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Abstract. Concrete domains have been introduced in Description Log-
ics (DLs) to enable reference to concrete objects (such as numbers) and
predefined predicates on these objects (such as numerical comparisons)
when defining concepts. To retain decidability when integrating a con-
crete domain into a decidable DL, the domain must satisfy quite strong
restrictions. In previous work, we have analyzed the most prominent such
condition, called ω-admissibility, from an algebraic point of view. This
provided us with useful algebraic tools for proving ω-admissibility, which
allowed us to find new examples for concrete domains whose integration
leaves the prototypical expressive DL ALC decidable.

When integrating concrete domains into lightweight DLs of the EL
family, achieving decidability is not enough. One wants reasoning in the
resulting DL to be tractable. This can be achieved by using so-called
p-admissible concrete domains and restricting the interaction between
the DL and the concrete domain. In the present paper, we investigate
p-admissibility from an algebraic point of view. Again, this yields strong
algebraic tools for demonstrating p-admissibility. In particular, we obtain
an expressive numerical p-admissible concrete domain based on the ratio-
nal numbers. Although ω-admissibility and p-admissibility are orthogo-
nal conditions that are almost exclusive, our algebraic characterizations
of these two properties allow us to locate an infinite class of p-admissible
concrete domains whose integration into ALC yields decidable DLs.

Keywords: Description logic · Concrete domains · p-admissibility ·
Convexity · ω-admissibility · Finite boundedness · Tractability ·
Decidability · Constraint satisfaction

1 Introduction

Description Logics (DLs) [3,5] are a well-investigated family of logic-based
knowledge representation languages, which are frequently used to formalize
ontologies for application domains such as the Semantic Web [25] or biology
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and medicine [24]. A DL-based ontology consists of inclusion statements (so-
called GCIs) between concepts defined using the DL at hand. For example,
the GCI Human � ∃parent.Human, which says that every human being has
a human parent, uses concepts expressible in EL. This GCI clearly implies
the inclusion Human � ∃parent.∃parent.Human, i.e., Human is subsumed by
∃parent.∃parent.Human w.r.t. any ontology containing the above GCI. Keeping
the subsumption problem decidable, and preferably of a low complexity, is an
important design goal for DLs. While subsumption in the lightweight DL EL is
tractable (i.e., decidable in polynomial time), it is ExpTime-complete in ALC,
which is obtain from EL by adding negation [5].

If information about the age of human beings is relevant in the application
at hand, then one would like to associate humans with their ages and formu-
late constraints on these numbers. This becomes possible by integrating concrete
domains into DLs [4]. Using the concrete domain (Q, >), we can express that
children cannot be older than their parents with the GCI >(age, parent age) � ⊥,
where ⊥ is the bottom concept (always interpreted as the empty set) and age
is a concrete feature that maps from the abstract domain populating concepts
into the concrete domain (Q, >). While integrating (Q, >) leaves ALC decid-
able [30], this is no longer the case if we integrate (Q,+1), where +1 is a binary
predicate that is interpreted as incrementation [5,7]. In [31], ω-admissibility was
introduced as a condition on concrete domains that ensures decidability. It was
shown in that paper that Allen’s interval logic [1] as well as the region connec-
tion calculus RCC8 [33] can be represented as ω-admissible concrete domains.
Since ω-admissibility is a collection of rather complex technical conditions, it
is not easy to show that a given concrete domain satisfies this property. In [7],
we relate ω-admissibility to well-known notions from model theory, which allows
us to prove ω-admissibility of certain concrete domains (among them Allen and
RCC8) using known results from model theory. A different algebraic condition
(called EHD) that ensures decidability was introduced in [18], and used in [29]
to show decidability and complexity results for a concrete domains based on the
integers.

When integrating a concrete domain into a lightweight DL like EL, one wants
to preserve tractability rather than just decidability. To achieve this, the notion
of p-admissible concrete domains was introduced in [2] and paths of length > 1
were disallowed in concrete domain constraints. Regarding the latter restriction,
note that, in the above example, we have used the path parent age, which has
length 2. The restriction to paths of length 1 means (in our example) that we can
no longer compare the ages of different humans, but we can still define concepts
like teenager, using the GCI

Teenager � Human � ≥10(age) � ≤19(age),

where ≥10 and ≤19 are unary predicates respectively interpreted as the ratio-
nal numbers greater equal 10 and smaller equal 19. In a p-admissible concrete
domain, satisfiability of conjunctions of atomic formulae and validity of impli-
cations between such conjunctions must be tractable. In addition, the concrete
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domain must be convex, which roughly speaking means that a conjunction cannot
imply a true disjunction. For example, the concrete domain (Q, >,=, <) is ω-
admissible [7], but it is not convex since x < y∧x < z implies y < z∨y = z∨y > z,
but none of the disjuncts. In [2], two p-admissible concrete domains were exhib-
ited, where one of them is based on Q with unary predicates =p, >p and binary
predicates +p,=. To the best of our knowledge, since then no other p-admissible
concrete domains have been described in the literature.

