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Abstract

Ontology-mediated query answering is a popular paradigm for enriching answers to user queries
with background knowledge. For querying the absence of information, however, there exist only
few ontology-based approaches. Moreover, these proposals conflate the closed-domain and closed-
world assumption, and therefore are not suited to deal with the anonymous objects that are
common in ontological reasoning. Many real-world applications, like processing electronic health
records (EHRs), also contain a temporal dimension, and require efficient reasoning algorithms.
Moreover, since medical data is not recorded on a regular basis, reasoners must deal with sparse
data with potentially large temporal gaps.

Our contribution consists of two main parts: In the first part we introduce a new closed-world
semantics for answering conjunctive queries with negation over ontologies formulated in the
description logic ELH�, which is based on the minimal canonical model. We propose a rewriting
strategy for dealing with negated query atoms, which shows that query answering is possible in
polynomial time in data complexity. In the second part, we extend this minimal-world semantics
for answering metric temporal conjunctive queries with negation over the lightweight temporal
logic TELH c◊,lhs,−

� and obtain similar rewritability and complexity results.

1 Introduction

Ontology-mediated query answering (OMQA) allows using background knowledge for
answering user queries, supporting data-focused applications offering search, analytics, or
data integration functionality. An ontology is a logical theory formulated in a decidable
fragment of first-order logic, e.g. a description logic (DL) (Baader et al. 2017), with a trade-
off between the expressivity of the ontology language and the efficiency of query answering.
Rewritability is a popular topic of research, the idea being to reformulate ontological
queries, such as conjunctive queries (CQs) enhanced by an ontology, into database queries
that can be answered by traditional database management systems (Mugnier and Thomazo
2014; Eiter et al. 2012; Bienvenu and Ortiz 2015; Calvanese et al. 2017; Kharlamov et al.
2017).

Ontology-based systems do not use the closed-domain and closed-world semantics of
databases. Instead, they acknowledge that unknown (anonymous) objects may exist (open
domain) and that facts that are not explicitly stated may still be true (open world).
Anonymous objects are related to null values in databases; for example, if we know that
every person has a mother, then first-order models include all mothers, even though
they may not be mentioned explicitly in the input dataset. In addition, the open-world
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assumption ensures that, if the dataset does not contain an entry on, e.g. whether a
person is male or female, then we do not infer that this person is neither male nor female,
but rather consider all possibilities.

In the last decade, OMQA has been extended to temporal description logics (DLs) that
combine terminological and temporal knowledge representation capabilities (Wolter and
Zakharyaschev 2000; Lutz et al. 2008; Artale et al. 2017). To obtain tractable reasoning
procedures, lightweight temporal DLs have been developed (Artale et al. 2007; Gutiérrez-
Basulto et al. 2016). The idea is to use temporal operators, often from the linear temporal
logic LTL, inside DL axioms. For example, −◊∃diagnosis.BrokenLeg ⊑ ∃treatment.LegCast
states that after breaking a leg one has to wear a cast. However, this basic approach
cannot represent the distance of events, e.g. that the cast only has to be worn for a fixed
amount of time. Recently, metric temporal ontology languages have been investigated
(Gutiérrez-Basulto et al. 2016; Baader et al. 2017; Brandt et al. 2018), which allow to
replace −◊ in the above axiom with ◊[−8,0], i.e. wearing the cast is required only if the leg
was broken ≤ 8 time points (e.g. weeks) ago.

The biomedical domain is a fruitful area for OMQA methods, due to the availability
of large ontologies covering a multitude of topics1 and the demand for managing large
amounts of patient data, in the form of electronic health records (EHRs) (Cresswell and
Sheikh 2017). For example, for the preparation of clinical trials2 a large number of patients
need to be screened for eligibility, and an important area of current research is how to
automate this process (Patel et al. 2007; Besana et al. 2010; Köpcke and Prokosch 2014;
Tagaris et al. 2014; Ni et al. 2015). In particular, many clinical trials contain temporal
eligibility criteria (Crowe and Tao 2015), such as: “type 1 diabetes with duration at least
12 months”3; “known history of heart disease or heart rhythm abnormalities”4; “CD4+
lymphocytes count > 250/mm3, for at least 6 months”5; or “symptomatic recurrent
paroxysmal atrial fibrillation (PAF) (> 2 episodes in the last 6 months)”6. Moreover,
measurements, diagnoses, and treatments in a patients’ EHR are clearly valid only for a
certain amount of time. To automatically screen patients according to the temporal criteria
above, one needs a sufficiently powerful formalism that can reason about biomedical and
temporal knowledge.
Additionally, ontologies and EHRs mostly contain positive information, while clinical

trials also require certain exclusion criteria to be absent in the patients. For example, we
may want to select only patients that have not been diagnosed with cancer,7 but such
information cannot be entailed from the given knowledge. The culprit for this problem
is the open-world semantics, which considers a cancer diagnosis possible unless it has
been explicitly ruled out. Unfortunately, existing approaches like (partial) closed-world
semantics (Lutz et al. 2013; Ahmetaj et al. 2016) or epistemic logics are unable to deal
with closed-world knowledge over anonymous objects (Wolter 2000; Calvanese et al. 2006).

In the first part of this paper, we introduce a new closed-world semantics to answer con-

1 https://bioportal.bioontology.org
2 https://clinicaltrials.gov
3 https://clinicaltrials.gov/ct2/show/NCT02280564
4 https://clinicaltrials.gov/ct2/show/NCT02873052
5 https://clinicaltrials.gov/ct2/show/NCT02157311
6 https://clinicaltrials.gov/ct2/show/NCT00969735
7 An exclusion criterion in https://clinicaltrials.gov/ct2/show/NCT01463215

https://clinicaltrials.gov/ct2/show/NCT02280564
https://clinicaltrials.gov/ct2/show/NCT02873052
https://clinicaltrials.gov/ct2/show/NCT02157311
https://clinicaltrials.gov/ct2/show/NCT00969735
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junctive queries with (guarded) negation (Bárány et al. 2012) over ontologies formulated in
ELH�, an ontology language that covers many biomedical ontologies, e.g. SNOMEDCT.8
Our semantics, called minimal-world semantics, is based on the minimal canonical model,
which encodes all inferences of the ontology in the most concise way possible. As a side
effect, this means that ordinary CQs without negation are interpreted under the standard
open-world semantics. In order to properly handle negative knowledge about anonymous
objects, however, we have to be careful in the construction of the canonical model, in
particular about the number and types of anonymous objects that are introduced. Since
in general the minimal canonical model is infinite, we develop a rewriting technique, in
the spirit of the combined approach of (Lutz et al. 2009; Kontchakov et al. 2011), and
most closely inspired by (Eiter et al. 2012; Bienvenu and Ortiz 2015), which allows us
to evaluate conjunctive queries with negation over a finite part of the canonical model,
using traditional database techniques.

In the second part of the paper, we extend the minimal-world semantics to support also
temporal information. When working with EHRs, which contain information for specific
points in time only, it is especially important to be able to infer what happened to the
patient in the meantime. For example, if a patient is diagnosed with a (currently) incurable
disease like Diabetes, they will still have the disease at any future point in time. Similarly,
if the EHR contains two entries of CD4Above250 four weeks apart, one may reasonably
infer that this was true for the whole four weeks. We use the qualitative temporal DL
TELH c◊,lhs,−

�
(Borgwardt et al. 2019) that can express the former statement by declaring

Diabetes as expanding via the axiom −◊Diabetes ⊑ Diabetes. Additionally, by a special
kind of metric temporal operators it is allowed to write cc◊4CD4Above250 ⊑ CD4Above250,
making the measurement convex for a specified length of time n (e.g. 4 weeks). This
means that information is interpolated between time points of distance less than n,
thereby computing a convex closure of the available information. The threshold n allows
to distinguish the case where two mentions of CD4Above250 are years apart, and are
therefore unrelated. Reasoning in TELH c◊,lhs,−

�
is tractable in data complexity, because

◊-operators are only allowed on the left-hand side of concept inclusions (Borgwardt et al.
2019; Gutiérrez-Basulto et al. 2016), which is also common for temporal DLs based on
DL-Lite (Artale et al. 2013; Artale et al. 2015).

Here we consider the problem of answering metric temporal queries over TELH c◊,lhs,−
�

knowledge bases with the minimal-world semantics introduced in the first part of the paper.
Our query language extends the temporal conjunctive queries from (Baader et al. 2015b) by
metric temporal operators (Gutiérrez-Basulto et al. 2016; Baader et al. 2017) and negation.
For example, we can use queries like ◻[−12,0](∃y.diagnosedWith(x, y) ∧Diabetes(y)) to
select all patients x for which the first criterion from above is satisfied.
By extending our combined rewriting approach, we show that the data complexity of

temporal query answering is not higher than for (positive) atemporal queries in ELH�,
and also provide a tight combined complexity result of ExpSpace. Unlike most research
on temporal query answering (Baader et al. 2015b; Artale et al. 2015), we do not assume
that input data is given for all time points in a certain interval, but rather at sporadic
time points with arbitrarily large gaps (Brandt et al. 2018). The main technical difficulty

8 https://www.snomed.org/

https://www.snomed.org/
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is to determine which additional time points are relevant for answering a query, and how
to access these time points without having to fill infinitely many gaps.

This paper extends the conference paper (Borgwardt and Forkel 2019) by allowing also
non-rooted queries and extends parts of (Borgwardt et al. 2019) by providing full proofs
of all results and improving some of the running examples.

2 Preliminaries

We recall the definitions of ELH� and first-order queries, which are needed for our rewriting
of conjunctive queries with negation.

The Description Logic ELH�. Let C,R, I be countably infinite sets of concept, role,
and individual names, respectively. A concept is built according to the syntax rule
C ∶∶= A ∣ ⊺ ∣ � ∣ C ⊓C ∣ ∃r.C, where A ∈ C and r ∈ R. An ABox is a finite set of concept
assertions A(a) and role assertions r(a, b), where a, b ∈ I. A TBox is a finite set of concept
inclusions C ⊑ D and role inclusions r ⊑ s, where C,D are concepts and r, s are roles.
In the following we assume the TBox to be in normal form, i.e. that it contains only
inclusions of the form

A1 ⊓ ⋅ ⋅ ⋅ ⊓An ⊑ B, A ⊑ ∃r.B, ∃r.A ⊑ B, r ⊑ s

where A(i) ∈ C∪{⊺}, B ∈ C∪{�}, r, s ∈ R, and n ≥ 1. A knowledge base (KB) (or ontology)
K = T ∪A consists of a TBox T and an ABox A. We refer to the set of individual names
occurring in K by Ind(K). We write C ≡D to abbreviate the two inclusions C ⊑D, D ⊑ C,
and similarly for role inclusions.

The semantics of ELH� is defined as usual (Baader et al. 2007) in terms of interpretations
I = (∆I , ⋅I), where the domain ∆I is a non-empty set and the functions ⋅I are extended
from concept and role names inductively as follows:

⊺I ∶= ∆I �I ∶= ∅
(C ⊓D)I ∶= CI ∩DI (∃r.C)I ∶= {d ∈ ∆I ∣ ∃e ∈ CI ∶ (d, e) ∈ rI}

I is a model of (or satisfies) a concept inclusion C ⊑D if CI ⊆DI holds, a role inclusion
r ⊑ s if rI ⊆ sI holds, a concept assertion A(a) if a ∈ AI , a role assertion r(a, b) if
(a, b) ∈ rI , and the KB K if it satisfies all axioms in K. In the following, we assume
all KBs to be consistent and make the standard name assumption, i.e. that for every
individual name a in any interpretation I we have aI = a. An axiom α is entailed by K
(written K ⊧ α) if α is satisfied in all models of K. We abbreviate K ⊧ C ⊑D to C ⊑T D,
and similarly for role inclusions; note that the ABox does not influence the entailment of
inclusions. Entailment in ELH� can be decided in polynomial time (Baader et al. 2005).

The Temporal Description Logic TELH c◊,lhs,−
�

. We recall the relevant definitions
from (Borgwardt et al. 2019), starting with the MTL operators that are used in TELH c◊,lhs,−

�
.

LTL formulas are formulated over a finite set P of propositional variables. In this section,
we consider only formulas built according to the syntax rule ϕ ∶∶= p ∣ ϕ ∧ ϕ ∣ ϕ ∨ ϕ ∣◊Iϕ,
where p ∈ P and I is an interval in Z. The semantics is given by LTL-structures W = (wi)i∈Z,
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Zp

cc◊1p

cc◊10p

cc◊p

±◊p . . .. . .

+◊p . . .

−◊p . . .

