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Abstract. Ontologies based on Description Logic (DL) represent gen-
eral background knowledge in a terminology (TBox) and the actual data
in an ABox. Both human-made and machine-learned data sets may con-
tain errors, which are usually detected when the DL reasoner returns
unintuitive or obviously incorrect answers to queries. To eliminate such
errors, classical repair approaches offer as repairs maximal subsets of
the ABox not having the unwanted answers w.r.t. the TBox. It is, how-
ever, not always clear which of these classical repairs to use as the new,
corrected data set. Error-tolerant semantics instead takes all repairs into
account: cautious reasoning returns the answers that follow from all clas-
sical repairs whereas brave reasoning returns the answers that follow from
some classical repair. It is inspired by inconsistency-tolerant reasoning
and has been investigated for the DL EL, but in a setting where the TBox
rather than the ABox is repaired. In a series of papers, we have devel-
oped a repair approach for ABoxes that improves on classical repairs in
that it preserves a maximal set of consequences (i.e., answers to queries)
rather than a maximal set of ABox assertions. The repairs obtained by
this approach are called optimal repairs. In the present paper, we inves-
tigate error-tolerant reasoning in the DL EL, but we repair the ABox
and use optimal repairs rather than classical repairs as the underlying
set of repairs. To be more precise, we consider a static EL TBox (which is
assumed to be correct), represent the data by a quantified ABox (where
some individuals may be anonymous), and use EL concepts as queries
(instance queries). We show that brave entailment of instance queries
can be decided in polynomial time. Cautious entailment can be decided
by a coNP procedure, but is still in P if the TBox is empty.

1 Introduction

Description Logics (DLs) [2] are a prominent family of logic-based knowledge rep-
resentation formalisms, which offer a good compromise between expressiveness
and the complexity of reasoning and are the formal basis for the Web ontol-
ogy language OWL.1 Here we concentrate on the inexpressive and tractable DL
? partially supported by the AI competence center ScaDS.AI Dresden/Leipzig and the
German Research Foundation (DFG) in Project 430150274 and SFB/TRR 248.
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EL [1], which is frequently used to represent ontologies in biology and medicine,
such as the large medical ontology SNOMEDCT.2

Like all large human-made digital artefacts, the ontologies employed in such
applications may contain errors, and this problem gets even worse if parts of
the ontology (usually the data) are automatically generated by inexact methods
based on information retrieval or machine learning. Errors are often detected
when reasoning finds an inconsistency or generates unintuitive consequences.
To correct such a mistake, classical repair approaches propose to use maximal
subsets of the ontology as repairs [9,17,19]. While these approaches preserve as
many of the original axioms as possible, they may not be optimal w.r.t. pre-
serving consequences. In a series of papers [3, 7, 8], we have investigated how to
characterize and compute optimal repairs, which are defined to be ontologies
entailed by the erroneous ontology whose consequence sets are maximal among
all such ontologies. To illustrate the difference between classical and optimal re-
pairs, assume that the (quantified) ABox consists of the assertions owns(Ralf , x),
Red(x), and Bike(x), where x is an anonymous individual, but that the conse-
quence ∃owns.(Red u Bike)(Ralf ) is assumed to be incorrect. There are three
classical repairs, obtained by respectively removing one of the assertions, but
only one optimal repair, which consists of the assertions owns(Ralf , y), Red(y),
owns(Ralf , z), and Bike(z). Clearly, this repair preserves more consequences (in
the sense of instance relationships for Ralf ) than each of the classical repairs.

In general, a given repair problem may have exponentially many repairs,
both in the classical and the optimal sense, and it is often hard to decide which
one to use. Error-tolerant reasoning does not commit to a single repair, but
rather reasons w.r.t. all of them (within the classical or the optimal setting):
cautious reasoning returns the answers that follow from all repairs whereas brave
reasoning returns the answers that follow from some repair. For classical repairs
of TBoxes in EL, it was first investigated in [16, 18], where it was shown that
brave entailment is NP-complete and cautious entailment is coNP-complete. For
more expressive DLs that can create inconsistencies, error-tolerant reasoning had
been considered before, for the case where the error is an inconsistency, under
the name of inconsistency-tolerant reasoning [10, 11, 15]. This latter work also
uses the classical notion of repair.

In the present paper, we investigate error-tolerant reasoning in the DL EL,
using optimal repairs of ABoxes as the underlying set of repairs. To be more
precise, we consider a static EL TBox (which is assumed to be correct, and
thus cannot be changed), represent the data by a quantified ABox, and consider
instance relationships between individuals and EL concepts as relevant conse-
quences. In [3] it is shown that, in this setting, each repair is entailed by an
optimal repair and that every optimal repair is equivalent to a so-called canoni-
cal repair, which is induced by a polynomially large repair seed function.3

2 https://www.snomed.org/
3 Since we are only interested in instance relationships, the appropriate entailment
and equivalence relations between quantified ABoxes are IQ-entailment and IQ-
equivalence [3].

https://www.snomed.org/
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For the case of brave reasoning, it is actually sufficient to know that every
repair is entailed by an optimal one. From this, we obtain that a set of concept
assertions is entailed by some optimal repair if, and only if, it is itself a repair. The
latter property can be tested by performing a polynomial number of polynomial-
time instance tests, which shows that brave reasoning is tractable.

