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Abstract
Natural language generation in real-time settings with raw sensor data is a challenging task. We find that formulating the task
as an end-to-end problem leads to two major challenges in content selection — the sensor data is both redundant and diverse
across environments, thereby making it hard for the encoders to select and reason on the data. We here present a new corpus for
a specific domain that instantiates these properties. It includes handover utterances that an assistant for a semi-autonomous
drone uses to communicate with humans during the drone flight. The corpus consists of sensor data records and utterances
in 8 different environments. As a structured intermediary representation between data records and text, we explore the use
of description logic (DL). We also propose a neural generation model that can alert the human pilot of the system state and

environment in preparation of the handover of control.
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1. Introduction

Sensor technology has evolved in the last decade driven
by the need to delegate routine tasks to machines. An ex-
ample of such delegation is the Internet of Things (IoT)
represented in wearables, smart homes, autonomous
driving, etc. In the high-stakes applications, the system
must continuously monitor the sensor data stream to de-
tect any situation deterioration and react on it promptly.
Moreover, in the case of a constantly changing envi-
ronment, faithful data records can be very diverse and
contain a lot of superfluous information. In this set-
ting, it becomes challenging to detect an abnormality
automatically.

In this work, we consider an example that embodies
both of these aspects of sensor data: redundancy and di-
versity. Particularly, as a recent technological advance,
drones with impressive features, advanced sensors and
capabilities have become commonplace (Fuhrman et al.!
2019) (e.g. for aerial surveys, mapping, aerial movies
and even selfie-drones). The amount of sensor informa-
tion routinely processed during a flight such as altitude,
wind speed, air pressure, temperature, efc. is enormous.
This is related to the fact that drones are extremely use-
ful in the most remote and hard-to-reach places where
very little can be controlled by human operators. As
these drones are used for an increasingly wide range of
tasks, interacting with drones becomes more important.
To enable these interactions, it is essential to devise a
natural language generation (NLG) setup that can flexi-
bly connect to a variety of data records collected by the
drone and convey information reliably. In this paper,
we propose a neural generation model (or drone assis-
tant) that verbalizes messages from sensor data records
in order to perform a controlled handover to a human
drone pilot (see Figure[I). Recent data-driven meth-
ods have achieved good performance on various NLG

tasks (Liu et al., 2018}, |Freitag and Roy, 2018; |Chen
et al., 2019). However, most studies focus on surface
descriptions of simple record sequences, for example,
attribute-value pairs of fixed or very limited schema,
such as E2E (Novikova et al., 2017)) and WikiBio (Le+
bret et al., 2016). In contrast, there is a much larger
variety of data records available in the present setup,
and the content selection task is substantially harder
(only critical information, not all available information,
should be mentioned at handover time).

A tree is in path within 0.3 meter and the
battery is low. Please resume human control.

1----Handover Message----:

2

Drone Pilot Autonomous Drone

Figure 1. We focus on the drone handover as the main com-
municative function.

An on-device drone utterance generation model is thus
faced with two challenges due to its diverse and large
sensor data inputs (see Figure : (1) In real world sce-
narios, deployed drone dialogue systems are constantly
exposed to drastically different environments; therefore,
the ability of the system to generalize to diverse as well
as unseen environments is desirable. (2) The redundancy
of raw sensor records adds overheads to the encoder, and
result in texts with low fidelity, where wrong facts are
selected to be verbalized or even hallucinated.