≤10>10

Figure 1. The resulting intervals of the induced functions of the diamond operators when
applied to the intervals at which p holds (denoted below the timeline). While cc◊ closes all
gaps, cc◊10 does not close the first gap, since it is greater than 10 time units.

where wi ⊆ P . We write

W, i ⊧ p iff p ∈ wi if p ∈ P , W, i ⊧ ϕ ∧ ψ iff W, i ⊧ ϕ and W, i ⊧ ψ,
W, i ⊧◊Iϕ iff ∃k ∈ I ∶ W, i + k ⊧ ϕ, W, i ⊧ ϕ ∨ ψ iff W, i ⊧ ϕ or W, i ⊧ ψ.

In TELH c◊,lhs,−
�

the following derived operators are used, where n ≥ 1.
±◊ϕ ∶=◊(−∞,∞)ϕ +◊ϕ ∶=◊[0,∞)ϕ −◊ϕ ∶=◊(−∞,0]ϕ

cc◊ϕ ∶=◊(−∞,0]ϕ ∧◊[0,∞)ϕ cc◊nϕ ∶= ⋁
k,m≥0

k+m=n−1

(◊[−k,0]ϕ ∧◊[0,m]ϕ) (1)

The operator +◊ is the “eventually” operator of classical LTL, and −◊, ±◊ are two variants
that refer to the past, or to both past and future, respectively. The operator cc◊ requires
that ϕ holds both in the past and in the future, thereby distinguishing time points that
lie within an interval enclosed by time points at which ϕ holds. This can be used to
express the convex closure of time points, as described in the introduction. Finally, the
operators cc◊n represent a metric variant of cc◊, requiring that different occurrences of ϕ are
at most n − 1 time points apart, i.e. enclose an interval of length n.
To make the behavior of these operators more clear, we consider their semantics in a

more abstract way: given a set of time points where a certain information is available (e.g.
a diagnosis), described by a propositional variable p, we consider the resulting set of time
points at which ⋆◊p holds, where ⋆◊ is a placeholder for one of the operators defined above
(we will similarly use ●◊, †◊, ‡◊ as placeholders for different ◊-operators in the following).

We consider the sets Dc ∶= { cc◊}∪{ cc◊i ∣ i ≥ 1}, D± = { −◊, +◊, ±◊}, and D ∶=D±∪Dc of diamond
operators. Each ⋆◊ ∈D induces a function ⋆◊∶ 2Z → 2Z with ⋆◊(M) ∶= {i ∣ WM , i ⊧ ⋆◊p} for all
M ⊆ Z, with the LTL-structure WM ∶= (wi)i∈Z such that wi ∶= {p} if i ∈M , and wi ∶= ∅
otherwise. For an illustration see Figure 1. We will omit the parentheses in ⋆◊(M) for a
cleaner presentation.
If M is empty, then ⋆◊M is also empty, for any ⋆◊ ∈D. For any non-empty M ⊆ Z, the

following expressions are obtained, where maxM may be ∞ and minM may be −∞.
±◊M = Z +◊M = (−∞,maxM] −◊M = [minM,∞) cc◊M = [minM,maxM]

cc◊1M =M cc◊nM = {i ∈ Z ∣ ∃j, k ∈M with j ≤ i ≤ k and k − j < n}

Based on the operators in D we give the definition of TELH c◊,lhs,−
�

in the following.
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A TELH c◊,lhs,−
�

concept is built using the rule C ∶∶= A ∣ ⊺ ∣ � ∣ C ⊓C ∣ ∃r.C ∣ ⋆◊C, where
A ∈ C, ⋆◊ ∈D, and r is a role. Such a C is an ELH� concept (or atemporal concept) if it
does not contain any diamond operators.

A TELH c◊,lhs,−
�

TBox is a finite set of concept inclusions (CIs) C ⊑D and role inclusions
(RIs) r ⊑ s, where C is a TELH c◊,lhs

�
concept, D is an atemporal concept, and r, s ∈ R are

roles. Note that temporal roles are not allowed in TELH c◊,lhs,−
�

. An ABox is a finite set of
concept assertions A(a, i) and role assertions r(a, b, i), where A ∈ C, r ∈ R, a, b ∈ I, and
i ∈ Z. The set of time points i ∈ Z occurring in A we denote as tem(A). Also we assume
each time point is encoded in binary. In the following, we always assume a KB K = T ∪A
to be given.

A temporal interpretation I = (∆I, (Ii)i∈Z), is a collection of interpretations Ii = (∆I, ⋅Ii),
i ∈ Z, over ∆I. The functions ⋅Ii are extended to temporal concepts as follows:

(⋆◊C)Ii ∶= {d ∈ ∆I ∣ i ∈ ⋆◊{j ∣ d ∈ CIj}}

I is a model of (or satisfies) a concept inclusion C ⊑D if CIi ⊆DIi holds for all i ∈ Z, a
role inclusion r ⊑ s if rIi ⊆ sIi holds for all i ∈ Z, a concept assertion A(a, i) if a ∈ AIi , a
role assertion r(a, b, i) if (a, b) ∈ rIi , and the KB K if it satisfies all axioms in K. This fact
is denoted by I ⊧ α, where α is an axiom (i.e. inclusion or assertion) or a KB. Entailment
of CIs and assertions in TELH c◊,lhs,−

�
is P-complete (Borgwardt et al. 2019).

As in many lightweight temporal logics, diamonds are not allowed to occur on the
right-hand side of CIs, because that would allow to simulate concept disjunction and
make the logic intractable (Artale et al. 2007; Gutiérrez-Basulto et al. 2016). As usual,
we can simulate CIs involving complex concepts by introducing fresh concept and role
names as abbreviations. For example, ∃r. −◊A ⊑ B can be split into −◊A ⊑ A′, and ∃r.A′ ⊑ B.
Hence, we can restrict ourselves w.l.o.g. to inclusions in the following normal form:

⋆◊A ⊑ B, A ⊑ ∃r.B, A1 ⊓A2 ⊑ B, r ⊑ s, ∃r.A ⊑ B, (2)

where ⋆◊ ∈D, A,A1,A2,B ∈ C ∪ {�,⊺}, and r, s ∈ R.

Conjunctive Query Answering. Let V be a countably infinite set of variables. The
set of terms is T ∶= V ∪ I. A first-order query φ(x) is a first-order formula built from
concept atoms A(t) and role atoms r(t, t′) with A ∈ C, r ∈ R, and ti ∈ T, using the
boolean connectives (∧,∨,¬,→) and universal and existential quantifiers (∀x,∃x). The
free variables x of φ(x) are called answer variables and we say that φ is k-ary if there are
k answer variables. The remaining variables are the quantified variables. We use Var(φ)
to denote the set of all variables in φ. A query without any answer variables is called a
Boolean query.

Let I = (∆, ⋅I) be an interpretation. An assignment π∶Var(φ)→∆ satisfies φ in I, if
I, π ⊧ φ under the standard semantics of first-order logic. We write I ⊧ φ if there is a
satisfying assignment for φ in I. Let K be a KB. A k-tuple a of individual names from
Ind(K) is an answer to φ in I if φ has a satisfying assignment π in I with π(x) = a; it is
a certain answer to q over K if it is an answer to q in all models of K. We denote the set
of all answers to φ in I by ans(φ,I), and the set of all certain answers to φ over K by
cert(φ,K).

A conjunctive query (CQ) q(x) is a first-order query of the form ∃y. ϕ(x,y), where ϕ
is a conjunction of atoms. Abusing notation, we write α ∈ q if the atom α occurs in q,
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and conversely may treat a set of atoms as a conjunction. The leaf variables x in q are
those that do not occur in any atoms of the form r(x, y). Clearly, q is satisfied in an
interpretation if there is a satisfying assignment for ϕ(x,y), which is often called a match
for q. A CQ is rooted if all variables are connected to an answer variable through (a
sequence of) role atoms.

CQ answering over ELH� KBs is combined first-order rewritable (Lutz et al. 2009): For
any CQ q and consistent KB K = (T ,A) we can find a first-order query qT and a finite
interpretation Ifin

K
such that cert(q,K) = ans(qT ,Ifin

K
). Importantly, Ifin

K
is independent

of q, i.e. can be reused to answer many different queries, while qT is independent of A, i.e.
each query can be rewritten without using the (possibly large) dataset. The rewritability
results are based crucially on the canonical model property of ELH�: For any consistent
KB K one can construct a model IK that is homomorphically contained in any other
model. This is a very useful property since any match in the canonical model corresponds
to matches in all other models of K, and therefore cert(q,K) = ans(q,IK) holds for all
CQs q. For the complexity analysis, one considers the decision problem of whether a given
tuple a belongs to cert(q,K). The complexity of query answering is usually viewed in two
different ways: In combined complexity the knowledge base, the data and the query are
considered as input, while in data complexity, which is closely related to rewritability, only
the data is considered as input. The latter is often viewed as the more appropriate, since
the queries and the knowledge base are tend to be fixed and relatively small, compared to
potentially huge amounts of data, that are updated frequently. CQ answering for ELH� is
P-complete in data complexity and NP-complete in combined complexity (Rosati 2007b).

3 Conjunctive Queries With Negation

We are interested in answering queries of the following form.

Definition 1
Conjunctive queries with (guarded) negation (NCQs) are constructed by extending CQs
with negated concept atoms ¬A(t) and negated role atoms ¬r(t, t′), such that, for any
negated atom over terms t (and t′) the query contains at least one positive atom over t
(and t′).

An NCQ is rooted if its variables are all connected via role atoms to an answer variable
(from x) or an individual name. An NCQ is Boolean if it does not have answer variables.
To determine whether I ⊧ φ holds for an NCQ φ and an atemporal interpretation I, we
use standard first-order semantics.

We first discuss different ways of handling the negated atoms, and then propose a new
semantics that is based on a particular kind of minimal canonical model. For this, we
consider an example based on real EHRs (ABoxes) from the MIMIC-III database (Johnson
et al. 2016), criteria (NCQs) from clinicaltrials.gov, and the large medical ontology
SNOMEDCT9 (the TBox). We omit here the “role groups” used in SNOMEDCT, which
do not affect the example. We also simplify the concept names and their definitions for
ease of presentation. We assume that the ABoxes have been extracted from EHRs by a
natural language processing tool based, e.g. on existing concept taggers like (Aronson

9 https://www.snomed.org/snomed-ct
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2001; Savova et al. 2010); of course, this extraction is an entire research field in itself,
which we do not attempt to tackle in this paper.

Example 2
We consider three patients. Patient p1 (patient 2693 in the MIMIC-III dataset) is diagnosed
with breast cancer and an unspecified form of cancer (this often occurs when there are
multiple mentions of cancer in a patient’s EHR, which cannot be resolved to be the same
entity). Patient p2 (patient 32304 in the MIMIC-III dataset) suffers from breast cancer
and skin cancer (“[S]tage IV breast cancer with mets to skin, bone, and liver”). For p3
(patient 88432 in the MIMIC-III dataset), we know that p3 has breast cancer that involves
the skin (“Skin, left breast, punch biopsy: Poorly differentiated carcinoma”).

Since SNOMEDCT does not model patients, we add a special role name diagnosedWith
that connects patients with their diagnoses. One can use this to express diagnoses in two
ways. First, one can explicitly introduce individual names for diagnoses in assertions like
diagnosedWith(p1, d1), BreastCancer(d1), diagnosedWith(p1, d2), Cancer(d2), implying
that these diagnoses are treated as distinct entities under the standard name assumption.
Alternatively, one can use complex assertions like ∃diagnosedWith.Cancer(p1), which
allows the logical semantics to resolve whether two diagnoses actually refer to the same
object. Since ABoxes only contain concept names, in this case one has to introduce
auxiliary definitions like CancerPatient ≡ ∃diagnosedWith.Cancer into the TBox. We use
both variants in our example, to illustrate their different behaviors.
We obtain the KB KC , containing knowledge about different kinds of cancers and

cancer patients, together with information about the three patients. The information
about cancers is taken from SNOMEDCT (in simplified form):

SkinCancer ≡ Cancer ⊓ ∃findingSite.SkinStructure
BreastCancer ≡ Cancer ⊓ ∃findingSite.BreastStructure

SkinOfBreastCancer ≡ Cancer ⊓ ∃findingSite.SkinOfBreastStructure
SkinOfBreastStructure ⊑ BreastStructure ⊓ SkinStructure

The EHRs are compiled into several assertions per patient:

Patient p1: BreastCancerPatient(p1), CancerPatient(p1)
Patient p2: SkinCancerPatient(p2), BreastCancerPatient(p2)
Patient p3: diagnosedWith(p3, c3), SkinOfBreastCancer(c3)

Additionally, we add the following auxiliary definitions to the TBox:

CancerPatient ≡ ∃diagnosedWith.Cancer
SkinCancerPatient ≡ ∃diagnosedWith.SkinCancer

BreastCancerPatient ≡ ∃diagnosedWith.BreastCancer

For example, skin cancers and breast cancers are cancers occurring at specific parts of the
body (“body structure” in SNOMEDCT), and a breast cancer patient is someone who is
diagnosed with breast cancer. This means that, in every model of KC , every object that
satisfies BreastCancerPatient (in particular p2) must have a diagnosedWith-connected
object that satisfies BreastCancer, and so on. Moreover, a cancer may also occur in the
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Figure 2. The minimal canonical model IKC
. The named individuals p1, p2, p3 and c3 are

depicted by dark grey figures, the remaining anonymous objects by light grey.

skin of the breast, i.e. a part of the body that is classified as both a “skin structure” and
as a “breast structure”.

