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Introduction

Description Logic (abbrv.DL) [1] belongs to the field of
knowledge representation and reasoning. DL researchers
have developed a large family of logic-based languages,
so-called description logics (abbrv.DLs). These logics
allow their users to explicitly represent knowledge as
ontologies, which are finite sets of (human- and machine-
readable) axioms, and provide them with automated in-
ference services to derive implicit knowledge. The land-
scape of decidability and computational complexity of
common reasoning tasks for various description log-
ics has been explored in large parts: there is always
a trade-off between expressibility and reasoning costs.
It is therefore not surprising that DLs are nowadays
applied in a large variety of domains [1]: agriculture,
astronomy, biology, defense, education, energy manage-
ment, geography, geoscience, medicine, oceanography,
and oil and gas. Furthermore, the most notable success
of DLs is that these constitute the logical underpinning
of the Web Ontology Language (abbrv.OWL) [5] in the
Semantic Web.

Formal Concept Analysis (abbrv. FCA) [3] is sub-
field of lattice theory that allows to analyze data-sets
that can be represented as formal contexts. Put simply,
such a formal context binds a set of objects to a set
of attributes by specifying which objects have which
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attributes. There are two major techniques that can
be applied in various ways for purposes of conceptual
clustering, data mining, machine learning, knowledge
management, knowledge visualization, etc. On the one
hand, it is possible to describe the hierarchical structure
of such a data-set in form of a formal concept lattice
[3]. On the other hand, the theory of implications (de-
pendencies between attributes) valid in a given formal
context can be axiomatized in a sound and complete
manner by the so-called canonical base [4], which fur-
thermore contains a minimal number of implications
w.r.t. the properties of soundness and completeness.

In spite of the different notions used in FCA and in
DL, there has been a very fruitful interaction between
these two research areas. My thesis [6] continues this
line of research and, more specifically, it describes how
methods from FCA can be used to support the auto-
matic construction and extension of DL ontologies from
data.

Axiomatization of EL Concept Inclusions

The description logic EL allows for tractable reason-
ing in polynomial time and features concept descrip-
tions for intensionally describing collections of objects.
A concept inclusion is an implication between two con-
cept descriptions and such terminological axioms are
used for describing the schema of the domain of inter-
est. However, it might be a tedious task to formulate
such axioms by hand. My thesis is concerned with the
(unsupervised) axiomatization of concept inclusions un-
der different assumptions on the input. In the following,
according use cases are described.

Completions. The first use case is concerned with
situations where there already exist concept inclusions
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describing the domain of interest and where data on the
domain of interest is available. The existing concept in-
clusions might either have been manually formulated
by a knowledge engineer or have been generated using
other axiomatization techniques. Furthermore, it is re-
quired that these concept inclusions are retained, i.e.,
we construct a completion of these with respect to the
data. More specifically, given a TBox T and an inter-
pretation I that is a model of T , a completion of T
w.r.t. I (or, a concept inclusion base of I relative to T )
is a TBox S such that its union with T is both sound
and complete for I, i.e., I is a model of S and S ∪ T
entails each concept inclusion that is valid in I.

data
I

knowledge
T

completion
Can(φI , T )

The problem of computing such completions can be
reduced to a corresponding problem in Formal Con-
cept Analysis, namely computing an implication base
relative to an existing implication set. Algorithmic so-
lutions for the latter exist, and my thesis describes a
procedure that can compute such implication bases in
a highly parallel manner where the necessary compu-
tation time is almost inverse linear proportional to the
number of available CPU cores. Moreover, such com-
pletions can always be computed in exponential time
and there exist interpretations for which no completion
can be encoded in polynomial space.

Logical Intersections. Assume again a situation
where we have an interpretation I and some TBox T ,
but this time I is not a model of T and we do not
have a preference between both. For suitably axioma-
tizing concept inclusions, a solution is to characterize
the logical intersection, i.e., to find a base for the con-
cept inclusions that are both valid in the interpretation
and are entailed by the TBox.

data
I

knowledge
T

logical intersection
Can(φI φT , ∅)

In order to do so, we generalize the notions of in-
terpretations and TBoxes to a common representation:
we show that both induce a so-called closure operator,
which is a monotone, extensive, idempotent mapping
on concept descriptions. The benefit is that the set of
closure operators forms a lattice, i.e., it is an ordered

set and for two closure operators there always exists a
supremum and an infimum. These two operations on
closure operators correspond to operations on the un-
derlying data inducing the closure operator. Further-
more, we can define the notion of validity of a concept
inclusion for a closure operator such that it coincides
with the usual notion of validity in an interpretation
and of entailment by a TBox, respectively.

