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Abstract. When subsumption relationships unexpectedly fail to be de-
tected by a description logic reasoner, the cause for this “non-entailment”
need not be evident. In this case, succinct automatically generated expla-
nations would be helpful. Reasoners for the description logic EL compute
the canonical model of a TBox in order to perform subsumption tests.
We devise parts of such models as relevant parts for explanation and pro-
pose an approach based on graph transductions to extract such relevant
parts from canonical models.
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1 Introduction

Description logics (DLs) are a family of decidable fragments of first-order logic
(FOL) that can speak about graph structures. These logics are commonly used
to formalize knowledge about concepts about the real world. Concepts in de-
scription logics are predicates built from unary and binary FOL predicates.
Knowledge about concepts is then expressed in an ontology, which is a finite
set of concept relating axioms. In the case of DLs, ontologies are referred to as
TBoxes. DLs are well investigated w.r.t. to the complexity of their reasoning
problems. The practical relevance of DLs becomes apparent as they provide the
formal basis for W3C standardized ontologies comprised in the OWL 2 standard.
The corresponding reasoning procedures are implemented in highly optimized
reasoner systems [8]. DL ontologies from practical applications easily contain
more than 10.000s of axioms. Therefore, it sometimes is not obvious why an ex-
pected consequence does not hold. When users with little expertise in logic face
such a situation, automated explanation services are needed. A common rea-
soning problem for DL TBoxes is to decide whether a subsumption relationship
holds between two given concepts, i.e., to decide whether the first concept is a
specialization of the second concept w.r.t. a TBox. Decision procedures for sub-
sumption have been implemented in a range of DL reasoners [8]. In this paper,
we consider the setting where the non-consequence in question is a missing sub-
sumption relationship between two concepts w.r.t. an EL TBox. The DL EL is
computationally well-behaved as deciding subsumption is tractable [5]. Also, EL
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enjoys the canonical model property, which guarantees the existence of a partic-
ular standardized model with useful properties. Reasoning in EL then amounts
to computing the canonical model. In fact, many EL reasoners implement the
computation of the canonical model [3,10,11]. Explaining negative answers to
a subsumption question can be addressed by supplying counter examples. Such
counter examples could then either be displayed to the user or serve as a start-
ing point for generating more user-friendly explanations. A counter example for
non-subsumption is the canonical model of the TBox itself. As this model con-
tains the whole signature of the TBox, it can easily be too large for explanation
purposes. The crucial step is to identify relevant parts of the counter model
that are useful for explaining the non-entailment. We propose in this paper four
kinds of relevant substructures of canonical models that can serve as explana-
tions and propose an approach to extract these parts from canonical models. As
formalisms to specify the extraction of relevant parts from a canonical model,
we make us of transductions. In general, transductions specify mappings over
relational structures and have been used to transform models of TBoxes in [9].

For explaining positive answers to a subsumption test, early approaches use
justifications as explanations, which are subset-minimal subsets of the TBox
that are “responsible” for the subsumption [4,13]. These methods produce syn-
tactic explanations using axioms that appear in the TBox. Explaining positive
subsumption results can also be done by providing proof, i.e., a derivation of
the subsumption by a calculus. Such methods were recently investigated for the
case of the DL EL in [1]. Our approach to explaining non-subsumption is more
fine-grained than classical justification-based methods in the sense that it can
address consequences of the TBox individually, since it uses the semantics of the
DL KB. Furthermore, unlike proof-based techniques, the outcome of our method
is of declarative nature and thus suits the declarative nature of DLs.

2 Preliminaries

Description logics are a family of decidable knowledge representation formalisms
that can model structures over unary and binary predicates. Unary predicates
are called concepts and binary predicates are called roles. Concepts for the de-
scription logic EL are built inductively from a set of concept names NA and a
set of role names NR. Let A 2 NA and r 2 NR, then (complex) EL-concepts are
built by the syntactic rule:

C ::= A | C u C | 9r.C | >.

We assume that the sets of concept names and role names are disjoint. We denote
concepts by upper case and roles with lower case letters. For concept names, we
usually write A and B, and by C and D we indicate possibly complex concepts.
A signature ⌃ is a union of two finite sets ⌃C ⇢ NA and ⌃R ⇢ NR.

An interpretation I = (�I , ·I) over a signature ⌃ consists of a non-empty
set �I called the interpretation domain and an interpretation function ·

I that
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maps every concept name in ⌃C to a subset of �I and every role name in ⌃R

to a subset of �I
⇥�I . The mapping ·

I extends to concepts:

– (C uD)I = CI
\DI ,

– (9r.C)I = {d 2 �I
| there is an e 2 CI s.t. (d, e) 2 rI},

– and >
I = �I .

