
Evonne: Interactive Proof Visualization for
Description Logics (System Description)

Christian Alrabbaa1 , Franz Baader1 , Stefan Borgwardt1 ,
Raimund Dachselt2 , Patrick Koopmann1 , and Julián Méndez2

1 Institute of Theoretical Computer Science, TU Dresden, Germany
2 Interactive Media Lab Dresden, TU Dresden, Germany

firstname.lastname@tu-dresden.de, julian.mendez2@tu-dresden.de

Abstract. Explanations for description logic (DL) entailments provide
important support for the maintenance of large ontologies. The “justifica-
tions” usually employed for this purpose in ontology editors pinpoint the
parts of the ontology responsible for a given entailment. Proofs for entail-
ments make the intermediate reasoning steps explicit, and thus explain
how a consequence can actually be derived. We present an interactive
system for exploring description logic proofs, called Evonne, which vi-
sualizes proofs of consequences for ontologies written in expressive DLs.
We describe the methods used for computing those proofs, together with
a feature called signature-based proof condensation. Moreover, we evalu-
ate the quality of generated proofs using real ontologies.

1 Introduction

Proofs generated by Automated Reasoning (AR) systems are sometimes pre-
sented to humans in textual form to convince them of the correctness of a the-
orem [9, 11], but more often employed as certificates that can automatically be
checked [20]. In contrast to the AR setting, where very long proofs may be
needed to derive a deep mathematical theorem from very few axioms, DL-based
ontologies are often very large, but proofs of a single consequence are usually of
a more manageable size. For this reason, the standard method of explanation
in description logic [8] has long been to compute so-called justifications, which
point out a minimal set of source statements responsible for an entailment of
interest. For example, the ontology editor Protégé3 supports the computation of
justifications since 2008 [12], which is very useful when working with large DL
ontologies. Nevertheless, it is often not obvious why a given consequence actually
follows from such a justification [13]. Recently, this explanation capability has
been extended towards showing full proofs with intermediate reasoning steps,
but this is restricted to ontologies written in the lightweight DLs supported by
the Elk reasoner [15,16], and the graphical presentation of proofs is very basic.

In this paper, we present Evonne as an interactive system, for exploring DL
proofs for description logic entailments, using the methods for computing small

3 https://protege.stanford.edu/

http://orcid.org/0000-0002-2925-1765
http://orcid.org/0000-0002-4049-221X
http://orcid.org/0000-0003-0924-8478
http://orcid.org/0000-0002-2176-876X
http://orcid.org/0000-0001-5999-2583
http://orcid.org/0000-0003-1029-7656
https://protege.stanford.edu/

2 C. Alrabbaa, F. Baader, et al.

proofs presented in [3,5]. Initial prototypes of Evonne were presented in [6,10],
but since then, many improvements were implemented. While Evonne does
more than just visualizing proofs, this paper focuses on the proof component
of Evonne: specifically, we give a brief overview of the interface for exploring
proofs, describe the proof generation methods implemented in the back-end,
and present an experimental evaluation of these proofs generation methods in
terms of proof size and run time. The improved back-end uses Java libraries
that extract proofs using various methods, such as from the Elk calculus, or
forgetting-based proofs [3] using the forgetting tools Lethe [17] and Fame [21]
in a black-box fashion. The new front-end is visually more appealing than the
prototypes presented in [6, 10], and allows to inspect and explore proofs using
various interaction techniques, such as zooming and panning, collapsing and ex-
panding, text manipulation, and compactness adjustments. Additional features
include the minimization of the generated proofs according to various measures
and the possibility to select a known signature that is used to automatically
hide parts of the proofs that are assumed to be obvious for users with certain
previous knowledge. Our evaluation shows that proof sizes can be significantly
reduced in this way, making the proofs more user-friendly. Evonne can be tried
and downloaded at https://imld.de/evonne. The version of Evonne described
here, as well as the data and scripts used in our experiments, can be found at [2].