Dealing with cautious reasoning is more complicated since we really need to
check what is entailed by all optimal repairs. The first problem is then that,
while seed functions are of polynomial size, the canonical repairs they induce
may be of exponential size. The solution to this problem is that we work di-
rectly with the seed functions without computing the induced repairs. This is
possible since we can show that entailment from the canonical repair induced
by a given seed function can actually be decided in polynomial time in the size
of the seed function, and not just in the size of the repair. The second prob-
lem is that, while the set of canonical repairs contains (up to equivalence) all
optimal repairs, there may exist non-optimal canonical repairs. Thus, cautious
reasoning cannot be done w.r.t. all canonical repairs. Nevertheless, for cautious
entailment w.r.t. the empty TBox, we are able to provide a direct character-
ization, and can show that this condition can be checked in polynomial time.
For cautious reasoning w.r.t. a non-empty TBox, we use the fact (shown in [6])
that the optimal repairs are induced by seed functions that are minimal w.r.t.
an appropriate pre-order on such functions. Non-entailment can then be tested
using a guess-and-check approach that guesses a seed function, checks whether
it is minimal, and then checks non-entailment. To show that this yields an NP
procedure for non-entailment, we must prove that minimality of a seed function
can be tested in polynomial time. Overall, we obtain tractability of cautious rea-
soning w.r.t. the empty TBox, and a coNP upper bound for cautious reasoning
w.r.t. a non-empty TBox. Whether this bound is tight remains an open problem.

2 Preliminaries

We start with recalling the DL EL as well as EL TBoxes and ABoxes, and then
introduce quantified ABoxes and the entailment relation used in this paper to
compare them. We assume that the reader is familiar with the basic notions of
description and first-order logic and base our presentation on the one in [5].

The Description Logic EL. Starting from a signature Σ, which is a disjoint
union of a set ΣI of individual names, a set ΣC of concept names, and a set ΣR of
role names, EL concept descriptions are built using the grammar C ::= > | A |
C u C | ∃r.C, where A ranges over ΣC and r over ΣR. An EL concept assertion
is of the form C(a) where C is an EL concept description and a ∈ ΣI, a role
assertion is of the form r(a, b) where r ∈ ΣR and a, b ∈ ΣI, and an EL concept
inclusion (CI) is of the form C v D for concept descriptions C,D. An EL ABox
A is a finite set of concept assertions and role assertions, and an EL TBox T
is a finite set of concept inclusions. Since EL is the only DL considered in this
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paper, we will sometimes omit the prefix “EL,” and we will use “concept” as an
abbreviation for “concept description.”

The semantics of EL can be defined either directly in a model-theoretic way
of by a translation into first-order logic (FO) [2]. In the translation, the elements
of ΣI, ΣC, and ΣR are respectively viewed as constant symbols, unary predicate
symbols, and binary predicate symbols. EL concepts C are inductively translated
into FO formulas φC(x) with one free variable x:

– concept A for A ∈ ΣC is translated into A(x) and > into A(x) ∨ ¬A(x) for
an arbitrary A ∈ ΣC;

– if C,D are translated into φC(x) and φD(x), then C uD is translated into
φC(x)∧φD(x) and ∃r.C into ∃y.(r(x, y) ∧ φC(y)), where φC(y) is obtained
from φC(x) by replacing the free variable x by a different variable y.

CIs C v D are translated into sentences φCvD := ∀x.(φC(x)→ φD(x)) and
TBoxes T into φT :=

∧
CvD∈T φCvD. Concept assertions C(a) are translated

into φC(a), role assertions r(a, b) stay the same, and ABoxes A are translated
into the conjunction φA of the translations of their assertions.

Let α, β be ABoxes, concept inclusions, or concept assertions (possibly not
both of the same kind), and T an EL TBox. Then we say that α entails β w.r.t.
T (written α |=T β) if the implication (φα ∧ φT )→ φβ is valid according to the
semantics of FO. Furthermore, α and β are equivalent w.r.t. T (written α ≡T β),
if α |=T β and β |=T α. In case T = ∅, we will sometimes write |= instead of
|=∅. If ∅ |=T C v D, then we also write C vT D and say that C is subsumed
by D w.r.t. T ; in case T = ∅ we simply say that C is subsumed by D. The
subsumption problem in EL is known to be decidable in polynomial time [1],
and the same is true for all the entailment problems introduced above.

Quantified ABoxes. A quantified ABox (qABox) ∃X.A consists of a set X
of variables, which is disjoint with Σ, and a matrix A, which is a finite set of
concept assertions A(u) and role assertions r(u, v), where A ∈ ΣC, r ∈ ΣR and
u, v ∈ ΣI ∪X. The matrix is an ABox built over the extended signature Σ ∪X,
but cannot contain complex concept descriptions. An object of ∃X.A is either
an individual name in ΣI or a variable in X.

Like EL ABoxes, quantified ABox ∃X.A can be translated into FO sentences,
but where the elements of X are viewed as first-order variables rather than con-
stants and are existentially quantified. Thus, entailment between two qABoxes
(written ∃X.A |=T ∃Y.B) and between a qABox and a concept assertion (writ-
ten ∃X.A |=T C(a)) w.r.t. a TBox T can again be defined using the semantics
of first-order logic.4 If ∃X.A |=T C(a), then a is called an instance of C w.r.t.
∃X.A and T .

Syntactically, not every EL ABox is a qABox, since EL ABoxes may con-
tain concept assertions C(a) for complex concepts C. However, every EL ABox
can be translated into an equivalent qABox, by writing the FO translation of

4 see [3, 8] for more information on qABoxes
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complex concepts C as a qABox. For example, if C = ∃r.(A uB), then the EL
ABox {C(a)} is equivalent to the qABox ∃{x}.{r(a, x), A(x), B(x)}. Conversely,
not every qABox can be expressed by an EL ABox since qABoxes may contain
cyclic role relations between variables. For example, if T is empty, then the
qABox ∃{x}.{r(a, x), r(x, x)} is not equivalent to an EL ABox [5]. One might
be tempted to think that one can just forget about the existential quantifier and
use an individual b instead of the variable x. However, the ABox {r(a, b), r(b, b)}
is not equivalent to the above qABox since it entails non-trivial instance rela-
tionships for b, whereas ∃{x}.{r(a, x), r(x, x)} does not. Also note that, while
entailment between EL ABoxes and entailment of a concept assertion by a qABox
can be decided in polynomial time, the entailment problem between qABoxes is
NP-complete [3, 8].