An EL TBox T is a finite set of concept inclusions (CIs), which are formulae of
the form C v D, where C and D are EL concepts. We abbreviate C v D and
D v C by C ⌘ D. An interpretation I satisfies a CI C v D if CI

✓ DI . An
interpretation I is called a model of a TBox T if I satisfies all the CIs in T . For
a TBox, an interpretation or a concept X, we denote its signature by sig(X).
To denote the concept signature of X, we write use sigC(X) = sig(X) \ NC,
and sigR(X) = sig(X) \ NR for the role signature of X. A prominent reasoning
problem for DLs is to decide subsumption. Given two concepts C and D and
a TBox T , subsumption (denoted C vT D) decides whether for each model I
of T , CI

✓ DI holds. Since EL cannot express negation, satisfiability is trivial.
The main method for deciding subsumption is to compute the canonical model
of an EL TBox [5]. The method to compute the canonical model first normalizes
the TBox. An EL TBox is in normal form if and only if it only contains CIs of
the forms:

A v B, A1 uA2 v B, 9r.A v B, or A v 9r.B,

where A, A1, A2, and B are concept names or >, and r is a role name. Every
EL TBox T can be transformed into a TBox T

0 in normal form such that the
size of T 0 is linear in the size of T and every model of T 0 is a model of T [2].

Definition 1 (Canonical Model [2]). Let T be a normalized EL TBox. The

canonical model IT of T is defined as follows:

�IT := {A | A 2 NC \ sig(T )} [ {>},

AIT := {B 2 �IT | B vT A} for all A 2 ⌃C,

rIT := {(A,B) 2 �IT ⇥�IT | A vT 9r.B} for all r 2 ⌃R.

For any normalized EL TBox T , its canonical model IT , and for two named
concepts A and B, we have that A vT B if and only if IT |= A v B [2].
Subsumption of arbitrary concepts C and D can be tested, if the CIs: A v C
and B v D are added to T . In a canonical model, each concept name from the
(normalized) TBox is represented by one element in the domain. An element
a 2 AIT is the representative of A in IT if for all other x 2 AIT there is a
concept name N , s.t. x 2 NIT and a /2 NIT .

Model transformations is a binary (usually functional) relations on the class
of finite DL interpretations. We mostly use monadic second-order (MSO) trans-
ductions as formalism to describe model transformations. Such transductions are
defined in [7] and tailored to description logic interpretations in [9]. Intuitively,
a transduction specifies a model transformation by a tuple of MSO formulae,
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called definition scheme, that describes how to construct an output interpreta-
tion in terms of the input interpretation. We will use transductions to manipulate
models of EL TBoxes and hence only deal with binary relational signatures. We
denote these signatures by ⌃ and write ⌃C for the set of its unary predicates
and ⌃R for the set of its binary predicates. By MSO(⌃,W) we denote the set
of MSO formulae with free first-order variables in W. These variables are called
parameters.

Definition 2 (Monadic Second-Order Definition Scheme). Let ⌃ be a

binary signature, and let W be a finite set of parameters. A monadic second-
order definition scheme is a tuple

D = h�, �, (✓N )N2⌃C , (⌘r)r2⌃Ri, where

– � 2 MSO(⌃,W) is called the precondition,
– � 2 MSO(⌃,W [ {x}) is called the domain formula,
– ✓N 2 MSO(⌃,W [ {x}) for all N 2 ⌃C are the concept formulae,
– ⌘r 2 MSO(⌃,W [ {x, y}) for all r 2 ⌃R are the role formulae.

The di↵erent formulae serve di↵erent purposes. The precondition � needs to
be satisfied by the input interpretation. This is essentially a test whether the
transformation specified by the scheme is applicable to the input. The domain

formula � defines the interpretation domain of the output interpretation. More
precisely, it selects those elements from the input interpretation that satisfy �.
For these domain elements, the concept formulae ✓ and role formulae ⌘ define the
extensions of the named concept and roles for each symbol from the signature.
MSO definition schemes are employed to generate transductions on interpreta-
tions. For our purpose of extracting relevant parts of models, we can restrict
ourselves to the case of non-copying transductions, i.e. to transductions that do
not increase the size of the interpretation.