2 Preliminaries

We recall some relevant notions for DLs; for a detailed introduction, see [8].
DLs are decidable fragments of first-order logic (FOL) with a special, variable-
free syntax, and that use only unary and binary predicates, called concept names
and role names, respectively. These can be used to build complex concepts, which
correspond to first-order formulas with one free variable, and axioms correspond-
ing to first-order sentences. Which kinds of concepts and axioms can be built
depends on the expressivity of the used DL. Here we mainly consider the light-
weight DL ELH and the more expressive ALCH. We have the usual notion of
FOL entailment O |= α of an axiom α from a finite set of axioms O, called an
ontology. Of special interest are entailments of atomic CIs (concept inclusions)
of the form A ⊑ B, where A and B are concept names. Following [3], we define
proofs of O |= α as finite, acyclic, directed hypergraphs, where vertices v are
labeled with axioms ℓ(v) and hyperedges are of the form (S, d), with S a set of
vertices and d a vertex such that {ℓ(v) | v ∈ S} |= ℓ(d); the leaves of a proof
must be labeled by elements of O and the root by α. In this paper, all proofs
are trees, i.e. no vertex can appear in the first component of multiple hyperedges
(see Fig. 1).

3 The Graphical User Interface

The user interface of Evonne is implemented as a web application. To support
users in understanding large proofs, they are offered various layout options and

https://imld.de/evonne

Interactive Proof Visualization for DLs 3

Fig. 1: Overview of Evonne - a condensed proof in the bidirectional layout

interaction components. The proof visualization is linked to a second view show-
ing the context of the proof in a relevant subset of the ontology. In this ontology
view, interactions between axioms are visualized, so that users can understand
the context of axioms occurring in the proof. The user can also examine possible
ways to eliminate unwanted entailments in the ontology view. The focus of this
system description, however, is on the proof component: we describe how the
proofs are generated and how users can interact with the proof visualization.
For details on the ontology view, we refer the reader to the workshop paper [6],
where we also describe how Evonne supports ontology repair.

Initialization. After starting Evonne for the first time, users create a new
project, for which they specify an ontology file. They can then select an en-
tailed atomic CI to be explained. The user can choose between different proof
methods, and optionally select a signature of known terms (cf. Sec. 4), which
can be generated using the term selection tool Protégé-TS [14].

Layout. Proofs are shown as graphs with two kinds of vertices: colored vertices
for axioms, gray ones for inference steps. By default, proofs are shown using a
tree layout. To take advantage of the width of the display when dealing with
long axioms, it is possible to show proofs in a vertical layout, placing axioms
linearly below each other, with inferences represented through edges on the side
(without the inference vertices). It is possible to automatically re-order vertices
to minimize the distance between conclusion and premises in each step. The third
layout option is the bidirectional layout (see Fig. 1), a tree layout where, initially,
the entire proof is collapsed into a magic vertex that links the conclusion directly
to its justification, and from which individual inference steps can be pulled out
and pushed back from both directions.

4 C. Alrabbaa, F. Baader, et al.

Exploration. In all views, each vertex is equipped with multiple functionalities
for exploring a proof. For proofs generated with Elk, clicking on an inference
vertex shows the inference rule used, and the particular inference with relevant
sub-elements highlighted in different colors. Axiom vertices show different button
(, , ,) when hovered over. In the standard tree layout, users can hide sub-
proofs under an axiom (). They can also reveal the previous inference step ()
or the entire-sub-proof (). In the vertical layout, the button () highlights and
explains the inference of the current axiom. In the bidirectional layout, the arrow
buttons are used for pulling inference steps out of the magic vertex, as well as
pushing them back in.

Presentation. A minimap allows users to keep track of the overall structure
of the proof, thus enriching the zooming and panning functionality. Users can
adjust width and height of proofs through the options side-bar. Long axiom
labels can be shortened in two ways: either by setting a fixed size to all vertices,
or by abbreviating names based on capital letters. Afterwards, it is possible to
restore the original labels individually.

