
Supporting Ontology-Mediated Stream
Reasoning with Model Checking

Clemens Dubslaff, Patrick Koopmann, and Anni-Yasmin Turhan

Technische Universität Dresden, Dresden, Germany
{clemens.dubslaff,patrick.koopmann,anni-yasmin.turhan}@tu-dresden.de

Abstract. Many stream reasoning applications make use of ontology
reasoning to deal with incomplete data. To this end, definitions of com-
plex concepts and elaborate ontologies are already used in event descrip-
tions and queries. On the other hand, model checking can support stream
reasoning, e.g., by runtime verification to predict future events or by clas-
sical offline verification. For such a combined use of model checking and
stream reasoning, it is crucial that events are modeled in a compati-
ble way. We have recently introduced and implemented a framework for
ontology-mediated probabilistic model checking, which would allow to
use the same ontology and event descriptions in both: the stream reasoner
and the model checker. In this short paper we present this framework
and discuss and motivate its use in the context of stream reasoning.

A core task of stream reasoning is to detect complex events occurring in data
from a collection of different data sources that reflect the behavior of an observed
system over time. The data sources need to be integrated to a certain extent and
often give only incomplete information on the observed system’s state. Ontology-
mediated query answering (OMQA) [9] addresses these two arising challenges
and has often been applied to stream reasoning scenarios [8,16,4]. In OMQA the
raw data collected in a database gets augmented by the background information
of a Description Logics (DL) knowledge base. While the actual ontology is often
given in a DL from the OWL 2.0 standard, complex situations to be recognized
are specified as queries in a dedicated query language. The task of situation
recognition then boils down to answer the query over the DL knowledge base. A
variety of query languages have been developed, e.g., for temporal data [10,2,3],
probabilistic temporal data [17], and incorporating numerical data [5,1].

Probabilistic model checking (PMC) [6,14] is an automated verification tech-
nique that has been successfully applied in many areas to verify non-functional
requirements such as energy efficiency or reliability. Most prominently, PMC is
applied during design time on an operational system model expressed, e.g., by
probabilistic guarded commands (PGCs), the input language of the PMC tool
Prism [18]. PMC techniques can also be used in runtime verification [19,15]
where monitors predict the satisfaction of requirements based on execution his-
tories of the monitored system.



2 Clemens Dubslaff, Patrick Koopmann, and Anni-Yasmin Turhan

Ontologized Program State q

Command Perspective

(server proc1 = 2)

(server proc2 = 2)

(server proc3 = 2)

migrateServer2

DL Perspective

OverloadedServer ≡ Server u ≥3runsProcess.Process

Server(s1) Server(s2) Server(s3)

Process(p1) Process(p2) Process(p3)

runsProcess(s2, p1)

runsProcess(s2, p2)

runsProcess(s2, p3)

Fig. 1. Perspectives on the ontologized program state q: the command perspective in
Prism (left) and DL perspective (right), linked by the interface (arrows).

Ontology-mediated PMC

OMQA and PMC are both well-investigated logic-based approaches to reason
about system properties with a wide range of optimized and matured tools.
However, they serve different purposes: while OMQA mainly reasons about
knowledge-intensive systems, PMC focuses on operational system models and
their behavioral properties. To integrate the advantages of both approaches, we
proposed ontology-mediated PMC (OM-PMC) in [12,13], enabling a verification
of operational systems models in knowledge-intensive contexts. The key idea
for the integration is an interface between the two specification formalisms for
OMQA and PMC, which allows a clear separation of concerns. The interface
then provides a mediation between the formalisms by means of:

1. A mapping from system states described in the Prism language to a DL
ontology, i.e., to a set of TBox axioms and assertions. Effectively, each state
q described in Prism is associated with an ontology Oq, see Figure 1.

2. So-called hooks, which are special statements in Prism that get their truth
value as the result of a Boolean query over the state’s ontology Oq returned
from the DL component (i.e., answered by a DL reasoner).

To this end, PMC may refer to DL queries via hooks and thus includes DL
reasoning results in the model-checking process. As the selection of axioms in
Oq for each state q is determined before the model-checking process takes place,
the answers to the corresponding hooks over Oq can be computed beforehand
and “re-written” into the modeling language of Prism. This kind of rewriting
to the standard modeling language of Prism was implemented and evaluated in
a prototype. Our initial results provided in [12,13] suggest that OM-PMC can
help to mitigate the notorious state-explosion problem of PMC by restricting the
state space through precise contextual information in the DL knowledge base.



Supporting Ontology-Mediated Stream Reasoning with Model Checking 3

Supporting Stream Reasoning

PMC can well be used to reason about streams: naturally through runtime-
verification techniques where system properties are predicted based on observed
stream events, but also in an offline verification where a predictive model of
the streams is included in the system’s specification [20]. We propose to sup-
port stream reasoning by OM-PMC, where stream events influence the system’s
behavior through hooks evaluated by OMQA as in classical stream reasoning.

Runtime Verification. For OM-PMC-supported runtime verification, we have to
provide an operational model that includes runtime hook evaluations. As hook
evaluations rely on the assigned query over the knowledge base that is also de-
pending on stream events, we hence model them nondeterministically. While this
leads to an exponential blow-up in the number of hooks, a family-based verifica-
tion approach [11] can benefit from the commonalities in the systems behavior
specification and thus enable PMC for all combinations of hook satisfactions.
The PMC results are then stored for all state-hook pairs, e.g., providing the
energy consumption in best- and worst-case scenarios with the respective hooks
satisfied. During runtime verification, our approach is then to re-evaluate hooks
based on stream events, determine corresponding states in the systems model,
and then either look up the PMC results for sophisticated requirements or even-
tually refine them through additional analysis of the systems’ model. The latter
amounts to standard runtime verification and may also include assumptions and
predictions on future stream events.

