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Abstract. Ontologies provide the logical underpinning for the Semantic
Web, but their consequences can sometimes be surprising and must be
explained to users. A promising kind of explanations are proofs generated
via automated reasoning. We report about a series of studies with the
purpose of exploring how to explain such formal logical proofs to humans.
We compare different representations, such as tree- vs. text-based visu-
alizations, but also vary other parameters such as length, interactivity,
and the shape of formulas. We did not find evidence to support our
main hypothesis that different user groups can understand different proof
representations better. Nevertheless, when participants directly compared
proof representations, their subjective rankings showed some tendencies
such as that most people prefer short tree-shaped proofs. However, this
did not impact the user’s understanding of the proofs as measured by an
objective performance measure.

Introduction

Explanations of automated decisions are currently an important topic of re-
search. However, apart from the discussion about how explainable different AI
methods are, the main task of explanations is understanding, i.e. that the infor-
mation transmitted is actually received by the human user [32]. Even methods
that are “explainable by design”, such as logic-based ones, are not necessarily
understandable by design when presenting them to laypersons.

In the area of Description Logics (DLs) [10], research on explanations first
focused on proofs for explaining logical consequences [13,30], but it was quickly
realized that often it is enough to point out a minimal set of responsible axioms
from the ontology, i.e. so-called justifications [11, 21,37]. While justifications are
already very helpful for designing or debugging an ontology, depending on the
complexity of the inference and the expertise of the user, more detailed proofs
are needed to fully understand why the consequence follows from the axioms.
Therefore, researchers have thought about providing (partial) proofs [23, 26] and
developed more user-friendly presentation formats, e.g. using natural language
instead of logical formulas [33–35].

https://orcid.org/0000-0002-2925-1765
https://orcid.org/0000-0003-0924-8478
https://orcid.org/0000-0001-9936-0943


2 C. Alrabbaa, S. Borgwardt, A. Hirsch et al.

Following a line of research on the understandability of description logic
inferences and proofs [3–5,18,23,26,33,34], in this paper we compare the usefulness
of different proof representations. In an effort to understand which approaches are
most promising for improving explainability, we studied which representations of
DL proofs are preferred by users (with and without prior experience in logic) and
which of them actually lead to an increased performance when doing logic-related
tasks. In this paper, we summarise the lessons learned after conducting four
experiments. All studies use proofs in a traditional tree shape, e.g. based on
consequence-based reasoning procedures [27,39], and linearized translations of
these proofs into text, e.g. as done by various verbalization techniques [8, 33, 35].
These conditions are representative of the state-of-the-art in DL explanations.
We hand-crafted all proofs for the studies, but tried to stay as close as possible to
the actual output of these systems. The main goal throughout these studies was
to find differences in user preferences between different user groups. Our main
hypothesis was that users with a different level of experience with logic would work
better with different proof representations, e.g. text- vs. tree-based ones. While
this was not confirmed, we gained some insights about subjective preferences of
proof presentations, e.g. that short, tree-shaped proofs are preferred in general.
Related Work. Several approaches for converting description logic axioms
and proofs into textual representations have been developed and evaluated
[1,8,29,34,35]. For example, generation of verbalized explanations for non-trivial
derivations in a real world domain was tested on computer scientists in [35]. The
authors distinguish short and long textual explanations, but the participants’
opinions on conciseness turned out to be mixed and not too strong. In [29],
it has been confirmed that statements in a controlled natural language are
understood significantly better than the Manchester OWL Syntax, where DL
axioms are expressed by sentences with words like “SubTypeOf”, “DisjointWith”,
“HasDomain”, etc. Moreover, the experiment [1] has shown that the Manchester
syntax is not more effective than the formal DL syntax. Differently from previous
studies [33–35], in most of our experiments we directly compared textual and tree
proof formats. In [28], the authors look into various hybrid proof representations
and evaluate them in terms of understanding. In contrast to our work, they
focus on defeasible logics, they do not consider pure textual representations, and
the user evaluation involved postgraduate students. The work described in [17]
deals with explaining logical inconsistencies in a healthcare domain using natural
language, but it does not consider graphical proof representations.
More details and printable versions of the surveys are available online.3 Studies
I–III have previously been presented in workshop papers [7, 14].