To this end, we argue that it is necessary to leverage
intermediate content representations to achieve faithful
and controllable logical generation in such real-time
settings with redundant data. In this paper, these repre-



Figure 2. Depiction of one data sample from the dataset and the corresponding natural language utterance. For full drone status
refer to TabIéJZ.

sentations are generated using description logic (DL) orRecent data-driven methods tend to con ate the pipeline
tologies (Baader et al., 2007). Thismoves the burden modules into end-to-end neural networks, such as (Liu
of logical reasoning from the neural realization model et al., 2018; Wiseman et al., 2017; Wiseman et al., 2018;
and allows for more exible and high delity utterances Gong et al., 2019). However, purely neural models often
to be produced. To allow us to study the utterance varisuffer from problems with content delity (omission or
ability across different environments, we release a newalucination of facts) (Dsek et al., 2018). More recent
dataset that consists 8f.6 data records derived from work has begun to focus on preserving the delity of
drone footage acrogsenvironments. The corpus offers the generation, such as (Dhingra et al., 2019; Tian et
insights into the challenges of real-time assistants usingl., 2019). Their work obtains good performance on
continuous streams of sensor data records. surface-level NLG. In contrast, our work focuses on
In summary, our contributions are the following. reducing content selection overheads for complex input

) data with high variability.
« We propose the rst dataset that simulates real-

world environments consisting of ragvone sensor Rec_ent NL(_B (_jatasets mostly focus on_surface-level gen-
data recordspaired withDL annotationsand natu- eration. Tr_ns includes Weathech_)y (I._|ang et al., 2009),
ral languagaitterancesWe hope that our dataset E2E (Novikova et al., _2017), WikiBio (Lebret et al.,
encourages further research towards building rea?016), and ToTTo (Parikh et al., 2020). However, these
time dialogue systems for large, real-time S(_msof:i_atasets contain natural language sentences which are
data records. simple restatements of data records, and involve no ab-
stract logical inference. In fact, the model in (Chen et al.,

« We develop a DL drone ontology and four queries2020a) only obtains a 20% factual correctness rate based
to (i) automatically detect a critical situation and on human evaluation, which is far from an acceptable
establish its urgency; (ii) if a handover is required,level in real-world systems. In contrast, our work fo-
highlight justi ably relevant sensor records. These cuses on the logical formulations executed on complex
records combined into a DNF formula fornDa. ~ data records that can be derived from real-time systems
expressionA DL annotationcombines the infor- realistically. To this end, we believe our new dataset can
mation acquired in (i)-(ii). help future development of on-device real-time drone

assistants.
« For message generation, we use the DL annotations

as intermediate content representation.

* We show the ef cacy of our proposed technique for
dealing withdiverseandredundantaw sensor data.
The code and the dataset are available offiine.

3. Drone Sensor Data

This section describes the collected corpus and the sim-
ulated environments. We rst describe the collection
2. Related Work process in Section 3.1, then discuss the data schema

NLG from structured data or knowledge has been studn Section 3.2 and annotations (Section 3.4 and Sec-
ied for many years. There are various applications, suckion 3.5). In this work, the drone assistant is used in
as the automatic generations of weather repprts (Liangandover situations, where it sends a message to human
et al., 2009), sport reports (Wiseman et al., 2017), opilots when there is a problem and the drone cannot con-
response generation in task-oriented dialogue systemgue ying autonomously. The type of handover is also
(Wen et al., 2015; Budzianowski et al., 2018;dek et  categorized according to thevel of criticality, which
al., 2019). describes the drone's environment and corresponds to
how urgent it is for control to be handed over to the
Ihttps://gitlab.com/erniecyc/drone/ human drone pilot.



https://gitlab.com/erniecyc/drone/

3.1. Video Data Collection 3.4. Annotation with Description Logic

We collected drone videos in 8 different environmentsHere, we describe the process of criticality annotation,
Disturbance i), Urban (r), Rural RU), Ocean Oc), Where thetype(see Table 1) antevel (“informative”,
Desert De), Island (s), Factory Fa) and Miscellaneous “warning”or “advisory”) of criticality as well as DL ex-
(Mi). These drone videos are recorded from the pefressions are added to each snapshot, in order to achieve
spective of drones from either real drone manoeuvreg1ore robust text generation.

