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Abstract. Unification in the Description Logic (DL) FL0 is known
to be ExpTime-complete and of unification type zero. We investigate
whether a lower complexity of the unification problem can be achieved
by either syntactically restricting the role depth of concepts or semanti-
cally restricting the length of role paths in interpretations. We show that
the answer to this question depends on whether the number formulating
such a restriction is encoded in unary or binary: for unary coding, the
complexity drops from ExpTime to PSpace. As an auxiliary result, we
prove a PSpace-completeness result for a depth-restricted version of the
intersection emptiness problem for deterministic root-to-frontier tree au-
tomata. Finally, we show that the unification type of FL0 improves from
type zero to unitary (finitary) for unification without (with) constants
in the restricted setting.

1 Introduction

Unification of concept patterns has been proposed as an inference service in
Description Logics that can, for example, be used to detect redundancies in on-
tologies. For the DL FL0, which has the concept constructors conjunction (u),
value restriction (∀r.C), and top concept (>), unification was investigated in de-
tail in [6]. It was shown there that unification in FL0 corresponds to unification
modulo the equational theory ACUIh since (modulo equivalence) conjunction is
associative (A), commutative (C), idempotent (I) and has top as a unit (U), and
value restrictions behave like homomorphisms for conjunction and top (h). For
this equational theory, it had already been shown in [1] that it has unification
type zero, which means that a solvable unification problem need not have a mini-
mal complete set of unifiers, and thus in particular not a finite one. From the DL
point of view, the decision problem is, however, more interesting than the unifi-
cation type. Since ACUIh is a commutative/monoidal theory [1,14], solvability
of ACUIh unification problems (and thus of unification problems in FL0) can be
reduced to solvability of systems of linear equations in a certain semiring, which
for the case of ACUIh consists of finite languages over a finite alphabet, with
union as semiring addition and concatenation as semiring multiplication [6]. By
a reduction to the emptiness problem for root-to-frontier tree automata (RFAs),
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it was then shown in [6] that solvability of the language equations corresponding
to an FL0 unification problem can be decided in exponential time. In addi-
tion, ExpTime-hardness of this problem was proved in [6] by reduction from the
intersection emptiness problem for deterministic RFAs (DRFAs) [16].

In the present paper, we investigate two kinds of restrictions on unification in
FL0. On the one hand, we syntactically restrict the role depth (i.e., the maximal
nesting of value restrictions) in the concepts obtained by applying a unifier to
be bounded by a natural number k ≥ 1. This restriction was motivated by a
similar restriction used in research on least common subsumers (lcs) [15], where
imposing a bound on the role depth guarantees existence of the lcs also in the
presence of a (possibly cyclic) terminology. Also note that such a restriction was
used in [11] for the theory ACh, for which unification is known to be undecidable
[13]. It is shown in [11] that the problem becomes decidable if a bound on the
maximal nesting of applications of homomorphisms is imposed. On the other
hand, we consider a semantic restriction where only interpretations for which
the length of role paths is bounded by a given number k are considered when
defining the semantics of concepts. A similar restriction (for k = 1) was employed
in [9] to improve the unification type for the modal logic K from type zero [10]
to unitary or finitary for K + ��⊥.

In the present paper we show that both the syntactic and the semantic restric-
tion ensures that the unification type of FL0 (and equivalently, of the theory
ACUIh) improves from type zero to unitary for unification without constants
and finitary for unification with constants. Regarding the decision problem, we
can show that the complexity depends on whether the bound k is assumed to
be encoded in unary or binary.3 For binary encoding of k, the complexity stays
ExpTime, whereas for unary coding it drops from ExpTime to PSpace. This is
again the case both for the syntactic and the semantic restriction. As an auxil-
iary result we prove that a depth-restricted variant of the intersection emptiness
for DRFAs is PSpace-complete.

Showing these results requires combining methods and results from knowl-
edge representation, unification theory, and automata theory. Due to space re-
strictions, we cannot give detailed proofs here. They can be found in [3].

2 The DL FL0 and Restrictions

Starting with mutually disjoint countably infinite sets NC and NR of concept
and role names, respectively, the set of FL0 concepts is inductively defined as
follows:

– > (top concept) and every concept name A ∈ NC is an FL0 concept,
– if C,D are FL0 concepts and r ∈ NR is a role name, then CuD (conjunction)

and ∀r.C (value restriction) are FL0 concepts.

3 For unary coding, the size of the input k is the number k, whereas for binary coding
it is the size of its binary encoding, i.e., log k.
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The semantics of FL0 concepts is defined using first-order interpretations I =
(DI , ·I) consisting of a non-empty domain DI and an interpretation function
·I that assigns a set AI ⊆ DI to each concept name A, and a binary relation
rI ⊆ DI ×DI to each role name r. This function is extended to FL0 concepts
as follows:

>I = DI and (C uD)I = CI ∩DI ,
(∀r.C)I = {x ∈ DI | ∀y ∈ DI : (x, y) ∈ rI ⇒ y ∈ CI}.

Given two FL0 concepts C and D, we say that C is subsumed by D (written
C v D) if CI ⊆ DI holds for all interpretations I, and that C is equivalent to D
(written C ≡ D) if C v D and D v C. It is well known that subsumption (and
thus also equivalence) of FL0 concepts can be decided in polynomial time [12].