However, since in this paper we are only interested in the instance relation-
ships that a given qABox entails, we can restrict our attention to IQ-entailment
between qABoxes: the qABox ∃X.A IQ-entails the qABox ∃Y.B w.r.t. T (writ-
ten ∃X.A |=T

IQ ∃Y.B) if ∃Y.B |=T C(a) implies ∃X.A |=T C(a) for each EL
concept assertion C(a). In contrast to the FO entailment introduced above,
IQ-entailment between qABoxes can be decided in polynomial time. This is a
consequence of the following result from [3]: given a qABox ∃X.A and an EL
TBox T , one can compute in polynomial time an IQ-saturation satTIQ(∃X.A)
such that the following statements are equivalent:

– ∃X.A |=T
IQ ∃Y.B

– satTIQ(∃X.A) |=IQ ∃Y.B
– There is a simulation from ∃Y.B to satTIQ(∃X.A).

The notion of simulation employed here is the usual one for labeled graphs,
whose existence can be decided in polynomial time (see [3] for details).

3 Optimal and Canonical Repairs

We first introduce the notion of an optimal repair w.r.t. IQ-entailment and recall
the approach for obtaining canonical IQ-repairs based on repair seed functions
described in [3]. Then, we show that reasoning w.r.t. canonical repairs can be
performed by considering the seed function rather than the induced canonical
repair. Since the optimal repairs are exactly the canonical ones induced by mini-
mal seed functions [3], we also investigate how minimality of a seed function can
be decided. The reason for employing IQ-entailment is that we are only inter-
ested in the instance relationships entailed by a given qABox and TBox. We use
repair requests to indicate which consequences are considered to be erroneous,
and thus need to be removed. Formally, a repair request R is a finite set of
concept assertions.

Definition 1. Let T be an EL TBox, ∃X.A a qABox, and R a repair request.

– The qABox ∃Y.B is an IQ-repair of ∃X.A for R w.r.t. T if ∃X.A |=T
IQ ∃Y.B

and ∃Y.B 6|=T C(a) for each C(a) ∈ R.
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– Such a repair ∃Y.B is optimal if there is no IQ-repair ∃Z.C such that
∃Z.C |=T

IQ ∃Y.B, but ∃Y.B 6|=T
IQ ∃Z.C.

Not every repair request has a repair, but the ones that have can easily be iden-
tified. We call a repair request R solvable w.r.t. a TBox T if, for each quantified
ABox ∃X.A, there exists a repair of ∃X.A for R w.r.t. T . As mentioned in [3],
this is the case iff > 6vT C for each C(a) ∈ R.

In general, a given repair instance T , ∃X.A, R may have exponentially many
non-equivalent optimal repairs. Repair seed functions can be used to define (a
superset of) these repairs, by specifying, for each individual a in A, which atoms
should not hold for a in the repair. To take the TBox into account, one first
constructs the IQ-saturation ∃Y.B := satTIQ(∃X.A). We denote the set of all
subconcepts of concepts occurring in R or T with Sub(R, T ). An atom is either
a concept name or an existential restriction, and we denote the set of atoms in
Sub(R, T ) with Atoms(R, T ).

Definition 2. Let T be an EL TBox, ∃X.A a qABox, R a repair request, and
∃Y.B the IQ-saturation of ∃X.A w.r.t. T . A repair type for an object u of ∃Y.B
is a subset K of Atoms(R, T ) that satisfies the following three conditions:

1. K 6v∅ K ′ for all distinct atoms K,K ′ ∈ K.
2. B |= K(u) for every atom K ∈ K.
3. K is premise-saturated, i.e., if K ∈ K and C ∈ Sub(R, T ) are such that
B |= C(u) and C vT K, then there is K ′ ∈ K with C v∅ K ′.5

A repair seed function (rsf) s assigns to each individual name a ∈ ΣI a repair
type s(a) such that, for each unwanted consequence C(a) ∈ R with B |= C(a),
there is an atom K ∈ s(a) with C v∅ K.

As shown in [3], each rsf s induces a canonical IQ-repair, denoted as
repTIQ(∃X.A, s), and the set of canonical IQ-repairs covers all IQ-repairs in the
sense that every repair is IQ-entailed by a canonical one. In particular, this
implies that, up to IQ-equivalence, the set of canonical IQ-repairs contains all
optimal IQ-repairs, and the set of optimal IQ-repairs also covers all IQ-repairs.

For the purposes of this paper, the exact definition of repTIQ(∃X.A, s) is not
relevant since we intend to work directly with the (polynomial-sized) rsf s rather
than the (exponentially large) induced canonical repair. An important result that
helps us to do this is the following lemma, which is an extension of Lemma XII
in [4], whose proof is similar to the proof of Lemma VI in [14].

Lemma 3. Let s be a repair seed function, b an individual in A, and C an EL
concept. Then repTIQ(∃X.A, s) |=T C(b) iff ∃X.A |=T C(b) and s(b) does not
contain an atom that subsumes C w.r.t. T .