Definition 3 (Transduction Induced by a Definition Scheme). Let I be

an interpretation over a binary signature ⌃, let W be a set of parameters, and

let � be a W-assignment in I, i.e., � : W ! �I
. A definition scheme D defines

the interpretation I
0
from (I,�) if

– (I,�) |= �(W),1

– �I0
:= {a 2 �I

| (I,�) |= �(W, a)},
– AI0

:= {a 2 �I0
| (I,�) |= ✓N (W , a)} for all N 2 ⌃C,

– rI
0
:= {(a, b) 2 (�I0

)2 | (I,�) |= ⌘r(W , a, b)} for all r 2 ⌃R,

with (I,�) |= �(W, a) meaning (I,�0) |= �(W, x), where �0 is the assignment

extending � such that �0 : x 7! a (and accordingly for ✓ and ⌘). We denote

bD(I,�) = I
0
. The transduction ⌧ induced by D is defined as

⌧ := {(I, bD(I,�)) | � is a W-assignment in I with (I,�) |= �},

and ⌧(I) denotes {bD(I,�) | (I,�) |= � for some �}. For functional transduc-

tions we write ⌧(I) = I
0
.

1 We indicate parameters variables from the set W = {z1, . . . , zn} by writting �(W, x)
instead of �(z1, . . . , zn, x).
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3 Defining Relevant Parts of Counter Models

Recall that we want to explain a non-subsumption by showing relevant parts
of a counter model. We start from the basic definition of a counter model. We
refer to asking for the validity of a subsumption relation � in a given TBox as
subsumption query. Let T be a TBox and � := A v B a subsumption query that
uses w.l.o.g. named concepts, s.t. T 6|= �. An interpretation I is called a counter

model for � w.r.t. T i↵ I |= T and I 6|= �. Presenting an entire model of the
full knowledge base to the user is not ideal because it contains a lot of irrelevant
parts. In this section, we provide four di↵erent definitions of what relevant parts
of a counter model are. The goal is to reduce the amount of information in the
counter model, i.e., reducing the amount of domain elements, concept labels, and
role labels in order to provide a concise explanation of the non-subsumption. In
case of the DL EL, the canonical model IT is the standard counter model and
we describe our methods for this kind of model. We exemplify our approach by
a running example.

Example 4. Clinical di↵erentiation between Parkinson’s disease (PD) and pro-
gressive supranuclear palsy (PSP) can be challenging due to overlapping clinical
features [12]. We model the characteristics of patients with the diseases by the
following TBox.

Tex :=
�

PD v NeuroDisease u 9accumulates.AlphaProtein u

9lossOf.Mobility u 9has.Tremor,

PSP v NeuroDisease u 9accumulates.TauProtein u

9lossOf.Mobility u 9impairs.Speech,

PDPatient v 9diagnosedWith.PD, TauProtein v Protein u 9builds.Tubuli,

PSPPatient v 9diagnosedWith.PSP, AlphaProtein v Protein
 

Our example subsumption query is �ex := PD vTex PSP which is not entailed
by Tex and for which we want to supply relevant parts from the canonical model
of Tex as this is our standard counter model. Figure 1 depicts the canonical
model ITex of Tex using the obvious abbreviations for the names. ITex contains
element a as the representative for the concept PD and b for the concept PSP.

We want to identify relevant substructures of a counter model by requiring
that these substructures to be models of sets of implications that follow from the
TBox T , and in that sense preserve parts of the model. Therefore, we define sets
of implications w.r.t. a given TBox T . With EL(sig(T )) denoting EL concepts
written in the signature of T , we define

SubT (C) := {H | C vT H,H 2 EL(sig(T ))}.

By H[N/M,R/S] we denote the exhaustive syntactic substitution of first, every
occurrence of N by M and second, every occurrence of R by S.
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Fig. 1: Canonical model ITex of TBox Tex.

Definition 5 (Relevant Implication Sets). Let T be a TBox and A,B 2

sig(T ) be concept names. The relevant implication sets of T w.r.t. A and B are:

ST (A) := {A v H | H 2 SubT (A)},

CT (A,B) := {G v H | H 2 SubT (A) \ SubT (B), G 2 {A,B}},

S̄T (A,B) := {B v H | H 2 SubT (B), H[N/>, 9r.>/>] 2 SubT (A)

for all N 2 sig(H) \⌃C and all r 2 sig(H) \⌃R}.

Intuitively, ST (A) consists of all the CIs that preserve the information on
the instances of A w.r.t. T . The set CT (A,B) contains CIs that preserve for
A and for B the information on the commonalities of A and B w.r.t. T . The
CIs in S̄T (A,B) preserve for B some commonalities of A and B that follow
from T . These commonalities are restricted to those subsumers of A that remain
subsumers, if all concept names are removed from them and the role-depth of
each nested existential restriction is reduced by 1. The idea will become evident
with the continuation of the running example.