Background

The proofs we use are loosely based on the DL ALCQ [10], but deep knowledge
of this logic is not required here. We denote DL statements (called axioms) by α

3 gitlab.perspicuous-computing.science/a.kovtunova/user-study-collection
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A ⊑ ∃r.⊤ A ⊑ ∀r.(B ⊓ C)
A ⊑ ∃r.(B ⊓ C) C ⊓ B ⊑ ⊥

A ⊑ ⊥

O = { A ⊑ ∃r.⊤,

C ⊓ B ⊑ ⊥,

A ⊑ ∀r.(B ⊓ C) }

Fig. 1. A proof for the unsatisfiability of A w.r.t. O, i.e. that O |= A ⊑ ⊥.

Table 1. Different proof representations for our experiments.

Text Length Tree proofs Domain
Study proofs Long Short DL syntax Arrows Real Nonsense Letters

I * * * * *
II * * *
III * * * *
IV * * * *

and ontologies, which are finite sets of axioms, by O. Let O be an ontology and α
be a consequence of O (written O |= α). The first step towards understanding
why this consequence holds is to compute justifications [11, 21,37], i.e. minimal
subsets J ⊆ O such that J |= α, which already point out the axioms from O
that are responsible for α. However, actually understanding why α follows
may require a more detailed proof. Informally, a proof is a tree consisting of
inference steps α1...αn

α , where each step is sound, i.e. {α1, . . . αn} |= α holds (see
Figure 1). Often, such a proof is built from the inference rules of an appropriate
calculus [9, 39]. However, there also exist approaches to generate DL proofs that
start with a justification, and extend it with intermediate axioms (lemmas) using
heuristics [21,22], concept interpolation [36], or forgetting [3].

It is important that proofs are neither too detailed nor too short. In fact, a
justification can itself be seen as a one-step proof of a consequence α, but if each
element of the justifications seems reasonable to the user, then it can be hard to
track down the precise interaction between these axioms that causes the problem.
Axioms may not always behave as the user expects, e.g. “every A has only rs that
are Bs” (A ⊑ ∀r.B) does not imply that “every A has an r that is a B” (A ⊑ ∃r.B).
On the other hand, too many small proof steps can also be detrimental for
understanding, because they are distracting. For example, it may happen that a
reasoner includes the trivial step C⊓B⊑⊥

B⊓C⊑⊥ in Figure 1 to make the two conjunctions
match syntactically, which may not be necessary for understanding the essence
of the proof. Apart from proof length, in our experiments we also use other ways
of varying the proof representations (see Table 1). For example, in Studies II–IV
we use a more flexible visualization of trees in which arrows are used instead of
horizontal lines (see the supplementary PDF file in the repository3).

A textual representation of a proof is necessarily a linearization, where the
inference steps are explained in a sequence, for example in a top-down left-right
order. A text corresponding to the tree proof in Figure 1 could be the following:
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Table 2. Overview of the experiments

1-on-1 Online4 # participants Avg. time Mean age Pay
Study interview survey male female non-binary (min) (SD)

I * 12 4 – 90 23.0 (1.71) 20 €
II * 56 45 – 29 24.5 (6.8) £ 5.20
III * 102 71 – 51 24.8 (8.2) £ 8.75
IV * 41 66 1 44 25.9 (6.9) £ 6.25

Since every A has an r and every A has only rs that are Bs and Cs, every
A has an r which is a B and a C. Since there is no object which is a C
and a B at the same time, there is no object of type A.

Other aspects in which a text differs from a proof tree are that conjunctions (e.g.
“since”, “and”) are used to illustrate proof steps and that statements may be
repeated if they are reused later.

