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Abstract. Stream reasoning systems often rely on complex temporal
queries that are answered over enriched data sources. While there are
systems for answering such queries, automated support for building tem-
poral queries is rare. We present in this paper initial results on how to
derive a temporalized concept from a set of examples. The resulting con-
cept can then be used to retrieve objects that change over time. We
consider the temporalized description logic that extends the description
Logic EL with the LTL operators next (X) and global (G) and we present
an approach that extends generalization inferences for classical EL.

1 Introduction

Ontology-based data access is an established approach to perform complex event
recognition in the context of stream reasoning [6,5]. The description of the com-
plex situation to be recognized is often given by a temporalized conjunctive
query (TCQ). While there are many results on answering such TCQs [5,1], there
is hardly any support for generating such TCQs and this task is left to the knowl-
edge engineer to be done manually. In this paper we provide first steps towards
addressing this issue. We consider the problem of learning temporalized query
concepts from a set of examples. The examples are individuals from the data
stream, i.e. in our case from a sequence of ABoxes. The kind of query concept
to be leaned here is a tree-shaped TCQ with one answer variable.

The bottom-up approach [3] provides a method for such learning problems
by reverse engineering the query. It uses two generalization inferences: the most
specific concept (msc) [3,7], which derives a concept for an ABox individual, and
the least common subsumer (lcs) [3,9] which generalizes a set of concepts into one
by computing their commonalities. If each individual from the set of examples
is generalized into a concept and then all of these concepts are generalized into
a single concept, then a query concept for the set of examples is obtained.

We investigate the temporalized description logic LTLX,G
EL whose concepts

constructors are a combination of standard EL-concept constructors [4,2] and
temporal operators that are used in propositional linear temporal logic (LTL),
X (next) and G (global/always) [8]. Intuitively, the semantics of a concept is
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interpreted in two dimensions. The EL-constructors express relations to other
elements in object domain, while the LTL-operators express the evolution of
objects in the temporal dimension.

Now, to extend the bottom-up approach to the 2-dimensional DL LTLX,G
EL ,

requires to address two challenges in comparison to EL. The first is how to ex-
tend the msc and the lcs to the temporal setting, such that the interaction of
the temporal operators are treated correctly in the generalizations. The second
is to adapt to the structure of the examples, as we are learning from a sequence
of ABoxes that captures observations made over time and that refers to differ-
ent time points. In this paper we provide a characterization of subsumption, of
instance checking, and of the lcs in LTLX,G

EL . As for EL, the msc need not exist, if
the ABox is cyclic. It is common to use an approximation of the msc by limiting
its role depth. We provide such approximations for the msc in LTLX,G

EL .

2 Preliminaries

We briefly recall the DL EL and propositional LTL and define the temporal DL
LTLX,G

EL that extends EL-concepts with X (next) and G (global) from LTL.

Description Logic EL. Let NC, NR, NI be sets of concept names, role names
and individual names, respectively. EL-concepts are defined by the following
grammar:

C,D ::= A | C uD | ∃r.C | >

An interpretation I = (∆I , ·I) consists of a nonempty domain∆I and a function
·I that maps every concept names A ∈ NC to a subset AI ⊆ ∆I , every role
name r ∈ NR to a relation rI ⊆ ∆I × ∆I , and every individual name a ∈ NR

to an element aI ∈ ∆I . The interpretation ·I is lifted to complex EL-concepts
as follows: (>)I = ∆, (C u D)I = CI ∩ DI , and (∃r.C)I = {x ∈ ∆ | ∃y.y ∈
∆I s.t. (x, y) ∈ rI and y ∈ CI}. Let C andD be EL-concepts, r ∈ NR, and a, b ∈
NI. An EL-concept inclusion (CI) is of the form C v D. An EL-concept assertion
is of the forms C(a) and a role assertion of the form r(a, b). An interpretation I
satisfies: a concept assertion C(a) if aI ∈ CI ; a role assertion r(a, b) if (aI , bI) ∈
rI ; and a CI C v D if CI ⊆ DI .