Definition 6 (Relevant Parts of Counter Models). Let T be a TBox,

� := A vT B a subsumption query, I a counter model of � w.r.t. T . Let a, b 2
�I

s.t. a 2 AI
\BI

, and b 2 BI
if BI

6= ;. An interpretation I
0
is called

{exemplify-A, exemplify-A&B, di↵, flat-di↵ }-relevant part of I w.r.t. � and T i↵ I
0

is one of the smallest substructures of I, s.t. I
0
6|= �, and either

– a 2 AI0
and I

0
|= ST (A); (exemplify-A)

– a 2 AI0
, b 2 BI0

and I
0
|= ST (A) [ ST (B); (exemplify-A&B)

– a 2 AI0
, b 2 BI0

and I
0
|= CT (A,B) [ ST (B); (di↵)

– a 2 AI0
, b 2 BI0

and I
0
|= CT (A,B) [ S̄T (A,B,). (flat-di↵)

By smallest substructure I 0 of I w.r.t. � and ST (A), we mean that any strict
substructure I

00 of I 0 is not a model of � and ST (A) anymore — and likewise
for the other relevance notions.
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(a) exemplify-A-relevant part
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(b) exemplify-A&B-relevant part
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(c) di↵-relevant part
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(d) flat-di↵-relevant part

Fig. 2: The di↵erent kinds of relevant parts of the canonical model Iex of Tex.

We explain the intuition and the purpose of the four relevance parts in ref-
erence to Figure 2, where the corresponding parts of the canonical model ITex

from our running example are depicted. The exemplify-A-relevant part, depicted
in Figure 2a, highlights the information on A w.r.t. T and hence can be used to
display a “full” example of an instance of A from the subsumption query that is
not subsumed by B. The exemplify-A&B-relevant part, displayed in Figure 2b,
follows the same idea but for both concepts A and B. Therefore, the “full” in-
formation from both query concepts can be shown to the user. These two kinds
of relevant parts give a full descriptions of the involved concepts. Explaining
non-entailment can be considered as a kind of abduction problem, which, in
our case, is to infer what A lacks compared to B. This consideration motivates
the remaining two relevance parts we suggest. The di↵-relevant part shows the
di↵erence of A and B by preserving the information on the commonalities of
both concepts at a and gives full information on B at b. It thereby highlights
which parts of B are not entailed for A. The di↵-relevant part is displayed in
Figure 2c. The flat-di↵-relevant part illustrates a flattened form of di↵erence as it
preserves only those parts from B up to the smallest depth where a di↵erence to
A occurs. The flat-di↵-relevant part in Figure 2d prunes the relational structure
of b in comparison to the di↵-relevant part. In particular, di↵ shows that PSP
accumulates tau proteins and also that they build tubuli, whereas flat-di↵ merely
shows that PSP accumulates tau proteins. That is already is a di↵erence to PD,
which accumulates alpha protein. The fact that tau protein build tubuli is hid-
den because it already su�ces to know that PSP requires the accumulations of
tau proteins to explain the di↵erence between PD and PSP.
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4 Extracting Relevant Parts of Counter Models

Given a canonical model of a TBox and a subsumption query, one can obtain the
four kinds of counter model parts from Definition 5 by model transformation.
As input for the transformation we consider canonical models of normalized
TBoxes, which are finite for general EL TBoxes and computable in polynomial
time [2]. For the remainder of the paper we assume, that the subsumption query
is � := A vT B w.r.t. a normalized TBox T . To devise the transductions, we use
the predicate reach(x, y) for reachability of two elements in an interpretation I

[7, Section 5.2.2]. An edge between two elements of an interpretation I is defined
by succ(x, y) :=

W
r2⌃R

r(x, y). We introduce the definition scheme Dexemplify-A,
that induces transduction ⌧exemplify-A. The idea is that the transduction ⌧exemplify-A

extracts the exemplify-A-relevant part from the canonical model IT of the EL

TBox.

Definition 7 (Transduction ⌧exemplify-A). Let ⌃ be a signature s.t. A,B 2

⌃C ⇢ ⌃, and let W = {u}. The definition scheme Dexemplify-A inducing the

transduction ⌧exemplify-A consists of the formulae:

�(W) := A(u) ^ ¬B(u), ✓N (W, x) := N(x),

�(W, x) := reach(u, x), ⌘r(W, x, y), := r(x, y).