Note that, up to equivalence, conjunction is associative, commutative, and
idempotent, and has the unit element >. In addition, the following equivalences
hold for value restrictions: ∀r.> ≡ > and ∀r.(C u D) ≡ ∀r.C u ∀r.D. Due to
these equivalences, one can transform FL0 concepts into a normal form that uses
formal languages over the alphabet of role names to represent value restrictions
that end with the same concept name. In fact, using these equivalences as rewrite
rules from left to right, every FL0 concept can be transformed into an equivalent
one that is either > or a conjunction of concepts of the form ∀r1. · · · ∀rn.A,
where r1, . . . , rn are role names and A is a concept name. Such a concept can be
abbreviated as ∀w.A, where w = r1 . . . rn is a word over the alphabet NR. Note
that n = 0 means that w is the empty word ε, and thus ∀ε.A corresponds to A.
Furthermore, a conjunction of the form ∀w1.A u . . . u ∀wm.A can be written as
∀L.A where L ⊆ N∗R is the finite language {w1, . . . , wm}. We use the convention
that ∀∅.A corresponds to the top concept >. Thus, any two FL0 concepts C,D
containing only the concept names A1, . . . , A` can be represented as

C ≡ ∀K1.A1 u . . . u ∀K`.A` and D ≡ ∀L1.A1 u . . . u ∀L`.A`, (1)

whereK1, L1, . . . ,K`, L` are finite languages over the alphabet of role namesNR.
We call this representation the language normal form (LNF) of C,D. If C,D
have the LNF shown in (1), then C ≡ D holds iff L1 = K1, . . . , L` = K` (see
Lemma 4.2 of [6]).

2.1 Syntactically Restricting the Role Depth

The role depth of an FL0 concept is the maximal nesting of value restrictions
in this concept. Since occurrences of > within value restrictions can increase
the role depth artificially, we assume without loss of generality that FL0 con-
cepts different from > do not contain any occurrences of >. We will make this
assumption in the rest of the paper without mentioning it explicitly.

The role depth rd(C) of an FL0 concept C is defined by induction:

– rd(>) = rd(A) = 0 for all A ∈ NC ,
– rd(C uD) = max(rd(C), rd(D)) and rd(∀r.C) = 1 + rd(C).
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It is easy to see that (under the above assumption) the role depth of FL0 con-
cepts is preserved under equivalence.

We are now ready to define our first restricted version of subsumption and
equivalence in FL0. For an integer k ≥ 1 and FL0 concepts C and D, we define
subsumption and equivalence restricted to concepts of role depth ≤ k as follows:

– C vksyn D if C v D and max(rd(C), rd(D)) ≤ k,
– C ≡ksyn D if C vksyn D and D vksyn C.

The effect of this definition is that subsumption and equivalence can only hold for
concepts that satisfy the restriction of the role depth by k. For concepts satisfying
this syntactic restriction, the relations vksyn and ≡ksyn coincide with the classical
subsumption and equivalence relations on FL0 concepts. Using the language
normal form of FL0 concepts, the equivalence ≡ksyn can be characterized as
follows: if C,D have the LNF shown in (1), then C ≡ksyn D iff L1 = K1 ⊆
N≤kR , . . . , L` = K` ⊆ N≤kR , where N≤kR denotes the set of words over NR of
length at most k.

2.2 Semantically Restricting the Length of Role Paths

For an integer n ≥ 1 and a given interpretation I = (DI , ·I), a role path of
length n is a sequence d0, r1, d1, . . . , dn−1, rn, dn, where d0, . . . , dn are elements
of DI , r1, . . . , rn are role names, and (di−1, di) ∈ rIi holds for all i = 1, . . . , n.
The interpretation I is called k-restricted if it does not contain any role paths
of length > k.

For an integer k ≥ 1 and FL0 concepts C and D, we define subsumption and
equivalence restricted to interpretations with role paths of length ≤ k as follows:

– C vksem D if CI ⊆ DI holds for all k-restricted interpretations I,
– C ≡ksem D if C vksem D and D vksem C.

The effect of this notion of equivalence is that all concepts occurring at a role
depth > k can be replaced by >. To be more precise, we define the restriction
of a concept C to role depth n ≥ 0 by induction on n as follows:

– A|n = A for A ∈ NC ∪ {>} and (C uD)|n = C|n uD|n for all n ≥ 0;
– (∀r.C)|0 = > and (∀r.C)|n = ∀r.(C|n−1) for all n ≥ 1.

For example, (∀r.∀r.∀r.A)|4 = ∀r.∀r.∀r.A = (∀r.∀r.∀r.A)|3 and (∀r.∀r.∀r.A)|2 =
∀r.∀r.> ≡ >. In the language normal form, restricting to role depth n means
that all words that are longer than n can simply be removed.

It is easy to see that C ≡ksem D iff C|k ≡ D|k, which yields the following
characterization of the equivalence ≡ksem : if C,D have the LNF shown in (1),
then C ≡ksem D iff L1 ∩N≤kR = K1 ∩N≤kR , . . . , L` ∩N≤kR = K` ∩N≤kR .
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3 Unification in FL0

In unification, we consider concepts that may contain variables, which can be
replaced by concepts. More formally, we introduce a countably infinite set NV of
concept variables, which is disjoint with NC and NR. An FL0 concept pattern
is an FL0 concept that is constructed using NC ∪ NV as concept names. The
semantics of concept patterns is defined as for concepts, i.e., concept variables are
treated like concept names when defining the semantics. This way, the notions
of subsumption and equivalence (both in the restricted and in the unrestricted
setting) transfer from concepts to concept patterns in the obvious way.