A Fragment of Linear Temporal Logic: LTLX,G. Let P be a set of propo-
sitional variables. LTL-formulae are defined inductively as follows: every propo-
sitional variable is a LTL-formula; and if φ and ψ are LTL-formulae, then φ∧ψ
(conjunction), Xφ (next), and Gφ (global) are LTL-formulae. The semantics of
LTL formulae is based on the notion of a LTL-structure. A LTL-structure is
a sequence I = (wi)i≥0 of worlds wi ⊆ P . Intuitively, wi is a set of proposi-
tional variables that are true at time point i. The validity of a LTL-formula φ
in LTL-structure I at time point i ≥ 0 (denoted I, i |= φ) is defined inductively:

– I, i |= p for p ∈ P iff p ∈ wi;
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– I, i |= φ ∧ ψ iff I, i |= φ and I, i |= ψ;
– I, i |= Xφ iff I, i+ 1 |= φ;
– I, i |= Gφ iff I, j |= φ for all j ≥ i.

A LTL-formula φ is satisfiable if there exists a LTL-structure I s.t. I, 0 |= φ.
Deciding satisfiability for LTL is PSpace-complete, but it is trivial for LTLX,G.

The Temporal Description Logic LTLX,G
EL . Let A ∈ NC and r ∈ NR. LTL

X,G
EL -

concepts are defined by the following grammar:

C,D ::= A | C uD | ∃r.C | XC | GC | >.

A TBox a finite set of concept inclusions (CIs) C v D. An ABox is a finite set
of concept assertions C(a) and role assertions r(a, b) where a, b ∈ NI. An axiom
is either a CI or an assertion.

The semantics of LTLX,G
EL is based on the notion of temporal interpreta-

tion, which extends LTL structures. A temporal interpretation is a sequence
I = (Ii)0≤i of interpretations Ii = (∆, ·Ii) over a common domain ∆ and that
respects rigid individual names, i.e., aIi = aIj for all a ∈ NI and i, j ≥ 0. The
interpretation ·Ii is lifted to complex LTLX,G

EL concepts as follows:

– (>)Ii = ∆
– (C uD)Ii = CIi ∩DIi
– (∃r.C)Ii = {x ∈ ∆ | ∃y, y ∈ ∆Ii such that (x, y) ∈ rIi and y ∈ CIi}
– (XC)Ii = {x ∈ ∆ | x ∈ CIi+1}
– (GC)Ii = {x ∈ ∆ | x ∈ CIj for all j ≥ i}

A temporal interpretation I at time point i satisfies an axiom α (denoted
I, i |= α) of the form: GCI C v D iff CIi ⊆ DIi ; concept assertion C(a) iff
aIi ∈ CIi ; and role assertion r(a, b) iff (aIi , bIi) ∈ rIi .

We say that I = (Ii)0≤i is a model of a concept C if C is satisfied at time
point 0, i.e., CI0 6= ∅. I is a model of C v D iff I, i |= C v D for all i ≥ 0. I is
a model of an ABox Ai at time point i iff it is a model of all assertions in Ai at
time point i, and is a model of a sequence of ABoxes (Ai)0≤i≤n iff it is a model
of all ABox Ai, 0 ≤ i ≤ n.

Every LTLX,G
EL -concept is satisfiable, as in EL and LTLX,G. We use two rea-

soning services to build the generalization inferences on. C subsumes D (C v D)
iff for all interpretations I, I is a model of C v D. Given A, C and a, instance
checking tests whether a ∈ CI holds for all models of A. We denote a sequence
of ABoxes (Ai)0≤i≤n with ~An. We say ~An, i |= C(a) iff for all models I |= ~An,
we have that I, i |= C(a).