4 Proof Generation

To obtain the proofs that are shown to the user, we implemented different proof
generation techniques, some of which were initially described in [3]. For ELH
ontologies, proofs can be generated natively by the DL reasoner Elk [16]. These
proofs use rules from the calculus described in [16]. We apply the Dijkstra-
like algorithm introduced in [4, 5] to compute a minimized proof from the Elk
output. This minimization can be done w.r.t. different measures, such as the size,
depth, or weighted sum (where each axiom is weighted by its size), as long as
they are monotone and recursive [5]. For ontologies outside of the ELH fragment,
we use the forgetting-based approach originally described in [3], for which we
now implemented two alternative algorithms for computing more compact proofs
(Sec. 4.1). Finally, independently of the proof generation method, one can specify
a signature of known terms. This signature contains terminology that the user
is familiar with, so that entailments using only those terms do not need to be
explained. The condensation of proofs w.r.t. signatures is described in Sec. 4.2.

4.1 Forgetting-Based Proofs

In a forgetting-based proof, proof steps represent inferences on concept or role
names using a forgetting operation. Given an ontology O and a predicate name x,
the result O−x of forgetting x in O does not contain any occurrences of x, while
still capturing all entailments of O that do not use x [18]. In a forgetting-based
proof, an inference takes as premises a set P of axioms and has as conclusion
some axiom α ∈ P−x (where a particular forgetting operation is used to com-
pute P−x). Intuitively, α is obtained from P by performing inferences on x. To
compute a forgetting-based proof, we have to forget the names occuring in the

Interactive Proof Visualization for DLs 5

ontology one after the other, until only the names occurring in the statement
to be proved are left. For the forgetting operation, the user can select between
two implementations: Lethe [17] (using the method supporting ALCH) and
Fame [21] (using the method supporting ALCOI). Since the space of possible
inference steps is exponentially large, it is not feasible to minimize proofs after
their computation, as we do for EL entailments, which is why we rely on heuris-
tics and search algorithms to generate small proofs. Specifically, we implemented
three methods for computing forgetting-based proofs: HEUR tries to find proofs
fast, SYMB tries to minimize the number of predicates forgotten in a proof, with
the aim of obtaining proofs of small depth, and SIZE tries to optimize the size of
the proof. The heuristic method HEUR is described in [3], and its implementation
has not been changed since then. The search methods SYMB and SIZE are new
(details can be found in the extended version [1]).

4.2 Signature-Based Proof Condensation

When inspecting a proof over a real-world ontology, different parts of the proof
will be more or less familiar to the user, depending on their knowledge about
the involved concepts or their experience with similar inference steps in the past.
For CIs between concepts for which a user has application knowledge, they may
not need to see a proof, and consequently, sub-proofs for such axioms can be
automatically hidden. We assume that the user’s knowledge is given in the form
of a known signature Σ and that axioms that contain only symbols from Σ do
not need to be explained. The effect can be seen in Fig. 1 through the “known”-
inference on the left, where Σ contains SebaceousGland and Gland. The known
signature is taken into consideration when minimizing the proofs, so that proofs
are selected for which more of the known information can be used if convenient.
This can be easily integrated into the Dijsktra approach described in [3], by
initially assigning to each axiom covered by Σ a proof with a single vertex.

5 Evaluation

For Evonne to be usable in practice, it is vital that proofs are computed effi-
ciently and that they are not too large. An experimental evaluation of minimized
proofs for EL and forgetting-based proofs obtained with Fame and Lethe is pro-
vided in [3]. We here present an evaluation of additional aspects: 1) a comparison
of the three methods for computing forgetting-based proofs, and 2) an evalua-
tion on the impact of signature-based proof condensation. All experiments were
performed on Debian Linux (Intel Core i5-4590, 3.30GHz, 23GB Java heap size).

5.1 Minimal Forgetting-Based Proofs

To evaluate forgetting-based proofs, we extracted ALCH “proof tasks” from the
ontologies in the 2017 snapshot of BioPortal [19]. We restricted all ontologies
to ALCH and collected all entailed atomic CIs α, for each of which we computed

6 C. Alrabbaa, F. Baader, et al.

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

HEUR

S
Y
M
B
/
S
I
Z
E

Proof size

SYMB

SIZE

102 103 104 105 106
102

103

104

105

106

HEUR

S
Y
M
B
/
S
I
Z
E

Run time (ms)