We use the formal DL syntax for tree proofs only in the first experiment over
axioms expressing medical knowledge, e.g. the statement “there is no object which
is both a compound and an atom at the same time” is presented as the expression
Atom ⊓ Compound ⊑ ⊥. In the later experiments, we do not use real domains
to avoid interference from prior knowledge about the domain. We also adopt
the approach from [29,35] and avoid the formal syntax in order to include more
participants. For example, in Study IV, A ⊑ ∃r.⊤ would be shown as “Every A
has an r.” In the remaining two experiments, we use nonsense names that vaguely
look and sound English to enable more natural-sounding sentences, e.g. “Every
woal is munted only with luxis that are kakes” instead of “Every A has only rs
that are Bs and Cs” (A ⊑ ∀r.(B ⊓ C)); see also Table 1.
General Study Information. In Table 2 we summarize the demographic data
for the experiments. All study participants were at least 18 years old. For the
online surveys, we had to filter out participant answers of low quality. For this
purpose, attention check questions, e.g. “In this statement, please choose ‘No’.”
were introduced. To compute all quantitative analyses, IBM SPSS Statistics
(Version 26) for Windows [24] and the Macro PROCESS [20] was used. For all
hypotheses, we used a p-value threshold of 0.05.

Study I – Are Short Proofs Preferred?

We started our investigation of participants’ understanding of different proof
representations by interviewing participants. Here, we used both textual proofs
and classical tree proofs using DL syntax. To find out how detailed proofs should
be, we used shortened versions for each of tree and text representations, in which
some (easy) reasoning steps were omitted or merged. During the interviews, we
observed whether participants’ understanding differs between these four condition
4 The participants were recruited using Prolific (https://www.prolific.co/). No

restrictions on participant background were imposed.

https://www.prolific.co/
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combinations. Moreover, we wanted to investigate if experience in logic influences
the performance and preferences.
Conditions and Design. We used two different conditions with two levels
each. One condition was the representational form of the proof, which was either
text or tree. The other condition was the length of the proof, which was either
short or long. Thus, there were the four following condition combinations: Long
Text, Short Text, Long Tree, and Short Tree. We used a 2 × 2 within-subjects
design, which means that each participant saw all four representations on four
different proofs following a Latin square design.3 The independent variable was
the experience, while the dependent variable was the rating of the proofs.
Material. Proofs from the medical domain were chosen such that they represent
unintuitive consequences, e.g. the unsatisfiability of a concept name, or that an
amputation of a finger is also an amputation of the whole hand [12]. All four
examples were chosen from the literature on DL explanations [12, 25, 31, 38]. For
each of them, four different proof representations were manually created, not
automatically generated, to make them comparable in difficulty.

To make sure the participants really understood the proofs, a logic expert
reviewed the video of each participant after each session. We used the think-
aloud technique, so the expert was able to follow the participant’s thoughts and
rated the video based on the participant’s understanding on a scale from 1 (no
understanding) to 3 (complete understanding).

Further Information. To assess participants’ experience, we asked them how
they would rate their experience with propositional-, description-, and first-order
logic on a scale from 1 (no knowledge) to 5 (expert). We evaluated how they
rated the difficulty of each proof on a scale from 1 (very easy) to 5 (very difficult).
To compare the proof representations, at the end of the experiment we asked the
participants to rank the proofs based on their comprehensibility (first rank =
very easy, fourth rank = very difficult). It was possible to give several proofs the
same rank.
Participants (see Table 2). Our participants were recruited from under-
graduate and graduate university students with basic knowledge of logic, which
was required to understand the proofs. Screening criteria were familiarity with
first-order logic (e.g. through a lecture), a stable Internet connection and the
permission to record their handwriting and voice during the experiment. One
participant was excluded since they did not understand the proofs but rated them
as easy. The mean of the participant’s experience with propositional logic was
M = 3.25 (SD = 1.0), on a scale of 1 to 5. Furthermore, 37.5% of the participants
seldomly worked with propositional logic, while 31.3% worked with it often.
Hypotheses. We stated three hypotheses concerning the participants’ self-rating
of the difficulty of the proofs and their self-rated experience with logic.