We assume that the parameter u is assigned by �(u) to the representative for
A as the expected subsumee from the subsumption query in IT . We use this as-
sumption also for the subsequent definition schemes. The preconditions indicate
which parameter is mapped to which concept representative. The transduction
simply picks the representative of A as the witness for the non-subsumption
A vT B from IT and collects all the reachable successors of it to induce a sub-
structure of IT w.r.t. sig(IT ). Since the representative is unique for canonical
models, we treat this transduction as functional.

Lemma 8. Let � be a set containing only EL CIs of the form A v H, where A
is a concept name and H an arbitrary EL concepts. Let I be a model of � with

a 2 AI
. Then, the induced substructure I

0
of I w.r.t. sig(I) that contains only

the element a and all elements reachable from a, is a model of � .

Proof. We show (I 0, a) |= H for all EL concepts H by induction on the structure
of H. For the induction base, we assume H = A0 for A0

2 NC. The claim holds
since we have that a 2 �I0

and that a 2 CI0
for every concept name C if and

only if a 2 CI because I
0 is an induced substructure of I, meaning that b get

the very same concept labels in I
0 as it has in I. This, in particular, holds for

C = A0. For the induction step we have two cases. First, H = H 0
uH 00. Due to

(I 0, a) |= H 0 and (I 0, a) |= H 00, which is true by hypothesis, we immediately have
that (I 0, a) |= H 0

uH 00. Second, H = 9r.H 0 for some role name r. Since we have
(I, a) |= 9r.H 0, there is an element a0 with (a, a0) 2 rI and hence, because a0 is
reachable from a in I, we have that (a, a0) 2 rI

0
, and by induction hypothesis

we have that (I 0, a0) |= H 0, hence we have that (I 0, a) |= H.
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Since ⌧exemplify-A exactly induces the substructure of a given input model with
a and all its reachable elements, we can apply Lemma 8 to ⌧exemplify-A(IT ) and
have that the image is a model of ST (A) because T entails ST (A).

In order to achieve minimality of the resulting structure through the model
transformation as required in Definition 6, we compose ⌧exemplify-A with a trans-
duction ⌧A-min that takes as an input a finite interpretation and yields a respective
minimal part of a counter model. The idea of ⌧A-min is the following. After the
application of ⌧exemplify-A to the canonical model IT of the TBox T , the obtained
substructure of IT satisfies the relevant implication sets, but is not minimal yet.
This part we call coarse relevant part of IT w.r.t. the subsumption query and
the TBox under consideration.

Transduction ⌧A-min itself is a composition of two transductions. In the first
step, superfluous roles of the coarse relevant part of IT are deleted, s.t. the
model property of the coarse relevant part w.r.t. the relevant implication set is
preserved. In the second step of ⌧A-min, the reachable part from the representa-
tive of concept A is cut out, for which the concept names and role names are
induced much like in ⌧exemplify-A. This second transformation step of extracting the
exemplify-A relevant part of a IT , we name ⌧A-reach and define it to be ⌧exemplify-A.
For canonical models IT for some EL TBox T , we have that ⌧A-min(IT ) is unique
up to isomorphism. Hence, we write ⌧A-min(IT ) = IT

0, where IT
0 refers to a

random element from the set of isomorphic smallest substructures.
The first step of ⌧A-min deletes only superfluous roles and there might be

several such sets of superfluous roles, which, strictly speaking, yield di↵erent
substructures. To be formally accurate, we take into consideration that di↵erent
selections of sets of superfluous roles might yield sets of substructures. How-
ever, instead of using parameters for the first step in the transduction ⌧A-min, we
introduce sets of superfluous pairs in every role that serve for constructing the
definition scheme for ⌧min. Let I be a finite interpretation and let ⌃ = sig(I). We
define Sr(I) as a maximal subset of rI , s.t. (I \Sr(I), a) |= H , (I, a) |= H for
all concepts H 2 EL(⌃) (and respectively for b if BI

6= ;).We remind the reader
that we assume a and b to be the representatives of A and B. Furthermore, we
call S(I) :=

Ṡ
r2⌃

Sr(I) a set of superfluous roles, which is the disjoint union
of the sets Sr indexed by the respective role name, for all role names in ⌃. We
omit writing I in Sr(I) whenever it is clear from the context.

Definition 9 (Transduction ⌧min). Let I be a finite interpretation over sig-

nature ⌃, let A,B 2 ⌃C, and let S be a set of superfluous roles. The trans-

duction ⌧min is the composition of the transductions induced by the definition

scheme:

�(W, x) := True, ✓N (W, x) := N(x), ⌘r(W, x, y) := r(x, y) ^ ¬Sr(x, y).