Since the right-hand side of this equivalence can obviously be checked in polyno-
mial time (since ∃X.A |=T C(b) iff A |=T C(b)) and s(b) is of polynomial size,
we obtain the following complexity result.
5 A repair pre-type need only satisfy the first two conditions. If the TBox is empty,
then this third condition is trivially true since one can take K′ = K.
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Proposition 4. Given a qABox ∃X.A, an EL TBox T , a repair request R,
a repair seed function s, and an EL concept assertion C(b), we can decide in
polynomial time (in the size of ∃X.A, T , and R) whether C(b) is entailed w.r.t.
T by the canonical IQ-repair induced by s.

The set of canonical repairs may contain non-optimal repairs. A simple ex-
ample is given by the empty TBox, the qABox ∃∅.{A(a), B(a)}, and the re-
pair request R = {(A u B)(a)}. There are three seed functions s1, s2, s3 with
s1(a) = {A}, s2(a) = {B}, s3(a) = {A,B}, which respectively induce the canon-
ical repairs ∃∅.{B(a)}, ∃∅.{A(a)}, and ∃∅.∅. Whereas the first two are optimal
repairs, the latter one is not optimal; in fact, it is strictly entailed by each of
the former ones. Obviously, the reason for this is that s3(a) is contained both in
s1(a) and in s2(a).

More generally, we can reflect entailment between canonical repairs by the
following covering relation between seed functions. Given sets K and L of concept
descriptions, we say that K is covered by L (written K ≤ L) if, for each K ∈ K,
there is L ∈ L such that K v∅ L. Applying the covering relation argumentwise
yields the following pre-order on seed functions: s ≤ t if s(a) ≤ t(a) for each
a ∈ ΣI. The following result, which is an easy consequence of Lemma 3, was
already mentioned in [6].

Lemma 5. s ≤ t iff repTIQ(∃X.A, s) |=T
IQ repTIQ(∃X.A, t).

Given any pre-order ≤, we write α < β if α ≤ β and β 6≤ α, and say that α is
≤-minimal (≤-maximal) if there is no β such that β < α (α < β). For repair
seed functions s, t we have s < t iff s(a) ≤ t(a) for all a ∈ ΣI and there is b ∈ ΣI

with s(b) < t(b). As an immediate consequence of Lemma 5, we obtain that the
optimal repairs are induced by the minimal seed functions.

Proposition 6. If s is a ≤-minimal rsf, then repTIQ(∃X.A, s) is an optimal
IQ-repair, and every optimal IQ-repair is IQ-equivalent to a canonical repair
repTIQ(∃X.A, s) for a ≤-minimal rsf s.

In the rest of this section we show that ≤-minimality of seed functions can be
decided in polynomial time. More precisely, we characterise non-minimality by
showing how, for a given repair type, we can decide whether there exists a repair
type that is strictly covered by it. As before, we denote by ∃Y.B the saturation
satTIQ(∃X.A). We start by showing how, for a given repair type K, a non-empty
set M of atoms covered by it can be employed to construct a repair pre-type
that is strictly covered by K.

Definition 7. Let K be a repair type for u and M be a non-empty subset of
Atoms(R, T ) such thatM≤ K. We define the lowering of K w.r.t.M by

low(K,M) := Maxv∅

E

∣∣∣∣∣∣∣
E ∈ Atoms(R, T ), B |= E(u),

E v∅ K for some K ∈ K,
M 6v∅ E for each M ∈M

 .
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Due to the Maxv∅ operator, which selects a representative for each equivalence
class of v∅-maximal elements, and the condition that each atom E in low(K,M)
must satisfy B |= E(u), we know that low(K,M) is a repair pre-type for u. Next,
we show that K strictly covers low(K,M).

Lemma 8. low(K,M) < K

Proof. By definition, each atom in low(K,M) is subsumed by some atom in K,
which means that low(K,M) ≤ K.

To show that K 6≤ low(K,M), we consider an element M ∈M, which exists
since we have assumed M 6= ∅. Since M ≤ K, there is an atom K in K such
that M v∅ K. We show that K is not subsumed by any atom in low(K,M).

Assume to the contrary that K v∅ E for some atom E ∈ low(K,M). Then
E v∅ K ′ for some K ′ ∈ K, and thus K v∅ K ′. Since the repair type K cannot
contain distinct v∅-comparable atoms, K and K ′ must be equal. We infer from
K v∅ E v∅ K ′ that E and K are equivalent, and thus M v∅ K yield M v∅ E.
This contradicts our assumption that E ∈ low(K,M) ut

The lowering of K w.r.t.M need not be a repair type, but we can construct,
for each atom D ∈ K, a setMD such that low(K,MD) is a repair type.

Definition 9. Let K be a repair type for u and D ∈ K. We inductively define
the following sets:

M0
D := {D}

Mi+1
D :=Mi

D ∪

{
F

∣∣∣∣∣ F ∈ low(K,Mi
D) and there is C ∈ Sub(R, T )

such that B |= C(u), C vT F, {C} 6≤ low(K,Mi
D)

}

We further setMD :=Mj
D where j is the minimal index such thatMj+1

D =Mj
D.

Since we can show by induction thatMi
D is non-empty and covered by K for all

i ≥ 0, K andMi
D satisfy the conditions of Definition 7 on the arguments of low

in the definition ofMi+1
D .

Lemma 10. low(K,MD) is a repair type for u.

Proof. We have already seen that low(K,MD) is a repair pre-type. It remains to
prove that it is premise-saturated. Thus, let F ∈ low(K,MD) and C ∈ Sub(R, T )
be such that B |= C(u) and C vT F , and assume that C is not subsumed by
any atom in low(K,MD) = low(K,Mj

D). Then F ∈ M
j+1
D =MD, which yields

a contradiction since F ∈ low(K,MD) requires that F does not subsume any
atom inMD. ut

Next, we characterize the repair types that are strictly covered by a given
repair type K.