Hypothesis 1 : It is easier to understand a short, concise explanation than a
longer version (in the same representation format).

Hypothesis 2 : Users with less experience in logic can understand the longer
text better than a short tree proof. This will be shown by a lower difficulty rating
of the long textual proof.
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Fig. 2. The participants’ ranking of conditions with 1 = very easy and 4 = very difficult

Hypothesis 3 : Users with more experience in logic can understand a long tree
proof better than a long text. This will be shown by a lower difficulty rating of
the long tree proof.
Results. For Hypothesis 1, a multiple linear regression with contrast coding (K1,
K2, K3) was conducted. K1 contrasted the textual representation against the
tree. K2 contrasted the short vs. long proofs and K3 the interaction between the
two general conditions. The three contrasts explained 14.2% of variance in the
rating after each proof, R2 = .14, F(3, 60) = 3.30, p < .05. Only K2 was found
to be a significant predictor in the linear regression, β = −.29, t(60) = −2.42,
p < .05. This means that the participants rated the shorter proofs as being easier
than the longer ones, which was independent of the presentation format. Thus,
Hypothesis 1 could be supported by our data.

For Hypotheses 2 and 3, we computed moderator analyses with the two
condition combinations as a predictor, the experience as a moderator variable
and the rating after each proof as the criterion. However, neither Hypothesis 2
nor 3 was supported by our data. Experience with logic did not make a difference
on the understanding of the different proof representations.

Additionally to the three hypotheses, we used Friedman’s test for comparing
the comprehensibility ranking of the proof representations at the end of the
experiment (first rank = very easy, fourth rank = very difficult). It revealed a
significant difference in the ranking of the condition combinations, χ2(3) = 15.29,
p < .01 with a moderate effect size (Kendall’s W = .32). For the post-hoc pairwise
comparisons, Bonferroni correction was used, which resulted in a p-threshold of
0.008, resulting in only two significant comparisons. The participants’ ranking of
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condition combinations is shown in Figure 2. The combination Short Text was
preferred over Long Text, Z = 1.53, p < .008. The median ranking for Short Text
and Long Text was 2 and 3.5, respectively. Additionally, Short Tree was preferred
over Long Text, Z = 1.50, p < .008. Short Tree had the lowest median ranking
with 1.5. Both comparisons showed moderate effect sizes with r = 0.38. The
median ranking for Long Tree was 2.

Study II – Connecting Cognitive Abilities and Proof
Understanding

Our first experiment revealed some weaknesses in our design choices. First, the
direct interviews with each person meant that we were only able to include
few participants. Therefore, in the following we designed our experiments using
automated surveys. Second, the choice of proofs using real domains was not
ideal, as sometimes participants immediately spotted axioms that were counter-
intuitive, without looking at the proof. This is why we started to use nonsense
domains that could not interfere with participants’ prior knowledge. Last but
not least, the self-rating of experience in logic may be influenced by participants’
confidence or a fear of negative evaluation. Thus, we wanted to replace the
subjective experience rating by a more objective measure of an individual’s
ability to understand logical proofs. To evaluate the suitability of standardized
tests for our purposes, we conducted the following experiment comparing the
International Cognitive Ability Resource (ICAR165) [16] questionnaire against
the performance on tasks related to DL proofs.
Design. We used LimeSurvey6 for hosting our online survey. Since we did not
pre-screen our participants for experience with logic, we included an introduction
explaining the structure of proof trees. In order to exclude the effect of tiredness,
the order of the ICAR16 questions and the proof tasks was randomized.
Material. To assess the participants’ cognitive abilities, the abbreviated form
of ICAR16 was applied. It consists of 16 questions equally distributed over
four types: matrix reasoning, letter and number series, verbal reasoning, and
3-dimensional rotation. In the end, a mean score was calculated by coding correct
answers with 1 and incorrect answers with 0. Thus, the maximum score was 1,
while the minimal score was 0. The internal consistency of ICAR16 is α = .81 [16].