We define ⌧A-min to be the composition ⌧min � ⌧A-reach. Di↵erent possible sets of
superfluous roles S yield only isomorphic substructures for canonical models.
Therefore, we will not explicitly mention S.
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Lemma 10. Let T be an EL TBox, let IT be the canonical model of T , and

let ⌃ = sig(IT ). Furthermore, let A,B 2 ⌃C, and let ⌧exemplify-A(IT ) = I
0
. Then,

⌧A-min(I 0) is a minimal non-empty substructure of IT , s.t. ⌧A-min(I 0) |= ST (A).

Proof. Since ⌧A-min is model preserving by definition and Lemma 8, we have
that I, s.t. a 2 A⌧A-min(I0) and that ⌧A-min(I) |= ST (A). Second to show is that
⌧min(I 0) is indeed minimal, i.e., that for every strict substructure I⇤ of ⌧A-min(I 0)
we have that I

⇤
6|= ST (A). This, however, is immediately given the definition

of S, since it’s components are maximal subsets Sr for each role name in the
signature, s.t. (I \ Sr(I), a) |= H , (I, a) |= H. Then, the transduction ⌧A-min

cuts out the reachable part from a 2 AI and induces the substructure w.r.t.
⌃ by the composition with ⌧reach. Applying Lemma 8 additionally again implies
that ⌧A-min(I 0) is a minimal model of ST (A), meaning that one cannot remove
another element, role or concept label.

The lemmata from above are used to show soundness of the transforma-
tions of canonical models, meaning that the obtained structures are indeed the
exemplify-A-relevant part of the respective canonical models w.r.t. the subsump-
tion query and TBox under consideration.

Theorem 11 (Soundness for exemplify-A-Relevance). Let T be an EL TBox,

let � := A vT B a subsumption query, s.t. T 6|= �, and let IT the canonical model

of T . Then, we have that ⌧A-min(⌧exemplify-A(IT )) is the exemplify-A-relevant part
of IT w.r.t. � and T .

Proof. The transduction ⌧exemplify-A is always defined for the canonical model of
an EL TBox if T 6|= �. Fist, we need an element a 2 �⌧exemplify-A(I), s.t. a 2

A⌧exemplify-A(I) and a 62 B⌧↵(I). The precondition � ensures that the parameter u
is mapped to these conditions accordingly. The transduction then collects all
reachable elements from u by �. Due to the relation formulae ✓ and ⌘, ⌧exemplify-A

actually yields an induced substructure of I. By Lemma 8 we have that this
substructure is a model of ST (A). Also, ⌧exemplify-A(I) is not a model of � by �. By
Lemma 10 we have that ⌧A-min(⌧exemplify-A(I)) satisfies the minimality condition
of Definition 6.

Theorem 11 concludes the work on extracting exemplify-A-relevant parts from
canonical models for EL TBoxes. We now move to extracting exemplify-A&B-
relevant parts using the very same techniques as for exemplify-A-relevant parts.

Recall that exemplify-A&B-relevant parts of counter models are, in principle,
the same as exemplify-A-relevant parts with the di↵erence that the exemplify-A&B-
relevant part also features a representative of B with all its properties as formu-
lated in the TBox. Hence, we can easily apply the same techniques and lemmata
as in the previous subsection. In order to construct a definition scheme that in-
duces an MSO transduction that yields coarse exemplify-A&B-relevant parts of
counter models, we modify the formulae of definition scheme Dexemplify-A. We will
also have to adapt the minimality transduction accordingly.

Counter Model Transformation for Explaining Non-Subsumption in EL

18



Definition 12 (Transduction ⌧exemplify-A&B). Let ⌃ be a signature s.t. A,B 2

⌃C ⇢ ⌃, and let W = {u, v}. The definition scheme Dexemplify-A&B inducing the

transduction ⌧exemplify-A&B consists of the formulae:

�(W) := A(u) ^ ¬B(u) ^B(v), ✓N (W, x) := N(x),

�(W, x) := reach(u, x) _ reach(v, x), ⌘r(W, x, y) := r(x, y).

Similarly to exemplify-A-relevance, we have to compose ⌧exemplify-A&B with a
minimizing transduction that is applied the substructure of the canonical model
under consideration. For this purpose, we redefine ⌧A&B-reach to be ⌧exemplify-A&B

because we now also have to take care of the representative of B and its reachable
elements. Now, we define ⌧A&B-min to be ⌧min � ⌧A&B-reach.

Theorem 13 (Soundness for exemplify-A&B-Relevance). Let T be an EL

TBox, let � := A vT B a subsumption query, s.t. T 6|= �, and let IT a canonical

model of T . Then, we have that ⌧A&B-min(⌧exemplify-A&B(IT )) is the exemplify-A&B-
relevant part of IT w.r.t. � and T .