Lemma 11. Let K and L be repair types for u. Then, L < K iff there is some
D ∈ K such that L ≤ low(K,MD).
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Proof. The if direction follows directly from Lemma 8. To show the only-if di-
rection, assume that L < K, i.e., L ≤ K and K 6≤ L. The latter yields an atom
D ∈ K that is not subsumed by any atom in L. We show by induction that
L ≤ low(K,Mi

D) for all i ≥ 0.
In the base case (i = 0), we have M0

D = {D}. Consider an atom L ∈ L.
Since L is a repair type for u, it holds that B |= L(u). Since L ≤ K, there is an
atom K ∈ K such that L v∅ K. We distinguish two cases:

– Assume that K = D. Since D is not subsumed by an atom in L, it holds
that D 6v∅ L.

– Now let K 6= D. Since K is a repair type, it does not contain v∅-comparable
atoms, which specifically implies that D 6v∅ K. Thus D 6v∅ L must hold as
otherwise D would be subsumed by K.

In both cases we conclude that low(K,M0
D) contains either L itself or (if L is not

maximal) an atom subsuming L, i.e., L is subsumed by an atom in low(K,M0
D).

We proceed with the induction step (i→ i+ 1). Therefore let L be an atom
in L. Since L is a repair type for u, we have B |= L(u). Due to L ≤ K it further
follows that L is subsumed by some atom K in K. We show that M 6v∅ L for
each M ∈ Mi+1

D . It then follows that low(K,Mi+1
D ) contains either L itself or

an atom subsuming L, and thus L is subsumed by an atom in low(K,Mi+1
D ).

Assume to the contrary that there is an atomM inMi+1
D such thatM v∅ L.

It cannot be the case that M ∈ Mi
D since this would lead to a contradiction

with the induction hypothesis L ≤ low(K,Mi
D). Thus, consider the case where

M ∈ Mi+1
D \ Mi

D. According to Definition 9 it follows that M ∈ low(K,Mi
D)

and there is a subconcept C ∈ Sub(R, T ) with B |= C(u), C vT M , and {C} 6≤
low(K,Mi

D). From C vT M and M v∅ L it follows that C vT L. Since L is a
repair type for u, we infer that {C} ≤ L. Together with the induction hypothesis
L ≤ low(K,Mi

D), this yields {C} ≤ low(K,Mi
D), which is a contradiction.

Finally, recall that MD is defined as Mj
D where j is the smallest index for

whichMj+1
D equalsMj

D. We thus obtain that L ≤ low(K,MD). ut

Using this lemma, we can now characterize non-minimality of an rsf.

Lemma 12. A repair seed function on ∃X.A for R w.r.t. T is not ≤-minimal iff
there exist an individual a and an atom D ∈ s(a) such that {P} ≤ low(s(a),MD)
holds for each P (a) ∈ R with ∃X.A |=T P (a).

Proof. If s is not ≤-minimal, then there is an rsf s′ such that s′ < s, i.e., there
is a ∈ ΣI such that s′(a) < s(a). Since s′ is an rsf, we have {P} ≤ s′(a) for all
P (a) ∈ R with ∃X.A |=T P (a). By Lemma 11, s′(a) < s(a) implies that there
is D ∈ s(a) such that s′(a) ≤ low(s(a),MD). By transitivity, for each P (a) ∈ R
with ∃X.A |=T P (a), we have {P} ≤ low(s(a),MD).

To show the “if” direction, we construct a function s′ : ΣI → ℘(Atoms(R, T ))
such that s′(b) := s(b) for each b ∈ ΣI \ {a} and s′(a) := low(s(a),MD). By
Lemma 10, s′(a) is a repair type for a. Since for each P (a) ∈ R with ∃X.A |=T

P (a), we have {P} ≤ low(s(a),MD), we infer that s′ is an rsf on ∃X.A for R
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w.r.t. T . Since s′(b) = s(b) for each b ∈ ΣI \ {a} and s′(a) < s(a), by Lemma 8,
we infer that s is not ≤-minimal. ut

Since there are linearly many atoms D in s(a) and computing MD and
low(s(a),MD) can be done in polynomial time, we obtain the following com-
plexity result.

Proposition 13. ≤-minimality of repair seed functions is in P.

Let us illustrate the decision procedure for non-minimality suggested by
Lemma 12 by a small example.

Example 14. Consider the TBox T := {∃r.A1 v ∃r.A2}, the quantified ABox
∃X.A := ∃{x}.{r(a, x), A1(x), A2(x), B1(x), B2(x)}, and the repair request
R := {∃r.(A1 u B1)(a),∃r.(A2 u B2)(a)}. If we define a function s : ΣI →
℘(Atoms(R, T )) such that s(a) = {∃r.A1,∃r.A2}, then s(a) is a repair type for
a and s is a repair seed function on ∃X.A for R w.r.t. T .

We use Lemma 12 to show that s is not ≤-minimal. For this purpose, we
consider the atom ∃r.A1 in s(a), and construct the set M0

∃r.A1
:= {∃r.A1}.

By Definition 7, we have low(s(a),M0
∃r.A1

) = {∃r.(A1 u B1),∃r.A2}. However,
this lowering set is not yet premise-saturated w.r.t. T since ∃r.A2 is subsumed
w.r.t. T by the subconcept ∃r.A1, which is not subsumed w.r.t. ∅ by any atom
from low(s(a),M0

∃r.A1
). By Definition 9, we thus add ∃r.A2 to M0

∃r.A1
, which

yields the set M1
∃r.A1

:= {∃r.A1,∃r.A2}. The corresponding lowering set is
low(s(a),M1

∃r.A1
) = {∃r.(A1 u B1),∃r.(A2 u B2)}. It is easy to see that this

set is a repair repair type for a, which is strictly covered by s(a). By look-
ing at the repair request R, we see that, for each concept assertion in R, the
respective concept is subsumed by some atom in low(s(a),M1

∃r.A1
). Thus, the

condition on the right-hand side of the equivalence in Lemma 12 is satisfied for
low(s(a),M1

∃r.A1
).