To test the performance with logical reasoning, participants had to solve
two tasks. The first described a set of axioms (in natural language) and they
should decide which of the given statements follow from the axioms. Each of the
statements could be marked as “follows”, “does not follow” or “I do not know”.
In the second task, they were given a tree proof that contained a blank node,
and they were asked which of some given statements would be valid labels for
the node in the context of the proof (“yes”, “no”, “I do not know”). The score of

5 https://icar-project.com/
6 https://www.limesurvey.org/

https://icar-project.com/
https://www.limesurvey.org/
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the performance in both tasks was calculated as the number of correct answers.
The highest possible score was 24.

Further Information. As before we asked participants about their experience
with propositional logic and their difficulty rating of each task.
Participants (see Table 2). We did not exclude any participants based on
the attention checks because no one missed more than one attention check. The
mean of the participants’ self-reported experience with propositional logic was
M = 1.83 (SD = 1.18), on a scale of 1 to 5. Additionally, 56.4% of the participants
had never worked with propositional logic before.
Hypothesis. The only hypothesis was that the ICAR16 score predicts the
performance in the logical tasks.
Descriptive Results. The mean of the ICAR16 scores was M = 0.55 (SD = 0.24)
with the participants’ performance being spread in a normal distribution. The
maximal achieved score was 1, the minimum was 0. The mean of the score for
both logical reasoning tasks was M = 15.99 (SD = 3.3), with the maximum score
being 23 and the minimum 6. The performance in these tasks was also normally
distributed across the participants.
Regression analysis. A multiple regression analysis was carried out using the
performance in the logical reasoning tasks as the dependent and the ICAR16 per-
formance as the independent variable. The ICAR16 score significantly predicted
the performance in the logical tasks (F(1, 99) = 43.15, p < .001). The ICAR16
explained 30% of the variation in the score of the logical tasks (R2 = .3, p < .001),
which can be interpreted as large effect size/high explained variance [15].

Study III – Logical Abilities and Proof Representation
Preferences

We now return to our main research question of which proof representation is more
preferred and results in a better performance in certain groups of participants. For
this experiment we investigated interactive, static, tree and textual proof formats.
Given that ICAR16 scores are highly correlated with performance on logical
reasoning tasks, we used it in our next experiment to distinguish participants
by their logical ability level. The goal was to find a difference in the (subjective)
preferences and (objective) performance on each proof representation, depending
on the user’s level of logical reasoning ability.
Conditions and Design. We used two different conditions with two levels
each. One condition was the proof representation; either tree-shaped or textual.
The other condition was the interactivity of the proof representation; either
static or interactive. Thus, there were the four following condition combinations:
(ir) interactive tree, (sr) static tree, (ix) interactive text, and (sx) static
text. We again used a 2 × 2 within-subjects design with a Latin square design.
The independent variable in the main study is the ICAR16 score. Objective
performance (the number of correct answers) and subjective rating of proofs as
well as proof rankings are dependent variables.
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The survey was again implemented using LimeSurvey. As in the first experi-
ment, the order of the ICAR16 and the proof question groups was randomized.
Moreover, each participant was randomly assigned to one of the four groups ac-
cording to the Latin square. Before the proof tasks, there was a short explanation
and a small training example for both interactive formats (ir, ix).

Material. We again used ICAR16 to assess the participants’ cognitive abilities.
We developed four artificial proofs of roughly the same difficulty level. The

statements of each proof were given in textual form (also for (ir, sr)) using
nonsense words. The (ir) version started with only the final conclusion visible,
and participants could interact with each node to reveal or hide its predecessors
in the tree. The (ix) worked in a different way. At the beginning, participants
saw only the first sentence, i.e. the first assumption. The could then reveal the
next sentences step-by-step, and also highlight the premises that were used to
obtain a selected statement. Moreover, both interactive representations, (ir,ix),
could be freely zoomed and panned. The interactive proofs were provided by a
prototypical web application 7 for explaining DL entailments [2, 6, 19]. For this
study, it was extended by a (linear) textual representation of proofs. The modes
of interaction were kept relatively basic to avoid overwhelming participants who
had little experience with logic and proofs.