A substitution σ is a mapping from NV into the set of all FL0 concept
patterns such that dom(σ) := {X ∈ NV | σ(X) 6= X} is finite. This mapping is
extended to concept patterns in the obvious ways:

– σ(A) := A for all A ∈ NC ∪ {>},
– σ(C uD) := σ(C) u σ(D) and σ(∀r.C) := ∀r.σ(C).

An FL0 unification problem is an equation of the form C ?≡D where C,D are
FL0 concept patterns. A unifier of this equation is a substitution σ such that
σ(C) ≡ σ(D).

It was shown in [6] that the question of whether a given FL0 unification
problem has a unifier or not can be reduced to solving linear language equations,
i.e., equations of the form

S0 ∪ S1·X1 ∪ · · · ∪ Sn·Xn = T0 ∪ T1·X1 ∪ · · · ∪ Tn·Xn, (2)

where S0, . . . , Sn, T0, . . . , Tn are finite languages of words over an alphabet ∆ =
{1, . . . , ρ}4 and X1, . . . , Xn are variables that can be replaced by finite languages
over∆. A solution of the equation (2) is an assignment θ of finite languages θ(Xi)
to the variables Xi (for i = 1, . . . , n) such that

S0 ∪ S1·θ(X1) ∪ · · · ∪ Sn·θ(Xn) = T0 ∪ T1·θ(X1) ∪ · · · ∪ Tn·θ(Xn), (3)

where ∪ is interpreted as union and · as concatenation of languages. Strictly
speaking, a given FL0 unification problem yields one such language equation
for every concept name occurring in the problem. But since these equations do
not share variables, they can be solved separately. Also note that solvability of
language equations of the form (2) can in turn be reduced in polynomial time
to FL0 unification.

A word w = i1 . . . i` occurring in a solution of the form (3) corresponds to a
conjunct ∀ri1 . · · · ∀ri` .A in the unified concept σ(C) ≡ σ(D). Thus, the length
of the word w is equal to the role depth of the corresponding sequence of value
restrictions.

4 Intuitively, ρ is the number of different role names occurring in the unification prob-
lem and each letter i, 1 ≤ i ≤ ρ, stands for a role name ri.
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Example 1. Consider the FL0 unification problem ∀r1.∀r1.Au∀r1.∀r1.X ?≡X u
∀r1.∀r1.∀r1.Y . The substitution σ with σ(X) = ∀r1.∀r1.A and σ(Y ) = ∀r1.A is
one of the unifiers of this problem. The language equation induced by this unifi-
cation problem is {11} ∪ {11}·X = {ε}·X ∪ {111}·Y . The unifier σ corresponds
to the following solution θ of this problem: θ(X) = {11} and θ(Y ) = {1}.

3.1 Syntactically Restricted Unification in FL0

For an integer k ≥ 1, a syntactically k-restricted unification problem is an equa-
tion of the form C ?≡ksyn D, where C,D are FL0 concept patterns. A unifier of
this equation is a substitution σ such that σ(C) ≡ksyn σ(D).

Due to the LNF characterization of ≡ksyn and the correspondence between
role depth and word length mentioned above, solvability of a given syntactically
k-restricted unification problem can be reduced to checking whether language
equations of the form (2) have solutions θ such that

S0 ∪ S1·θ(X1) ∪ · · · ∪ Sn·θ(Xn) = T0 ∪ T1·θ(X1) ∪ · · · ∪ Tn·θ(Xn) ⊆ ∆≤k, (4)

where ∆≤k denotes the set of words over ∆ of length at most k.
The unifier σ of the FL0 unification problem in Example 1 is not a syntacti-

cally 3-restricted unifier of this problem since the unified concept σ(∀r1.∀r1.Au
∀r1.∀r1.X) = ∀r1.∀r1.A u ∀r1.∀r1.∀r1.∀r1.A = σ(X u ∀r1.∀r1.∀r1.Y ) has role
depth 4. This is reflected on the language equation side by the fact that {11} ∪
{11}·{11} = {11, 1111} = {ε}·{11} ∪ {111}·{1} 6⊆ ∆≤3. In fact, it is easy to see
that this problem does not have a syntactically 3-restricted unifier.

3.2 Semantically Restricted Unification in FL0

For an integer k ≥ 1, a semantically k-restricted unification problem is an equa-
tion of the form C ?≡ksem D, where C,D are FL0 concept patterns. A unifier of
this equation is a substitution σ such that σ(C) ≡ksem σ(D).

Whereas in the syntactically restricted case a sequence of value restrictions
of depth > k (a word of length > k) destroys the property of being a unifier (so-
lution), in the semantically restricted case one can simply ignore such sequences
(words). Thus, one can reduce the question of whether a given semantically
k-restricted unification problem has a unifier or not to checking whether, for
language equations of the form (2), there is an assignment θ such that

(S0 ∪ S1·θ(X1) ∪ · · · ∪ Sn·θ(Xn)) ∩∆≤k =

(T0 ∪ T1·θ(X1) ∪ · · · ∪ Tn·θ(Xn)) ∩∆≤k.
(5)

Note that, in general, such an assignment need not be a solution of (2), but
clearly any solution θ of (2) satisfying (3) also satisfies (5).