Fig. 2: Run times and proof sizes for different forgetting-based proof methods.
Marker size indicates how often each pattern occurred in the BioPortal snapshot.
Instances that timed out were assigned size 0.

the union U of all their justifications. We identified pairs (α,U) that were isomor-
phic modulo renaming of predicates, and kept only those patterns (α,U) that
contained at least one axiom not expressible in ELH. This was successful in 373
of the ontologies4 and resulted in 138 distinct justification patterns (α,U), repre-
senting 327 different entailments in the BioPortal snapshot. We then computed
forgetting-based proofs for U |= α with our three methods using Lethe, with a
5-minute timeout. This was successful for 325/327 entailments for the heuristic
method (HEUR), 317 for the symbol-minimizing method (SYMB), and 279 for the
size-minimizing method (SIZE). In Fig. 2 we compare the resulting proof sizes
(left) and the run times (right), using HEUR as baseline (x-axis). HEUR is indeed
faster in most cases, but SIZE reduces proof size by 5% on average compared to
HEUR, which is not the case for SYMB. Regarding proof depth (not shown in the fig-
ure), SYMB did not outperform HEUR on average, while SIZE surprisingly yielded
an average reduction of 4% compared to HEUR. Despite this good performance of
SIZE for proof size and depth, for entailments that depend on many or complex
axioms, computation times for both SYMB and SIZE become unacceptable, while
proof generation with HEUR mostly stays in the area of seconds.

5.2 Signature-Based Proof Condensation

To evaluate how much hiding proof steps in a known signature decreases proof
size in practice, we ran experiments on the large medical ontology SNOMEDCT
(International Edition, July 2020) that is mostly formulated in ELH.5 As signa-
tures we used SNOMEDCT Reference Sets,6 which are restricted vocabularies

4 The other ontologies could not be processed in this way within the memory limit.
5 https://www.snomed.org/
6 https://confluence.ihtsdotools.org/display/DOCRFSPG/2.3.+Reference+Set

https://www.snomed.org/
https://confluence.ihtsdotools.org/display/DOCRFSPG/2.3.+Reference+Set

Interactive Proof Visualization for DLs 7

0 50 100 150 200 250 300
0

50

100

150

200

250

300

Original

C
o
n
d
en

se
d

Proof Size

DEF

GPFP

GPS

IPS

0 20 40 60 80 100
0

20

40

60

80

100

Signature Coverage (%)

R
a
ti
o
o
f
P
ro
o
f
S
iz
e
(%

)

Original vs. Condensed

Fig. 3: Size of original and condensed proofs (left). Ratio of proof size depending
on the signature coverage (right).

for specific use cases. We extracted justifications similarly to the previous exper-
iment, but did not rename predicates and considered only proof tasks that use
at least 5 symbols from the signature, since otherwise no improvement can be
expected by using the signatures. For each signature, we randomly selected 500
out of 6.689.452 proof tasks (if at least 500 existed). This left the 4 reference sets
General Practitioner/Family Practitioner (GPFP), Global Patient Set (GPS), In-
ternational Patient Summary (IPS), and the one included in the SNOMEDCT
distribution (DEF). For each of the resulting 2.000 proof tasks, we used Elk [16]
and our proof minimization approach to obtain (a) a proof of minimal size and
(b) a proof of minimal size after hiding the selected signature. The distribution
of proof sizes can be seen in Fig. 3. In 770/2.000 cases, a smaller proof was gener-
ated when using the signature. In 91 of these cases, the size was even be reduced
to 1, i.e. the target axiom used only the given signature and therefore nothing
else needed to be shown. In the other 679 cases with reduced size, the average
ratio of reduced size to original size was 0.68–0.93 (depending on the signature).
One can see that this ratio is correlated with the signature coverage of the origi-
nal proof (i.e. the ratio of signature symbols to total symbols in the proof), with
a weak or strong correlation depending on the signature (r between −0.26 and
−0.74). However, a substantial number of proofs with relatively high signature
coverage could still not be reduced in size at all (see the top right of the right
diagram). In summary, we can see that signature-based condensation can be
useful, but this depends on the proof task and the signature. We also conducted
experiments on the Galen ontology,7 with comparable results (see the extended
version of this paper [1]).