For each proof, there were three questions. Each question had 6 answer options
(plus “none of these” and “I don’t know”). Questions were of the form “Which
of the following would be a correct replacement for the deduction ‘XYZ’ in the
proof?” or “Which parts of the following summary/reformulation of the proof
are incorrect?” In the end, a score was calculated based on the number of correct
answers. Thus, the highest possible score was 12.

Further Information. We again asked participants about the experience with
propositional logic and the difficulty rating of proofs, as well as a ranking of all
four conditions they had seen according to their relative comprehensibility.

Participants (see Table 2). The mean of the participants’ experience with
propositional logic was M = 1.76 (SD = 1) on a scale between 1 and 5. Fur-
thermore, 60.7% of the participants indicated that they had never worked with
propositional logic. Due to technical errors, the proofs were not displayed for
3 participants, which were excluded. Four attention checks were implemented
in the study. 13 participants with more than 2 incorrectly answered attention
checks were excluded from the analysis.

Hypotheses. We stated two hypotheses concerning the preferences and perfor-
mance differences between the proof representations.

Hypothesis 1 : It is easier to understand interactive proofs than static proofs.
This will be shown by an increase in performance and by a higher comprehensi-
bility rating for the interactive conditions.

Hypothesis 2 : The relative level of comprehensibility of a tree-shaped vs.
textual proof depends on the cognitive abilities. This will be shown by a difference

7 https://imld.de/evonne

https://imld.de/evonne
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Fig. 3. Rankings of all 173 participants (light bars) and of the 83 participants with
high ICAR scores (dark bars) for each condition combination.

in performance and difficulty rating between the condition combinations and in
the final comprehensibility ranking, in dependence of the ICAR16 scores.
Results. After the assumptions were considered as tenable, a regression analysis
was carried out, to confirm the results of Study II. Again, the predictive effect of
the ICAR16 on the performance in the proofs was significant, F(1, 171) = 24.8,
p < .001. With an R2 = .13 (corrected R2 = .12), the model shows a moderate
explained variance (Cohen, 1988).

A median split (mdn = .44) was carried out to divide the participants into
those who achieved high scores in the ICAR16 and thus presumably also have
higher cognitive abilities and those who scored lower.

For ICAR16 the mean was M = 0.46, while it was M = 2.36 for the proof
performance. The group containing those participants who scored low in the
ICAR16 achieved M = 1.9 across all proofs. In contrast, the group of participants
with high ICAR16 scores showed an overall proof performance of M = 2.87.
Performance and Comprehensibility Ratings. To compare the proof per-
formance and the subjective comprehensibility ratings after each proof, we ran a
multivariate analysis of variance (MANOVA). All the assumptions were consid-
ered as tenable. We found no significant overall difference between the conditions
across the two ICAR groups, Pillai’s Trace = .01, F(6, 1376) = 1.41, p = .206.
Also when looking at the groups separately, we could not find any significant
differences between the representations, neither in the low-ICAR group (Pillai’s
Trace = .03, F(6, 712) = 1.90, p = .078) nor in the group with high scores (Pillai’s
Trace = .01, F(6, 656) = .53, p = .788). Thus, we could not detect differences
in the comprehensibility ratings as well as the performance between the various
representations in each cognitive ability group and across the two groups.
Ranking. To evaluate the ranking of the four representations (1 = most com-
prehensible, 4 = least comprehensible), we ran a Friedman’s test revealing a
significant difference across both ICAR groups, χ2(3) = 17.16, p = .001, n = 173
(see Figure 3, light bars). Post-hoc pairwise comparisons were Bonferroni-corrected
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and showed three significant comparisons. The (ir) was significantly more often
ranked higher than the (ix) (z = .40, p = .024, Cohen’s effect size r = .03) and
also higher than static text (z = -.50, p = .002, Cohen’s effect size r = .04).
The (sr) representation was also ranked significantly higher than (sx), z = .39,
p = .032, Cohen’s effect size r = .03 (see Figure 3).

