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1 Introduction

Description logics (DLs) are a family of knowledge representation formalisms
that can be seen as decidable fragments of first-order logic [4]. In this paper we
focus on two light-weight members of this family DL-LiteR [7] and EL [3], which
underlies the profiles QL and EL of the standardized Web Ontology Language1
OWL 2. Theories T ∪ A are called ontologies or knowledge bases and are com-
posed of a TBox T and an ABox A. Many DL ontologies can be equivalently
expressed using the formalism of existential rules [6]. Existential rules are first-
order sentences of the form ∀~y, ~z. ψ(~y, ~z) → ∃~u. χ(~z, ~u), with the body ψ(~y, ~z)
and the head χ(~z, ~u) being conjunctions of atoms of the form A(x) or P (x1, x2),
for a concept name A, role name P and terms x, x1 and x2, which are individual
names or variables from ~z, ~u and ~y. We usually omit the universal quantifica-
tion. In particular, EL and DL-LiteR can be equivalently expressed as sets of
existential rules and we write all further DL expressions in the rule syntax.

Ontology-mediated query answering (OMQA) is a popular reasoning problem
for DLs, it generalizes query answering over databases by allowing to query
implicit knowledge that is inferred by an ontology [7]; this is called open-world
reasoning. A conjunctive query (CQ) q(~x) is an expression of the form ∃~y. φ(~x, ~y),
where φ(~x, ~y) is a conjunction of atoms using answer variables ~x and existentially
quantified variables ~y. If ~x = (), then q(~x) is called Boolean. As a running
example, consider A = {B(b)},

T = {R(x, y)→ ∃z. T (y, z), B(x)→ ∃y. P (x, y),
P (x, y)→ ∃z.S(y, z), P (x, y)→ R(y, x)}, and

q(y′′) = ∃x′, x′′, y, z, z′. R(x′′, y) ∧ T (y, z) ∧ S(x′, z′) ∧ S(x′′, z′) ∧ P (y′′, x′′). In
the following, we investigate explanations for ontology-mediated CQ answers, i.e.
? This is an extended abstract of a paper accepted at the 35th International Workshop
on Description Logics; see its technical report [2]

1 https://www.w3.org/TR/owl2-profiles/

https://www.w3.org/TR/owl2-profiles/
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why the entailment T ∪A |= q(b) holds for a particular instantation (answer) b
of the answer variable(s) y′′. In particular, we are interested in proofs [1], i.e.
step-wise derivations of the answer from the input. Our techniques are inspired
by [5,10,8], but we additionally consider the problem of generating good proofs
according to some quality measures and provide a range of complexity results
focusing on DL-LiteR and EL. We consider the size of a proof as well as its
tree size, which corresponds to the size when the proof is presented in a tree-
shaped way (possibly repeating subproofs). To compute proofs, we assume that
there is a so-called deriver, i.e. some reasoning system or calculus, that defines
a derivation structure for a given CQ entailment, and the structure may contain
several proofs for that entailment. Given a measure, the quest for good proofs
outlined in Section 3 is formalized as a search problem in a derivation structure.
We consider two different kinds of derivers for generating proofs for CQ answers;
their descriptions are in Section 2. In addition to classical OMQA, in Section 4
we also have a brief look at explaining inferences over temporal data using a
query language incorporating metric temporal operators.

2 Deriving Query Answers

In the first deriver, Dcq, inferences always produce Boolean CQs, which is similar
to the approach used in [10,8]. It is defined by the inference schemas in Figure 1
and a resulting proof for our example is shown in Figure 2. (MP) describes
how to apply an existential rule to a given CQ. It is admissible if there is a
substitution π with π(ψ(~y, ~z)) ⊆ φ(~x), and ρ(~w) is the result of replacing any
subset of π(ψ(~y, ~z)) in φ(~x) by any subset of π(χ(~z, ~u′)), where the variables
~u are renamed into fresh variables ~u′. In (C), we allow to merge two CQs and
also rename ~y to fresh variables ~y′. (T) allows us, together with (MP), to
introduce copies of variables in CQs. Finally, (E) transforms individual names
into existentially quantified variables.