Definition 1 (LCS & MSC). A LTLX,G
EL concept D is the least common sub-

sumer (lcs) of the concepts C1, . . . , Cn (lcs(C1, . . . , Cn) for short) iff it satisfies

– Ci v D for all i = 1, . . . , n, and
– D is the least LTLX,G

EL concept with this property, i.e., if LTLX,G
EL concept E

satisfies Ci v E for all i = 1, . . . , n, then D v E.
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A LTLX,G
EL concept D is the most specific concept (msc) of the individual a w.r.t.

the sequence of ABoxes ~An at time point i (msci(a) for short) iff

– ~An, i |= D(a), and
– D is the least LTLX,G

EL concept satisfying this property, i.e., if E is a LTLX,G
EL

concept satisfying ~An, i |= E(a), then D v E.

In combination, the msc and the lcs facilitate the learning of a LTLX,G
EL query

concept from a set of positive instances of individuals from a sequence of ABoxes.

3 Representing LTLX,G
EL -concepts

In preparation for characterizing the lcs and the msc in LTLX,G
EL , we need a

characterization of subsumption (and of instance) in this DL. We extend the
approach for EL from [3], where concepts are represented by EL-description trees.
The subsumption test is then simply deciding the existence of a homomorphism
between such trees. Our goal is use this test to decide subsumption in LTLX,G

EL .

3.1 LTLX,G
EL -description Trees

We extend EL-description trees to LTLX,G
EL -description trees by accommodating

temporal operators X and G. Each element in the domain of a temporal inter-
pretation is connected to exactly one element “in the next time point”—namely
itself. This justifies to combine the concepts using the X and G operators each,
if they refer to the same element. Furthermore, if we consider X as a special
role that generates an infinite chain, then G is the transitive closure of X. An-
other concern is the non-local behavior of G. To handle this, we introduce a
role that represents the information that holds globally at every time point of
an element. This G node represents the concept that needs to be satisfied from
that point onward. We implement these ideas in the following normal form for
LTLX,G

EL concepts. Note that any domain element is an instance of G>.

Definition 2 (Normal form). An LTLX,G
EL -concept C is in normal form if it

is of the form

C = A1 u . . . uAn u ∃r1.D1 u . . . u ∃rm.Dm u XE u GF ,

where A1, . . . , An are concept names; D1, . . . , Dm, E, F are LTLX,G
EL concepts in

normal form; F does have neither X nor G on the top-level conjunction.

Intuitively, this normal form captures four aspects that need to be satisfied by
an instance a of concept C. First, A1, . . . , An is the set of concept names that
a needs to be an instance of. Second, ∃r1.D1 u . . . u ∃rm.Dm is the set of ri
successors that a requires. Third, a needs to be an instance of E at the next
time point. Fourth, a must be an instance of F from the current time point on
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and onward. We define a set of transformation rules to convert a LTLX,G
EL concept

C into normal form:

XC1 u XC2  X(C1 u C2) [MergeX]
GC1 u GC2  G(C1 u C2) [MergeG]

G(GC1)  GC1 [FlattenG]

G(XC1)  X(GC1) [MoveG]

GC1  C1 u GC1 [DistributeG]

XC1 u GC2  X(C1 u GC2) u GC2 [PropagateG]

The rules are applied exhaustively to a concept C, but with some priorization
of the rules. First, the rules MergeX, MergeG, FlattenG and MoveG have to be
applied. Then, we need to apply the rules to the subconcepts before the root
concept for DistributeG and PropagateG. The normalization might cause an
exponential blow-up due to PropagateG. Propagating information from concept
GC in LTLX,G

EL copies C along the chain of X-successors. We denote with C∗ the
LTLX,G

EL -concept resulting from applying those rules to an LTLX,G
EL -concept C.

Proposition 3. Let C be a LTLX,G
EL -concept. Then, it holds that C ≡ C∗. The

size of C∗ can be exponential in the size of C.