A Friedman’s test in the group with high ICAR performance showed a signifi-
cant difference in the ranking of representations, χ2(3) = 12.73, p = .005, n = 83
(see Figure 3, dark bars). Bonferroni-corrected post-hoc pairwise comparisons
revealed two significant comparisons. There is a significant difference between (sr)
and (sx) (z = .59, p = .019, Cohen’s effect size r = .06) with (sr) being ranked
higher than (sx). The (ir) was also preferred before (sx), (z = -.54, p = .041,
Cohen’s effect size r = .06).

The low-ICAR-performers showed no significant difference in the ranking of
representations, χ2(3) = 6.70, p = .082, n = 90.

Study IV – Final Experiment

The main shortcoming of the previous experiment was the difficulty of the proof
tasks, which could be seen in the mean score of 2.36 out of 12. Therefore, we
designed another experiment where the difficulty of the proof tasks was adjusted.
We also did not include the interactive conditions to be able to focus more on
the difference between the text vs. tree proofs. Furthermore, the number of proof
tasks was reduced and the nonsense words were replaced by letters, to reduce the
cognitive overload that some participants had reported in the previous study.
Conditions and Design. We only considered one condition with two levels,
namely textual and tree-shaped proof representation. We also used a between-
subjects design, which means that each participant saw either only text proofs
or only tree proofs. Dependent variables were proof performance and subjective
comprehensibility rating. The independent variable was the ICAR16 score.

We conducted the experiment via LimeSurvey. As before, the order of ICAR16
and the proof tasks was randomized. Each participant was randomly assigned
to one of the two groups. We again included a short training example at the
beginning of the proof tasks.
Material. We again used ICAR16 to assess the participants’ cognitive abilities
(see page 7). For the proof tasks, we used simplified versions of the proofs from the
previous study, where additionally the nonsense words were replaced by letters,
e.g. “every G has at least two Ys”. Overall, there were 2 proofs with 3 questions
each. Thus, the highest possible score was 6.

Further Information. We again collected information about participants’
experience with propositional logic and subjective ratings after each proof.
Participants (see Table 2). We excluded 7 participants because they did
not pass the two attention checks. The experience with propositional logic was
M = 1.53 (SD = 0.97). Moreover, 69.4% indicated that they had never worked
with propositional logic before.
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Hypotheses. We again wanted to test our previous hypothesis that the compre-
hensibility of a tree-shaped vs. textual proof depends on the cognitive abilities.
This would be shown by a difference in performance and difficulty rating between
the conditions, in dependence of the ICAR16 scores.
Results. The mean of ICAR16 was M = 0.36 (SD = 0.20) while it was M = 2.30
(SD = 1.25) for the proof performance. We carried out a regression analysis to
confirm the results of the previous two studies. These results should indicate
that ICAR16 scores predict proof performance. This is a precondition for any
following analyses, because we cannot split the sample based on the ICAR16
values if they are not sufficiently related to the proof values. The predictive effect
of the ICAR16 on the proof performance was not significant, F(1, 106) = 2.26,
p = .135, which is why we did not perform any further tests.

General Discussion

Our main hypotheses that experience with logic or logical ability influences the
subjective rating or objective performance on different proof representations
could not be confirmed (see Hypotheses 2 and 3 in Study I, Hypothesis 2 in
Study III and the only hypothesis in Study IV). This may be partially due to
the shortcomings of each of the experiments, which we discuss in more detail
below. In addition, we could not find any advantage of specific representations
when it comes to the performance on proof-related tasks, even when ignoring the
ICAR16 scores (see Studies III and IV).