7 https://bioportal.bioontology.org/ontologies/GALEN

https://bioportal.bioontology.org/ontologies/GALEN

8 C. Alrabbaa, F. Baader, et al.

6 Conclusion

We have presented and compared the proof generation and presentation methods
used in Evonne, a visual tool for explaining entailments of DL ontologies. While
these methods produce smaller or less deep proofs, which are thus easier to
present, there is still room for improvements. Specifically, as the forgetting-based
proofs do not provide the same degree of detail as the Elk proofs, it would be
desirable to also support methods for more expressive DLs that generate proofs
with smaller inference steps. Moreover, our current evaluation focuses on proof
size and depth—to understand how well Evonne helps users to understand
DL entailments, we would also need a qualitative evaluation of the tool with
potential end-users. We are also working on explanations for non-entailments
using countermodels [7] and a plugin for the ontology editor Protégé that is
compatible with the PULi library and Proof Explanation plugin presented in [15],
which will support all proof generation methods discussed here and more.8

Acknowledgements This work was supported by the German Research Foun-
dation (DFG) in Germany’s Excellence Strategy: EXC-2068, 390729961 – Clus-
ter of Excellence “Physics of Life” and EXC 2050/1, 390696704 – Cluster of
Excellence “Centre for Tactile Internet” (CeTI) of TU Dresden, by DFG grant
389792660 as part of TRR 248 – CPEC, by the AI competence center ScaDS.AI
Dresden/Leipzig, and the DFG Research Training Group QuantLA, GRK 1763.

References

1. Alrabbaa, C., Baader, F., Borgwardt, S., Dachselt, R., Koopmann, P., Méndez, J.:
Evonne: Interactive Proof Visualization for Description Logics (System Descrip-
tion) – Extended Version (2022). https://doi.org/10.48550/ARXIV.2205.09583

2. Alrabbaa, C., Baader, F., Borgwardt, S., Dachselt, R., Koopmann, P., Méndez, J.:
Evonne: Interactive Proof Visualization for Description Logics (System Descrip-
tion) - IJCAR22 - Resources (May 2022). https://doi.org/10.5281/zenodo.6560603

3. Alrabbaa, C., Baader, F., Borgwardt, S., Koopmann, P., Kovtunova, A.: Finding
small proofs for description logic entailments: Theory and practice. In: Albert, E.,
Kovács, L. (eds.) Proceedings of the 23rd International Conference on Logic for
Programming, Artificial Intelligence and Reasoning (LPAR 2020). EPiC Series in
Computing, vol. 73, pp. 32–67. EasyChair (2020). https://doi.org/10.29007/nhpp

4. Alrabbaa, C., Baader, F., Borgwardt, S., Koopmann, P., Kovtunova, A.: On the
complexity of finding good proofs for description logic entailments. In: Borgwardt,
S., Meyer, T. (eds.) Proceedings of the 33rd International Workshop on Description
Logics (DL 2020). CEUR Workshop Proceedings, vol. 2663. CEUR-WS.org (2020),
http://ceur-ws.org/Vol-2663/paper-1.pdf

5. Alrabbaa, C., Baader, F., Borgwardt, S., Koopmann, P., Kovtunova, A.: Finding
good proofs for description logic entailments using recursive quality measures. In:
Platzer, A., Sutcliffe, G. (eds.) Proceedings of the 28th International Conference on
Automated Deduction (CADE-28). Lecture Notes in Computer Science, vol. 12699,
pp. 291–308. Springer (2021). https://doi.org/10.1007/978-3-030-79876-5 17

8 https://github.com/de-tu-dresden-inf-lat/evee

https://doi.org/10.48550/ARXIV.2205.09583
https://doi.org/10.48550/ARXIV.2205.09583
https://doi.org/10.5281/zenodo.6560603
https://doi.org/10.5281/zenodo.6560603
https://doi.org/10.29007/nhpp
https://doi.org/10.29007/nhpp
http://ceur-ws.org/Vol-2663/paper-1.pdf
https://doi.org/10.1007/978-3-030-79876-5_17
https://doi.org/10.1007/978-3-030-79876-5_17
https://github.com/de-tu-dresden-inf-lat/evee