Example 2. The FL0 unification problem ∀r1.A u ∀r1.∀r1.X ?≡ X induces the
language equation {1}∪{11}·X = {ε}·X. This language equation does not have
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a solution in the classical sense, but it has a semantically 3-restricted solution.
In fact, for the assignment θ with θ(X) = {1, 111} we have {1} ∪ {11}·θ(X) =
{1, 111, 11111} and {ε}·θ(X) = {1, 111}. Intersecting these two sets with ∆≤3

yields the same set {1, 111}. Thus, the above unification problem does not have
a unifier, but it has a semantically 3-restricted unifier.

4 Root-to-Frontier Tree Automata

It was shown in [6] that checking solvability of linear language equations can be
reduced to testing emptiness of tree automata. More precisely, the tree automata
employed in [6] work on finite node-labelled trees, going from the root to the
leaves. Such automata are called root-to-frontier tree automata (RFAs) in [6].
Basically, given a linear language equation, one can construct an RFA whose
size is exponential in the size of the language equation, and which accepts some
tree iff the language equation has a solution. Since the emptiness problem for
RFAs is polynomial, this yields an ExpTime upper bound for solvability of linear
language equations. The matching ExpTime lower bound was proved in [6] by
reduction from the intersection emptiness problem for deterministic RFAs (DR-
FAs). In this section, we formally introduce (D)RFAs and the trees they accept,
and recall the ExpTime-completeness result for the intersection emptiness prob-
lem for DRFAs from [16]. We then state our new result that a depth-restricted
version of this problem is PSpace-complete.

We consider trees with labels in a ranked alphabet Σ, where the number of
successors of a node is determined by the rank of its label.

Definition 1. Let Σ be a finite alphabet, where each f ∈ Σ is associated with a
rank, denoted as rank(f), such that rank(f) ≥ 0, and let ρ be the maximal rank
of the elements of Σ. A (finite) Σ-tree is a mapping t : dom(t) → Σ such that
dom(t) is a finite subset of {1, . . . , ρ}∗ such that

– the empty word ε belongs to dom(t);
– for all u ∈ {1, . . . , ρ}∗ and i ∈ {1, . . . , ρ}, we have ui ∈ dom(t) iff u ∈ dom(t)

and i ≤ rank(t(u)).

The elements of dom(t) are the nodes of the tree t, and t(u) is called the label of
node u. The empty word ε is the root of t, and the nodes u such that ui 6∈ dom(t)
for all i = 1, . . . , ρ are the leaves of t. By the above definition, the leaves are
the nodes labeled with a symbol of rank zero, i.e., rank(t(u)) = 0 iff u is a leaf
of t. We denote the set of symbols of rank 0 by Σ0 := {f ∈ Σ | rank(f) = 0}.
We always assume Σ0 6= ∅ since otherwise there is no finite Σ-tree. Nodes of t
that are not leaves are called inner nodes. The depth of a node u ∈ dom(t) is
just the length of the word u. The depth of the tree t, denoted as depth(t), is the
maximal depth of a node in dom(t).

Definition 2. A (non-deterministic) root-to-frontier tree automaton (RFA) that
works on Σ-trees is a 5-tuple A = (Σ,Q, I, T, F ), where
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– Σ is a finite, ranked alphabet,
– Q is a finite set of states,
– I ⊆ Q is the set of initial states,
– T assigns to each f ∈ Σ \Σ0 of rank n a transition relation T (f) ⊆ Q×Qn,
– F : Σ0 → 2Q assigns to each c ∈ Σ0 a set of final states F (c) ⊆ Q.

A run of A on the tree t is a mapping r : dom(t)→ Q such that

– (r(u), r(u1), . . . , r(un)) ∈ T (t(u)) for all inner nodes u of rank n.

The run r is called successful if

– r(ε) ∈ I (root condition),
– r(u) ∈ F (t(u)) for all leaves u (leaf condition).

The tree language accepted by A is defined as

L(A) := {t | there exists a successful run of A on t}.

The emptiness problem for A is the question whether L(A) = ∅.

These automata are called root-to-frontier automata since they start at the root
with an initial state, and then label successor nodes with states according to
the transition relation, until they reach the leaves (also called the frontier),
which must be labeled by final states to yield a successful run. Frontier-to-root
automata (FRAs) work in the other direction. It is well-known that both types
of automata accept the same class of tree languages, but only FRAs can be
determinized, i.e., deterministic RFAs are weaker than general ones, whereas
deterministic FRAs accept the same class of tree languages as general FRAs.

It is well-known that the emptiness problem for RFAs is decidable in poly-
nomial time (see, e.g., [17]). It is also known that, if an RFA A accepts a tree,
then it also accepts one of depth at most q, where q is the number of states
of A. In contrast to the emptiness problem, the intersection emptiness problem
is ExpTime-complete even for deterministic RFAs [16].

Definition 3. The RFA A = (Σ,Q, I, T, F ) is a deterministic root-to-frontier
automaton (DRFA) if

– the set I of initial states consists of a single initial state q0,
– for all states q ∈ Q and all symbols f of rank n > 0 there exists exactly one
n-tuple (q1, . . . , qn) such that (q, q1, . . . , qn) ∈ T (f).