For a clinical trial,10 we want to find patients that have “breast cancer”, but not “breast
cancer that involves the skin.” This can be translated into an NCQ:

qB(x) ∶= ∃y, z.diagnosedWith(x, y) ∧Cancer(y) ∧ findingSite(y, z) ∧
BreastStructure(z) ∧ ¬SkinStructure(z)

We know that p1 is diagnosed with BreastCancer as well as Cancer. Since the former is
more specific, we assume that the latter refers to the same BreastCancer. However, since
we have no information about an involvement of the skin, p1 should be returned as an
answer to qB .

We know that p2 suffers from cancer in the skin and the breast, but not if the skin of
the breast is also affected. Since neither location is implied by the other, we assume that
they refer to distinct areas. p2 should thus be an answer to qB .

In the case of p3, it is explicitly stated that it is the same cancer that is occurring (not
necessarily exclusively) at the skin of the breast. In this case, the ABox assertions override
the distinctness assumption we made for p2. Thus, p3 should not be an answer to qB . ∎

In practice, more complicated cases than in our example can occur: The nesting
of anonymous objects will be deeper and more branched when using large biomedical
ontologies. For example, in SNOMEDCT it is possible to describe many details of a
cancer, such as the kind of cancer, whether it is a primary or secondary cancer, and in
which part of the body it is found. This means that even a single assertion can lead
to the introduction of multiple levels of anonymous objects in the canonical model. In
some ontologies there are even cyclic concept inclusions, which lead to infinitely many

10 https://clinicaltrials.gov/ct2/show/NCT01960803
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anonymous individuals, e.g. in the GALEN ontology11. We focus on Example 2 in this
paper, to illustrate the relevant issues in a clear and easy to follow manner.
We now evaluate existing semantics on this example.

Standard Certain Answer Semantics as defined in Section 2 is clearly not suited
here, because one can easily construct a model of KC in which c1 is also a skin cancer,
and hence p1 is not an element of cert(qB ,KC). Moreover, under certain answer semantics
answering CQs with guarded negation is already coNP-complete (Gutiérrez-Basulto et al.
2015), and hence not (combined) rewritable.
Epistemic Logic allows us to selectively apply closed-world reasoning using the modal
knowledge operator K. For a formula Kϕ to be true, it has to hold in all “connected
worlds”, which is often considered to mean all possible models of the KB, adopting
an S5-like view (Calvanese et al. 2006). For qB, we could read ¬SkinStructure(z) as
“not known to be a skin structure”, i.e. ¬KSkinStructure(z). Consider the model IKC

in Figure 2 and the assignment π = {x ↦ p3, y ↦ c3, z ↦ f3}, for which we want to
check whether it is a match for qB. Under epistemic semantics, ¬KSkinStructure(z) is
considered true if K has a (different) model in which f3 does not belong to SkinStructure.
However, f3 is an anonymous object, and hence its name is not fixed. For example, we can
easily obtain another model by renaming f3 to f1 and vice versa. Then f3 would not be a
skin structure, which means that ¬KSkinStructure(z) is true in the original model IKC

,
which is not what we expected. This is a known problem with epistemic first-order logics
(Wolter 2000).
Skolemization can enforce a stricter comparison of anonymous objects between models.
The inclusion SkinOfBreastCancer ⊑ ∃findingSite.SkinOfBreast could be rewritten as the
first-order sentence

∀x. (SkinOfBreastCancer(x)→ findingSite(x, f(x)) ∧ SkinOfBreast(f(x))),

where f is a fresh function symbol. This means that c3 would be connected to a finding
site that has the unique name f(c3) in every model. Queries would be evaluated over
Herbrand models only. Hence, for evaluating ¬KSkinStructure(z) when z is mapped
to f(c3), we would only be allowed to compare the behavior of f(c3) in other Her-
brand models. The general behavior of this anonymous individual is fixed, however,
since in all Herbrand models it is the finding site of c3. While this improves the com-
parison by introducing pseudo-names for all anonymous individuals, it limits us in
different ways: Since p3 is inferred to be a BreastCancerPatient, the Skolemized version of
BreastCancerPatient ⊑ ∃diagnosedWith.BreastCancer introduces a new successor g(p3)
of p3 satisfying BreastCancer, which, together with the definition of BreastCancer, means
that p3 is an answer to qB since there is an additional breast cancer diagnosis that does
not involve the skin.
Datalog-based Ontology Languages with negation (Hernich et al. 2013; Arenas et al.
2014) are closely related to Skolemized ontologies, since their semantics is often based on
the so-called Skolem chase (Marnette 2009). This is closer to the semantics we propose in
Section 3.1, in that a single canonical model is used for all inferences. However, it suffers

11 http://www.opengalen.org/
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from the same drawback of Skolemization described above, due to superfluous successors.
To avoid this, our semantics uses a special minimal canonical model (see Definition 4),
which is similar to the restricted chase (Fagin et al. 2005) or the core chase (Deutsch et al.
2008), but always produces a unique model without having to merge domain elements.
Our minimal canonical model can also be seen as an instance of the approach in (Krötzsch
2020), which identifies conditions under which a chase variant produces a unique core
model (for more details on this connection see Section 3.5.3 in (Forkel 2020)). However,
(Krötzsch 2020) focuses on cases where this model is finite, which is not the case for
general ELH� ontologies. To the best of our knowledge, there exist no complexity results
for Datalog-based languages with negation over these other chase variants.
Closed Predicates are a way to declare, for example, the concept name SkinStructure
as “closed”, which means that all skin structures must be declared explicitly, and no other
SkinStructure object can exist (Lutz et al. 2013; Ahmetaj et al. 2016). This provides a
way to give answers to negated atoms as in qB . However, as explained in the introduction,
this mechanism is not suitable for anonymous objects since it means that only named
individuals can satisfy SkinStructure. When applied to KC , the result is even worse: Since
there is no (named) SkinStructure object, no skin structures can exist at all and KC
becomes inconsistent. Closed predicates are appropriate in cases where the KB contains a
full list of all instances of a certain concept name, and no other objects should satisfy
it; but they are not suitable to infer negative information about anonymous objects.
Moreover, CQ answering with closed predicates in ELH� is already coNP-hard (Lutz
et al. 2013).
Summary All of this should not be read as saying that these semantics are bad, just
that they have not been developed with our use case involving anonymous objects in
mind. Only Skolemization deals with anonymous objects by giving them unique names,
but this forces all of them to be distinct. Our new semantics remedies this, but at the
same time tries to stay as close as possible to the behavior of the existing semantics when
restricted to the known objects in the ABox.

3.1 Semantics for NCQs

We propose to answer NCQs over a special canonical model of the knowledge base. On
the one hand, this eliminates the problem of tracking anonymous objects across different
models, and on the other hand enables us to encode our assumptions directly into the
construction of the model. In particular, we should only introduce the minimum necessary
number of anonymous objects since, unlike in standard CQ answering, the precise shape
and number of anonymous objects has an impact on the semantics of negated atoms.
Given KC , in contrast to the Skolemized semantics, we will not create both a generic

“Cancer” and another “BreastCancer” successor for p1, because the BreastCancer is also a
Cancer, and hence the first object is redundant. Therefore, in the minimal canonical model
of KC depicted in Figure 2, for patient p1 only one successor is introduced to satisfy the
definitions of both BreastCancerPatient and CancerPatient at the same time. In contrast,
p2 has two successors, because BreastCancer and SkinCancer do not imply each other.
Finally, for p3 the ABox contains a single successor that is a SkinOfBreastCancer, which
implies a single findingSite-successor that satisfies both SkinStructure and BreastStructure.
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To detect whether an object required by an existential restriction ∃r.A is redundant,
we use the following notion of minimality.

Definition 3 (Structural Subsumption)
Let ∃r.A, ∃t.B be concepts with A,B ∈ C and r, t ∈ R. We say that ∃r.A is structurally
subsumed by ∃t.B (written ∃r.A ⊑s

T
∃t.B) if r ⊑T t and A ⊑T B.

Given a set V of existential restrictions, we say that ∃r.A ∈ V is minimal w.r.t. ⊑s
T

(in V ) if there is no ∃t.B ∈ V such that ∃t.B ⊑s
T
∃r.A.

A CQ q1(x) is structurally subsumed by a CQ q2(x) with the same answer variables
(written q1 ⊑sT q2) if, for all x, y ∈ x, it holds that

⊓
α(x)∈q1

α ⊑T ⊓
α(x)∈q2

α, and ⊓
α(x,y)∈q1

α ⊑T ⊓
α(x,y)∈q2

α,

where role conjunction is interpreted in the standard way (Baader et al. 2007).

In contrast to standard subsumption, ∃r.A is not structurally subsumed by ∃t.B w.r.t.
the TBox T = {∃r.A ⊑ ∃t.B}, as neither r ⊑T t nor A ⊑T B hold. Similarly, structural
subsumption for CQs considers all (pairs of) variables separately.
We use this notion to define the minimal canonical model.

Definition 4 (Minimal Canonical Model)
Let K = (T ,A) be an ELH� KB. We construct the minimal canonical model IK of K as
follows:

1. Set ∆IK ∶= I and aIK ∶= a for all a ∈ I.
2. Define AIK ∶= {a ∣ K ⊧ A(a)} for all A ∈ C and rIK ∶= {(a, b) ∣ K ⊧ r(a, b)} for all r ∈ R.
3. Repeat:

(a) Select an element d ∈ ∆IK that has not been selected before and let
V ∶= {∃r.B ∣ d ∈ AIK and d /∈ (∃r.B)IK with A ⊑T ∃r.B, A,B ∈ C}.

(b) For each ∃r.B ∈ V that is minimal w.r.t. ⊑s
T
, add a fresh element e to ∆IK , for

each B ⊑T A add e to AIK , and for each r ⊑T s add (d, e) to sIK .

By IA we denote the restriction of IK to named individuals, i.e. the result of applying
only Steps 1 and 2, but not Step 3.

If Step 3 is applied fairly, i.e. such that each new domain element that is created in (b)
is eventually also selected in (a), then IK is indeed a model of K (if K is consistent at all).
In particular, all required existential restrictions are satisfied at each domain element,
because the existential restrictions that are minimal w.r.t. ⊑s

T
entail all others.

Moreover, IK satisfies the properties expected of a canonical model (Lutz et al. 2009;
Eiter et al. 2012): It can be homomorphically embedded into any other model of K,
and therefore cert(q,K) = ans(q,IK) holds for all CQs q. It turns out that the minimal
canonical model is also a core: Each endomorphism of IK, i.e. a homomorphism from IK
into itself, is injective, surjective and preserves negation (see also (Forkel 2020)).

Lemma 5
Every endomorphism of IK is a strong isomorphism.
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Proof
To show this, we prove the stronger statement that the only endomorphism on IK is the
identity. Let I0, I1, . . . be the interpretations obtained in the construction of IK before
each application of Step 3. We show by induction on i that there are h0, h1, . . . such
that hi is the only possible homomorphism from Ii to IK and hi and hi+1 agree on ∆Ii ,
that is hi+1(d) = hi(d) for all d ∈ ∆Ii . The endomorphism is then obtained in the limit
as h = ⋃i≥0 hi. By definition, the homomorphism h0 has to map all constants onto itself,
i.e. h0(a) = a for all a ∈ I, and is therefore the identity function. For the induction step,
assume that hi has already been defined. To define hi+1, assume that d ∈ ∆Ii was picked
in Step 3(a) and V is the set as defined in Definition 4. For each ∃r.B ∈ V that is minimal
w.r.t. structural subsumption, in Step 3(b) exactly one successor e is introduced. Suppose
there would be another successor e′ of d, introduced through some minimal ∃r′.B′ and e
could be mapped to e′. This would imply that ∃r′.B′ ⊑s

T
∃r.B, which is a contradiction

since we assumed ∃r.B to be minimal. Hence, such an e′ cannot exist and therefore
the only possibility is to map e onto itself. Therefore, the only possibility is to define
hi+1 ∶= hi ∪ {e↦ e}, which is the identity function.