Nevertheless, our first experiment clearly showed a preference for shorter
proofs based on the subjective difficulty ratings and relative rankings of the
conditions by the participants. This shows that it is worthwhile to investigate
techniques for automatically shortening proofs to remove easy or redundant
steps that only distract the users. As a side result, in the second experiment we
demonstrated that cognitive abilities as measured by the standardized ICAR16
questionnaire can be used as a predictor for the performance on logical reasoning
tasks. The final ranking in third experiment showed a further subjective preference
for the conditions with tree-shaped proofs over their textual counterparts, but
this did not seem to impact the objective performance measure nor the subjective
ratings the participants gave after each proof. These preferences were largely
driven by the group with higher ICAR16 performance (cf. Figure 3).

Limitations

A general shortcoming of our main hypothesis was perhaps that it was too specific.
If there are any effects of proof representation between user groups, they were
maybe too small to detect in our experiments. After the first study, we recruited
more participants through the online platform Prolific, but this also came with
a loss of quality in the responses that we could not completely control with
the attention checks. Since everyone was paid the same amount of money, the
goal of many participants was to complete the study as fast as possible. Several
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participants even finished the larger studies (including both ICAR16 and proof
tasks) with successful attention checks in under 15 minutes, which hints at a loss
of quality in the responses. A solution to this could be using open instead of
multiple-choice questions. However, such answers must be evaluated manually by
an expert according to a-priori fixed criteria.

Another limitation of the first study was also that it did not include an
objective measure of performance; participants were simply asked to describe
their process of understanding the proofs which was later rated by an expert.
We therefore included objective proof tasks in Study III, which however were
too hard for most of the participants. According to the aims of our study, we
did not pre-select participants according to their experience with logic or field
of studies. 55.5% of the participants had no experience with propositional logic
and 60.7% had never worked with it. For many participants, even the ones with
higher ICAR scores, the proof tasks were very challenging, resulting in a mean
score of M = 2.36 out of a total of 12. 15 people commented about the high
difficulty level in the end, and only 3 said the proofs were easy to understand.
This resulted in many data points being clustered on the lower end of the scale
and differences being more difficult to detect.

In general, a between-subjects design is better suited to show differences
between proof representations because there is no interference between the condi-
tions, but this requires even more participants. In the last study, we attempted
to do this and also adjusted the difficulty of the proofs. Unfortunately, this study
failed to exhibit even the strong connection between ICAR16 scores and proof
performance that had been shown by the previous two studies. Possible reasons
for this are that there were too few data points for the proof tasks (the maximal
score was 6 since we did not want to overload the participants) and that the
participants in general seemed to differ from previous studies. It seemed that
participants showed higher ICAR16 scores in the second (M = 0.55, SD = 0.24)
and third (M = 0.46, SD = 0.24) than in the fourth study (M = 0.36, SD = 0.20),
and the self-reported experience with logic followed a similar pattern. This could
be a reason why the ICAR16 scores did not predict the proof performance in
Study IV.

Future work

Although several of the experiments indicate a subjective preference of tree proofs
over texts, we would like to study more formally whether this can also influence
performance (independent of the membership to any particular user group such as
logic experts or people with high cognitive abilities). In that context, it could also
make a difference whether the individual statements in tree proofs are shown as
natural language sentences or using logical syntax (as in our first study). Another
question with a larger expected effect is whether showing proofs actually makes
a difference when compared to only showing justifications, i.e. the premises/leafs
of the tree proofs without intermediate inference steps.

Moreover, it would be promising to look at an ontology that is actively used
in practice and to study domain experts performing specific relevant explanation
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tasks for this ontology. Ultimately, our studies are just a first step towards
developing a user-centered interactive explanation tool for DL ontologies. Such a
tool should also take into account individual differences, such as user preferences
or the user’s existing knowledge, e.g. in the form of a background ontology that
the user is assumed to understand intuitively without needing an explanation.
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