For deterministic automata it is often more convenient to use a transition func-
tion δ in place of the (functional) transition relations. This function is de-
fined as δ(q, f) := (q1, . . . , qn), where (q1, . . . , qn) is the unique tuple satisfying
(q, q1, . . . , qn) ∈ T (f).

Given a collection A1, . . . ,An of DRFAs, the intersection emptiness problem
asks whether L(A1)∩ . . .∩L(An) = ∅. For a natural number k, the k-restricted
intersection emptiness problem asks, for given DFRAs A1, . . . ,An, whether there
is a tree t with depth(t) ≤ k such that t ∈ L(A1) ∩ . . . ∩ L(An).
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The complexity of the k-restricted intersection emptiness problem depends
on the encoding of the number k. A proof of the following theorem can be found
in [3]. The most challenging task is proving PSpace-hardness for the unary case.

Theorem 1. The k-restricted intersection emptiness problem for DRFAs is Exp-
Time-complete if the number k is encoded in binary, and PSpace-complete if the
number k is encoded in unary.

5 Solving Linear Language Equations Using RFAs

As mentioned in Section 3, checking solvability of linear language equations was
reduced in [6] to testing emptiness of RFAs. However, this approach cannot di-
rectly treat equations of the form (2). It needs equations where the variables
Xi are in front of the coefficients Si. Fortunately, such equations can easily
be obtained from the ones of the form (2) by considering the mirror images
of the involved languages. For a word w = i1 . . . i` ∈ ∆∗, its mirror image is
defined as wmi := i` . . . i1, and for a finite set of words L = {w1, . . . , wm},
its mirror image is Lmi := {wmi

1 , . . . , wmi
m }. Obviously, the assignment θ with

θ(X1) = L1, . . . , θ(Xn) = Ln is a solution of (2) iff θmi with θmi(X1) =
Lmi
1 , . . . , θmi(Xn) = Lmi

n is a solution of the corresponding mirrored equation

Smi
0 ∪X1·Smi

1 ∪ · · · ∪Xn·Smi
n = Tmi

0 ∪X1·Tmi
1 ∪ · · · ∪Xn·Tmi

n . (6)

Finite languages over the alphabet ∆ = {1, . . . , ρ} can be represented by
Σ-trees for the ranked alphabet Σ = {f0, f1, c0, c1}, where f0, f1 are ρ-ary and
c0, c1 nullary symbols. A given Σ-tree t represents the finite language

Lt = {u ∈ dom(t) | t(u) ∈ {c1, f1}}.

Given an equation of the form (6), it is shown in [6] how to construct an RFA
A = (Σ,Q, I, T, F ) of size exponential in the size of the equation that satisfies
the following property.

Lemma 1 (Lemma 6.3 in [6]). For a Σ-tree t, the following are equivalent:

1. The tree t is accepted by A.
2. There are finite sets of words θ(X1), . . . , θ(Xn) such that

Smi
0 ∪ θ(X1)·Smi

1 ∪ · · · ∪ θ(Xn)·Smi
n = Lt =

Tmi
0 ∪ θ(X1)·Tmi

1 ∪ · · · ∪ θ(Xn)·Tmi
n .

Consequently, equation (2) has a solution iff equation (6) has a solution
iff the RFA A constructed from (6) accepts some tree. Since the size of A =
(Σ,Q, I, T, F ) is exponential in the size of (2), and the emptiness problem for
RFAs is decidable in polynomial time, this yields an ExpTime decision procedure
for solvability of equations of the form (2), and thus for unifiability in FL0. As
mentioned in Section 4, it is also shown in [6] by reduction from the intersection
emptiness problem for DRFAs, that these problems are actually ExpTime-hard.
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Theorem 2 ([6]). Unifiability in FL0 as well as solvability of language equa-
tions of the forms (2) and (6) are ExpTime-complete problems.

In the restricted setting, we consider equations of the form (2) and are look-
ing for solutions θ satisfying (4) for the syntactically restricted setting or satis-
fying (5) for the semantically restricted setting. Since clearly (∆≤k)mi = ∆≤k,
the respective restrictions apply unchanged to the mirrored equation (6).

5.1 The Syntactically Restricted Case

In this case we are thus looking for solutions θ of (6) satisfying

Smi
0 ∪ θ(X1)·Smi

1 ∪ · · · ∪ θ(Xn)·Smi
n =

Tmi
0 ∪ θ(X1)·Tmi

1 ∪ · · · ∪ θ(Xn)·Tmi
n ⊆ ∆≤k.

(7)

Intuitively, for the trees accepted by the automaton A this means that we want
to check whether A accepts a tree of depth ≤ k. This can be achieved by adding a
counter that is decremented whenever we go from a node in the tree to a successor
node. As soon as the counter reaches 0, no more transitions are possible.

To be more precise, let A = (Σ,Q, I, T, F ) be the RFA constructed from
(6), as described in [6]. For an integer k ≥ 1, we define the automaton Aksyn =

(Σ,Qksyn , I
k
syn , T

k
syn , F

k
syn) as follows:

– Qksyn = Q× {0, 1, . . . , k},
– Iksyn = I × {k},
– T ksyn(f) = {((q, i), (q1, i−1), . . . , (qρ, i−1)) | (q, q1, . . . , qρ) ∈ T (f) and i ≥ 1}

for f ∈ {f0, f1},
– F ksyn(c) = F (c)× {0, 1, . . . , k} for c ∈ {c0, c1}.