We can now adopt a result from graph theory and cores, namely Theorem 11 in
(Bauslaugh 1995), which shows that, if two structures are homomorphically equivalent,
then their cores are isomorphic. Since all canonical models are homomorphically equivalent
by definition, this implies that every consistent ELH�-KB has a unique core model (up
to isomorphism), which is why a minimal canonical model is also the minimal canonical
model of K.
We now define the semantics of NCQs as described before, i.e. by evaluating them

as first-order formulas over the minimal canonical model IK, which ensures that our
semantics is compatible with the usual certain-answer semantics for CQs.

Definition 6 (Minimal-World Semantics)
Let K be a consistent ELH� KB. The (minimal-world) answers to an NCQ q over K are
mwa(q,K) ∶= ans(q,IK).

For Example 2, we get mwa(qB ,KC) = {p1, p2} (see Figure 2), which is exactly as
intended. Unfortunately, in general the minimal canonical model is infinite, and we cannot
evaluate the answers directly. Hence, we employ a rewriting approach to reduce NCQ
answering over the minimal canonical model to (first-order) query answering over IA
only.

4 A Combined Rewriting for NCQs

We show that NCQ answering is combined first-order rewritable. As target representation,
we obtain first-order queries of a special form.

Definition 7 (Filtered query)
Let K = (T ,A) be an ELH� KB. A filter on a variable z is a first-order expression ψ(z)
of the form

(∃z′.ψ+(z, z′))→ (∃z′.ψ+(z, z′) ∧ ψ−(z, z′) ∧Ψ) (3)
where ψ+(z, z′) is a conjunction of atoms of the form A(z′) or r(z, z′), that contains at
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least one role atom, ψ−(z, z′) is a conjunction of negated atoms ¬A(z′) or ¬r(z, z′), and
Ψ is a (possibly empty) set of filters on z′.

A filtered query φ is of the form ∃y.(ϕ(x,y) ∧Ψ) where ∃y.ϕ(x,y) is an NCQ and Ψ
is a set of filters on leaf variables in ϕ. It is rooted if ∃y.ϕ(x,y) is rooted.

Note that every NCQ is a filtered query where the set of filters Ψ is empty.
We will use filters to check for the existence of “typical” successors, i.e. role successors

that behave like the ones that are introduced by the canonical model construction to
satisfy an existential restriction. In particular, a typical successor does not satisfy any
superfluous concept or role atoms. For example, in Figure 2 the element c1 introduced
to satisfy ∃diagnosedWith.BreastCancer for p1 is a typical successor, because it satisfies
only BreastCancer and Cancer and not, e.g. SkinCancer. In contrast, the diagnosedWith-
successor c3 of p3 is atypical, since the ontology does not contain an existential restriction
∃diagnosedWith.SkinOfBreastCancer that could have introduced such a successor in the
canonical model.

The idea of the rewriting procedure is to not only rewrite the positive part of the query,
as in (Eiter et al. 2012; Bienvenu and Ortiz 2015), but to also ensure that no critical
information is lost. This is accomplished by rewriting the negative parts and by saving
the structure of the eliminated part of the query in the filter. A filter on z ensures that
the rewritten query can only be satisfied by mapping z to an anonymous individual in
the canonical model, or to a named individual that behaves in a similar way.

Definition 8 (Rewriting)
Let K = (T ,A) be a KB and φ = ∃y.ϕ(x,y) ∧Ψ be a filtered query. We write φ→T φ′ if
φ′ can be obtained from φ by applying the following steps:

(S1) Select a quantified leaf variable x̂ in ϕ. Let ŷ be a fresh variable and select

Pred ∶= {y ∣ r(y, x̂) ∈ ϕ} ∪ {y ∣ ¬r(y, x̂) ∈ ϕ} (predecessors of x̂),
Pos ∶= {A(x̂) ∈ ϕ} ∪ {r(ŷ, x̂) ∣ r(y, x̂) ∈ ϕ} (positive atoms for x̂),
Neg ∶= {¬A(x̂) ∈ ϕ} ∪ {¬r(ŷ, x̂) ∣ ¬r(y, x̂) ∈ ϕ} (negative atoms for x̂).

(S2) Select some M ⊑T ∃s.N with M,N ∈ C that satisfies all of the following:
(a) s(ŷ, x̂) ∧N(x̂) ⊑s

T
Pos, and

(b) s(ŷ, x̂) ∧N(x̂) /⊑s
T
α for all ¬α ∈ Neg.

(S3) LetM′ be the set of all M ′ ∈ C such that M ′ ⊑T ∃s′.N ′ with N ′ ∈ C,
(a) ∃s′.N ′ ⊑s

T
∃s.N (where ∃s.N was chosen in (S2)), and

(b) s′(ŷ, x̂) ∧N ′(x̂) ⊑s
T
α for some ¬α ∈ Neg.

(S4) Drop from ϕ every atom that contains x̂.
(S5) Replace all variables y ∈ Pred in ϕ with ŷ.
(S6) Add the atoms M(ŷ) and {¬M ′(ŷ) ∣M ′ ∈M′} to ϕ.
(S7) Set the new filters to Ψ′ ∶= Ψ ∪ {ψ∗(ŷ)} ∖Ψx̂, where Ψx̂ ∶= {ψ(x̂) ∈ Ψ} and

ψ∗(ŷ) ∶= (∃x̂. s(ŷ, x̂) ∧N(x̂))→ (∃x̂. s(ŷ, x̂) ∧N(x̂) ∧Neg∧Ψx̂).

We write φ →∗

T
φ′ if there exists a finite sequence φ →T ⋅ ⋅ ⋅ →T φ′. Furthermore, let

rewT (φ) ∶= {φ′ ∣ φ→∗

T
φ′} denote the set of all rewritings of φ.
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Note that rewT (φ) may be infinite. However, for rooted NCQs it is finite and we show
later that even for non-rooted NCQs it suffices to consider a finite subset of rewT (φ)
(see Lemma 12). To see the former claim, observe that there is only a finite number of
possible subsumptions M ⊑T ∃s.N that can be used for rewriting steps. Additionally, in
every step one variable (x̂) is eliminated from the NCQ part of the filtered query. If the
query is rooted, there always exists at least one predecessor that is renamed to ŷ, hence
the introduction of ŷ never increases the number of variables. Finally, it is easy to see
that rewriting a rooted query always yields a rooted query.
The rewriting of Neg to the new negated atoms (viaM′ in (S6)) ensures that we do

not lose important exclusion criteria, which may result in too many answers. Similarly,
the filters exclude atypical successors in the ABox that may result in spurious answers.
Both of these constructions are necessary.

Example 9
Consider the query qB from Example 2. Using Definition 8, we obtain the first-order
queries φB = qB , φ′B , and φ′′B , where

φ′B = ∃y.diagnosedWith(x, y) ∧BreastCancer(y) ∧ ¬SkinOfBreastCancer(y) ∧

((∃z.findingSite(y, z) ∧BreastStructure(z))→

(∃z.findingSite(y, z) ∧BreastStructure(z) ∧ ¬SkinStructure(z)))

results from choosing z in (S1), BreastCancer ⊑KC
∃findingSite.BreastStructure in (S2),

and computingM′ = {SkinOfBreastCancer} in (S3), and

φ′′B = BreastCancerPatient(x) ∧

((∃y.diagnosedWith(x, y) ∧BreastCancer(y))→

(∃y.diagnosedWith(x, y) ∧BreastCancer(y) ∧ ¬SkinOfBreastCancer(y)) ∧
((∃z.findingSite(y, z) ∧BreastStructure(z))→

(∃z.findingSite(y, z) ∧BreastStructure(z) ∧ ¬SkinStructure(z))))

is obtained due to BreastCancerPatient ⊑KC
∃diagnosedWith.BreastCancer. We omitted

the redundant atoms Cancer(y) for clarity.
The finite interpretation IAC

can be seen in Figure 2 by ignoring all light grey figures.
When computing the answers over IAC

, we obtain

ans(φB ,IAC
) = ∅, ans(φ′B ,IAC

) = ∅, and ans(φ′′B ,IAC
) = {p1, p2}.

For φ′B, the conjunct ¬SkinOfBreastCancer(y) is necessary to exclude p3 as an answer.
In φ′′B , p3 is excluded due to the filter that detects c3 as an atypical successor, because it
satisfies not only BreastCancer, but also SkinOfBreastCancer. Hence, both (S6) and (S7)
are necessary steps in our rewriting. ∎

4.1 Correctness

In Definition 8, the new filter ψ∗(ŷ) may end up inside another filter expression after
applying subsequent rewriting steps, i.e. by rewriting w.r.t. ŷ. In this case, however, the
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original structure of the rewriting is preserved, including all internal filters as well as
the atoms M(ŷ), which are included implicitly by ∃s.N ⊑M , and {¬M ′(ŷ) ∣M ′ ∈M′},
which are included in Neg. We exploit this behavior to show that, whenever a rewritten
query is satisfied in the finite interpretation IA, then it is also satisfied in IK. This is
the most interesting part of the correctness proof, because it differs from the known
constructions for ordinary CQs, for which this step is trivial.

Lemma 10
Let K = (T ,A) be a consistent ELH� KB and φ be an NCQ. Then, for all φ′ ∈ rewT (φ),

ans(φ′,IA) ⊆ mwa(φ′,K).

Proof
Let φ′ = ∃y.(ϕ(x,y) ∧Ψ) and π be an assignment of x,y to I such that IA, π ⊧ ϕ(x,y).
Since IA and IK coincide on the domain I, we also have IK, π ⊧ ϕ(x,y). Consider any filter
ψ(z) = ∃z′.ψ+(z, z′)→ ∃z′.(β(z, z′)∧Ψ∗) in Ψ, where β(z, z′) ∶= ψ+(z, z′)∧ψ−(z, z′). Then
ψ(z) was introduced at some point during the rewriting, suppose by selecting M ⊑T ∃s.N
in (S2). This means that ϕ contains the atom M(z), and hence d ∶= π(z) is a named
individual that is contained inMIA ⊆MIK . By (S2), this means that IK, π ⊧ ∃z′.ψ+(z, z′),
and we have to show that IK, π ⊧ ∃z′.(β(z, z′) ∧Ψ∗):

1. If IA, π ⊧ ∃z′.β(z, z′), then IK, π ⊧ ∃z′.β(z, z′) by the same argument as for ϕ(x,y)
above, and we can proceed by induction on the structure of the filters to show that
the inner filters Ψ∗ are satisfied by the assignment π (extended appropriately for z′).

2. If IA, π /⊧ ∃z′.β(z, z′), then we cannot use a named individual to satisfy the filter ψ(z)
in IK. Moreover, since IA satisfies ψ(z), we also know that IA, π /⊧ ∃z′.ψ+(z, z′). Since
ψ+(z, z′) = s(z, z′)∧N(z′), this implies that d ∉ (∃s.N)IA . Hence, ∃s.N is included in
the set V constructed in Step 3(a) of the canonical model construction for the element
d = π(z). Thus, there exists M ′ ⊑T ∃s′.N ′ such that d ∈ (M ′)IA , d ∉ (∃s′.N ′)IA , and
∃s′.N ′ ⊑s

T
∃s.N . By Step 3(b), IK must contain an element d′ such that, for any

A ∈ C and any r ∈ R, we have d′ ∈ AIK iff N ′ ⊑T A and (d, d′) ∈ rIK iff s′ ⊑T r. Since
N ′ ⊑T N and s′ ⊑T s, we obtain that IK, π ∪ {z′ ↦ d′} ⊧ ψ+(z, z′).
We show that the assignment π∪{z′ ↦ d′} also satisfies ψ−(z, z′) = Neg. Assume to the
contrary that there is ¬A(z′) ∈ Neg such that d′ ∈ AIK (the case of negated role atoms
is again analogous). Then we have N ′ ⊑T A, which shows that all conditions of (S3) are
satisfied, and hence M ′ must be included inM′. Since the atoms {¬M ′(z) ∣M ′ ∈M′}
are contained in ϕ, we know that they are satisfied by π in IK, i.e. d ∉ (M ′)IK and
hence also d ∉ (M ′)IA , which is a contradiction.
It remains to show that the inner filters Ψ∗ are satisfied by the assignment π∪{z′ ↦ d′}
in IK. Since we are now dealing with an anonymous domain element d′, we can use
similar, but simpler, arguments as above to prove this by induction on the structure of
the filters. This is possible because the atoms s(ŷ, x̂), N(x̂) implied by M(ŷ) and the
negated atoms induced byM′ are present in the query even if the filter is integrated
into another filter during a subsequent rewriting step.

We can use this lemma to show correctness of our approach, i.e. the answers returned
for the union of queries given by rewT (φ) over IA are exactly the answers of the original
NCQ φ over IK.
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The proof is based on existing proofs for ordinary CQs (Eiter et al. 2012; Bienvenu
and Ortiz 2015), extended appropriately to deal with the filters.