One of the main contributions of the present paper is to devise algebraic
characterizations of convexity in different settings. We start by noting that the
definition of convexity given in [2] is ambiguous, and that what was really meant
is what we call guarded convexity. However, in the presence of the equality pred-
icate (which is available in the two p-admissible concrete domains introduced
in [2]), the two notions of convexity coincide. Then we devise a general char-
acterization of convexity based on the notion of square embeddings, which are
embeddings of the product B2 of a relational structure B into B. We investi-
gate the implications of this characterization further for so-called ω-categorical
structures, finitely bounded structures, and numerical concrete domains. For
ω-categorical structures, the square embedding criterion for convexity can be
simplified, and we use this result to obtain new p-admissible concrete domains:
countably infinite vector spaces over finite fields. Finitely bounded structures can
be defined by specifying finitely many forbidden patterns, and are of great inter-
est in the constraint satisfaction (CSP) community [15]. We show that, for such
structures, convexity is a necessary and sufficient condition for p-admissibility.
This result provides use with many examples of p-admissible concrete domains,
but their usefulness in practice still needs to be investigated. Regarding numer-
ical concrete domains, we exhibit a new and quite expressive p-admissible con-
crete domain based on the rational numbers, whose predicates are defined by
linear equations over Q.

Next, the paper investigates the connection between p-admissibility and ω-
admissibility. We show that only trivial concrete domains can satisfy both prop-
erties. However, by combining the results on finitely bounded structures of the
present paper with results in [7], we can show that convex finitely bounded
homogeneous structures, which are p-admissible, can be integrated into ALC
(even without the length 1 restriction on role paths) without losing decidability.
Whereas these structures are not ω-admissible, they can be expressed in an ω-
admissible concrete domain [7]. Finally, we show that, in general, the restriction
to paths of length 1 is needed when integrating a p-admissible concrete domain
into EL, not only to stay tractable, but even to retain decidability.

2 Preliminaries

In this section, we introduce the algebraic and logical notions that will be used in
the rest of the paper. The set {1, . . . , n} is denoted by [n]. We use the bar notation
for tuples; for a tuple t̄ indexed by a set I, the value of t̄ at the position i ∈ I is
denoted by t̄[i]. For a function f : Ak → B and n-tuples t̄1, . . . , t̄k ∈ An, we use
f(t̄1, . . . , t̄k) as a shortcut for the tuple

(
f(t̄1[1], . . . t̄k[1]), . . . , f(t̄1[n], . . . , t̄k[n])

)
.
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From a mathematical point of view, concrete domains are relational struc-
tures. A relational signature τ is a set of relation symbols, each with an associated
natural number called arity. For a relational signature τ , a relational τ -structure
A (or simply τ -structure or structure) consists of a set A (the domain) together
with the relations RA ⊆ Ak for each relation symbol R ∈ τ of arity k. Such a
structure A is finite if its domain A is finite. We often describe structures by
listing their domain and relations, i.e., we write (A,RA

1 , RA
2 , . . . ).

An expansion of a τ -structure A is a σ-structure B with A = B such that
τ ⊆ σ and RB = RA for each relation symbol R ∈ τ . Conversely, we call A a
reduct of B. The product of a family (Ai)i∈I of τ -structures is the τ -structure∏

i∈I Ai over
∏

i∈I Ai such that, for each R ∈ τ of arity k, we have (ā1, . . . , āk) ∈
RΠi∈IAi iff (ā1[i], . . . , āk[i]) ∈ RAi for every i ∈ I. We denote the binary product
of a structure A with itself as A2.

A homomorphism h : A → B for τ -structures A and B is a mapping h : A →
B that preserves each relation of A, i.e., if t̄ ∈ RA for some k-ary relation
symbol R ∈ τ , then h(t̄) ∈ RB. A homomorphism h : A → B is strong if it
additionally satisfies the inverse condition: for every k-ary relation symbol R ∈ τ
and t̄ ∈ Ak we have h(t̄) ∈ RB only if t̄ ∈ RA. An embedding is an injective
strong homomorphism. We write A ↪→ B if A embeds into B. The class of all
finite τ -structures that embed into B is denoted by Age (B). A substructure of B
is a structure A over the domain A ⊆ B such that the inclusion map i : A → B
is an embedding. Conversely, we call B an extension of A. An isomorphism
is a surjective embedding. Two structures A and B are isomorphic (written
A ∼= B) if there exists an isomorphism from A to B. An automorphism of A is
an isomorphism from A to A.