Proof Sketch. It is not hard to show that the rules are equivalence preserving.
Thus C∗ is equivalent to C. The exponential blow-up comes from the interaction
between rules DistributeG and PropagateG. However, since there is no rule that
extends a X chain, PropagateG is only applicable as many times as the length
of the longest X-chain in C. This ensures the termination of the procedure.

From now on, we assume that all LTLX,G
EL -concepts are in normal form unless

otherwise stated. W.l.o.g. we assume X,G 6∈ NR.

Definition 4 (LTLX,G
EL -description tree). An LTLX,G

EL -description tree is of
the form G = (V, E , v0, `), where G is a tree with root v0 where

– the edges vrw ∈ E are labeled with a role name r ∈ NR ∪ {X,G}; and
– the nodes v ∈ V are labeled with sets `(v) of concept names from NC. The

empty label corresponds to >.

Any LTLX,G
EL concept C can be translated into a LTLX,G

EL -description tree GC =
(V,E, v0, `). Intuitively, concepts of the form ∃r.C, XC, and GC give rise to
successor nodes, while (conjunctions of) concept names induce complex labels.
The reverse construction of a LTLX,G

EL -concept CG from a LTLX,G
EL -description tree

G is done in the obvious manner. For a description tree GC and a node w, we
denote the subtree of GC with root w by GC(w).

Example 5 (LTLX,G
EL -description tree). The LTLX,G

EL -concept description

C := P u ∃r.(P u XQ) u X(P uQ u G(P uQ)) u GP

corresponds to the description tree GC depicted in Figure 1.
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v0 : {P,Q}

v5 : {P}v3 : {P,Q}

v4 : {P,Q}

G

v1 : {P}

v2 : {Q}

G

r
X

G

Fig. 1. LTLX,G
EL -description tree.

Note, that equivalent concepts can result in different normalized concepts. An
X-path in a description tree is a path, where each edge is labelled with X.

Lemma 6. Let C be a LTLX,G
EL -concept in normal form and GC = (V, E , v0, `) be

the LTLX,G
EL -description tree of C.

1. C = CGC up to commutativity and associativity of conjunction, and GC =
GCGC

up to renaming nodes.
2. For each node v ∈ V , v has at most one outgoing edge labeled X and at most

one outgoing edge labeled G.
3. Let vGw ∈ E. Then, there does not exists x ∈ V such that either wXx ∈ E

or wGx ∈ E,i.e., CG does not have a subconcept of the form GXD or GGD.
4. Let vGw ∈ E and D denote the LTLX,G

EL -concept corresponding to the subtree
of GC with root w, then for any w′ where there is a X-path from v to w′. Let
D′ be LTLX,G

EL -concept corresponding to the subtree of GC with root w′, we
have that D′ v D.

In order to characterize subsumption, we need to establish a connection between
description trees and the semantics of LTLX,G

EL -concepts given by temporal inter-
pretations. More precisely, we describe in the next subsection how to obtain a
temporal interpretation from a description tree.

3.2 Canonical Interpretation of LTLX,G
EL -concepts

Observe, that there are different kinds of nodes in description trees, depending
on whether they are a X-successor or the successor for a role from NC. In Figure 2
the nodes are classified according to their distance from the root v0 in terms of
time steps. We call the temporal depth of v (td(v)) the number of X-edges that
occur in the path from v0 to v. Furthermore note, that if a node is connected
by X-edges then they represent the same element in the domain but at different
points in time. We define some notions to distinguish nodes in V . In a LTLX,G

EL -
description tree GC = (V, E , v0, `) a node v ∈ V is called a

– next copy if there exists wX v ∈ E ,
– global copy, if wG v ∈ E ,
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td(v) = 0 td(v) = 1 td(v) = 2

v0 : {P}

v1 : {}

v2 : {P}

v4 : {H}

v3 : {O} v5 : {}

v6 : {O}

v7 : {P}

v8 : {O} v9 : {}

v10 : {O}

r

X

X

X

h G

h

h G

h

Fig. 2. LTLX,G
EL -description tree for P u ∃r.(XQ) u (X(P u XP ) u G(∃s.O)).