∃~x. φ(~x) ψ(~y, ~z)→ ∃~u. χ(~z, ~u)
(MP)

∃~w.ρ(~w)
∃~x. φ(~x) ∃~y. ψ(~y)

(C)
∃~x, ~u.φ(~x) ∧ ψ(~u)

(T)
φ(~x, ~y)→ ∃~x. φ(~x, ~y)

∃~x. φ(~x,~a)
(E)

∃~x, ~y. φ(~x, ~y)

Fig. 1. Inference schemas for Dcq.

We can show that these inferences are sound and complete for CQ entailment.
However, they can be hard to follow due to the scope of existential quantification
in a CQ, which forces atoms connected by the same variables to be carried along
inferences they are not relevant for. In our example, x′′ and z′ in Figure 2 are
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B(b) B(x)→ ∃y. P (x, y)

∃x′′. P (b, x′′) P (x, y)→ ∃z. S(y, z)

∃x′′, z′. P (b, x′′) ∧ S(x′′, z′)P (x, y)→ R(y, x)

∃x′′, z′. R(x′′, b) ∧ S(x′′, z′) ∧ P (b, x′′) R(x, y)→ ∃z. T (y, z)

∃x′′, z, z′. R(x′′, b) ∧ T (b, z) ∧ S(x′′, z′) ∧ P (b, x′′)S(x, z)→ ∃x. S(x, z)

∃x′, x′′, z, z′. R(x′′, b) ∧ T (b, z) ∧ S(x′, z′) ∧ S(x′′, z′) ∧ P (b, x′′)

∃x′, x′′, y, z, z′. R(x′′, y) ∧ T (y, z) ∧ S(x′, z′) ∧ S(x′′, z′) ∧ P (b, x′′)

(T)

(MP)

(MP)

(MP)

(MP)

(MP)

(E)

Fig. 2. A CQ proof for the example. Trivially, a “worse” proof can be one e.g. with the
fourth (MP) replacing the CQ completely and (C) conjuncting ∃z T (b, z) back.

connected to each other and to the constant b, and thus have to be kept together:
although ∃x′′, z′.P (b, x′′) ∧ S(x′′, z′) implies ∃x′′.P (b, x′′) and ∃x′′, z′.S(x′′, z′),
those two CQs do not imply the original CQ anymore. To overcome this issue,
we consider a second deriver, Dsk, which is inspired by an approach from [5].
It mainly operates on ground CQs, and requires the ontology to be Skolem-
ized ; for example P (x, y) → ∃z.S(y, z) becomes P (x, y) → S(y, g(y)), where
g is a fresh unary function symbol. This means that we eliminate existential
quantification at the cost of introducing function symbols. Dsk now operates
on CQs in which ground function terms may appear. For example, instead of
∃x′′, z′. P (b, x′′)∧S(x′′, z′) in Figure 2 we now use P (b, f(b))∧S(f(b), g(f(b))).
Since these atoms do not share variables, in our derivation structure we mainly
need to consider inferences on single atoms, which allows for more fine-grained
proofs. The inference schemas and an example proof can be seen in Figures 3
and 4, respectively.

α1(~t1) . . . αn(~tn) ψ(~y, ~z)→ χ(~z)
(MPs)

β(~s)

α1(~t1) . . . αn(~tn) (Cs)
α1(~t1) ∧ · · · ∧ αn(~tn)

φ(~t)
(Es)∃~x.φ(~x)

Fig. 3. Inference schemas for Dsk.



4 C. Alrabbaa et al.

B(b) B(x)→ P (x, f(x))

P (b, f(b)) P (y, x)→ S(x, g(x))P (y, x)→ R(x, y)

S(f(b), g(f(b)))R(f(b), b)R(x, y)→ T (y, h(y))

T (b, h(b))

R(f(b), b) ∧ T (b, h(b)) ∧ S(f(b), g(f(b))) ∧ S(f(b), g(f(b))) ∧ P (b, f(b))

∃x′, x′′, y, z, z′. R(x′′, y) ∧ T (y, z) ∧ S(x′, z′) ∧ S(x′′, z′) ∧ P (b, x′′)

(MPs)

(MPs)(MPs)

(MPs)

(Cs)

(Es)