Proof. The proof follows the same argumentation as in the Theorem 11. The
only di↵erence is that there now also is a representative for concept B, which
ensured by the precondition �. From both the A (and not B) and the B rep-
resentatives, all reachable elements are being collected and used to produce the
induced substructure to satisfy Definition 6 applying Lemma 8 and Lemma 10.

Extracting the di↵-relevant part of a canonical model is more di�cult than
the previous two cases. Here it is required that the representative of concept A
must not satisfy subsumers of A w.r.t. T that are not subsumers of B w.r.t.
T ; whereas the representative of concept B has no such restrictions, and hence
must satisfy all subsumers of B w.r.t. T . We make use of additional auxiliary
predicates to extract the di↵erence-based relevance parts of counter models. The
predicate sam is true for two sets of elements if they constitute paths made of
the same roles in I. We denote the occurrence of free second-order variables X
in a formula ' by box brackets in '[X].

sam[X,Y, a, b] := 9h : '[h,X, Y, a, b] ^  [h,X, Y, a, b] , where

 [h] := 8x, y, z, w : h(x, y) ^ h(z, w) !
_

r2⌃R

r(x, z) ^ r(y, w), and

'[h,X, Y, a, b] defines h as a surjective map from Y to X with h(b, a). To express
that there is a path from element a to element b over the elements in X using
the succ relation, we use an MSO formula path[X, a, b] defined in [7, Proposition
5.11]. We combine these formulae in the predicate sim:

sim(a, b, x, y) := 9X,Y : sam[Y,X, a, b] ^ path[X, a, x] ^ path[Y, b, y].

Note that sam contains a quantification over a binary relation h and the defini-
tion schemes using this formula are not inducing MSO transductions but rather
second-order logic transductions. However, since the definition scheme formu-
lae are evaluated on finite interpretations, sam is still decidable and hence the
induced transduction computable.
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Definition 14 (Transduction ⌧di↵). Let ⌃ be a signature s.t. A,B 2 ⌃C ⇢ ⌃,

and let W = {u, v}. The definition scheme Ddi↵ inducing the transduction ⌧di↵
consists of the formulae:

�(W) := A(u) ^ ¬B(u) ^B(v),

�(W, x) := x = u _ [reach(u, x) ^ 9y : sim(u, v, x, y)] _ reach(v, x),

✓A(W, x) := [reach(u, x) ^A(x) ^ 9y : sim(u, v, x, y) ^A(y)] _ x = u _

[reach(v, x) ^A(x)],

✓N (W, x) := [reach(u, x) ^N(x) ^ 9y : sim(u, v, x, y) ^N(y)] _

[reach(v, x) ^N(x)] for all N 2 ⌃C \ {A},

⌘r(W, x, y) := [reach(u, x) ^ r(x, y) ^ 9z, w : r(z, w) ^ sim(u, v, x, z) ^

sim(u, v, y, w)] _ [reach(v, x) ^ r(x, y)].

Lemma 15. Let I be an interpretation, let A,B 2 sig(I) be two concept names,

let a 2 (A \B)I , and let b 2 BI
. Then, for all EL concept descriptions H, with

H 6= A, we have that (⌧di↵(I), a) |= H implies (⌧di↵(I), b) |= H.

Proof. By induction on the length of H. For the induction base, we assume H is
a concept name other than A. By �, we have a, b 2 �⌧di↵(I) and by ✓H(W, x), we
have that [reach(u, x)^H(x)^9y : sim(u, v, x, y)^H(y)], and hence, by h(b, a),
we have that H(b). Assume the claim holds for |H| = n. For the induction
step, we have two cases: (1) H = H1 u H2 and (2) H = 9r.H1. For (1), the
induction hypothesis applies to both H1 and H2, and hence, (⌧di↵(I), b) |= H1

and (⌧di↵(I), b) |= H2, and thus, (⌧di↵(I), b) |= H1 u H2. For (2), the induction
hypothesis applies to H1. By �(W, x), we have that I |= reach(a, x) ^ 9y :
sim(u, v, x, y). Hence, there are reachable elements y from b and an element z
reachable from b with (⌧di↵(I), y) |= H1 and r(z, y) and hence (⌧di↵(I), b) |= H.

As a consequence of Lemma 15 we have the following statement.

Corollary 16. Let T be a TBox, let I be a model of T , and let � := A vT B
be a subsumption query, s.t. I 6|= �. Then, for all H 2 SubT (A) \ SubT (B), we
have that (⌧di↵(I), a) |= H.