Given a relational signature τ , we can build first-order formulae using the
relation symbols of τ in the usual way. Relational τ -structures then coincide with
first-order interpretations. In the context of p-admissibility, we are interested in
quite simple formulae. A τ -atom is of the form R(x1, . . . , xn), where R ∈ τ is
an n-ary relation symbol and x1, . . . , xn are variables. For a fixed τ -structure A,
the constraint satisfaction problem (CSP) for A [11] asks whether a given finite
conjunction of atoms is satisfiable in A. An implication is of the form ∀x̄. (φ ⇒ ψ)
where φ is a conjunction of atoms, ψ is a disjunction of atoms, and the tuple
x̄ consists of the variables occurring in φ or ψ. Such an implication is a Horn-
implication if ψ is the empty disjunction (corresponding to falsity ⊥) or a single
atom. The CSP for A can be reduced in polynomial time to the validity problem
for Horn-implications since φ is satisfiable in A iff ∀x̄. (φ ⇒ ⊥) is not valid in
A. Conversely, validity of Horn implications in a structure A can be reduced in
polynomial time to the CSP in the expansion A¬ of A by the complements of
all relations. In fact, the Horn implication ∀x̄. (φ ⇒ ψ) is valid in A iff φ ∧ ¬ψ
is not satisfiable in A¬. In the signature of A¬, ¬ψ can then be expressed by an
atom.
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3 Integrating p-Admissible Concrete Domains into EL
Given countably infinite sets NC and NR of concept and role names, EL concepts
are built using the concept constructors top concept (�), conjunction (C � D),
and existential restriction (∃r.C). The semantics of the constructors is defined in
the usual way (see, e.g., [3,5]). It assigns to every EL concept C a set CI ⊆ ΔI ,
where ΔI is the interpretation domain of the given interpretation I.

As mentioned before, a concrete domain is a τ -structure D with a relational
signature τ . To integrate such a structure into EL, we complement concept and
role names with a set of feature names NF, which provide the connection between
the abstract domain ΔI and the concrete domain D. A path is of the form r f
or f where r ∈ NR and f ∈ NF. In our example in the introduction, age is both
a feature name and a path of length 1, and parent age is a path of length 2. The
DL EL(D) extends EL with the new concept constructor

R(p1, . . . , pk) (concrete domain restriction),

where p1, . . . , pk are paths, and R ∈ τ is a k-ary relation symbol. We use EL[D]
to denote the sublanguage of EL(D) where paths in concrete domain restrictions
are required to have length 1. Note that EL(D) is the restriction to EL of the
way concrete domains were integrated into ALC in [31], whereas our definition
of EL[D] describes how concrete domains were integrated into EL in [2].

To define the semantics of concrete domain restrictions, we assume that an
interpretation I assigns functional binary relations fI ⊆ ΔI×D to feature names
f ∈ NF, where functional means that (a, d) ∈ fI and (a, d′) ∈ fI imply d = d′.
We extend the interpretation function to paths of the form p = r f by setting
(r f)I = {(a, d) ∈ ΔI×D | there is b ∈ ΔI such that (a, b) ∈ rI and (b, d) ∈ fI}.
The semantics of concrete domain restrictions is now defined as follows:

R(p1, . . . , pk)I = {a ∈ ΔI | there are d1, . . . , dk ∈ D such that
(a, di) ∈ pI

i for all i ∈ [k] and (d1, . . . , dk) ∈ RD}.

As usual, an EL(D) TBox is defined to be a finite set of GCIs C � D,
where C,D are EL(D) concepts. The interpretation I is a model of such a TBox
if CI ⊆ DI holds for all GCIs C � D occurring in it. Given EL(D) concept
descriptions C,D and an EL(D) TBox T , we say that C is subsumed by D w.r.t.
T (written C �T D) if CI ⊆ DI holds for all models of T . For the subsumption
problem in EL[D], to which we restrict our attention for the moment, only EL[D]
concepts may occur in T , and C,D must also be EL[D] concepts.

Subsumption in EL is known to be decidable in polynomial time [16]. For
EL[D], this is the case if the concrete domain is p-admissible [2]. According
to [2], a concrete domain D is p-admissible if it satisfies the following conditions:
(i) satisfiability of conjunctions of atoms and validity of Horn implications in
D are tractable; and (ii) D is convex. Unfortunately, the definition of convexity
in [2] (below formulated using our notation) is ambiguous:

(∗) If a conjunction of atoms of the form R(x1, . . . , xk) implies a
disjunction of such atoms, then it also implies one of its disjuncts.