Basically, Aksyn works like A, but once it has reached a node at depth k in the
tree, it cannot make any transition. Thus, it accepts exactly the trees that have
depth at most k and are accepted by A. Since nodes at a depth i correspond to
words of this length i, we obtain the following lemma.

Lemma 2. The automaton Aksyn accepts a tree t iff (6) has a solution θ that
satisfies (7).

Proof. If (6) has a solution θ that satisfies (7), then there is a tree t of depth at
most k that represents this solution in the sense that it satisfies 2. of Lemma 1.
The tree t then also satisfies 1. of Lemma 1, i.e., it is accepted by A. Since t has
depth at most k, it is then also accepted by Aksyn .

Conversely, if the tree t is accepted by Aksyn , then it is also accepted by A
and has depth at most k. The former implies, by Lemma 1, that 2. of Lemma 1
holds, and the latter yields that L(t) ⊆ ∆≤k. Thus, the sets θ(X1), . . . , θ(Xn)
provided by 2. of Lemma 1 satisfy (7). ut

As an easy consequence of this lemma and the connection between syntac-
tically k-restricted unification and the problem of finding solutions of (6) that
satisfy (7), we obtain the following complexity results (see [3] for detailed proofs).
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Theorem 3. Given an integer k ≥ 1 and FL0 concepts C,D as input, the
problem of deciding whether the syntactically k-restricted unification problem
C ?≡ksyn D has a unifier or not is ExpTime-complete if the number k is assumed
to be encoded in binary, and PSpace-complete if k is assumed to be encoded in
unary.

The ExpTime upper bound is an immediate consequence of the fact that
the size of Aksyn is exponentially bounded by the size of the input equation
and the binary representation of k. The ExpTime lower bound can be shown
using the fact that the automaton A accepts a tree iff it accepts one of depth
linear in the size of A (which is exponential in the size of the input equation).
Regarding the PSpace upper bound, one cannot construct the exponentially large
modified automaton Aksyn before testing it for emptiness, but rather constructs
the relevant parts of Aksyn while doing the emptiness test on-the-fly. This needs
only polynomial space since the depth of the run to be constructed is linear in the
size of the unary representation of k. The PSpace lower bound can be shown by
reduction of the k-restricted intersection emptiness problem for DRFAs, based
on the reduction for the unrestricted case given in [6].

5.2 The Semantically Restricted Case

In this case, to solve the mirrored equation (6), we are looking for assignments
θ satisfying

(Smi
0 ∪ θ(X1)·Smi

1 ∪ · · · ∪ θ(Xn)·Smi
n ) ∩∆≤k =

(Tmi
0 ∪ θ(X1)·Tmi

1 ∪ · · · ∪ θ(Xn)·Tmi
n ) ∩∆≤k.

(8)

The existence of such a solution can again be tested by building an RFA that
extends the automaton A = (Σ,Q, I, T, F ) constructed from (6), as described
in [6], by a counter. But now, we allow the automaton to make transitions where
the value of the counter becomes −1. States that have counter value −1 are
final states since they indicate that the word represented by this node of the
tree is longer than k, and thus it is not relevant for deciding whether the tree
represents a solution or not. To be more precise, for an integer k ≥ 1, we define
the automaton Aksem = (Σ,Qksem , I

k
sem , T

k
sem , F

k
sem) as follows:

– Qksem = Q× {−1, 0, 1, . . . , k},
– Iksem = I × {k},
– T ksem(f) = {((q, i), (q1, i−1), . . . , (qρ, i−1)) | (q, q1, . . . , qρ) ∈ T (f) and i ≥ 0}

for f ∈ {f0, f1},
– F ksem(c) = (F (c)× {0, 1, . . . , k}) ∪ {(q,−1) | q ∈ Q} for c ∈ {c0, c1}.

The following lemma, whose proof can be found in [3], states correctness of this
construction.

Lemma 3. The automaton Aksem accepts a tree t iff there is an assignment θ
that satisfies (8).
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Based on this lemma, the complexity upper bounds stated in the following
theorem can be shown analogously to the proof of Theorem 3. The PSpace lower
bound can be shown by reduction from syntactically k-restricted unification (see
[3] for a proof).

Theorem 4. Given an integer k ≥ 1 and FL0 concepts C,D as input, the
problem of deciding whether the semantically k-restricted unification problem
C ?≡ksem D has a unifier or not is in ExpTime if the number k is assumed to be
encoded in binary, and PSpace-complete if k is assumed to be encoded in unary.

If k is encoded in binary, then the reduction used for the unary case is no
longer polynomial. It is an open problem whether, for the case of binary coding,
the ExpTime upper bound in Theorem 4 is tight.

6 The Unification Type

Until now, we were mainly interested in the complexity of deciding solvability of
unification problems. For this, it is sufficient to consider ground unifiers. Now,
we want to investigate the question of whether all unifiers of a given unification
problem can be represented as instances of a finite set of (non-ground) unifiers.

In the unrestricted setting, the instance relation between FL0 unifiers is
defined as follows. Let C ?≡ D be an FL0 unification problem, V the set of
concept variables occurring in C and D, and σ, θ two unifiers of this problem.
We define

σ ≤• θ if there is a substitution λ such that θ(X) ≡ λ(σ(X)) for all X ∈ V.