– temporal copy iff v is either a next copy or a global copy, and
– temporal root iff v is not a temporal copy.

We use the following sets: VX for next copies, VG for global copies, and VR for
temporal roots. Given a temporal copy v ∈ VG, w ∈ VR is the temporal root of
v (w = tr(v)) if wG v ∈ E or there is a X-path from w to v in GC . A temporal
root has itself as a temporal root. Recall, that C is normalized.

Definition 7 (Canonical Interpretation). Let C be a LTLX,G
EL -concept and

GC = (V,E, v0, `) the LTL
X,G
EL -description tree of C. The canonical interpretation

of C is the temporal interpretation IC = ((IC)i)0≤i, where

– (IC)i = (∆C , ·(IC)i) for each i ≥ 0,
– ∆C = VR,
– for each A ∈ NC and i ≥ 0
A(IC)i := {v ∈ VR | A ∈ `(v) and td(v) = i} ∪

{v ∈ VR | ∃w ∈ VX s.t. v = tr(w), A ∈ `(w) and td(w) = i} ∪
{v ∈ VR | ∃w ∈ VG s.t. v = tr(w), A ∈ `(w) and td(w) ≤ i}, and

– for r ∈ NR and i ≥ 0
r(IC)i := {(v, w) | v ∈ VR, vrw ∈ E and td(v) = i} ∪

{(v, w) | v = tr(x) where w ∈ VX , xrw ∈ E and td(w) = i+1}∪
{(v, w) | v = tr(x) where x ∈ VG, xrw ∈ E and td(x) ≤ i}.

Lemma 8. Let C be a LTLX,G
EL -concept, v0 the root of GC , and IC = ((IC)i)0≤i

its canonical interpretation. Then v0 ∈ CIC holds.

Proof Sketch. We show by induction on the depth of GC that v0 ∈ (CGC )
IC .

The proof for the base case and case of r-successors (with r ∈ NR) are rather
similar. For the case of XE, we show there exists w ∈ ∆C such that tr(w) = v0
and td(w) = td(v0) + 1. Furthermore, since w ∈ (EGC(w))

IC , we have that
v0 ∈ (EGC )

IC . For the case of GF , we show there exists an element w such
that tr(w) = v0 and td(w) = td(v0). Then, we use the fact that the existence of
w ∈ (FGC(w))

Ij propagates that v0 ∈ (FGC )
Ij for all time points j ≥ 0 due to

the construction of IC .
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4 Characterization of Subsumption and LCS

In order to decide subsumption, it needs to be fixed to which depth to consider
the concept in the X-chain. Obviously, such chains can get arbitrarily long when
repeatedly propagating a G part onto a X. For a subsumption C1 v C2 to hold,
GC1

needs to have a temporal height greater or equal to the one of GC2
, to employ

homomorphisms for the comparison. If concept C1 describes “less time points”
than C2, then padding is needed.

Definition 9 (LTLX,G
EL -concept padding). Let C1 and C2 be LTLX,G

EL -concepts
in normal form. A function to pad C1 w.r.t. C2 (denoted by padC2

(C1)) proceeds
as follows:

– for each ∃r.D1 in the top-level of C1, replace ∃r.D1 with ∃r.padDj
(D1) re-

cursively for all ∃r.Dj in the top-level of C2;
– if there exists XE2 in the top-level conjunction of C2, then
• if there exists XE1 in the top-level of C1, then replace it with X padE2

(E1)
• otherwise:
∗ if there exists GF in the top-level of C1, replace C1 with
C1 u X(padE2(F u GF ))

∗ otherwise, replace C1 with C1 u X(padE2
(>))

Furthermore, we say that C1 is aligned w.r.t. C2 if padC2
(C1) = C1.