An Algebraic View on p-Admissible Concrete Domains 199

The problem is that this definition does not say anything about which variables
may occur in the left- and right-hand sides of such implications. To illustrate
this, let us consider the structure N = (N, E,O) in which the unary predicates
E and O are respectively interpreted as the even and odd natural numbers. If
the right-hand side of an implication considered in the definition of convexity
may contain variables not occurring on the left-hand side, then N is not convex:
∀x, y. (E(x) ⇒ E(y) ∨ O(y)) holds in N, but neither ∀x, y. (E(x) ⇒ E(y)) nor
∀x, y. (E(x) ⇒ O(y)) does. However, for guarded implications, where all vari-
ables occurring on the right-hand side must also occur on the left-hand side,
the structure N satisfies the convexity condition (∗). We say that a structure is
convex if (∗) is satisfied without any restrictions on the occurrence of variables,
and guarded convex if (∗) is satisfied for guarded implications. Clearly, any con-
vex structure is guarded convex, but the converse implication does not hold, as
exemplified by N.

We claim that, what was actually meant in [2], was guarded convexity rather
than convexity. In fact, it is argued in that paper that non-convexity of D
allows one to express disjunctions in EL[D], which makes subsumption in EL[D]
ExpTime-hard. However, this argument works only if the counterexample to
convexity is given by a guarded implication. Let us illustrate this again on our
example N. Whereas ∀x, y. (E(x) ⇒ E(y) ∨ O(y)) holds in N, the subsumption
E(f) �∅ E(g) � O(g) does not hold in the extension of EL[D] with disjunction
since the feature g need not have a value. For this reason, we use guarded con-
vexity rather than convexity in our definition of p-admissibility. For the same
reason, we also restrict the tractability requirement in this definition to validity
of guarded Horn implications.

Definition 1. A relational structure D is p-admissible if it is guarded convex
and validity of guarded Horn implications in D is tractable

Using this notion, the main results of [2] concerning concrete domains can
now be summarized as follows.

Theorem 1 (Baader, Brandt, and Lutz [2]). Let D be a relational struc-
ture. Then subsumption in EL[D] is

1. decidable in polynomial time if D is p-admissible;
2. ExpTime-hard if D is not guarded convex.

The two p-admissible concrete domains introduced in [2] have equality as
one of their relations. For such structures, convexity and guarded convexity
obviously coincide since one can use x = x as a trivially true guard. For example,
the extension N= of N with equality is no longer guarded convex since the
implication ∀x. (x = x ⇒ E(x) ∨ O(x)) holds in N=, but neither ∀x. (x = x ⇒
E(x)) nor ∀x. (x = x ⇒ O(x)).

In the next section, we will show algebraic characterizations of (guarded) con-
vexity. Regarding the tractability condition in the definition of p-admissibility,
we have seen that it is closely related to the constraint satisfaction problem
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for D and D¬. Characterizing tractability of the CSP in a given structure is a
very hard problem. Whereas the Feder-Vardi conjecture [20] has recently been
confirmed after 25 years of intensive research in the field by giving an algebraic
criterion that can distinguish between finite structures with tractable and with
NP-complete CSPs [17,34], finding comprehensive criteria that ensure tractabil-
ity for the case of infinite structures is a wide open problem, though first results
for special cases have been found (see, e.g., [13,14]).

4 Algebraic Characterizations of Convexity

Before we can formulate our characterization of (guarded) convexity, we need
to introduce a semantic notion of guardedness. We say that the relational τ -
structure A is guarded if for every a ∈ A there is a relation R ∈ τ such that a
appears in a tuple in RA.

Theorem 2. For a relational τ structure B, the following are equivalent:

1. B is guarded convex.
2. For every finite σ ⊆ τ and every A ∈ Age (B2) whose σ-reduct is guarded,

there exists a strong homomorphism from the σ-reduct of A to the σ-reduct
of B.

We concentrate here on proving “2 ⇒ 1” since this is the direction that will
be used later on. Alternatively, we could obtain “2 ⇒ 1” by adapting the proof
of McKinsey’s lemma [22]. A proof of the other direction can be found in [6].