If we define t(a) := low(s(a),M1
∃r.A1

), then t is an rsf such that t < s. By
Lemma 5, repTIQ(∃X.A, t) strictly IQ-entails repTIQ(∃X.A, s). For example, the
former repair entails (∃r.A1)(a) whereas the latter does not. This can be seen
using Lemma 3.

4 Error-tolerant Reasoning w.r.t. Optimal Repairs

In error-tolerant reasoning, one does not commit to a single (classical or op-
timal) repair, but rather reasons w.r.t. all repairs. Brave entailment produces
the consequences that are entailed by some repair whereas cautious entailment
only produces consequences that are entailed by every repair. In the literature
on inconsistency-tolerant and error-tolerant reasoning in the classical setting
[10, 11, 15, 16, 18], IAR entailment (for “intersections of all repairs”) is also con-
sidered, but in our setting of optimal repairs, where repairs are not necessarily
subsets of the original ontology, it is not clear how to define this notion in an
appropriate way.
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If there is no repair, then everything is cautiously entailed and nothing is
bravely entailed. We prevent this anomalous case by requiring that the repair
request is solvable w.r.t. the given TBox.

Definition 15. Let ∃X.A be a qABox, T an EL TBox, R a repair request that
is solvable w.r.t. T , and Q a finite set of EL concept assertions. Then Q is
bravely entailed by ∃X.A w.r.t. T and R iff there is an optimal IQ-repair ∃Z.C
of ∃X.A for R w.r.t. T such that ∃Z.C |=T C(a) for each C(a) ∈ Q. It is
cautiously entailed by ∃X.A w.r.t. T and R iff every optimal IQ-repair ∃Z.C
of ∃X.A for R w.r.t. T satisfies ∃Z.C |=T C(a) for each C(a) ∈ Q.

In the following, we first show that brave entailment can be decided in poly-
nomial time. For cautious entailment w.r.t. a TBox, the results proved in the
previous section provide us with a coNP upper bound. Without a TBox, the
complexity of cautious entailment drops to P.

4.1 Brave Entailment

The following lemma shows that brave entailment can be reduced to the instance
problem in EL.

Lemma 16. The set of EL concept assertions Q is bravely entailed by ∃X.A
for R w.r.t. T iff ∃X.A |=T Q and no assertion in P is entailed by Q w.r.t. T .

Proof. If Q is bravely entailed, then there is an optimal IQ-repair ∃Z.C of ∃X.A
for P w.r.t. T such that ∃Z.C |=T Q. Transitivity of entailment yields ∃X.A |=T

Q. In addition, since ∃Z.C is a repair for P, no assertion in P is entailed by ∃Z.C
w.r.t. T , and thus none can be entailed by Q w.r.t. T .

Assume that ∃X.A |=T Q, and no assertion in P is entailed by Q w.r.t. T .
The set Q is an EL ABox, and thus there is a qABox ∃Y.B that is equivalent to
Q. Our assumptions on Q imply that ∃Y.B is an IQ-repair of ∃X.A for R w.r.t.
T . Since every repair is entailed by an optimal repair [3], there is an optimal
IQ-repair ∃Z.C of ∃X.A for P w.r.t. T such that ∃Z.C |=T ∃Y.B, and thus
∃Z.C |=T Q. ut

Since the instance problem in EL can be decided in polynomial time, this
yields the following complexity result.

Theorem 17. Brave entailment w.r.t. optimal IQ-repairs is in P.

This approach for testing brave entailment can also be used to support com-
puting a specific repair. In general, there may be exponentially many optimal
repairs, but this set can be narrowed down by specifying not only consequences
R to be removed, but also consequences Q that one wants to retain. Brave en-
tailment can be used to check in polynomial time whether such a repair exists:
in fact, Lemma 16 tells us that Q is bravely entailed by ∃X.A for R w.r.t. T iff
the translation of Q into a qABox ∃Y.B is an IQ-repair of ∃X.A for R w.r.t. T .
In general, this repair will not be optimal. However, the next proposition shows
that an rsf that induces an optimal repair entailing ∃Y.B (and thus also Q) can
be computed in polynomial time.
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Proposition 18. Let ∃Y.B be an IQ-repair of ∃X.A for R w.r.t. T . Then we
can compute in polynomial time a ≤-minimal rsf t such that repTIQ(∃X.A, t) |=T

IQ
∃Y.B. Since t is ≤-minimal, repTIQ(∃X.A, t) is optimal.

Proof. We know that every repair is entailed by a canonical repair. The proof
of this fact (see proof of Proposition 8 in [4]) actually shows how to compute
in polynomial time an rsf that induces this canonical repair. Thus, in the set-
ting of our proposition, we can compute in polynomial time an rsf s such that
repTIQ(∃X.A, s) |=T

IQ ∃Y.B. If s is ≤-minimal, then we are done. Otherwise, the
proof of Lemma 12 tells us how to find an rsf s′ such that s′ < s. The rsf s′ differs
from s in the image for one individual a, where s′(a) = low(s(a),MD) < s(a)
for an atom D ∈ s(a). If s′ is ≤-minimal, then we are done. Otherwise, we can
compute an rsf s′′ such that s′′ < s′, etc. Since the next lemma implies that the
length of such a chain s > s′ > s′′ > . . . is polynomially bounded by the number
of individual names in ∃X.A and the cardinality of Atoms(R, T ), we reach a
≤-minimal rsf t with t < s after a polynomial number of steps. By Lemma 5,
repTIQ(∃X.A, t) |=T

IQ repTIQ(∃X.A, s), and thus repTIQ(∃X.A, t) |=T
IQ ∃Y.B. ut

Lemma 19. Let S be a set of EL concepts of cardinality m and K0,K1, . . . ,Kn
be subsets of S such that K0 > K1 > . . . > Kn. Then n ≤ m.