The padding function preserves equivalence of LTLX,G
EL -concepts. Now, using the

notion of aligned concepts, we can ensure that the description tree for C1 is deep
enough in the temporal dimension to be compared with the one for C2. We can
use homomorphisms between two description trees to characterize subsumption.

Definition 10 (Homomorphism between LTLX,G
EL -description trees). Let

H = (VH , EH , w0, `H) and G = (VG, EG, v0, `G) be LTLX,G
EL -description trees. A

homomorphism from H into G is a mapping ϕ : VH 7→ VG where

1. ϕ(w0) = v0;
2. `H(v) ⊆ `G(ϕ(v)) for all v ∈ VH ; and
3. ϕ(v)rϕ(w) ∈ EG for all vrw ∈ EH .

Theorem 11. Let C,D be LTLX,G
EL concepts and C is aligned w.r.t. D. Then,

we have that C v D iff there exists homomorphism from GD to GC .

Proof Sketch. For the if-direction, we prove x0 ∈ DI by induction on the number
of |VD| of nodes in GD. In the induction step, we prove that if a ∈ CI, i.e., a is a
model of each top-level conjunct in C has an appropriate successor for each top-
level conjunct in D. We separate the case depending on the type of the conjunct
and utilize the existence of the homomorphism to show each successor exists.

For the only-if-direction, we prove inductively on depth(D) by constructing
an appropriate homomorphism on-the-fly. For the base case this is straighfor-
ward, since `D ⊆ `C . In the induction step, we show for each w0rw ∈ ED there
exists an appropriate v0rv for each r ∈ NR ∪ {X,G} and CGC(v)

v CGD(v)
. Then,

we map w0 to v0 in the construction of the homomorphism inductively.
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This characterization of subsumption is used to show correctness of our lcs con-
struction. The latter is given by the product of description trees.

Definition 12 (Product of description trees). Let G = (VG, EG, v0, `G) and
H = (VH , EH , w0, `H) be LTLX,G

EL -description trees. The product of G and H is
G × H := (V, E , (v0, w0), `) with the following components. Node (v0, w0) is the
root of G×H, labeled with `G(v0)∩`H(v0). For each r-successor (r ∈ NR∪{X,G})
v of v0 in G and w of w0 in H, there is an r-successor (v, w) of (v0, w0) in G×H
that is the root of G(v)×H(w).

Theorem 13. Let C1, C2 be LTLX,G
EL concepts in normal form and C1 is aligned

w.r.t. C2 and C2 is aligned w.r.t. C1. Then, CGC1
×GC2

is the lcs of C1 and C2.

Proof Sketch. We need to show these statements hold: (1) C1 v CGC1
×GC2

, (2)
C2 v CGC1

×GC2
, and (3) for each C ′ with C1 v C ′ and C2 v C ′, we have that

CGC1
×GC2

v C ′. The statements (1) and (2) can be proven by showing that the
product of description trees captures, by construction, properties of both C1 and
C2. Due to this, there exists the required homomorphisms which in turn shows
that both subsumption relationships hold.

Since C ′ is a common subsumer of C1 and C2, there exists homomorphisms
ϕ1 from GC′ to GC1 and ϕ2 from GC′ to GC2 . Then, (3) can be shown by defining a
mapping ϕ :=< ϕ1, ϕ2 > from GC′ to GC1

×GC2
as the product of ϕ1 and ϕ2, i.e.,

ϕ(v′) := (ϕ1(v
′), ϕ2(v

′)) for all v′ ∈ V ′. Then, ϕ is well-defined, i.e., ϕ(v′) ∈ V
for all v′ ∈ V ′ by induction. Finally, we show ϕ is a homomorphism from GC′ to
GC1
× GC2

due to the construction of the product of LTLX,G
EL description trees.