Distel [2] showed that the mapping from subsets
of the interpretation domain to their model-based most
specific concept descriptions is the adjoint of the inter-
pretation function, i.e., these form a Galois connection.
It is then an immediate consequence that each interpre-
tation I induces a closure operator φI , namely the com-
position of the interpretation function and the model-
based most specific concept description mapping.

My thesis shows that each TBox T induces a closure
operator φT as well. It is obtained as the function that
maps a concept description to its most specific conse-
quence with respect to T . Put simply, such most specific
consequences can be computed by saturating a concept
description with the concept inclusions in T .

Now the concept inclusions valid for the infimum
φI φT are exactly the concept inclusions that are both
valid in I and entailed by T . It follows that we can char-
acterize the logical intersection by a concept inclusion
base for the closure operator φI φT . For computing
such bases, my thesis demonstrates how the above com-
pletions can be constructed for the more general case
where the data is not just an interpretation but can be
described by a closure operator instead. More specifi-
cally, a so-called canonical base Can(φ, T ) can be com-
puted, which is a completion of some TBox T w.r.t. a
closure operator φ and has minimal cardinality among
all completions of T w.r.t. φ.

However, it might sometimes be necessary to restrict
the role depth of the concept inclusions to be axioma-
tized. This due to the fact that logical intersections need
not be finitely representable. For instance, consider the
TBoxes T := {A v B1} and U := {A v B2}; then for
each number n ∈ N, both entail the concept inclusion

E

rn. (A uB1) u

E

rn. (A uB2) v

E

rn. (A uB1 uB2).
Obviously, there cannot exist a TBox that entails all
above concept inclusions, since TBoxes must be finite.

Filtering then Completing. When assuming that
the TBox is more trustworthy than the interpretation,
it is necessary to filter out incompatible parts of the
interpretation. We utilize the supremum operation for
this purpose. In particular, the supremum of φI and φT
describes a filtering of the interpretation I with respect
to T , i.e., it only consists of the part of I that is a model
of T . Note that the filtering is not defined on the object
level but on the extensional level instead, which means
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that it does not consist of objects of I but of sets of
objects. Finally, the axiomatization of the input I and
T is then obtained as the union of T and the completion
of T with respect to the supremum φI φT .

data
I

filtered data
φI φT

knowledge
T

completion
Can(φI φT , T )

Adjusting then Completing. We are now concerned
with the last situation where the interpretation is pre-
ferred over the TBox. The easiest solution is, of course,
to simply compute a concept inclusion base for the
interpretation—however, it is then not clear how to
track differences between the existing concept inclu-
sions and the new ones in the base. Alternatively, con-
clusions in the existing concept inclusions can be ad-
justed: for each existing concept inclusion C v D, re-
place D with the most specific concept description E

such that C v E is both valid in I and entailed by
T , i.e., E is obtained from C by applying the infimum
φI φT . That way, we first adjust the existing concept
inclusions to the new interpretation, and afterwards we
compute the completion of this adjustment w.r.t. the
new interpretation.

data
I

knowledge
T

adjusted knowledge
TI

completion
Can(φI , TI)

Incremental Axiomatization from Streams of Data.
Eventually, we want to put emphasis on the fact that all
of the above techniques can be stacked and iterated. For
instance, we might have a situation where new obser-
vations are available on a regular basis, i.e., a stream
( In | n ∈ N ) of interpretations is available. We fur-
ther have a hand-crafted TBox F for filtering each of
the interpretations: on the one hand, this TBox might
describe a filter on interesting data and, on the other
hand, this TBox might describe a filter on valid data;
the concrete role of it does not matter for our purposes.

filter
F

TBox
T0

TBox
T1

filt. data
φI0

φF

filt. data
φI1

φF

data
I0

data
I1

. . .

. . .

. . .

Our goal is now as follows. For each time point n,
a TBox Tn is to be constructed that is sound and com-
plete for the concept inclusions that are valid in the
filterings of I0, . . . , In w.r.t. F . Of course, we can ini-
tially construct the concept inclusion base for the fil-
tering of the first interpretation I0 w.r.t. F , yielding a
TBox T0. For each later time point n > 0, the TBox Tn
is obtained as the logical intersection of Tn−1 and the
filtering of In w.r.t. F .