Proof of “2 ⇒ 1” of Theorem 2. Suppose to the contrary that the implication
∀x1, . . . , xn. (φ ⇒ ψ) is valid in B, where φ is a conjunction of atoms such
that each variable xi is present in some atom of φ, and ψ is a disjunction of
atoms ψ1, . . . , ψk, but we also have B �|= ∀x1, . . . , xn. (φ ⇒ ψi) for every i ∈ [k].
Without loss of generality, we assume that φ, ψ1, . . . , ψk all have the same free
variables x1, . . . , xn, some of which might not influence their truth value. For
every i ∈ [k], there exists a tuple t̄i ∈ Bn such that

B |= φ(t̄i) ∧ ¬ψi(t̄i). (∗)

We show by induction on i that, for every i ∈ [k], there exists a tuple s̄i ∈ Bn

that satisfies the induction hypothesis

B |= φ(s̄i) ∧ ¬
∨

�∈[i]

ψ�(s̄i). (†)

In the base case (i = 1), it follows from (∗) that s̄1 := t̄1 satisfies (†).
In the induction step (i → i + 1), let s̄i ∈ Bn be any tuple that satisfies

(†). Let σ ⊆ τ be the finite set of relation symbols occurring in the implica-
tion ∀x1, . . . , xn. (φ ⇒ ψ), and let Ai be the substructure of B2 on the set
{(s̄i[1], t̄i+1[1]), . . . , (s̄i[n], t̄i+1[n])}. Since B |= φ(s̄i) by (†), B |= φ(t̄i+1) by (∗),
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and φ contains an atom for each variable xi, we conclude that the σ-reduct of Ai

is guarded. By 2., there exists a strong homomorphism fi from the σ-reduct of
Ai to the σ-reduct of B. Since φ is a conjunction of atoms and fi is a homomor-
phism, we have that B |= φ

(
fi(s̄i, t̄i+1)

)
. Suppose that B |= ψi+1

(
fi(s̄i, t̄i+1)

)
.

Since fi is a strong homomorphism, we get B |= ψi+1(t̄i+1), a contradiction to
(∗). Now suppose that B |= ψj

(
fi(s̄i, t̄i+1)

)
for some j ≤ i. Since fi is a strong

homomorphism, we get B |= ψj(s̄i), a contradiction to (†). We conclude that
s̄i+1 := fi(s̄i, t̄i+1) satisfies (†).

Since B |= ∀x1, . . . , xn. (φ ⇒ ψ), the existence of a tuple s̄i ∈ Bn that
satisfies (†) for i = k leads to a contradiction. ��

As an easy consequence of Theorem 2, we also obtain a characterization of
(unguarded) convexity. This is due to the fact that the structure B is convex iff
its expansion with the full unary predicate (interpreted as B) is guarded convex.
In addition, in the presence of this predicate, any structure is guarded.

Corollary 1. For a relational τ -structure B, the following are equivalent:

1. B is convex.
2. For every finite σ ⊆ τ and every A ∈ Age (B2), there exists a strong homo-

morphism from the σ-reduct of A to the σ-reduct of B.

As an example, the structure N = (N, E,O) introduced in the previous
section is guarded convex, but not convex. According to the corollary, the lat-
ter should imply that there is a finite substructure A of N2 that has no strong
homomorphism to N. In fact, if we take as A the substructure of N2 induced by
the tuple (1, 2), then this tuple belongs neither to E nor to O in the product.
However, a strong homomorphism to N would need to map this tuple either to
an odd or an even number. But then the tuple would need to belong to either
E or O since the homomorphism is strong. This example does not work for the
case of guarded convexity, because the considered substructure is not guarded.
In fact, a guarded substructure of N2 can only contain tuples where both com-
ponents are even or both components are odd. In the former case, the tuple can
be mapped to an even number, and in the latter to an odd number.

In the presence of the equality predicate, strong homomorphisms are embed-
dings and guarded convexity is the same as convexity.

Corollary 2. For a structure B with a relational signature τ with equality, the
following are equivalent:

1. B is convex.
2. For every finite σ ⊆ τ and every A ∈ Age (B2), the σ-reduct of A embeds into

the σ-reduct of B.

5 Examples of Convex and p-Admissible Structures

We consider three different kinds of structures (ω-categorical, finitely bounded,
numerical) and show under which conditions such structures are convex. This
provides us with new examples for p-admissible concrete domains.
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5.1 Convex ω-Categorical Structures

A structure is called ω-categorical if its first-order theory has a unique countable
model up to isomorphism. A well-known example of such a structure is (Q, <),
whose first-order theory is the theory of linear orders without first and last ele-
ment. Such structures have drawn considerable attention in the CSP community
since their CSPs can, to some extent, be investigated using the algebraic tools
originally developed for finite structures. Countably infinite ω-categorical struc-
tures can be characterized using automorphisms and orbits. For every structure
A, the set of all automorphisms of A, denoted by Aut(A), forms a permutation
group with composition as group operation [23]. The orbit of a tuple t̄ ∈ Ak

under Aut(A) is the set {(g(t̄[1]), ..., g(t̄[k])) | g ∈ Aut(A)}. The following result
is due to Engeler, Ryll-Nardzewski, and Svenonius (see Theorem 6.3.1 in [23]).