Interactive Proof Visualization for DLs 9

6. Alrabbaa, C., Baader, F., Dachselt, R., Flemisch, T., Koopmann, P.: Visualising
proofs and the modular structure of ontologies to support ontology repair. In:
Borgwardt, S., Meyer, T. (eds.) Proceedings of the 33rd International Workshop
on Description Logics (DL 2020). CEUR Workshop Proceedings, vol. 2663. CEUR-
WS.org (2020), http://ceur-ws.org/Vol-2663/paper-2.pdf

7. Alrabbaa, C., Hieke, W., Turhan, A.: Counter model transformation for explaining
non-subsumption in EL. In: Beierle, C., Ragni, M., Stolzenburg, F., Thimm, M.
(eds.) Proceedings of the 7thWorkshop on Formal and Cognitive Reasoning. CEUR
Workshop Proceedings, vol. 2961, pp. 9–22. CEUR-WS.org (2021), http://ceur-ws.
org/Vol-2961/paper 2.pdf

8. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description
Logic. Cambridge University Press (2017). https://doi.org/10.1017/9781139025355

9. Fiedler, A.: Natural language proof explanation. In: Mechanizing Mathematical
Reasoning, Essays in Honor of Jörg H. Siekmann on the Occasion of His 60th Birth-
day. pp. 342–363. Springer (2005). https://doi.org/10.1007/978-3-540-32254-2 20

10. Flemisch, T., Langner, R., Alrabbaa, C., Dachselt, R.: Towards designing a tool
for understanding proofs in ontologies through combined node-link diagrams. In:
Ivanova, V., Lambrix, P., Pesquita, C., Wiens, V. (eds.) Proceedings of the Fifth
International Workshop on Visualization and Interaction for Ontologies and Linked
Data (VOILA 2020). CEUR Workshop Proceedings, vol. 2778, pp. 28–40. CEUR-
WS.org (2020), http://ceur-ws.org/Vol-2778/paper3.pdf

11. Horacek, H.: Presenting proofs in a human-oriented way. In: Ganzinger, H.
(ed.) 16th International Conference on Automated Deduction (CADE-16). Lec-
ture Notes in Computer Science, vol. 1632, pp. 142–156. Springer (1999). https:
//doi.org/10.1007/3-540-48660-7 10

12. Horridge, M., Parsia, B., Sattler, U.: Explanation of OWL entailments in Protege 4.
In: Bizer, C., Joshi, A. (eds.) Proceedings of the Poster and Demonstration Session
at the 7th International Semantic Web Conference (ISWC 2008). CEUR Work-
shop Proceedings, vol. 401. CEUR-WS.org (2008), http://ceur-ws.org/Vol-401/
iswc2008pd submission 47.pdf

13. Horridge, M., Parsia, B., Sattler, U.: Justification oriented proofs in OWL. In:
Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks,
I., Glimm, B. (eds.) Proc. of the 9th International Semantic Web Conference (ISWC
2010). Lecture Notes in Computer Science, vol. 6496, pp. 354–369. Springer (2010).
https://doi.org/10.1007/978-3-642-17746-0 23

14. Hyland, I., Schmidt, R.A.: Protégé-TS: An OWL ontology term selection tool. In:
Borgwardt, S., Meyer, T. (eds.) Proceedings of the 33rd International Workshop
on Description Logics (DL 2020). CEUR Workshop Proceedings, vol. 2663. CEUR-
WS.org (2020), http://ceur-ws.org/Vol-2663/paper-12.pdf

15. Kazakov, Y., Klinov, P., Stupnikov, A.: Towards reusable explanation services in
protege. In: Artale, A., Glimm, B., Kontchakov, R. (eds.) Proceedings of the 30th
International Workshop on Description Logics (DL 2017). CEUR Workshop Pro-
ceedings, vol. 1879. CEUR-WS.org (2017), http://ceur-ws.org/Vol-1879/paper31.
pdf