Lemma 11
Let K = (T ,A) be a consistent ELH� KB and let φ(x) be an NCQ. Then, for all
φ′ ∈ rewT (φ),

mwa(φ,K) = ⋃
φ′∈rewT (φ)

ans(φ′,IA).

Proof
(⊇): By Lemma 10, we have ans(φ′,IA) ⊆ mwa(φ′,K) = ans(φ′,IK).

Furthermore, there exists a sequence φ0 →T ⋅ ⋅ ⋅→T φn (n > 0) with φ = φ0 and φ′ = φn.
Hence it is sufficient to show that ans(φi,IK) ⊆ ans(φi−1,IK) for all i,1 ≤ i ≤ n. Suppose
the queries are of the following forms:

φi = ∃yi.(ϕi(xi,yi) ∧Ψi) (4)
φi−1 = ∃yi−1.(ϕi−1(xi−1,yi−1) ∧Ψi−1) (5)

Let πi be a satisfying assignment for ϕi(xi,yi) ∧Ψi in IK. Suppose φi−1 →T φi by

1. selecting variable x̂ and introducing ŷ in (S1) and
2. selecting M ⊑T ∃s.N in (S2).

Let πi(ŷ) = d. By Step (S6), M(ŷ) ∈ ϕi and since πi satisfies ϕi, it has to hold that
d ∈ MIK . This implies that d ∈ (∃s.N)IK . Since πi satisfies the new filter ψ∗i (ŷ) that
is constructed in (S7), and by selecting M ⊑T ∃s.N in (S2) the precondition of ψ∗i (ŷ)
is satisfied by πi in IK, there has to be an assignment πi ∪ {x̂ ↦ d′} that satisfies the
conclusion of ψ∗i (ŷ).

We define the assignment πi−1 of the variables of ϕi−1 as follows

πi−1(z) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d′ if z = x̂
d if z ∈ Pred
πi(z) otherwise.

(6)

Then πi−1 is a satisfying assignment for φi−1 in IK. To see this, first consider an atom α

in ϕi−1. We show that πi−1 satisfies α in IK.
If α contains x̂, it can be of the following forms: A(x̂), ¬A(x̂), r(y, x̂) or ¬r(y, x̂) with

y ∈ Pred. For all of these cases, we know by Step (S7) that they are either implied by
s(ŷ, x̂) ∧N(x̂) or contained in Neg, with y replaced by ŷ. By the choice of d′, we know
that πi−1 satisfies each such atom.

If α does not contain x̂, then ϕi contains the atom α′ that is obtained from α by replacing
all of the variables from Pred with ŷ. By construction, we know that πi−1(y) = πi(ŷ) for
all y ∈ Pred and πi−1(z) = πi(z) otherwise. Since α′ is satisfied by πi in IK, α is satisfied
by πi−1 in IK.
What remains to show is that πi−1 satisfies Ψi−1. Consider any ψ(z) ∈ Ψi−1, and

distinguish the following cases:

1. If z = x̂, then ψ(x̂) ∈ Ψx̂. Since IK, πi∪{x̂↦ d′} ⊧ Ψx̂, we also have IK,{x̂↦ d′} ⊧ ψ(x̂).
Therefore, since πi−1(x̂) = d′, it holds that πi−1 satisfies ψ(x̂) in IK.
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2. If z ∈ Pred we know that πi−1(z) = πi(ŷ) = d. Since IK, πi ⊧ ψ(ŷ), it also holds that
IK, πi−1 ⊧ ψ(z).

3. Otherwise the filter is present in Ψi. In this case we know that IK, πi ⊧ ψ(z) and
πi(z) = πi−1(z). Hence, it must also hold that IK, πi−1 ⊧ ψ(z).
(⊆): Suppose that a ∈ mwa(φ,K) = ans(φ,IK). We have to show that there exists a

rewriting φ′ ∈ rewT (φ) and a satisfying assignment π for φ′ in IA such that a = π(x). To
do this, we assign a degree (a natural number) to each satisfying assignment (including the
existentially quantified variables of the NCQ part) such that a satisfying assignment with
degree 0 does not use any anonymous individuals. We then show that for each satisfying
assignment with a degree greater than 0, we can find a rewriting for which a satisfying
assignment yielding the same answer, but with a lower degree, exists. In addition, for
every such assignment π and for all filters ψ(y) in φ′ it should hold that,

if π(y) ∈ I, then IA ⊧ ψ(π(y)), (†)

i.e. all filters (at any stage of the rewriting) are satisfied within the confines of IA.
For any element d ∈ ∆IK , we denote by ∣d∣ the minimal number of role connections

required to reach d from an element in I, with ∣d∣ = 0 iff d ∈ I. Additionally, for any
assignment π′ in IK, let

deg(π′) ∶= ∑
y∈dom(π′)

∣π′(y)∣. (7)

Since φ ∈ rewT (φ), to prove the claim it suffices to show that whenever there is
φ1 = ∃y.ϕ1(x,y) ∧ Ψ ∈ rewT (φ) such that ϕ1 has a match π1 in IK with a = π1(x),
deg(π1) > 0, and Equation (†) holds for π1 and the filters in Ψ, then there exist φ2 and
π2 with the same properties, but deg(π2) < deg(π1).
Assume φ1 ∈ rewT (φ) as above, and let π1 be a match of ϕ1. Since deg(π1) > 0 by

assumption, there must exist a variable x̂ of ϕ1 such that π1(x̂) /∈ I. Select x̂ such that
it is a leaf node in the subforest of IK induced by π1. Note that x̂ cannot be an answer
variable.

We know that π1(x̂) = dx̂ was induced by some axiom α = M ⊑T ∃s.N and element
dp ∈MIK in Definition 4. By the construction of IK, we know that

(i) dx̂ has just the one predecessor dp, and
(ii) dx̂ ∈ AIK iff N ⊑T A and (dp, dx̂) ∈ rIK iff s ⊑T r.

We obtain the query φ2 from φ1 through rewriting, by selecting x̂ and introducing ŷ
in (S1), and selecting α in (S2). Let Pred denote the set of predecessor variables of x̂
as defined in (S1). To see that this is a valid choice, the conditions in (S2) need to be
verified:
(S2a) For any A(x̂) ∈ ϕ1, we have dx̂ = π1(x̂) ∈ AIK , and hence N ⊑T A by (ii). Consider

any role atom r(y, x̂) ∈ ϕ1. From (i), the construction of IK (no inverse edges), and
the fact that π1 is a satisfying assignment for r(y, x̂) in IK, the only possibility
is that π1(y) = dp. Therefore (dp, dx̂) = (π1(y), π1(x̂)) ∈ rIK . By (ii), this implies
that s ⊑T r.

(S2b) Consider any ¬A(x̂) ∈ ϕ1, for which we must have dx̂ ∉ AIK . From (ii) we know
that N /⊑T A. Consider any ¬r(y, x̂) ∈ ϕ1. Since this is guarded by a positive role
atom as above, again the only possibility is that π1(y) = dp. Hence (dp, dx̂) ∉ rIK .
By (ii), this implies that s /⊑T r.
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Therefore, we obtain a satisfying assignment π2 for φ2 in IK such that a ∈ π2(x) (and
deg(π2) < deg(π1)) by setting for all z ∈ Var(ϕ2):

π2(z) ∶=
⎧⎪⎪⎨⎪⎪⎩

π1(z) if z ∈ Var(ϕ1)
dp if z = ŷ.

To see that π2 satisfies φ2, we argue why it satisfies the new atoms and filter from (S6)
and (S7); the old atoms (possibly with renamed variables) remain satisfied.

The new atomM(ŷ) is satisfied since π2(ŷ) = dp ∈MIK . Consider now an atom ¬M ′(ŷ)
with M ′ ∈M′ as specified in (S6); we have to show that dp ∉ (M ′)IK . Assume to the
contrary that dp ∈ (M ′)IK . By (S3), we know that M ′ ⊑T ∃s′.N ′ ⊑s

T
∃s.N . Moreover,

∃s′.N ′ must be included in the set V in Step 3(a) of Definition 4, because otherwise we
would already have dp ∈ (∃s′.N ′)IA , i.e. there would be a named individual b such that
(dp, b) ∈ (s′)IA and b ∈ (N ′)IA . Since s′ ⊑T s and N ′ ⊑T N , this would imply (dp, b) ∈ sIA
and b ∈ NIA , i.e. dp ∈ (∃s.N)IA , which shows that the anonymous object dx̂ would not
have been created. Since ∃s′.N ′ is included in V and we assumed that ∃s.N is minimal
w.r.t. ⊑s

T
, we must have s ≡T s′ and N ≡T N ′. But then (S3b) directly contradicts (S2b).

We now consider the filters in φ2. Suppose that Equation (†) holds for π1 and all filters
in φ1. For the ones that are only copied from φ1 (modulo renaming some variables to ŷ),
the property is clearly preserved. For the new filter ψ∗(ŷ), assume that π2(ŷ) ∈ I, and
hence we need to show that IA ⊧ π2(ψ∗(ŷ)). Assume that there exists an element d′ ∈ I
such that (dp, d′) ∈ sIA and d′ ∈ NIA . But then in Step 3(a) in Definition 4, ∃s.N could
not have been added to V since dp ∈ (∃s.N)IK already holds. Hence, the element dx̂ would
have never been introduced, which is a contradiction. Therefore, in IA the precondition
of ψ∗(ŷ) is never met, which makes the filter trivially satisfied.
Finally, to show that deg(π2) < deg(π1), we make a case distinction on whether the

set Pred is empty or not. If Pred = ∅, then we essentially replace the variable x̂ in ϕ1
with a new variable ŷ in ϕ2 with ∣π2(ŷ)∣ = ∣dp∣ < ∣dx̂∣ = ∣π1(x̂)∣. Since the remaining
variables are not affected by the rewriting step, this shows that deg(π2) < deg(π1). If
Pred ≠ ∅, then we have ∣π2(ŷ)∣ = ∣dp∣ = ∣π1(y)∣ for all y ∈ Pred. Since the variables in
Var(ϕ1) ∖ {ŷ} = Var(ϕ1) ∖ (Pred∪{x̂}) are not affected and ∣π1(x̂)∣ > 0, we conclude that

deg(π2) = ∣π2(ŷ)∣ + ∑
z∈Var(ϕ2)∖{ŷ}

∣π2(z)∣

< ∣π1(x̂)∣ + ∑
y∈Pred

∣π1(y)∣ + ∑
z∈Var(ϕ1)∖(Pred∪{x̂})

∣π1(z)∣

= deg(π1).

Under data complexity assumptions, φ and T , and hence rewT (φ), are fixed, and IA
is of polynomial size in the size of A.

For non-rooted queries the rewriting can get infinite, because we can always find a leaf
variable that is not an answer variable. For example, suppose that the TBox T consists
of the two GCIs A ⊑ ∃r.B and B ⊑ ∃r.A. Let φ() = ∃x.A(x) ∧ ¬B(x) be a Boolean query.
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The rewriting algorithm would produce an infinite rewriting of the form:

φ0 = ∃x.A(x) ∧ ¬B(x)
φ1 = ∃x.B(x) ∧ (∃y.r(x, y) ∧A(y)→ ∃y.r(x, y) ∧A(y) ∧ ¬B(y))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ψ1(x)

φ2 = ∃x.A(x) ∧ (∃y.r(x, y) ∧B(y)→ ∃y.r(x, y) ∧B(y) ∧ ψ1(y))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ψ2(x)

φ3 = ∃x.B(x) ∧ (∃y.r(x, y) ∧A(y)→ ∃y.r(x, y) ∧A(y) ∧ ψ2(y))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ψ3(x)

. . .

In the following, we show that such infinite rewritings can be avoided, since after a
certain number of rewriting steps queries will not generate any new answers.
For a query φ with filters Ψ, where each ψ(y) ∈ Ψ is of the form

(∃y′.ψ+(y, y′))→ (∃y′.ψ+(y, y′) ∧ ψ−(y, y′) ∧Ψ′),

we define the nested filter depth as follows:

∣φ∣ ∶= max
ψ∈Ψ

∣ψ∣ ∣ψ∣ ∶= 1 + max
ψ′∈Ψ′

∣ψ′∣,

where the second expression is applied recursively to subfilters.

Lemma 12
Let K = (T ,A) be a consistent ELH� KB and let φ be an NCQ. Then

⋃
φ′∈rewT (φ)

∣φ′∣≤v+C2
T ⋅RT

ans(φ′,IA) = ⋃
φ′∈rewT (φ)

ans(φ′,IA).

where v denotes the number of variables in φ, and CT and RT denote the number of
concept and role names in T , respectively.