Theorem 3. For a countably infinite structure D with a countable signature,
the following are equivalent:

1. D is ω-categorical.
2. Every relation preserved by Aut(D) has a first-order definition in D.
3. For every k ≥ 1, there are only finitely many orbits of k-tuples under Aut(D).

For countably infinite ω-categorical structures the characterization of con-
vexity of Corollary 2 can be improved to the following simpler statement.

Theorem 4. For a countably infinite ω-categorical relational structure B with
a countable signature τ with equality, the following are equivalent:

1. B is convex.
2. B2 embeds into B.

The proof of this theorem combines the proof of Corollary 2 with the following
two facts, which are implied by ω-categoricity of B. First, there exists a strong
homomorphism from B2 to B iff there exists a strong homomorphism from A
to B for every A ∈ Age (B2) (see, e.g., Lemma 3.1.5 in [11]). Second, to deal
with the fact that τ may be infinite (which is problematic for the proof of “1 ⇒
2”), we can use Theorem 3, which ensures that, for every k ≥ 1, there are only
finitely many inequivalent k-ary formulae over B consisting of a single τ -atom.

In the CSP literature, one can find two examples of countably infinite ω-
categorical structure that satisfy the square embedding condition of the above
theorem: atomless Boolean algebras and countably infinite vector spaces over
finite fields. Since the CSP for atomless Boolean algebras is NP-complete [9],
this example does not provide us with a p-admissible concrete domain. Things
are more rosy for the vector space example. As shown in [12], the relational
representation Vq = (Vq, R

+, Rs0 , . . . , Rsq−1) of the countably infinite vector
space over a finite field GF(q) is ω-categorical, satisfies V2

q
∼= Vq, and its CSP

is decidable in polynomial time, even if the complements of all predicates are
added. Here R+ is a ternary predicate corresponding to addition of vectors, and
the Rsi are binary predicates corresponding to scalar multiplication of a vector
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with the element si of GF(q). We can show that these properties are preserved
if we add finitely many unary predicates Rei that correspond to unit vectors
e1, . . . , ek [6].

Corollary 3. The structure Vq expanded with predicates Re1 , . . . , Rek for unit
vectors e1, . . . , ek is p-admissible.

For the case q = 2, the vectors in Vq are one-sided infinite tuples of zeros and
ones containing only finitely many ones, which can be viewed as representing
finite subsets of N. For example, (0, 1, 1, 0, 1, 0, 0, . . .) represents the set {1, 2, 4}.
Thus, if we use V2 as concrete domain, the features assign finite sets of natural
numbers to individuals. For example, assume that the feature daughters-ages
assigns the set of ages of female children to a person, and sons-ages the set of
ages of male children. Then R+(daughters-ages, sons-ages, zero) describes per-
sons that, for every age, have either both a son and a daughter of this age, or no
child at all of this age. The feature zero is supposed to point to the zero vector,
which can, e.g., be enforced using the GCI � � R+(zero, zero, zero).

5.2 Convex Structures with Forbidden Patterns

For a class F of τ -structures, Forbe(F) stands for the class of all finite τ -
structures that do not embed any member of F . A structure B is finitely bounded
if its signature is finite and Age (B) = Forbe(F) for some finite set F of bounds.
Alternatively, one can say that B is finitely bounded if its signature is finite
and there is a universal first-order sentence Φ with equality such that Age (B)
consists precisely of the finite models of Φ [8]. A well-known example of a finitely
bounded structure is (Q, >,=), for which the self loop, the 2-cycle, the 3-cycle,
and two isolated vertices can be used as bounds (see Fig. 1 in [7]). As universal
sentence defining Age (Q, >,=) we can take the conjunction of the usual axioms
defining linear orders. For finitely bounded structures, p-admissibility turns out
to be equivalent to convexity.

Theorem 5. Let B be a finitely bounded τ -structure with equality. Then the
following statements are equivalent:

1. B is convex,
2. Age (B) is defined by a conjunction of Horn implications,
3. B is p-admissible.

The structure (Q, >,=) is not convex. In fact, since it is also ω-categorical, con-
vexity would imply that its square (Q, >,=) × (Q, >,=) embeds into (Q, >,=),
by Theorem 4. This cannot be the case since the product contains incompa-
rable elements, whereas (Q, >,=) does not. In the universal sentence defining
Age (Q, >,=), the totality axiom ∀x, y. (x < y ∨ x = y ∨ x > y) is the culprit
since it is not Horn. If we remove this axiom, we obtain the theory of strict
partial orders.
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Example 1. It is well-known that there exists a unique countable homogeneous1

strict partial order O [32], whose age is defined by the universal sentence
∀x, y, z. (x < y ∧ y < z ⇒ x < z) ∧ ∀x. (x < x ⇒ ⊥), which is a Horn implica-
tion. Thus, O extended with equality is finitely bounded and convex. Using O
as a concrete domain means that the feature values satisfy the theory of strict
partial orders, but not more. One can, for instance, use this concrete domain
to model preferences of people; e.g., the concept Italian� >(pizzapref, pastapref)
describes Italians that like pizza more than pasta. Using O here means that
preferences may be incomparable. As we have seen above, adding totality would
break convexity and thus p-admissibility.

Beside finitely bounded structures, the literature also considers structures
whose age can be described by a finite set of forbidden homomorphic images [19,
26]. For a class F of τ -structures, Forbh(F) stands for the class of all finite τ -
structures that do not contain a homomorphic image of any member of F . A
structure is connected if its so-called Gaifman graph is connected.

Theorem 6 (Cherlin, Shelah, and Shi [19]). Let F be a finite family of
connected relational structures with a finite signature τ . Then there exists an ω-
categorical τ -structure CSS(F) that is a reduct of a finitely bounded homogeneous
structure and such that Age (CSS(F)) = Forbh(F).

We can show [6] that the structures of the form CSS(F) provided by this
theorem are always p-admissible.

Proposition 1. Let F be a finite family of connected relational structures with
a finite signature τ . Then the expansion of CSS(F) by the equality predicate is
p-admissible.

This proposition actually provides us with infinitely many examples of count-
able p-admissible concrete domains, which all yield a different extension of EL:
the so-called Henson digraphs [21] (see [6] for details). The usefulness of these
concrete domains for defining interesting concepts is, however, unclear.

5.3 Convex Numerical Structures

We exhibit two new p-admissible concrete domain that are respectively based
on the real and the rational numbers, and whose predicates are defined by linear
equations. Let DR,lin be the relational structure over R that has, for every linear
equation system Ax̄ = b̄ over Q, a relation consisting of all its solutions in R.
We define DQ,lin as the substructure of DR,lin on Q. For example, using the
matrix A = (2 1−1) and the vector b̄ = (0) one obtains the ternary relation
{(p, q, r) ∈ Q3 | 2p + q = r} in DQ,lin.

Theorem 7. The relational structures DR,lin and DQ,lin are p-admissible.

1 A structure is homogeneous if every isomorphism between its finite substructures
extends to an automorphism of the whole structure.
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To prove this theorem for R, we start with the well-known fact that (R,+, 0)2

and (R,+, 0) are isomorphic [28], and show that it can be extended to DR,lin.
This yields convexity of DR,lin. For Q, we cannot employ the same argument since
(Q,+, 0)2 is not isomorphic to (Q,+, 0). Instead, we use the well-known fact that
the structures (Q,+, 0) and (R,+, 0) satisfy the same first-order-sentences [28]
to show that convexity of DR,lin implies convexity of DQ,lin. Tractability can be
shown for both structures using a variant of the Gaussian elimination procedure.
A detailed proof can be found in [6].

It is tempting to claim that DQ,lin is considerably more expressive than the
p-admissible concrete domain DQ,dist with domain Q, unary predicates =p, >p,
and binary predicates +p,= exhibited in [2]. However, formally speaking, this
is not true since the relations >p cannot be expressed in DQ,lin. In fact, adding
such a relation to DQ,lin would destroy convexity. Conversely, adding the ternary
addition predicate, which is available in DQ,lin, to DQ,dist also destroys convexity.
Using these observations, we can actually show that the expressive powers of
DQ,dist and DQ,lin are incomparable [6]. We expect, however, that DQ,lin will
turn out to be more useful in practice than DQ,dist.

6 ω-Admissibility versus p-Admissibility

The notion of ω-admissibility was introduced in [31] as a condition on concrete
domains D that ensures that the subsumption problem in ALC(D) w.r.t. TBoxes
remains decidable. This is a rather complicated condition, but for our purposes
it is sufficient to know that, according to [31], an ω-admissible concrete domain
D has finitely many binary relations, which are jointly exhaustive (i.e., their
union yields D×D) and pairwise disjoint (i.e., for two different relation symbols
Ri, Rj we have RD

i ∩ RD
j = ∅). In the presence of equality, these two conditions

do not go well together with convexity.

Proposition 2. Let D be a structure with a finite binary relational signature
that includes equality. If D is convex, jointly exhaustive, and pairwise disjoint,
then its domain D satisfies |D| ≤ 1.