If σ ≤• θ, then we say that θ is an instance of σ.

Definition 4. Let C?≡D be an FL0 unification problem. The set of substitutions
M is called a complete set of unifiers for C ?≡D if it satisfies

1. every element of M is a unifier of C ?≡D;
2. if θ is a unifier of C ?≡D, then there exists a unifier σ ∈M such that σ ≤• θ.

The set M is a minimal complete set of unifiers for C ?≡ D if it additionally
satisfies

3. if σ, θ ∈M , then σ ≤• θ implies σ = θ.

The unification type of a given unification problem is determined by the
existence and cardinality of such a minimal complete set.

Definition 5. Let C ?≡ D be an FL0 unification problem. This problem has
type unitary (finitary, infinitary) if it has a minimal complete set of unifiers of
cardinality 1 (finite cardinality, infinite cardinality). If C ?≡D does not have a
minimal complete set of unifiers, then it is of type zero.
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The unification types can be ordered as follows:

unitary < finitary < infinitary < type zero.

Basically, the unification type of FL0 is the maximal type of an FL0 unifica-
tion problem. However, in unification theory, one usually distinguishes between
unification with and without constants [8]. In an FL0 unification problem with
constants, no restrictions are put on the concepts C and D to be unified. In
an FL0 unification problem without constants, C and D must not contain con-
cept names from NC . The unification type of FL0 for unification with (without)
constants is the maximal type of an FL0 unification problem with (without)
constants.

It was shown in [6] that equivalence of FL0 concepts can be axiomatized by
the equational theory

ACUIh := { (x ∧ y) ∧ z = x ∧ (y ∧ z), x ∧ y = y ∧ x, x ∧ x = x, x ∧ 1 = x }
∪ { hr(x ∧ y) = hr(x) ∧ hr(y), hr(1) = 1 | r ∈ NR },

where ∧, hr, and 1 in the terms respectively correspond to u, ∀r., and > in the
concepts. These identities say that ∧ is associative (A), commutative (C), and
idempotent (I) with unit 1 (U), and that the unary function symbols behave like
homomorphisms (h) for ∧ and 1.

The unification type of an equational theory is defined analogously to the
definitions given above for FL0 (see [8] for details). It was shown in [1] that
the unification type of the theory ACUIh (called AIMH in [1]) is zero, even if
one has only one homomorphism h and considers unification without constants.
Thus, unification in FL0 is also of type zero for unification without constants,
and thus also for unification with constants. We will show in this section that this
is no longer the case if we consider restricted unification. For the semantically
restricted case, this is an easy consequence of general results about commuta-
tive/monoidal theories [1,14].

6.1 The Semantically Restricted Case

The equivalence ≡ksem can be axiomatized by adding identities to ACUIh that
say that nesting of homomorphisms of depth > k produces the unit. Given a
word u = r1r2 . . . rn ∈ N∗R, we denote a term of the form hr1(hr2(· · ·hrn(t) · · · ))
as hu(t). It is now easy to see that ≡ksem is axiomatized by

ACUIhk := ACUIh ∪ {hu(x) = 1 | u ∈ N∗R with |u| = k + 1}.

Both ACUIh and ACUIhk are so-called commutative/monoidal theory [1,14,7],
for which unification can be reduced to solving linear equations over a corre-
sponding semiring. For ACUIh this semiring consists of finite languages over
the alphabet ∆ with union as addition and concatenation as multiplication [6].
As shown in [3], the semiring corresponding to ACUIhk consists of the sub-
sets of ∆≤k, with union as addition and the following multiplication: L1·kL2 =
(L1·L2) ∩∆≤k.
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According to [14], unification without constants in a monoidal theory E is
unitary if the semiring SE corresponding to E is finite. In [1], the same result
is shown for commutative theories E under the assumption that the finitely
generated E-free algebras are finite. It is easy to see that these two conditions
actually coincide for commutative theories [7]. In addition to unification without
constants, also unification with constants is considered in [1], and it is shown
that, if the finitely generated E-free algebras are finite, then unification with con-
stants in the commutative theory E is at most finitary (i.e., unitary or finitary).
The following theorem is an easy consequence of these results.

Theorem 5. Unification in ACUIhk, and thus also semantically k-restricted
unification in FL0, is unitary for unification without constants and finitary for
unification with constants.

Proof. It is easy to see that the semiring corresponding to ACUIhk is finite
since its elements are all the subsets of the finite set ∆≤k. Thus, the results
in [1,14] yield that ACUIhk is unitary for unification without constants and at
most finitary for unification with constants. The following example shows that
the theory is not unitary for unification with constants: if x is a variable and a a
constant, then the terms x∧ a and a have (restricted to x) exactly two ACUIhk

unifiers {x 7→ 1} and {x 7→ a}, which are not in any instance relationship. ut

6.2 The Syntactically Restricted Case

To deal with the syntactically restricted case, the results on the unification type
for commutative/monoidal theories cannot be applied directly, but we can show
the same results as for the semantically restricted case, using the ideas underlying
the proofs in [1,14]. We will formulate our proof using the syntax of FL0 rather
than the equational theory variant.