5 Characterization of the Instance Relationship and MSC

In this section, we develop a method for computing a LTLX,G
EL -concept that de-

scribes an individual from a sequence of ABoxes best, i.e. a computation method
for the msc in LTLX,G

EL . To show the correctness of the method, we need a char-
acterization of the instance relationship in LTLX,G

EL . The approach used in this
section follows [7] closely, but extends it by the temporal operators and adopts
a sequence of ABoxes as part of the input.

5.1 Characterization of the Instance Relationship

Since there are n ABoxes, we have to consider information from each time point
on the input individual a and combine it. For LTLX,G

EL , we can use the X operator
to describe the temporal information in one concept. Intuitively, we construct a
concept C that represents a from the start of the observations on. Let Ind( ~An)

denote the set of all individuals occurring in ~An. For each a ∈ Ind( ~An), we define
Ca :=

d
0≤i≤n

(d
D(a)∈Ai

XiD
)
, if there exists an assertion D(a) ∈ Ai for any i;

and > otherwise. We assume that each Ca for all a is normalized.
As the relational structure in the ABoxes can be arbitrary, we need to rep-

resent the information on a by graphs instead of trees. An LTLX,G
EL -description
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td(v) = 0 td(v) = 1 td(v) = 2

a : {P} v1 : {P}

v2 : {O} v3 : {}

v4 : {O}

v5 : {P}

v6 : {O} v7 : {}

v8 : {O}

b : {} v9 : {P} v10 : {P}

X X

X X

h G

h

h G

h

r

Fig. 3. LTLX,G
EL -description graph for ~A3.

graph is a labeled graph of the form G = (V, E , `) whose edges vrw ∈ E are
labeled with role names r ∈ NR ∪ {X,G} and whose nodes v ∈ V are labeled
with sets `(v) ⊆ NC. Let GCa = (Va, Ea, a, `a) denote the LTLX,G

EL -description tree
for Ca. Assume that the sets Va for all a ∈ Ind( ~An) are pairwise disjoint. Given
an individual a ∈ Ind( ~An), we define the temporal copy of a at time point i as
tci(a) = v, where v ∈ Va such that there is a X-path of length i from a to v in
GCa

. The description graph of a sequence of ABoxes is G( ~An) = (V, E , `), with:
– V =

⋃
a∈( ~An)

Va;
– E = {xry | r(a, b) ∈ Ai, x = tci(a) and y = tci(b)} ∪

⋃
a∈Ind( ~An)

Ea; and
– `(v) = `a(v) for all v ∈ Va.

Example 14 (Description graph of a sequence of ABoxes). Let ~A3 = (Ai)0≤i≤3
be a sequence of the ABoxes: A0 = {P (a)}, A1 = {(P u G(∃h.O))(a), P (b)},
and A2 = {P (a), P (b), r(a, b)}. Then G( ~A3) is as depicted in Figure 3. Observe,
although b does not occur in A0, G( ~A3) contains b at time point 0.

For a sequence of interpretations, one might be interested in concept mem-
bership at certain time point instead of only the beginning. We use this idea
and characterize the instance relationship using G( ~An) and GC . To put i into
consideration, we place the temporal copy tci(a) as the root instead of a.

Lemma 15. Let ~An be a sequence of ABoxes, a ∈ Ind( ~An), C be a LTLX,G
EL -

concept, and i a time point where i ≥ 0. Then, ~An, i |= C(a) if there exists a
homomorphism ϕ from GC into G( ~An) such that ϕ(v0) = tci(a), where v0 is the
root of GC .
Proof Sketch. We show by induction that the corresponding subtree with root
tci(a) together with existence of homomorphism yield tci(a) ∈ CIi of the canon-
ical interpretation. Let Ctci(a) :=

d
0≤i≤n

(d
D(tci(a)∈Ai

XiD
)
, then I |= ~An im-

plies a ∈ CI
tci(a) due to the construction of G( ~An). Then, we show aI ∈ CI by

induction on depth(C) by utilizing the existence of homomorphism.
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5.2 k-MSC of LTLX,G
EL Concepts

The role depth of C (rdepth(C)) is the maximum number of nested quantifiers
in C. The msc in LTLX,G

EL suffers the same problem as the one in EL: cycles in
the description graph cause infinite role depth in the msc [7] and thus the msc
need not exist as concepts are finite. A common approach to remedy this, is to
use k-approximation of the msc, i.e. to limit the role depth of it to k ∈ N.