Offline Verification. To reason about streams during design time of adaptive
systems, we rely on a model of the stream events to happen during execution
time. Here, a purely non-deterministic modeling of stream events as proposed
in the last paragraph is usually too coarse towards meaningful analysis results.
Based on stochastic models obtained from statistical evaluation of stream data
that reflects the standard application scenarios [20,7], OM-PMC can be used
for a quantitative analysis of streams. For instance, stream events could rep-
resent bandwidth requirements in server systems where a hook is assigned to
high bandwidth requirements usually occurring during daytime. Based on the
assumption of day-night shifts, e.g., relying on DL reasoning, a convolution of
bandwidth requirements from server logs leads a stream event model [7].

Thus, OM-PMC results can be used as additional data source, supply predic-
tions on the likelihood of coming events based on statistical models, and support
decision making through monitoring and runtime verification.

Acknowledgements. The authors are supported by the DFG through the Collab-
orative Research Center TRR 248 (see https://perspicuous-computing.science,
project ID 389792660), the Cluster of Excellence EXC 2050/1 (CeTI, project ID 390696704,
as part of Germany’s Excellence Strategy), and the Research Training Groups QuantLA
(GRK 1763) and RoSI (GRK 1907).

https://perspicuous-computing.science


4 Clemens Dubslaff, Patrick Koopmann, and Anni-Yasmin Turhan

References

1. Alrabbaa, C., Koopmann, P., Turhan, A.Y.: Practical query rewriting for DL-Lite
with numerical predicates. In: Proc. of the 5th Glob. Conf. on AI (GCAI’19) (2019)

2. Artale, A., Kontchakov, R., Kovtunova, A., Ryzhikov, V., Wolter, F., Za-
kharyaschev, M.: Ontology-mediated query answering over temporal data: A sur-
vey. In: 24th Int. Sympos. on Temp. Representation and Reasoning, TIME (2017)

3. Baader, F., Borgwardt, S., Koopmann, P., Ozaki, A., Thost, V.: Metric temporal
description logics with interval-rigid names. ACM Transactions on Computational
Logic 21(4), 30:1–30:46 (2020)

4. Baader, F., Borgwardt, S., Koopmann, P., Thost, V., Turhan, A.Y.: Semantic
technologies for situation awareness. KI – Künstliche Intelligenz (2020)

5. Baader, F., Koopmann, P., Turhan, A.Y.: Using ontologies to query probabilistic
numerical data. In: Frontiers of Combining Systems (FroCoS). LNCS (2017)

6. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)
7. Baier, C., Dubslaff, C.: From verification to synthesis under cost-utility constraints.

ACM SIGLOG News 5(4), 26–46 (2018)
8. Beck, H., Dao-Tran, M., Eiter, T.: LARS: A logic-based framework for analytic

reasoning over streams. Artif. Intell. 261, 16–70 (2018)
9. Bienvenu, M.: Ontology-mediated query answering: Harnessing knowledge to get

more from data. In: Proc. of the 25th Int. Joint Conf. on AI, IJCAI 2016 (2016)
10. Borgwardt, S., Lippmann, M., Thost, V.: Temporalizing rewritable query languages

over knowledge bases. Journal of Web Semantics 33, 50–70 (Aug 2015)
11. Dubslaff, C., Baier, C., Klüppelholz, S.: Probabilistic model checking for feature-

oriented systems. Trans. on Aspect-Oriented Software Dev. 12, 180–220 (2015)
12. Dubslaff, C., Koopmann, P., Turhan, A.Y.: Ontology-mediated probabilistic model

checking. In: Proc. of the 15th International Conference on Integrated Formal
Methods (iFM’19). LNCS, vol. 11918, pp. 194–211. Springer (2019)

13. Dubslaff, C., Koopmann, P., Turhan, A.Y.: Enhancing probabilistic model checking
with ontologies. Formal Aspects of Computing (2021)

14. Forejt, V., Kwiatkowska, M.Z., Norman, G., Parker, D.: Automated verification
techniques for probabilistic systems. In: Proc. of the School on Formal Methods for
the Design of Computer, Communication and Software Systems, Formal Methods
for Eternal Networked Software Systems (SFM’11) (2011)

15. Forejt, V., Kwiatkowska, M.Z., Parker, D., Qu, H., Ujma, M.: Incremental runtime
verification of probabilistic systems. In: Proc. of the 3rd International Conference
on Runtime Verification (RV). vol. 7687 (2013)

16. Kharlamov, E., Kotidis, Y., Mailis, T., Neuenstadt, C., Nikolaou, C., Özçep, Ö.L.,
Svingos, C., Zheleznyakov, D., Ioannidis, Y.E., Lamparter, S., Möller, R., Waaler,
A.: An ontology-mediated analytics-aware approach to support monitoring and
diagnostics of static and streaming data. J. Web Semant. 56, 30–55 (2019)

17. Koopmann, P.: Ontology-based query answering for probabilistic temporal data.
In: Proc. of the 33rd AAAI Conf. on AI (AAAI’19) (2019)

18. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verification of proba-
bilistic real-time systems. In: Proc. of the 23rd Intern. Conf. on Computer Aided
Verification (CAV’11). LNCS, vol. 6806, pp. 585–591 (2011)

19. Leucker, M., Schallhart, C.: A brief account of runtime verification. The Journal
of Logic and Algebraic Programming 78(5), 293–303 (2009)

20. Tiger, M., Heintz, F.: Stream reasoning using temporal logic and predictive prob-
abilistic state models. In: 2016 23rd International Symposium on Temporal Rep-
resentation and Reasoning (TIME). pp. 196–205 (2016)


	Supporting Ontology-Mediated Stream Reasoning with Model Checking 