Let C,D be FL0 concepts and σ a syntactically k-restricted unifier of C and
D. Let X1, . . . , Xn be the concept variables occurring in C,D and A1, . . . , A`
the concept constants. First, note that we can assume that σ does not introduce
new concept constants since otherwise one could get a more general unifier by
replacing such a constant by a new variable. Let Y1, . . . , Ym be the concept
variables in the range of σ, where we assume without loss of generality that they
are different from the variables X1, . . . , Xn. For i = 1, . . . , n, the LNF of the
concept σ(Xi) is of the form

σ(Xi) = Ki u ∀Li,1.Y1 u . . . u ∀Li,m.Ym, (9)

whereKi is a concept of role depth ≤ k not containing concept variables and only
concept constants in {A1, . . . , A`} and the Li,j are subsets of ∆≤k. Recall that
∀Li,j .Yj abbreviates the conjunction of the value restrictions ∀w.Yj for w ∈ Li,j ,
which in turn is an abbreviation for ∀r1. · · · ∀rν .Yj if w = r1 . . . rν .

Now, consider for every variable Yj , 1 ≤ j ≤ m, the tuple of languages
L(Yj) = (L1,j , . . . , Ln,j), and assume that there are indices j 6= j′ such that
L(Yj) = L(Yj′). Let θj′ be the substitution that replaces Yj′ with > and leaves
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all other variable Yµ unchanged. Then σj′ = σθj′ is an instance of σ, which is
still a syntactically k-restricted unifier of C and D, but introduces one variable
less. Conversely, using the substitution λj,j′ = {Yj 7→ Yj u Yj′}, we obtain σ as
an instance of σj′ since σ = σj′λj,j′ .

Let c denote the (finite) cardinality of ∆≤k. Then there are at most 2c·n

different n-tuples of subsets of ∆≤k. Thus, if a syntactically k-restricted unifier
of C andD introduces more than 2c·n variables, it is an instance of a syntactically
k-restricted unifier of C and D that introduces at least one variable less. This
observation can be used to show the following lemma.

Lemma 4. There is a complete set of syntactically k-restricted unifiers of C and
D that consists of unifiers whose range contains at most the variables Y1, . . . , Ym
for m = 2c·n.

Once we have restricted the unifiers in the complete set to ones using only
finitely many variables, we know that there can be only finitely many unifiers in
this set. In fact, if we consider (9), then we see that the Ki and Li,j range over
finite sets. This proves the following theorem.

Theorem 6. Syntactically k-restricted unification with constants in FL0 is fini-
tary.

To show that unification with constants is not unitary, we can use the same
example as in the semantically restricted case. Unification without constants is
again unitary.

Corollary 1. Syntactically k-restricted unification without constants in FL0 is
unitary.

Proof. By the previous theorem, there is a finite complete set {σ1, . . . , σκ} of
syntactically k-restricted unifiers of C,D. Without loss of generality, we can
assume that the variables occurring in the ranges of these unifiers are disjoint
and that no concept constant occurs in the range. The latter assumption can be
made since the unification problem itself does not contain such constants. Under
these assumptions, the substitution σ defined as

σ(Xi) = σ1(Xi) u . . . u σκ(Xi) for i = 1, . . . , n

is also a syntactically k-restricted unifier of C,D, and it has the substitutions
σ1, . . . , σκ as instances (see [3] for a proof of these two claims). This shows that
{σ} is a complete set of unifiers. ut

7 Conclusion

We have investigated both a semantically and a syntactically restricted variant
of unification in FL0, where either the role depth of concepts or the length of
role paths in interpretations is restricted by a natural number k ≥ 1. These
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restrictions lead to a considerable improvement of the unification type from the
worst possible type to unitary/finitary for unification without/with constants.
For the complexity of the decision problem, we only obtain an improvement if k
is assumed to be encoded in unary.

While these results are mainly of (complexity) theoretic interest, they could
also have a practical impact. In fact, in our experiments with the system UEL,
which implements several unification algorithms for the DL EL [4], we have ob-
served that the algorithms usually yield many different unifiers, and it is hard
to choose one that is appropriate for the application at hand (e.g., when gener-
ating new concepts using unification [2]). For this reason, we added additional
constraints to the unification problem to ensure that the generated concepts are
of a similar shape as the concepts already present in the ontology [2]. It makes
sense also to use a restriction on the role depth as such an additional constraint
since the role depth of the (unfolded) concepts occurring in real-world ontolo-
gies is usually rather small. This claim is supported by our experiments with
the medical ontology SNOMEDCT,5 which has a maximal role depth of 10, and
the acyclic ontologies in Bioportal 2017,6 where a large majority also has a role
depth of at most 10.

As future work, we will investigate whether the ExpTime upper bound in
Theorem 4 for the case of binary coding of k is tight. In addition, we will consider
similar restrictions for other DLs. For example, the unification type of the DL
EL is also known to be zero, and the decision problem is NP-complete [5]. We
conjecture that, for EL, the restricted variants will not lead to an improvement
of unification type or complexity.

In [11], a syntactically restricted version of unification in the theory ACh
was shown to be decidable, but neither the unification type nor the complexity
of the decision problem was determined. It would be interesting to investigate
these problems and also consider a semantically restricted variant. Note that,
with the exception of the missing unit, ACh is commutative/monoidal, but the
main difference to ACUIh is that already the semiring corresponding to the sub-
theory without homomorphisms is infinite, whereas the semiring corresponding
to ACUI is finite.
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