Theorem 17 (Soundness for di↵-Relevance). Let T be an EL TBox, let

� := A vT B a subsumption query, s.t. T 6|= �, and let IT a canonical model

of T . Then, ⌧A&B-min(⌧di↵(IT )) is the di↵-relevant part of IT w.r.t. � and T .

Proof. As in Theorem 11, the transduction ⌧di↵ is always defined for the canonical
model of an EL TBox if T 6|= �. First, having elements a 2 (A \ B)⌧di↵(I) and
b 2 B⌧di↵(I) is ensured by the precondition � again. Hence, we also have that
⌧di↵(I) 6|= �. We need to show that ⌧di↵(I) |= CT (A,B)[ST (B). That means, for
all C 2 SubT (H), we have to show (⌧di↵(I), b) |= H. This follows directly from
Lemma 8, since ⌧di↵ induces the substructure of b and all its reachable elements.
We now have to show that (⌧di↵(I), a) |= H for all H 2 SubT (G) \ SubT (H),
which follows from Corollary 16. Minimality follows the same argumentation as
in Lemma 10.
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Lastly, we define the transduction ⌧flat-di↵ and prove its soundness for canon-
ical models in a similar fashion as for the previous relevance parts.

Definition 18 (Transduction ⌧flat-di↵). Let ⌃ be a signature s.t. A,B 2 ⌃C ⇢

⌃, and let W = {u, v}. The definition scheme Dflat-di↵ inducing the transduction

⌧flat-di↵ consists of the formulae:

�(W) := A(u) ^ ¬B(u) ^B(v),

�(W, x) := [reach(u, x) ^ 9y : sim(u, v, x, y)] _

[reach(v, x) ^ 9y : sim(u, v, x, y)] _

[reach(v, x) ^ 9z : sim(u, v, x, z) ^ succ(z, x)],

✓A(W, x) := [reach(u, x) ^A(x) ^ 9y : sim(u, v, x, y) ^A(y)] _ x = u _

[reach(v, x) ^A(x)],

✓N (W, x) := [reach(u, x) ^N(x) ^ 9y : sim(u, v, x, y) ^N(y)] _

[reach(v, x) ^N(x)] for all N 2 ⌃C \ {A},

⌘r(W, x, y) := [reach(u, x) ^ r(x, y) ^ 9z, w : r(z, w) ^ sim(u, v, x, z) ^

sim(u, v, y, w)] _ [reach(v, x) ^ r(x, y)].

Theorem 19 (Soundness for flat-di↵-Relevance). Let T be an EL TBox, let

� := A vT B a subsumption query, s.t. T 6|= �, and let IT a canonical model of

T . Then, ⌧A&B-min(⌧flat-di↵(IT )) is the flat-di↵-relevant part of IT w.r.t. � and T .

Proof. As before, the transduction ⌧flat-di↵ is defined for I since T 6|= �. Also,
the precondition � ensures together with ✓A and ✓B that ⌧flat-di↵(I) 6|= �. It also
contains the A and B representatives by definition. As before, the substructure
on the reachable elements from b is induced w.r.t. the signature of I, and the
concept and role labels for the by � selected reachable elements from a are defined
as in ⌧di↵. Following the argumentation in Lemma 15 and Corollary 16, we show
that ⌧flat-di↵(I) |= CT (A,B) [ S̄T (A,B). To ensure (⌧flat-di↵(I), b) |= S̄T (A,B)
we point to the disjunct [reach(v, x)^9z : sim(u, v, x, z)^ succ(z, x)] in �. Since
the � also collects the direct successors of the leaves of the common part of the
model starting in b compared to the part starting in a, we have satisfy (exactly)
S̄T (A,B). Furthermore, minimality stems from the arguments in Lemma 10.

Throughout the paper, we have assumed that the TBox is given in normal
form. In order to get rid of the freshly introduced concept names, one can devise
a definition scheme that simply induces the substructure of the model w.r.t. the
signature of the not yet normalized TBox.

5 Conclusions and Future Work

We have introduced and motivated four notions of relevant parts of counter
models for explaining non-subsumptions w.r.t. EL TBoxes, and we have devised
sound means for extracting these parts by model transformation. We are cur-
rently implementing a system for providing explanations of EL non-subsumptions
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based on our relevance notions, to be evaluated on ontologies from practical ap-
plications. Possible extensions of this work are to consider DL knowledge bases
that also contain data, as well as elaborating the methods for more expressive
logics that also have the canonical model property, such as Horn DLs. In the
long run, we would also like to consider di↵erent types of reasoning tasks such
as explaining negative query answering results [6].
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