Proof. For subsets K of S, we define

↓K := {C | C ∈ S and C v∅ K for some K ∈ K}.

It is easy to see that K ≤ L iff ↓K ⊆ ↓L holds for all subsets K,L of S. Thus
K0 > K1 > . . . > Kn implies ↓K0 ⊃ ↓K1 ⊃ . . . ⊃ ↓Kn. Since the cardinality of
↓K0 is bounded by the cardinality m of S, this shows that n ≤ m. ut

Since, for solvable repair requests, the empty qABox ∃∅.∅ is a repair, Propo-
sition 18 also yields the following result.

Corollary 20. Let T be an EL TBox, ∃X.A a qABox, and R a repair request
that is solvable w.r.t. T . Then we can compute in polynomial time a ≤-minimal
rsf t, which thus induces an optimal IQ-repair of ∃X.A for R w.r.t. T .

4.2 Cautious Entailment

Using the polynomiality results of Section 3, we can prove that cautious entail-
ment is in coNP. For this, we show that non-entailment is in NP. To check
whether Q is not cautiously entailed by ∃X.A w.r.t. T and R, we guess
a function s : ΣI → ℘(Atoms(R, T )) and check whether (i) s is a repair
seed function; (ii) s is ≤-minimal; and (iii) there is Q(a) ∈ Q such that
repTIQ(∃X.A, s) 6|=T Q(a). Note that (i) can be decided in polynomial time by the
definition of repair seed functions, (ii) by Proposition 13, and (iii) Proposition 4.

Theorem 21. Cautious entailment w.r.t. optimal IQ-repairs is in coNP.

Whether this upper bound is tight is still an open problem. If the TBox is
empty, then we can show a polynomiality result.
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The Case with an Empty TBox. We show the polynomial upper bound again
for non-entailment, i.e., we try to find out whether there is an optimal repair that
does not entail Q. First note that, if Q is not entailed by ∃X.A, then it cannot
be entailed by an optimal repair. Thus, it is sufficient to concentrate on the case
where ∃X.A entails Q. For this case, the next lemma gives a characterization of
non-entailment. While this characterization may look complicated, it is actually
easy to see that its conditions can be checked in polynomial time. Intuitively,
the reason why the case of the empty TBox is easier to handle is that then
premise-saturatedness of repair types (see Definition 2) is trivially satisfied. More
technically, this means that, in the characterization of non-minimality of a repair
seed function in Lemma 12, the set MD is equal to {D}, i.e., the iteration in
Definition 9 terminates for j = 0. This gives us more control over how the sets
low(s(a),MD) in Lemma 12 actually look like.

Lemma 22. Let Q be a finite set of EL concept assertions such that ∃X.A |= Q.
Then Q is not cautiously entailed by ∃X.A w.r.t. R iff there exist C(a) ∈ Q,
D ∈ Atoms(R), and P (a) ∈ R with A |= P (a) such that the following conditions
are satisfied:

1. P v∅ D and C v∅ D,
2. for each D′ ∈ Atoms(R) with D′ @∅ D and A |= D′(a), we have P 6v∅ D′,
3. for each P ′(a) ∈ R \ {P (a)} with A |= P ′(a) and P ′ 6v∅ D, there is E ∈

Atoms(R) such that P ′ v∅ E and P 6v∅ E.

Proof. For the “only if” direction, if Q is not cautiously entailed by ∃X.A w.r.t.
R, then there exist C(a) ∈ Q and a ≤-minimal rsf s on ∃X.A for R such that
repIQ(∃X.A, s) 6|= C(a). By Lemma 3, the latter implies that there is D ∈ s(a)
such that C v∅ D.

Next, we show that there is P (a) ∈ R such that P v∅ D and A |= P (a).
Since s is ≤-minimal (for the case of an empty TBox), Lemma 12 implies that,
for each a ∈ ΣI and each E ∈ s(a), there is PE(a) ∈ R with A |= PE(a)
such that {PE} 6≤ low(s(a), {E}). However, {PE} ≤ s(a) by the definition of
repair seed functions. By Definition 7, the only atom from s(a) that does not
occur in low(s(a), {E}) is E, which implies that PE v∅ E. Consequently, there
is P (a) ∈ R with A |= P (a) such that P v∅ D, which shows that Condition 1
of this lemma is satisfied by C, D, and P .

The construction of low(s(a), {D}) removesD and replace it with those atoms
D′ ∈ Atoms(R) that are strictly subsumed by D such that A |= D′(a). However,
{P} 6≤ low(s(a), {D}) implies that, for each D′ ∈ Atoms(R) with D′ @∅ D and
A |= D′(a), we have P 6v∅ D′, i.e., Condition 2 is satisfied.

To show that Condition 3 is satisfied, we consider P ′(a) ∈ R \ {P (a)} with
A |= P ′(a) and P ′ 6v∅ D. By the definition of an rsf, there must be E ∈ s(a)\{D}
such that P ′ v∅ E. The fact that {P} 6≤ low(s(a), {D}) implies that P 6v∅ E,
which shows that Condition 3 of this lemma is indeed satisfied.