16. Kazakov, Y., Krötzsch, M., Simancik, F.: The incredible ELK - from polynomial
procedures to efficient reasoning with EL ontologies. J. Autom. Reason. 53(1),
1–61 (2014). https://doi.org/10.1007/s10817-013-9296-3

17. Koopmann, P.: LETHE: Forgetting and uniform interpolation for expressive de-
scription logics. Künstliche Intell. 34(3), 381–387 (2020). https://doi.org/10.1007/
s13218-020-00655-w

http://ceur-ws.org/Vol-2663/paper-2.pdf
http://ceur-ws.org/Vol-2961/paper_2.pdf
http://ceur-ws.org/Vol-2961/paper_2.pdf
https://doi.org/10.1017/9781139025355
https://doi.org/10.1017/9781139025355
https://doi.org/10.1007/978-3-540-32254-2_20
https://doi.org/10.1007/978-3-540-32254-2_20
http://ceur-ws.org/Vol-2778/paper3.pdf
https://doi.org/10.1007/3-540-48660-7_10
https://doi.org/10.1007/3-540-48660-7_10
https://doi.org/10.1007/3-540-48660-7_10
https://doi.org/10.1007/3-540-48660-7_10
http://ceur-ws.org/Vol-401/iswc2008pd_submission_47.pdf
http://ceur-ws.org/Vol-401/iswc2008pd_submission_47.pdf
https://doi.org/10.1007/978-3-642-17746-0_23
https://doi.org/10.1007/978-3-642-17746-0_23
http://ceur-ws.org/Vol-2663/paper-12.pdf
http://ceur-ws.org/Vol-1879/paper31.pdf
http://ceur-ws.org/Vol-1879/paper31.pdf
https://doi.org/10.1007/s10817-013-9296-3
https://doi.org/10.1007/s10817-013-9296-3
https://doi.org/10.1007/s13218-020-00655-w
https://doi.org/10.1007/s13218-020-00655-w
https://doi.org/10.1007/s13218-020-00655-w
https://doi.org/10.1007/s13218-020-00655-w

10 C. Alrabbaa, F. Baader, et al.

18. Koopmann, P., Schmidt, R.A.: Forgetting concept and role symbols in ALCH-
ontologies. In: McMillan, K.L., Middeldorp, A., Voronkov, A. (eds.) Proc. of the
19th International Conference on Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR-19). Lecture Notes in Computer Science, vol. 8312, pp.
552–567. Springer (2013). https://doi.org/10.1007/978-3-642-45221-5 37

19. Matentzoglu, N., Parsia, B.: Bioportal snapshot 30.03.2017 (Mar 2017). https:
//doi.org/10.5281/zenodo.439510

20. Reger, G., Suda, M.: Checkable proofs for first-order theorem proving. In: Reger,
G., Traytel, D. (eds.) 1st International Workshop on Automated Reasoning: Chal-
lenges, Applications, Directions, Exemplary Achievements (ARCADE 2017). EPiC
Series in Computing, vol. 51, pp. 55–63. EasyChair (2017). https://doi.org/10.
29007/s6d1

21. Zhao, Y., Schmidt, R.A.: FAME: an automated tool for semantic forgetting in
expressive description logics. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.)
Proceedings of the 9th International Joint Conference on Automated Reasoning
(IJCAR 2018). Lecture Notes in Computer Science, vol. 10900, pp. 19–27. Springer
(2018). https://doi.org/10.1007/978-3-319-94205-6 2

https://doi.org/10.1007/978-3-642-45221-5_37
https://doi.org/10.1007/978-3-642-45221-5_37
https://doi.org/10.5281/zenodo.439510
https://doi.org/10.5281/zenodo.439510
https://doi.org/10.5281/zenodo.439510
https://doi.org/10.5281/zenodo.439510
https://doi.org/10.29007/s6d1
https://doi.org/10.29007/s6d1
https://doi.org/10.29007/s6d1
https://doi.org/10.29007/s6d1
https://doi.org/10.1007/978-3-319-94205-6_2
https://doi.org/10.1007/978-3-319-94205-6_2

	Evonne: Interactive Proof Visualization for Description Logics (System Description)