More Expressive Description Logics

The task of axiomatizing concept inclusions is also in-
vestigated for more expressive description logics. As a
first target language the description logicM is consid-
ered. It is not a Boolean-complete logic, since it does
not allow disjunctions and negations—this avoids over-
fitting of the resulting concept inclusions. However, rea-
soning complexity for M is much higher than for EL:
it jumps from P-completeness to EXP-completeness.1

For this reason, the Horn fragment of M, denoted as
Horn-M, is considered as a target language as well.
Put simply, the Horn fragment is the largest fragment
that can be translated into function-free logic programs
(Datalog). The restriction to the Horn fragment low-
ers expressivity, but with the advantage that reason-
ing complexity decreases. In particular, the instance
problem is coNP-complete for M and P-complete for
Horn-M (both w.r.t. data complexity).1 It hence makes
sense to use Horn-M TBoxes in ontology-based data ac-
cess applications.

As a further, more expressive description logic a
probabilistic extension Prob-EL of EL is considered. It
extends EL by the possibility to probabilistically quan-
tify a concept description. Again, reasoning is more ex-
pensive than in EL: the subsumption relation is EXP-
complete. As it turns out, concept inclusion bases for

1 Note that this is a conjecture. In fact, it is proven only for
the sublogic M− without existential self-restrictions

E

r. Self.
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probabilistic interpretations can be computed in ex-
ponential time as well, i.e., the increase in expressive
power does not result in higher computational complex-
ity of the axiomatization task.

For all above mentioned description logics that are
more expressive than EL, it is currently unclear whether
most specific consequences w.r.t. TBox exist and, if so,
how these can be computed. As soon as these ques-
tions are solved with an affirmative answer, similar ap-
proaches as for EL can be utilized for combining knowl-
edge from TBoxes and interpretations in a learning set-
ting. For now, it is only possible to axiomatize the con-
cept inclusions valid in a given interpretation.

A Lattice-Theoretic View on EL

The set of EL concept descriptions ordered by subsump-
tion forms a lattice in which conjunction is the infimum
operation and the least common subsumer mapping is
the supremum operation. In my thesis, I have inves-
tigated this lattice in more detail. It was shown that
the lattice is distributive. Furthermore, relative pseudo-
complements always exist and can be computed in poly-
nomial time, which makes the lattice a residuated one.

The neighborhood relation induced by the subsump-
tion relation contains pairs of concept descriptions where
the first is strictly subsumed by the second and such
that there does not exist any concept description strictly
between both. A natural question is whether the tran-
sitive closure of that neighborhood relation equals the
strict part of the subsumption relation, i.e., whether
the subsumption relation is neighborhood generated. If
it is, then we might walk along the neighborhood rela-
tion when searching for concept description with spe-
cific properties without the chance to miss any inter-
esting candidate. For empty or cycle-restricted TBoxes,
the subsumption relation is indeed neighborhood gener-
ated and my thesis describes how all upper and all lower
neighbors of a given concept description can be enu-
merated. For general TBoxes or extensions of EL with
greatest fixed-point semantics, the subsumption rela-
tion is not neighborhood generated and suitable coun-
terexamples are provided.

Eventually, the neighborhood relation can be uti-
lized to define a metric (a distance function) on the set
of EL concept descriptions. The reason is that EL is of
locally finite length, i.e., all chains between two compa-
rable concept descriptions are finite, and further that
EL satisfies the Jordan-Dedekind chain condition, i.e.,
all maximal chains between two comparable concept
descriptions have the same length. We can then simply
define the distance between two comparable concept

descriptions as the length of some maximal chain be-
tween them—clearly, such a maximal chain must be a
chain of neighbors. For measuring distances between ar-
bitrary concept descriptions, we choose the distance be-
tween the corresponding infimum and supremum. In the
undirected graph where EL concept descriptions are the
nodes and two nodes are connected if they are neigh-
bors, that distance between two concept descriptions is
the length of a shortest path between both. As it turns
out, the above distance function is not an elementary
function. The distance between> and

E

rn. (A uB u C)
is asymptotically bounded above and below by

22
. .

.22
3

︸ ︷︷ ︸
n times

.
Conclusion

My thesis describes how methods from Formal Con-
cept Analysis can be utilized for the task of construct-
ing and extending description logic ontologies. In par-
ticular, for the tractable description logic EL existing
knowledge can be reused when axiomatizing concept
inclusions from newly observed data. For the more ex-
pressive description logics M, Horn-M, and Prob-EL
methods for mining concept inclusions from observed
data are developed. Currently, existing knowledge can-
not be incorporated for these logics, since it remains
an open question whether most specific consequences
always exist and, if so, how to compute these. All pro-
posed methods are not only sound, but also complete.
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