Fig. 4. A Skolemized proof for the example

In (MPs), αi(~ti) and β(~s) are ground atoms with terms composed from
individual names and Skolem functions, and likewise χ(~z) may contain Skolem
functions; similar to (MP), we require that there is a substitution π such that
π(ψ(~y, ~z)) = {α1(~t1), . . . , αn(~tn)} and β(~s) ∈ π(χ(~z)). In (Es), ~t is now a vector
of ground terms that may contain function symbols. Moreover, we do not need a
version of (T) here since it would be trivial for ground atoms. Its effects in Dcq

can be simulated here due to the fact that the same atom can be used several
times as a premise for (MPs) or (Cs). Note that the most important inferences
using (MPs) operate only on ground atoms, and (Cs) and (Es) are only needed
at the end of a proof to obtain the desired CQ (see Figure 4).

3 Finding Good Proofs

We consider the following decision problem: given an entailment T ∪ A |= q(~a)
and a natural number n is there a proof for q(~a) in D(T ∪A,q(~a)) for a deriver
D ∈ {Dcq,Dsk} whose (tree) size is ≤ n? To better distinguish the complexity
of finding small proofs from that of query answering, we assume T ∪ A |= q(~a)
as precondition, which fits the intuition that users would request an explanation
only after they know that ~a is an answer. Nevertheless, our results show that
regardless ofD for DL-LiteR ontologies, this problem is in AC0 in data complexity
and NP-complete in combined complexity, and therefore of the same complexity
as query answering itself [7]. Moreover, for tree-shaped queries one can compute
proofs of minimal tree size in polynomial time. For EL, the data complexity
rises to P, again matching the complexity of query answering [9]. The combined
complexity of NP also falls to P in case the CQ q contains only a single atom.
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4 Metric Temporal CQs

To generalize these results to temporal query answering, we assume that i)TBox
axioms hold globally, i.e. at all time points, ii) the ABox contains information
about the state of the world in different time intervals, and iii) the query contains
(metric) temporal operators such as �I , �I , UI , SI defined for finite, non-
negative time intervals I. The operators are interpreted over an integer timeline
as follows. For a temporal interpretation I = (∆I, (Ii)i∈Z), where Ii are DL
interpretations, and i ∈ Z, we have I, i |= �Iφ iff ∀k ∈ I we have Ii+k |= φ
and I, i |= φUIψ iff ∃k ∈ I such that Ii+k |= ψ and ∀j : 0 ≤ j < k : Ii+j |= φ
(operators SI and �I are symmetric). In addition to domain variables as before,
metric temporal queries contain an interval variable.

In order to extend the schemas from Figures 1 and 3 to the temporal dimen-
sion, we annotate every CQ premise and conclusion of the inference schemas with
the same interval variable. In Figure 5, we show some additional schemas needed
for dealing with time annotations, where ν := (ι+ 1) ∩ ι′ (all time points where
ψ-s are immediately preceded by φ-s) and [w1, w2]− [r1, r2] := [w1− r2, w2− r1],
and none of the involved intervals should be empty. Inferences for � and S are
similar. Altogether, this results in two temporal derivers Dtcq and Dtsk.

∃~x1. φ(~x1)@ι1 . . . ∃~xn. φ(~xn)@ιn
(∃~x. φ(~x))@

⋃n
i=1 ιi

∃~x. φ(~x)@ι
∃~x. φ(~x)@ι′, for ι′ ⊆ ι

φ(~x)@ι ψ(~y)@ι′
(U)

φ(~x)U[r1,r2]ψ(~y)@(ν − [r1, r2]) ∩ ι
φ(~x)@[t1, t2] (�)

�[r1,r2]φ(~x)@[t1 − r1, t2 − r2]

Fig. 5. Additional time-related inference schemas.

For DL-LiteR ontologies, we can lift some of the previous results to the tem-
poral setting. Namely, given a temporal ABox and a number n, the problems
if there exists a proof for q(~a, ι) in D(T ∪ A,q(~a, ι)) of (tree) size ≤ n, where
ι is a time interval and D ∈ {Dtcq,Dtsk}, is in AC0 in data complexity and
NP-complete in combined complexity.
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