5591/978-1-57735​-516-8/IJCAI​11-372

	19.	 Zhao Y, Alghamdi G, Schmidt RA, Feng H, Stoilos G, Juric D,
Khodadadi M (2019) Tracking logical difference in large-scale
ontologies: a forgetting-based approach. In: Proceedings of AAAI
2019 AAAI Press, pp 3116–3124. https​://doi.org/10.1609/aaai.
v33i0​1.33013​116

	20.	 Zhao Y, Schmidt RA (2018) FAME: an automated tool for seman-
tic forgetting in expressive description logics. In: Automated rea-
soning—9th international joint conference, IJCAR 2018, LNCS,
vol 10900. Springer, pp 19–27. https​://doi.org/10.1007/978-3-319-
94205​-6_2

	21.	 Zhao Y, Schmidt RA (2019) FAME(Q): an automated tool for
forgetting in description logics with qualified number restrictions.
Automated deduction–CADE 27, LNCS, vol 11716. Springer,
Berlin, pp 568–579. https​://doi.org/10.1007/978-3-030-29436​
-6_34

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1609/aaai.v33i01.33012768
https://doi.org/10.1007/s13218-018-0564-6
https://doi.org/10.1007/978-3-642-01907-4_3
https://doi.org/10.1007/978-3-642-01907-4_3
https://doi.org/10.1007/978-3-642-45221-5_37
https://doi.org/10.1007/978-3-642-45221-5_37
https://doi.org/10.1007/978-3-319-08587-6_34
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-170
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-170
https://doi.org/10.1007/s13218-015-0399-3
https://doi.org/10.1007/978-3-642-35176-1_25
https://doi.org/10.1007/978-3-642-35176-1_25
https://doi.org/10.1007/s10817-017-9406-8
https://doi.org/10.1007/s10817-017-9406-8
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-372
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-372
https://doi.org/10.1609/aaai.v33i01.33013116
https://doi.org/10.1609/aaai.v33i01.33013116
https://doi.org/10.1007/978-3-319-94205-6_2
https://doi.org/10.1007/978-3-319-94205-6_2
https://doi.org/10.1007/978-3-030-29436-6_34
https://doi.org/10.1007/978-3-030-29436-6_34

	LETHE: Forgetting and Uniform Interpolation for Expressive Description Logics
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Description Logics
	2.2 Uniform Interpolation and Related Tasks

	3 User Interfaces of Lethe
	4 Method and Implementation
	4.1 General Method
	4.2 Implementation of Forgetting Calculus
	4.3 Implementation of Uniform Interpolation

	5 Evaluation
	6 Related Work
	7 Outlook
	Acknowledgements
	References