Proof
In the following, we assume a connected query φ with v variables. This is without loss of
generality since the non-connected parts in the query can be dealt with separately.

Connectedness is preserved by the rewriting algorithm and hence there are two possible
scenarios. In the first one, φ has only a finite number of rewritings. That happens if after
at most v rewriting steps the rewriting is of the form ∃z.ϕ(z) ∧Ψ(z), where ϕ(z) cannot
be rewritten further. Otherwise, φ has infinitely many rewritings. In this case, after v
rewriting steps, the rewriting and all further rewritings are of the form

∃y.(A(y) ∧Neg∧ψ(y)), (‡)

where A ∈ C (recall that we assume a TBox in normal form), Neg is a conjunction of
atoms of the form ¬Â(y) for Â ∈ C, and ψ is a filter that is linearly extended in every
further rewriting step.
Assume a query φ0 of the form (‡) that has been further rewritten to φn in a se-

quence of φ0 →T ⋅ ⋅ ⋅ →T φi →T ⋅ ⋅ ⋅ →T φn, where n ∈ N, every φj is of the form
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∃y.Aj(y)∧Negj ∧ψj(y) for 0 ≤ j ≤ n, and there exists 1 < i < n with An = Ai, Negn = Negi
and ψ+n = ψ+i , i.e. the filters of φn and φi have the same body (up to renaming of variables).

We show that if there is a satisfying assignment πn for φn over IA, then there is also a
satisfying assignment for a query φ′ with ∣φ′∣ < ∣φn∣. Suppose the nested filters in φn are
matched up to a nested filter depth of 0 ≤ d ≤ n.
Case 1: If d = 0, the body of ψn is not satisfied, then πn is also a match for Ai ∧Negi,

since the Ai = An, Negi = Negn and the body of ψi is the same as the body of ψn by
assumption. Clearly ∣φi∣ < ∣φn∣.
Case 2: If d > 0, then we construct a match for query φn−1. Suppose φn−1 has been

rewritten to φn by using a GCI A ⊑T ∃r.B. Then we know that

φn−1 ∶= ∃y.B(y) ∧Negn−1 ∧ψ(y)
φn ∶= ∃x.A(x) ∧Negn ∧ (∃y.r(x, y) ∧B(y)→ ∃y.r(x, y) ∧B(y) ∧Negn−1 ∧ψ(y))

Because d > 0, there has to be a satisfying assignment {x↦ a, y ↦ b} with a, b ∈ ∆IA for
r(x, y) ∧B(y), which also satisfies Negn−1 ∧ψ(y). Then the assignment πn−1 ∶= {y ↦ b}
satisfies φn−1, and ψ(y) will then be matched up to a depth of d − 1.
This result can be used to bound the nested filter depth of queries during rewriting:

In each rewriting step the query is rewritten w.r.t. a GCI of the form A ⊑T ∃r.B with
A,B ∈ CT and r ∈ RT . There can be at most C2

T
⋅RT different GCIs of this form. Suppose

a rewriting of φ to φ′ with ∣φ′∣ > v +C2
T
⋅RT , where v denotes the number of variables

in φ. Then at least two rewritings between φ and φ′ must start with the same expression
∃x.A(x) ∧Neg∧(∃y.r(x, y) ∧B(y)→ . . . ). By the arguments above, there are rewritings
of φ of nested filter depth at most v +C2

T
⋅RT that yield the same answers as φ′.

Hence, queries need to be rewritten only until this bound on the nested filter depth,
which does not depend on A. We obtain the claimed complexity result.

Theorem 13
Answering NCQs under minimal-world semantics over consistent ELH� KBs is NP-
complete, and P-complete in data complexity.

Proof
The lower bounds are inherited from certain answer semantics of CQs over EL KBs
(Rosati 2007b) since for CQs the two semantics coincide. For data complexity, it suffices
to observe that the size and number of the rewritten queries does not depend on the
ABox, and the size of IA is polynomial in the size of A, hence evaluating the rewriting
over IA can be done in polynomial time.

For combined complexity, first we can guess an element φ′ of rewT (φ) since by Lemma 12
the number of necessary rewriting steps is bounded polynomially and each rewriting is
of polynomial size. Now it remains to evaluate φ′ over IA, which is possible in PSpace
since φ′ is a first-order query. To obtain a bound of NP, we need to do a more careful
evaluation. First, we start by guessing a match of the initial CQ part of φ′ in IA. For
each of the polynomially many (nested) filters

(∃z′.ψ+(z, z′))→ (∃z′.ψ+(z, z′) ∧ ψ−(z, z′) ∧Ψ)

in φ′, we then enumerate all (polynomially many) possibilities to extend the initial match
by mapping z′ into IA. If none of these satisfies ψ+(z, z′), this (deterministic) check
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ends the evaluation successfully. Otherwise, we can continue with recursively guessing
an extended match for ∃z′.ψ+(z, z′) ∧ ψ−(z, z′) ∧Ψ, for each nested filter extending the
match by one new variable. Overall, this takes only polynomial time, which implies the
claim.

As discussed in Example 2 it can be useful to allow complex assertions in the ABox:
The assertions of patient p3 can then be stated without introducing a new constant for
the disease by stating

∃diagnosedWith.SkinOfBreastCancer(p3).

This leads to the introduction of additional acyclic definitions T ′, which are not fixed.
The complexity nevertheless remains the same: Since T does not use the new concept
names in T ′, we can apply the rewriting only w.r.t. T , and extend IA by a polynomial
number of new elements that result from applying Definition 4 only w.r.t. T ′.

What is more important than the complexity result is that this approach can be used
to evaluate NCQs using standard database methods, e.g. using views to define the finite
interpretation IA based on the input data given in A, and SQL queries to evaluate the
elements of rewT (φ) over these views (Kontchakov et al. 2011).

5 Temporal Minimal World Semantics in TELH c◊,lhs,−
�

In the previous part, we introduced the minimal-world semantics and showed how NCQs
can be answered efficiently over ELH�-KBs. In the remaining part of the paper we extend
the minimal-world semantics to answering temporal queries over TELH c◊,lhs,−

�
.

Example 14
Continuing the previous example of different cancer patients, we can now also model
temporal aspects. Chemotherapy is a treatment that is usually given in a number of cycles
to fight the cancer of a given patient. We formalize this knowledge as follows, where the
basic time unit is one day:

ChemotherapyPatient ⊑ CancerPatient (8)
cc◊365CancerPatient ⊑ CancerPatient (9)

cc◊120ChemotherapyPatient ⊑ ChemotherapyPatient (10)

We make the assumption that being a cancer patient is 365-days convex, hence if a patient
is reported to have cancer at two time points at most 1 year apart, we assume that they
were also suffering from cancer in between the two reports. Similarly, we assume that a
patient reported to be receiving chemotherapy at most four months apart also received
chemotherapy in between.

Suppose the ABox A contains assertions ChemotherapyPatient(p1, i), i ∈ {0,167,258},
for a patient p1. The set of entailed assertions, denoted byA∗, is illustrated below, where for
simplicity we omit the individual name p1. Here, CancerPatient and ChemotherapyPatient
are abbreviated by C and T, respectively. Representative time points −1, 60, 200, and
259 have been introduced additionally, and the intervals they represent are shown above
them.
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φ I, i ⊧ φ iff

CQ ψ Ii ⊧ ψ
⊺ true
� false
¬φ I, i /⊧ φ
φ ∧ ψ I, i ⊧ φ and I, i ⊧ ψ
φ ∨ ψ I, i ⊧ φ or I, i ⊧ ψ
φUIψ ∃k ∈ I such that I, i + k ⊧ ψ and ∀j ∶ 0 ≤ j < k ∶ I, i + j ⊧ φ
φSIψ ∃k ∈ I such that I, i − k ⊧ ψ and ∀j ∶ 0 ≤ j < k ∶ I, i − j ⊧ φ

Figure 3. Semantics of (Boolean) MTNCQs for I = (∆I, (Ii)i∈Z) and i ∈ Z.

. . . . . .
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A

. . . . . .

Since there are infinitely many time points, in general A∗ is infinite. However, in (Borg-
wardt et al. 2019) this infinite set is represented via a finite set of representative time
points rep(A), each of which represents a time interval in which the assertions do not
change.

5.1 Metric Temporal Conjunctive Queries with Negation

We now consider the reasoning problem of temporal query answering, which generalizes
the results from Section 4. We develop a new temporal query language with negation and
extend the closed-world semantics for negation from the previous sections to TELH c◊,lhs,−

�
.

We combine atemporal NCQs with MTL operators (Alur and Henzinger 1994; Gutiérrez-
Basulto et al. 2016; Baader et al. 2017) to obtain Metric Temporal NCQs (MTNCQs)
and finally show that such queries can be answered efficiently over TELH c◊,lhs,−

�
KBs when

using the minimal-world semantics.

Definition 15
Metric temporal conjunctive queries with negation (MTNCQs) are built by the grammar
rule

φ ∶∶= ψ ∣ ⊺ ∣ � ∣ ¬φ ∣ φ ∧ φ ∣ φ ∨ φ ∣ φUIφ ∣ φSIφ, (11)
where ψ is an NCQ, and I is an interval over N. An MTNCQ φ is rooted/Boolean if all
NCQs in it are rooted/Boolean.

We employ the standard semantics shown in Figure 3. One can define the next operator
as #φ ∶= ⊺U[1,1]φ, and similarly #−φ ∶= ⊺S[1,1]φ. We can also express

◊Iφ ∶= (⊺S−(I∩(−∞,0])φ) ∨ (⊺UI∩[0,∞)φ)

and ◻Iφ ∶= ¬◊I¬φ, and hence, by (1), the cc◊n-operators from Section 2. An MTCQ (or
positive MTNCQ) is an MTNCQ without negation, where we assume that the operator ◻I
is nevertheless included as part of the syntax of MTCQs.

Let K = (T ,A) be a TELH c◊,lhs,−
�

KB, φ(x) an MTNCQ, a a tuple of individual names
from A, i ∈ tem(A), and I a temporal interpretation. The pair (a, i) is an answer to
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φ(x) w.r.t. I if I, i ⊧ φ(a). The set of all answers for φ w.r.t. I is denoted ans(φ,I). The
tuple (a, i) is a certain answer to φ w.r.t. K if it is an answer in every model of K; all
these tuples are collected in the set cert(φ,K).

Example 16
Consider the criterion “Patients that received chemotherapy for more than 3 months, but
less than 6 months.” This can be expressed as an MTNCQ as follows.

φ(x) ∶= ◻[−90,0] ChemotherapyPatient(x) ∧ ¬ ◻[−180,0] ChemotherapyPatient(x)

The negated conjunct expresses that the data does not indicate an ongoing chemotherapy
for the past 6 months (minimal-world semantics), rather than that such a treatment is
categorically ruled out by some TBox axioms (certain-answer semantics).

5.2 Minimal-World Semantics for MTNCQs

To extend the approach from Section 4 we need to find a minimal canonical model of a
TELH c◊,lhs,−

�
KB. Note that TELH c◊,lhs,−

�
does not allow temporal roles, because temporal

roles interfere with the minimality: they may entail the existence of a generic role successor
long after it has been superseded by several more specific successors, and hence the generic
successor becomes redundant.
In the definition of the model, we make use of entailment in TELH c◊,lhs,−

�
, which can

be checked in polynomial time (Borgwardt et al. 2019). Thus, we can exclude w.l.o.g.
equivalent concept and role names. Also, for simplicity, in the following we assume w.l.o.g.
that all TBox inclusions are in normal form (2). In particular, disallowing CIs of the
form ⋆◊A ⊑ ∃r.B allows us to draw a stronger connection to the original construction
in Section 4; see in particular Step 3(a) in Definition 17 below.

Definition 17
The minimal temporal canonical model IK = (∆IK , (Ii)i∈Z) of a KB K = (T ,A) is obtained
by the following steps.

1. Set ∆IK ∶= I and aIi ∶= a for all a ∈ I and i ∈ Z.
2. For each time point i ∈ Z, define AIi ∶= {a ∣ K ⊧ A(a, i)} for all A ∈ C and
rIi ∶= {(a, b) ∣ K ⊧ r(a, b, i)} for all r ∈ R.

3. Repeat the following steps:
(a) Select an element d ∈ ∆IK that has not been selected before and, for each i ∈ Z,

let Vi ∶= {∃r.B ∣ d ∈ AIi , d /∈ (∃r.B)Ii , K ⊧ A ⊑ ∃r.B, A,B ∈ C}.
(b) For each ∃r.B that is minimal in some Vi, add a fresh element erB to ∆IK . For

all i ∈ Z and K ⊧ B ⊑ A, add erB to AIi .
(c) For all i ∈ Z, minimal ∃r.B in Vi, and K ⊧ r ⊑ s, add (d, erB) to sIi .