Definition 16. Let ~An be a sequence of ABoxes, a ∈ Ind( ~An), C a LTLX,G
EL -

concept, and i, k ≥ 0. Then, C is the k-msc of a w.r.t. ~An at time point i
(k-msci(a)) iff

– ~An, i |= C(a);
– rdepth(C) ≤ k; and
– C v C ′ for all LTLX,G

EL -concepts C ′ with ~An, i |= C ′(a) and rdepth(C ′) ≤ k.

The computation of the k-msc performs the following steps. First, employ a tree
unraveling of G( ~An) with root a to obtain a LTLX,G

EL -description tree T (a,G( ~An)).
The starting point is tci(a) as the root instead of a. Second, prune all paths to
(non-temporal) length k to obtain Tk(a,G( ~An)). We assume w.l.o.g. that all
Ca are pairwise aligned which can easily be achieved by the padding function.
Then, we summarize this fact and characterization of the existence of the msc in
following theorem. Notice that the characterization is sound, but remains open
in the completeness as in the characterization of msc in ALE .

Theorem 17. Let ~An be a sequence of ABoxes, a ∈ Ind( ~An), let i, k ≥ 0, and
T = Tk(tci(a),G( ~An)). Then

1. CT is the k-msc of a w.r.t. ~An at time point i.
2. If no cyclic path is reachable from tci(a) in G( ~An), then CT is the msc of

individual a w.r.t. ~An at time i; otherwise no such msc exists.

Proof Sketch. Proving 1. can be seen as an extension of Lemma 15. We can map
tci(a) of GCT

to tci(a) of G ~An
to obtain a homomorphism, since it G ~An

contains
GCT

with root tci(a). This yields that a is an instance of CT . Then, if C is a
LTLX,G

EL -concept such that a is an instance of C with depth(C) ≤ k, we can
construct a homomorphism from GC to GCT

. Then, we have that CT v C and
finally CT is the k-msc.

To prove 2., consider the case where the depth of unraveled tree is finite,
e.g., k′. Then, the length of all k-mscs are bounded by k ≥ k′, i.e., all concept
with a larger role depth (k′-msc) are equivalent to the k-msc. Now consider the
case where the unraveled tree has infinite depth. Assume that there exists k-msc
that also serves as msc of a and call it Ck. Then, it is easy to see that there
always exists k+1-msc such that Ck+1 v Ck due to the cycle. Then, we have to
construct an infinitely large k-msc of C for a. Since a concept description only
has a fixed and finite depth, a cannot have an msc.
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6 Conclusion

In this work, we devised a method how to derive a temporalized query con-
cept from examples occurring in a data stream. We investigated the case of
LTLX,G

EL -concepts, which extend EL with temporal operators next (X) and global
(G). From a given stream of data in the form of a sequence of LTLX,G

EL -ABoxes,
our methods can generalize the given set of example individuals into a LTLX,G

EL -
concept by applying the (k-)msc and then the lcs. The result is a LTLX,G

EL -concept
that captures the shared properties of all individuals while keeping it as least
general as possible. While extending DLs with temporal operators is often prob-
lematic, we show this fragment is rather well-behaved.

This study is a rather preliminary investigation of reverse engineering of
temporal queries. Obvious extensions are to learn w.r.t. a general TBox or to
use rigid concepts or even rigid roles. In the longer run, we would like to use
a bigger fragment of LTL and to investigate the case of reverse engineering
temporalized conjunctive queries.
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