This proposition shows that there are no non-trivial concrete domains with
equality that are at the same time p-admissible and ω-admissible. Without equal-
ity, there are some, but they are still not very interesting [6]. Nevertheless, by
combining the results of Sect. 5.2 with Corollary 2 in [7], we obtain non-trivial
p-admissible concrete domains with equality for which subsumption in ALC(D)
is decidable.

Corollary 4. Let D be a finitely bounded convex structure with equality that is
a reduct of a finitely bounded homogeneous structure. Then subsumption w.r.t.
TBoxes is tractable in EL[D] and decidable in ALC(D).

The Henson digraphs already mentioned in Sect. 5.2 provide us with infinitely
many examples of structures that satisfy the conditions of this corollary.
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In general, however, p-admissibility of D does not guarantee decidability of sub-
sumption in ALC(D). For example, subsumption w.r.t. TBoxes is undecidable
in ALC(DQ,dist) and ALC(DQ,lin) since this is already true for their common
reduct (Q,+1) [7].

Even for EL, integrating a p-admissible concrete domain may cause unde-
cidability if we allow for role paths of length 2. To show this, we consider the
relational structure DQ2,aff over Q2, which has, for every affine transformation
Q2 → Q2 : x̄ �→ Ax̄+ b̄, the binary relation RA,b̄ := {(x̄, ȳ) ∈ (Q2)2 | ȳ = Ax̄+ b̄}.

Theorem 8. The relational structure DQ2,aff is p-admissible, which implies that
subsumption w.r.t. TBoxes is tractable in EL[DQ2,aff ]. However, subsumption
w.r.t. TBoxes is undecidable in EL(DQ2,aff).

In [6], we show p-admissibility of DQ2,aff using the fact that DQ,lin is p-
admissible. Tractability of subsumption in EL[DQ2,aff ] is then an immediate
consequence of Theorem 1. Undecidability of subsumption w.r.t. TBoxes in
EL(DQ2,aff) can be shown by a reduction from 2-Dimensional Affine Reacha-
bility, which is undecidable by Corollary 4 in [10]. For this problem, one is given
vectors v̄, w̄ ∈ Q2 and a finite set S of affine transformations from Q2 to Q2. The
question is then whether w̄ can be obtained from v̄ by repeated application of
transformations from S. It is not hard to show that 2-Dimensional Affine Reach-
ability can effectively be reduced to subsumption w.r.t. TBoxes in EL(DQ2,aff).

7 Conclusion

The notion of p-admissible concrete domains was introduced in [2], where it was
shown that integrating such concrete domains into the lightweight DL EL (and
even the more expressive DL EL++) leaves the subsumption problem tractable.
The paper [2] contains two examples of p-admissible concrete domains, and since
then no new examples have been exhibited in the literature. This appears to
be mainly due to the fact that it is not easy to show the convexity condition
required by p-admissibility “by hand”. The main contribution of the present
paper is that it provides us with a useful algebraic tool for showing convexity:
the square embedding condition. We have shown that this tool can indeed be used
to exhibit new p-admissible concrete domains, such as countably infinite vector
spaces over finite field, the countable homogeneous partial order, and numerical
concrete domains over R and Q whose relations are defined by linear equations.
The usefulness of these numerical concrete domains for defining concepts should
be evident. For the other two we have indicated their potential usefulness by
small examples.

We have also shown that, for finitely bounded structures, convexity is equiva-
lent to p-admissibility, and that this corresponds to the finite substructures being
definable by a conjunction of Horn implications. Interestingly, this provides us
with infinitely many examples of countable p-admissible concrete domains, which
all yield a different extension of EL: the Henson digraphs. From a theoretical
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point of view, this is quite a feat, given that before only two p-admissible concrete
domains were known.

Finitely bounded structures also provide us with examples of structures D
that can be used both in the context of EL and ALC, in the sense that subsump-
tion is tractable in EL[D] and decidable in ALC(D). Finally, we have shown that,
when embedding p-admissible concrete domains into EL, the restriction to paths
of length 1 in concrete domain restrictions (indicated by the square brackets) is
needed since there is a p-admissible concrete domains D such that subsumption
in EL(D) is undecidable.
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9. Barto, L., Kompatscher, M., Oľsák, M., Van Pham, T., Pinsker, M.: Equations
in oligomorphic clones and the Constraint Satisfaction Problem for ω-categorical
structures. J. Math. Logic 19(2), 1950010 (2019)

10. Bell, P., Potapov, I.: On undecidability bounds for matrix decision problems. The-
oret. Comput. Sci. 391(1–2), 3–13 (2008)

11. Bodirsky, M.: Complexity classification in infinite-domain constraint satisfaction.
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