We denote by IA the result of executing only Steps 1 and 2 of this definition, i.e. restricting
IK to the named individuals. Since there are only finitely many elements of I, C, and R
that are relevant for this definition (i.e. those that occur in K), for simplicity we often
treat IA as if it had a finite object (but still infinite time) domain.
In IK, there may exist anonymous objects that are not connected to any named

individuals in Ii and are not relevant for the satisfaction of the KB. For this reason, in the
following we consider only rooted MTNCQs, which can be evaluated only over the parts
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of IK that are connected to the named individuals. We again show that IK is actually
a model of K and is canonical in the usual sense that it can be used to answer positive
queries over K under certain answer semantics.

Lemma 18
Let K be a consistent TELH c◊,lhs,−

�
KB. Then IK is a model of K and, for every rooted

MTCQ φ, we have cert(φ,K) = ans(φ,IK).

Proof
The first claim is easy to prove, and the inclusion cert(φ,K) ⊆ ans(φ,IK) follows from the
fact that IK is a model of K. For the other inclusion, consider any model J = (∆J, (Ji)i≥0)
of K. We prove that (a, i) ∈ ans(φ,IK) implies (a, i) ∈ ans(φ,J) by induction on the
structure of φ.

● If φ is a rooted CQ, then Ii ⊧ φ(a). Moreover, since φ is rooted, only the rooted
part of Ii, consisting of all elements connected to named individuals, is relevant for
satisfying φ(a). It is easy to show that this part can be homomorphically mapped
into Ji, hence J, i ⊧ φ(a).

● If φ = φ1 ∨ φ2, then (a, i) ∈ ans(φ1,IK) or (a, i) ∈ ans(φ2,IK), hence by induction
(a, i) ∈ ans(φ1,J) or (a, i) ∈ ans(φ2,J), either of which implies that (a, i) ∈ ans(φ,J).

● The cases of SI , ◊I , and ◻I are similar, and therefore the claim also extends to cc◊n, #,
and #−.

Thus, the following minimal-world semantics is compatible with certain answer seman-
tics for positive (rooted) queries, while keeping a tractable data complexity.

Definition 19
The set of minimal-world answers to an MTNCQ φ over a consistent TELH c◊,lhs,−

�
KB K

is mwa(φ,K) ∶= ans(φ,IK).

6 A Combined Rewriting for MTNCQs

Following the approach used for the atemporal case, we now show that rooted MTNCQ
answering under minimal-world semantics is combined first-order rewritable. For rewriting
atomic queries we use the results from (Borgwardt et al. 2019). Thus, we proceed as follows.
First we rewrite φ into a metric first-order temporal logic (MFOTL) formula φT , which
combines first-order formulas via metric temporal operators; for details, see (Basin et al.
2015). The formula φT is obtained by replacing each (rooted) NCQ ψ with the first-order
rewriting ψT ∶= ⋁ψ′∈rewT (ψ) ψ

′ from Section 4, and hence φT can be evaluated already
over IA. Second, we then further rewrite φT into a three-sorted first-order formula (with
explicit variables for (a) objects, (b) time points, and (c) bits of the binary representation
of time values), which is then evaluated over a restriction Ifin

A
of IA that contains only

finitely many time points.
These two steps produce a valid rewriting for the query φ.

Lemma 20
Let K = (T ,A) be a consistent TELH c◊,lhs,−

�
KB and φ be a rooted MTNCQ. Then

mwa(φ,K) = ans(φT ,IA).
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Proof
We prove the claim by induction over the structure of φ.

Suppose that φ is a rooted NCQ. Since φ does not contain temporal operators, we can
restrict our attention to a single atemporal interpretation Ii in IK = (∆IK , (Ii)i∈Z). Since
φ is rooted, only the “rooted” part Iri of Ii, consisting only of those elements connected
to named individuals via a sequence of role connections, is relevant for evaluating φ (and
similarly for φT ). In the construction of IK (Definition 17), we can observe that Iri is
uniquely determined by the definition of AIi and rIi in Step 2. Moreover, Iri is isomorphic
to the (atemporal) minimal canonical model of (T ′,Ai) as in Definition 4, where

● T ′ ∶= {C ⊑D ∣ ⋆◊C ⊑D ∈ T , ⋆◊ ∈D±} and
● Ai ∶= {A(a) ∣ K ⊧ A(a, i)} ∪ {r(a, b) ∣ K ⊧ r(a, b, i)}.

In particular, one can observe that the temporal operators in T are irrelevant for the behav-
ior of the anonymous elements in Ii (note that ⋆◊C ⊑D entails C ⊑D) and we can restrict
the attention to those assertions entailed for time point i. Hence, by Lemma 11 we can con-
clude that (a, i) ∈ mwa(φ,K) = ans(φ,IK) iff a ∈ ans(φ,Ii) = ans(φ,Iri ) = ans(φT ,Ii,A)
iff (a, i) ∈ ans(φT ,IA), where Ii,A is the restriction of Ii to the named individuals.
For the remaining cases, it suffices to observe that φ and φT are built on the same

structure of temporal operators, which have the same semantics for both MTNCQs and
MFOTL formulas.

For the second rewriting step, we restrict ourselves to finitely many time points. More
precisely, we consider the finite structure Ifin

A
, which is obtained from IA by restricting

the set of time points to rep(A). By Lemma 4 in (Borgwardt et al. 2019), the information
contained in Ifin

A
is already sufficient to answer rooted atomic queries. The idea is that

each time point i is assigned a representative time point ∣i∣ from rep(A), at which the
same assertions hold. Therefore, the answers to a query at time point i are the same as the
answers at ∣i∣. We extend this structure a little, by considering the two representatives i, j
for each maximal interval [i, j] in Z ∖ tem(A). In this way, we ensure that the “border”
elements are always representatives for their respective intervals. The size of the resulting
structure Ifin

A
is polynomial in the size of K.

Example 21
Continuing Example 16, below one can see the finite structure Ifin

A
over the representa-

tive time points {−1,0,1,166,167,168,257,258,259}, where for simplicity we omit the
individual name.

. . . . . .

−1

T

0

T,C

1

C

166

C

T

167

T,C

168

T,C

257

T,C

T

258

T,C

259

Ifin
A

rep(A)
A

. . . . . .

The rewriting from Lemma 20 can refer to time instants outside of rep(A). However,
when we want to evaluate a pure FO formula over the finite structure Ifin

A
, this is not

possible anymore, because the first-order quantifiers must quantify over the domain of Ifin
A
.

Moreover, since the query φT can contain metric temporal operators, we need to keep
track of the distance between the time points in tem(A). Hence, in the following we
assume that Ifin

A
is given as a first-order structure with the domain I∪{b1, . . . , bn}∪rep(A)
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and additional predicates bit and sign such that bit(i, j), 1 ≤ j ≤ n, is true iff the jth
bit of the binary representation of the time stamp i is 1, and sign(i) is true iff i is
non-negative.
Thus, we now consider three-sorted first-order formulas with the three sorts I (for

objects), {b1, . . . , bn} (for bits) and rep(A) (for time stamps). We denote variables of sort
rep(A) by t, t′, t′′. To simplify the presentation, we do not explicitly denote the sort of all
variables, but this is always clear from the context. Every concept name is now accessed
as a binary predicate of sort I × rep(A), e.g. A(a, i) refers to the fact that individual a
satisfies A at time point i. Similarly, role names correspond to ternary predicates of sort
I × I × rep(A).
In the following we show that the expressions t′ & t and even t′ − t & m for some

constant m and & ∈ {≥,>,=,<,≤} are definable as first-order formulas using the natural
order < on {1, . . . ,m}. More specifically, we define t′ − t & d, for some constant d < ∞
and & ∈ {≥,>,=,<,≤}, as first-order formulas with build-in predicates bit(t, j), 1 ≤ j ≤ n,
which is true iff the j-th bit of t is 1, and sign(t), which is true iff t ≥ 0. W.l.o.g., let d
be a non-negative integer; otherwise, the formula can be reformulated as t − t′ & k, where
0 ≤ k = −d. First, consider the case of equality. (t′ − t = d) is true iff

(sign(t′)↔ signd(t)) ∧ ∀j (bit(t′, j)↔ bitd(t, j)) ∧ ¬ovfd(t),

where signd(t) checks whether t + d is non-negative, bitd(t, j) says what the jth bit of
the binary representation of t + d is, and ovfd(t) detects whether the addition of d to t
causes an overflow in the n-bit. These three auxiliary predicates are defined inductively
as follows:

ovf0(t) ∶= �
ovfd+1(t) ∶= ovfd(t) ∨ (signd(t) ∧ ∀j. bitd(t, j))

sign0(t) ∶= sign(t)
signd+1(t) ∶= signd(t) ∨ (∀j.(∃j′.(j′ < j))↔ ¬bitd(t, j))

bit0(t, j) ∶= bit(t, j)
bitd+1(t, j) ∶= signd(t) ∧ (bitd(t, j) ↔ ∃j′.(j′ < j) ∧ ¬bitd(t, j′))

∨ ¬signd+1(t) ∧ (bitd(t, j) ↔ ∃j′.(j′ < j) ∧ bitd(t, j′))

The remaining cases & ∈ {≥,>,<,≤} are obtained similarly to the formulas above. For
example, t < t′ can be expressed by looking at the signs and the most significant bit in
which they differ, formally:

(¬sign(t) ∧ sign(t′))

∨((sign(t)↔ sign(t′)) ∧ ∃j.(∀j′.(j′ > j)→ (bit(t′, j)↔ bit(t, j)))

∧ (bit(t′, j)↔ sign(t)) ∧ (bit(t′, j)↔ ¬bit(t, j))).

Lemma 22
For φT there is a constant N ∈ N such that, for every subformula ψ of φT , every maximal
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interval J in Z∖⋃{[i−N, i+N] ∣ i ∈ tem(A)}, all k, ` ∈ J , and all relevant tuples a over I,
we have IA, k ⊧ ψ(a) iff IA, ` ⊧ ψ(a).

Proof
We are going to prove a more specific statement. Namely, let Nψ be the sum of all interval
bounds of temporal formulas in a subformula ψ of φT (except ∞). Consequently, for the
proof we consider instead every maximal interval J in Z∖⋃{[i−Nψ, i+Nψ] ∣ i ∈ tem(A)}.

We show this by induction on the structure of ψ, but only consider three representative
cases; the other cases are similar.

● If ψ is the rewriting of an NCQ, then Nψ = 0 and the semantics of ψ depends only on
the interpretation at a single time point. Since k and ` belong to the same maximal
interval in Z ∖ tem(A), by Lemma 4 in (Borgwardt et al. 2019) and the construction
of IA, this interpretation behaves in the same way at k and at `.

● If ψ is of the form ψ1 U[c1,c2]ψ2, then Nψ1 ≤ Nψ − c2 and Nψ2 ≤ Nψ − c2. Assume that
IA, k ⊧ ψ(a). Then there exists j ∈ [c1, c2] such that

IA, k + j ⊧ ψ2(a) and IA,m ⊧ ψ1(a), for all m with k ≤m < k + j. (12)

In case that j = c1 = 0, we have IA, k ⊧ ψ2(a). Since k and ` are farther than Nψ ≥ Nψ2

from the nearest element of rep(A), by induction we also have IA, ` ⊧ ψ2(a) and thus
IA, ` ⊧ ψ(a) in this case. Hence, we can assume in the following that j ≥ c1 > 0, and
thus in particular IA, k ⊧ ψ1(a).
Since both k + j and ` + c2 are farther than Nψ − c2 ≥ Nψ2 from the nearest element
of rep(A), by induction we have IA, ` + c2 ⊧ ψ2(a). Moreover, since IA, k ⊧ ψ1(a) and
k as well as all elements in [`, ` + c2] are farther than Nψ − c2 ≥ Nψ1 from the nearest
element of rep(A), by induction we have IA,m ⊧ ψ1(a) for all m with ` ≤m ≤ ` + c2.
Hence, IA, ` ⊧ ψ(a).

● If ψ is of the form ψ1 U[c1,∞)ψ2, then we have a similar situation as above, except that
j is not bounded by c2. We can again assume that j > 0 and IA, k ⊧ ψ1(a).
Let p be the maximal element of J . If k+j > p+c1, then k+j > ` and the distance between
` and k + j must be at least c1. Moreover, by assumption 12 we have IA,m ⊧ ψ1(a)
for all m with p <m < k + j. Since IA, k ⊧ ψ1(a) and all elements in J are farther than
Nψ ≥ Nψ1 from the nearest element of rep(A), by induction we also have IA,m ⊧ ψ1(a)
for all m with ` ≤m ≤ p. Thus, IA, ` ⊧ ψ(a).
We now consider the remaining case that k + j ≤ p + c1. Then both k + j and ` + c1 are
farther than Nψ − c1 ≥ Nψ2 from the nearest element of rep(A), and thus by induction
we have IA, ` + c1 ⊧ ψ2(a).
By similar arguments as above, we obtain IA, ` ⊧ ψ(a).