For the “if” direction, we assume that there exist P (a) ∈ R with A |= P (a)
and D ∈ Atoms(R) such that all the three conditions of this lemma are satisfied.
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We construct the set

K := {D} ∪Maxv∅({E ∈ Atoms(R) | there is P ′(a) ∈ (R \ {P (a)}),A |= P ′(a),

P ′ 6v∅ D,P ′ v∅ E,P 6v∅ E}),

and show that it is a repair type. Since the TBox is empty, it suffices to consider
only the first two properties of the definition of repair types (see Definition 2).
The second property is immediately satisfied by the construction of K. To show
the first property, it is sufficient to prove that, for each E ∈ K \ {D}, the atoms
D and E are not v∅-comparable. In fact, if D v∅ E, then P v∅ E, which
contradicts our assumption that E ∈ K \ {D}. If E v∅ D, then P ′ v∅ D is a
contradiction for some P ′(a) ∈ R \ {P (a)}, where P ′ v∅ E.

Using this set K, we now define a function s : ΣI → ℘(Atoms(R)) such that
s(a) := K and s(b) :=Mb for each individual b ∈ ΣI \ {a}, whereMb is a repair
type for b and for each R(b) ∈ R with A |= R(b), there is F ∈ Mb such that
R v∅ F . Such a repair typeMb exists for each b ∈ ΣI \ {a} since R is solvable
(see Proposition X in [4]).

We show that s is a repair seed function on ∃X.A for R. For individuals
b ∈ ΣI \ {a}, the condition on seed functions is satisfied, due to the way the sets
Mb were chosen, i.e., such that R(b) ∈ R with A |= R(b) implies that there is an
atom in s(b) that subsumes R. We show that the corresponding condition also
holds for s(a). For P (a), this is clear since is D ∈ s(a) and P v∅ D. Furthermore,
for each P ′(a) ∈ R \ {P (a)}, we distinguish two cases. If P ′ v∅ D, then we are
done. Otherwise, by Condition 3, P ′ 6v∅ D implies that there is E ∈ Atoms(R)
such that P ′ v∅ E and P ′ 6v∅ E. By the construction of K, such an atom E
occurs in s(a) = K. This finally shows that s is an rsf on ∃X.A for R.

Next, we show that, for each ≤-minimal rsf s′ covered by s, the canonical
repair induced by s′ still does not entail C(a). By Lemma 3, it is sufficient to
show that s′(a) contains an atom D′ such that D v∅ D′. In fact, then C v∅ D
yields C v∅ D′ for D′ ∈ s′(a), and thus C(a) is not entailed by the canonical
repair induced by s′, which is optimal since s′ is minimal.

By contradiction, assume that there is a ≤-minimal rsf s′ such that s′ ≤ s
and D 6v∅ D′ holds for all D′ ∈ s′(a). Thus, for each D′ ∈ s′(a), we have either
D′ @∅ D or D′ 6v∅ D. Consider again the concept P . Since s′ is an rsf, there
is D′ ∈ s′(a) such that P v∅ D′. Suppose that D′ @∅ D. However, this is a
contradiction since Condition 2 of this lemma states that P is not subsumed by
any concept that is strictly subsumed by D. Otherwise, D′ 6v∅ D. Since s′ ≤ s,
we have D′ v∅ E, where E ∈ s(a) \ {D}. By the definition of K, P is not
subsumed by E. However, P v∅ D′ and D′ v∅ E, which yields a contradiction.

ut

This lemma reduces the non-entailment test to polynomially many subsump-
tion and instance tests, each of which can be performed in polynomial time.

Theorem 23. For an empty TBox, cautious entailment w.r.t. optimal IQ-
repairs is in P.
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5 Conclusion

Inconsistency-tolerant and error-tolerant reasoning have been introduced in the
DL literature [10, 11, 15, 16, 18] as a way to reason w.r.t. an inconsistent or
erroneous ontology without having to commit to a specific repair. The usual en-
tailment relations employed for this purpose are brave entailment (consequences
entailed by some repair) and cautious entailment (consequences entailed by all
repairs). In contrast to previous work, we use optimal repairs [3] instead of classi-
cal ones [9,17,19] when defining these relations. We investigated the complexity
of the obtained entailment relations for the cases without and with a TBox, and
could show a polynomial time upper bound for all cases except the one of cau-
tious entailment with a TBox, for which we proved a coNP upper bound. The
intuition underlying our use of optimal repairs is that a repair should not invent
new consequences and should not have any of the unwanted consequences. A
good repair should only remove consequences if this is required to achieve the
other two goals.

Our approach for testing brave entailment can also be used to support com-
puting a specific repair. In general, there may be exponentially many optimal
repairs, but this set can be narrowed down by specifying not only consequences
to be removed, but also ones that one wants to retain. We have shown that brave
entailment can be used to check in polynomial time whether such a repair exists.
In the positive case, we can compute in polynomial time a repair seed function
that induces an optimal repair that entails all wanted consequences.

As pointed out in [16, 18], cautious entailment can be used to reason w.r.t.
an erroneous ontology while waiting for a corrected update to be published by
the organization that maintains this ontology. If the application is not repair but
privacy preservation, one can use cautious entailment to define a censor [12] that
prevents revealing certain secrets. The reason is that, in contrast to brave en-
tailment, the set of cautious consequences is closed under (classical) entailment.

As future work, we will investigate whether our coNP upper bound for cau-
tious entailment with a TBox is tight, and whether a notion of IAR entailment
that is appropriate for optimal repairs can be found. We also intend to add sup-
port for role assertions both in the repair request and in the query. Furthermore,
it would be interesting to consider error-tolerant reasoning w.r.t. the optimal
TBox repairs in [13].
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