Hence, for evaluating subformulas of φT , it suffices to keep track of time points up to N
steps away from the elements of rep(A); this includes at least one element from each of
the intervals J mentioned in Lemma 22, since every element of tem(A) is immediately
surrounded by two elements of rep(A).

We exploit Lemma 22 in the following definition of the three-sorted first-order formula
[ψ]n(x, t) that simulates the behavior of ψ(x) at the “virtual” time point t + n, where
n ∈ [−N,N]. Whenever we use a formula [ψ]n(x, t), we require that t denotes a repre-
sentative for t + n. Due to our assumption that each maximal interval from Z ∖ tem(A)
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is represented by its endpoints (see Example 21), we know that t is a representative for
t + n iff there is no element of rep(A) between t and t + n. We can encode this check in
an auxiliary formula:

repn(t) ∶= ¬∃t′. (t + n ≤ t′ < t) ∨ (t < t′ ≤ t + n).

Example 23
In Example 21, time points 1 and 166 are representatives for the missing time points
2–165, and we have Ifin

A
⊧ rep1(1) (with N = 1). However, for φT = #¬T(x), we have

IA, 1 ⊧ φT (p1), but IA, 166 /⊧ φT (p1), i.e. the behavior at 1 and 166 differs. To distinguish
this, we need to refer to the “virtual” time point 2 (see the gray circled “v”s below) that
is not included in Ifin

A
, via the formula [¬T(x)]1(p1,1). By Lemma 22, it is sufficient to

consider time point 2, because this determines the behavior at 3–165 .

. . . . . .
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We now define [ψ]n(x, t) recursively, for each subformula ψ of φT . If ψ is a single
rewritten NCQ, then [ψ]n(x, t) is obtained by replacing each atemporal atom A(x) by
A(x, t), and similarly for role atoms. The parameter n can be ignored here, because we
assumed that t is a representative for t+n, and hence the time points t and t+n are inter-
preted in IA equally. For conjunctions, we set [ψ1 ∧ψ2]n(x, t) ∶= [ψ1]n(x, t)∧ [ψ2]n(x, t)
and similarly for the other Boolean constructors. Finally, we demonstrate the translation
for U-formulas (the case of S-formulas is analogous). We define [ψ1 U[c1,c2]ψ2]n(x, t) as

∃t′. ⋁
n′∈[−N,N]

((t + n + c1 ≤ t′ + n′ ≤ t + n + c2) ∧ repn
′
(t′) ∧ [ψ2]n

′
(x, t′) ∧

∀t′′. ⋀
n′′∈[−N,N]

(((t + n ≤ t′′ + n′′ < t′ + n′) ∧ repn
′′
(t′′))→ [ψ1]n

′′
(x, t′′))),

where c2 may be ∞, in which case the upper bound of t + n + c2 can be removed.

Lemma 24
Let K = (T ,A) be a consistent TELH c◊,lhs,−

�
KB and φ be an MTNCQ.

Then ans([φT ]0(x, t),Ifin
A

) = ans(φT ,IA).

Proof
We show the following claim by induction on the structure of φ: For all i ∈ rep(A), all
n ∈ [−N,N], all relevant tuples a, and all MTNCQs φ such that if Ifin

A
⊧ repn(i) then

Ifin
A
⊧ [φT ]n(a, i) iff IA, i + n ⊧ φT (a).

Since this includes the case where i ∈ tem(A), n = 0, for which Ifin
A
⊧ rep0(i) holds, the

statement of the lemma follows.
If φ is an NCQ, then

Ifin
A
⊧ [φT ]n(a, i) iff IA, i ⊧ φT (a) iff IA, i + n ⊧ φT (a)
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since i is a representative for i + n and a single temporal variable t is used in [φT ]n(x, t)
to denote “current” time point in φT .
For the Boolean constructors, the claim follows immediately from the semantics of

first-order logic.
We now consider a formula of the form φUIψ. By induction, we know that the following

hold: (i) Ifin
A
⊧ [ψT ]n

′(a, i′) iff IA, i
′ +n′ ⊧ ψT (a), for any time point i′ with i′ +n′ ≥ i+n,

and (ii) Ifin
A
⊧ [φT ]n

′′(a, i′′) iff IA, i
′′ + n′′ ⊧ φT (a) for all time points i′′ and offsets n′′

such that i + n ≤ i′′ + n′′ < i′ + n′ (assuming w.l.o.g. that φ and ψ have the same answer
variables).

Hence, the formula [φT UIψT ]n(a, i) checks the conditions required for the satisfaction
of the UI -expression for all time points in ⋃{[i−N, i+N] ∣ i ∈ rep(A)}. However, Lemma 22
tells us that, if ψT is satisfied in IA at some time point i′ + n′ with n′ > N , then this
is also the case for n′ = N . Similarly, to check whether φT is satisfied at all time points
between i + n and i′ + n′, it suffices to consider the time points up to N away from some
element of rep(A). Hence, Ifin

A
⊧ [φT UIψT ]n(a, i) iff IA, i + n ⊧ (φT UIψT )(a).

This lemma allows us to compute in polynomial time that patient p1 from Example 14
is an answer to φ(x) from Example 16 exactly at time points 257 and 258. Below we
summarize our tight complexity results, which by Lemma 18 also hold for rooted MTCQs
under certain answer semantics.

Theorem 25
Answering rooted MTNCQs under minimal-world semantics over TELH c◊,lhs,−

�
KBs is

ExpSpace-complete, and P-complete in data complexity.

Proof
ExpSpace-hardness is inherited from propositional MTL (Alur and Henzinger 1994; Furia
and Spoletini 2008). Moreover, first-order formulas over finite structures can be evaluated
in PSpace (Vardi 1982). Finally, the size of [φT ]0(x, t) is bounded exponentially in the
size of φ and T : Each rewritten NCQ ψT may be exponentially larger than ψ, and each
[ψ1 UIψ2]n(x, t) introduces exponentially many disjuncts and conjuncts (but the nesting
depth of constructors in this formula is linear in the nesting depth of ψ1 UIψ2).

For data complexity, hardness is inherited from atemporal EL (Calvanese et al. 2013).
The evaluation of FO(<,bit)-formulas is in DLogTime-uniform AC0 in data complexity
(Lindell 1992), and the size of our rewriting only depends on the query and the TBox. By
Lemmas 20 and 24 and since Ifin

A
is of size polynomial in the size of A, deciding whether

a tuple a is a minimal-world answer of an MTNCQ w.r.t. a TELH c◊,lhs,−
�

KB is possible
in P.

7 Related Work

Until a decade ago, the work on combining ontology and temporal languages was mostly
focused on the main reasoning tasks such as concept subsumption (whether an inclusion
between concepts is entailed by a temporal ontology) and knowledge base satisfiability
(whether a given knowledge base consisting of a temporal data instance and a temporal
ontology has a model); we refer the reader to (Artale and Franconi 2005; Baader et al.
2003; Lutz et al. 2008; Artale et al. 2014) for details. Particularly, in the presence of a
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single rigid role, allowing the operator +◊ on both sides of EL CIs makes subsumption
undecidable (Artale et al. 2007). In (Gutiérrez-Basulto et al. 2016), a variety of restrictions
are investigated to regain decidability, such as acyclic TBoxes and restrictions on the
occurrences of temporal operators. In particular, allowing the qualitative operators
±◊, −◊, +◊, cc◊ only on the left-hand side of CIs makes the logic tractable. Less closely related
work considers temporalized DLs where LTL operators are used to combine axioms, but
are not allowed within concepts (Baader et al. 2012).

Since atomic query answering (whether a concept or role name is entailed by a knowledge
base) can be reduced to the satisfiability checking problem, further developments of query
languages and the complexities of ontology-mediated query answering over temporal
data have recently appeared in the literature. In the following we briefly summarize
recent research on combining ontology and query languages with negation and temporal
formalisms. For a general overview of temporal ontology and query languages, see (Lutz
et al. 2008; Artale et al. 2017).

In this research we focus on a discrete timeline (over Z) and data facts stamped with a
single time point. However, in the literature there are other approaches how to incorporate
temporal formalisms in an ontology and the data, e.g. dense timelines, like Q or R (Brandt
et al. 2018; Ryzhikov et al. 2019); or interval-based data models, where facts are stamped
with a pair of time points denoting the interval in which they are true (Kontchakov et al.
2016; Brandt et al. 2018). Discussing this work is beyond the scope of this article. We
only want to mention here that choosing Z rather than Q or R is not a restriction in
our setting since (i) our formalism allows arbitrarily large gaps between time points in
the input and (ii) there are no inferences that would require a dense model of time, e.g.
computations approaching some time point only in the limit.

Within the discrete time point-based approach, one can distinguish between formalisms
with LTL temporal constructs and formalisms employing more refined Metric Temporal
Logic (MTL) operators (Alur et al. 1996). MTL extends LTL with temporal intervals for the
modal operators, restricting them to a specific time range. Combining ontology-mediated
query answering with LTL operators has been investigated in depth. In particular, similarly
to the query language adapted in this paper, there is a multitude of works (Baader et al.
2013; Borgwardt and Thost 2015b; Baader et al. 2015a; Baader et al. 2015b) investigating
the complexity of answering LTL-CQs that are obtained from LTL formulas by replacing
occurrences of propositional variables by arbitrary conjunctive queries (CQs). Moreover,
as in this article, the research (Borgwardt et al. 2013; Borgwardt et al. 2015) focuses
on the rewritability properties of LTL-CQs. An orthogonal approach for query rewriting
over a temporalized DL-Lite ontology was proposed in (Artale et al. 2013; Artale et al.
2015). Here the focus mainly lies on increasing expressivity of an ontology language by
allowing a concept or a role to be prefixed with LTL constructs. Only recently, also metric
variants of LTL-CQs have been considered (Gutiérrez-Basulto et al. 2016; Baader et al.
2017; Thost 2018).

Negation in queries with the classical open-world semantics results in non-tractable
(mostly coNP or even undecidable) query evaluation (Rosati 2007a; Gutiérrez-Basulto
et al. 2015). Moreover, prior work (Borgwardt and Thost 2015a; Borgwardt and Thost
2020) on temporalized ontology-mediated query answering with negation shows that the
high complexity of temporal query answering with negation is mostly due to the open-
world assumption for negation in a query language. There are several approaches how to
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introduce negation in ontology-mediated query answering without losing tractability, e.g.
closed predicates, epistemic semantics, Skolemization. For details, we refer the reader to
Section 3, where we motivate the semantics adopted in the paper. Indeed, as we show by
this work, by changing semantics for negation, we can apply efficient (in data complexity)
algorithms for temporal query answering with negation.

8 Conclusion

Dealing with the absence of information is an important and at the same time challenging
task. In many real-world scenarios, it is not clear whether a piece of information is missing
because it is unknown or because it is false. EHRs mostly talk about positive diagnoses
and it would be impossible to list all the negative diagnoses, i.e. the diseases a patient
does not suffer from. Moreover, EHRs and clinical trial criteria contain an inherent
temporal component. We showed that such a setting cannot be handled adequately
by existing logic-based approaches, mostly because they do not deal with closed-world
negation over anonymous objects. We introduced a novel semantics for answering metric
temporal conjunctive queries with negation and showed that it is well-behaved also for
anonymous objects. Moreover, we demonstrated combined first-order rewritability, which
allows us to answer MTNCQs by using conventional relational database technologies. The
data complexity result of P shows that MTNCQ answering over TELH c◊,lhs

�
KBs is not

inherently more difficult than CQ answering in EL. Similarly, the combined complexity
does not increase over the lower bound of ExpSpace inherited from metric temporal
logic.
We are working on an optimized implementation of this method with the aim to deal

with queries over large ontologies such as SNOMEDCT. First results show that this
is feasible, in spite of the theoretical complexity of ExpSpace.12 There is already a
prototype system that can translate simple clinical trial criteria from clinicaltrials.gov into
MTNCQs (Xu et al. 2019). On the theoretical side, we will further develop our approach
to also represent numeric information, such as measurements and dosages of medications,
which are important for evaluating eligibility criteria of clinical trials (Crowe and Tao
2015; Bonomi and Jiang 2018). Similar to negation, inequalities in CQs also lead to an
increase in complexity under certain answer semantics (Gutiérrez-Basulto et al. 2015).
It would be interesting to investigate their behavior under closed-world semantics, also
because inequalities are related to counting queries, e.g. counting the number of diseases
or treatments of a patient. Another open problem is to extend our results to temporal
logics that support temporal roles, i.e. where temporal operators can also be applied to
role names.
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