or a drone simulator. The environments have drasticallycriticality prediction determines the type of utterance
different settings; a detailed analysis is provided in Sedntent. To determine the type and the level of criti-
tion 5. We split the original records inR16snapshot  cality, we employdescription logiaeasoning (Baader
videos of10seconds each. They are selected based ot al., 2007), based on amtology consisting ofax-
human judgement of whether the level of criticality risesiomsthat describe background knowledge about drones

to the point where a handover is required. and surrounding objects. For our test scenarios, the
hand-crafted ontologycontainss2 predicates anl5 ax-
3.2. Data Record Schema ioms. We us@ntology-mediated queri¢hat determine

Each hot video f Section 3.1 is th IIWhetherac:ertain critical situation is present in the input
ach snapshot video from Section 3.1 1s then manua ﬁjata (Borgida et al., 2003; Bienvenu and Ortiz, 2015).

annotated with realistic data records, which are base the following text, ontology axioms and queries are
on the supposed sensor data that a drone can Capnﬁrr?sans serif For example, the ontology contains ax-

We show an example of the data in Figure 2, WhiChioms Foggyv LowVisibility and9env.LowVisibility u

consists of dime steprecord of r_learby objects, and a 9nearObject v RiskOfPhysicalDamagenhich char-
separatelrone statusecord. Theime stefulata reports acterize fog as a visibility impairment and describe a

9§tt”blftfs that sh?w t:: € d%/_n amics of tlhe Surr.or:mdr'lng:ritical situation of the drone ying close to another ob-
objects; for example, the object type, along with ot erject in a low-visibility environment. The query predicate

inform ation rela'ted tothe ight path, such lxPath or RiskOfPhysicalDamagiadicates an increased critical-
Moving . The time step data are collectedlegecond .

intervals. Thedrone statugecord remains the same The general process of DL annotation works as follows.

during the snapshot, as it indicates information of MO, cad on the data record schema from Section 3.2. do-
permanence, for an example see Table 2. Together, th'?"Xain experts create a mapping from the records to the
constitute asnapshobf data covering up to 40-second DL ontology predicates. Using the four query predi-

mte_rval. Snapshots are used as input data to the dro%%tes from Table 1, for each snapshot DL reasoning can

a35|§tant. ] . _then automatically derive whidlype of criticalityholds.

In this section, examples of such data are written in=qy the most common criticality in the video collection,

bold. RiskOfPhysicalDamagave distinguish thre&evelsof
urgency depending on the ontology axiom triggering

3.3. Challenges the criticality. We break ties between multiple reasons
An end-to-end model using the raw snapshots as inpuf®r criticality by keeping the most compelling ories.
faces the following problems. between “informative” and “advisory” we choose the

latter. Additionally, DLjusti cations (Horridge, 2011)

1. The data record contains variable length informaare used to extract those parts of the input record that

tion as the number and types of detected objectgre responsible for the criticality. This information is
change between videos. encoded here intBL expressionswhich takes the form

of grounded DNF formulas (disjunctive normal form)

2. As the data igermutation invarianiLee et al., expressing all reasons for the positive evaluation of the
2019), the output of the modshould not change criticality queries. In the prototype implementation,

under any permutation of the elements in the inputSince the ontology and the criticality queries are xed,
data record. we did not use a DL reasoner to perform query answer-

ing. Instead we implemented the whole procedure as

3. Snapshots are long-form (containing at least 3gNaCros inside an annotation platform.

cells each). Irrelevant information in the data will Example The partial status report in Table 2 is re-
tend to confuse the model. ceived from a defective drone steered by an inexperi-
enced pilot inside a relatively cold room with differ-
4. By its design, transformer-based models are unablent objects logged in Figure 2. Some of these data
to process long sequences due to their self-attentioistances, on their own or in combination with oth-
operation, which scales quadratically with the seers, indicate that safe piloting is not possible. The
guence length. system must promptly recommend a handover. For

To address these challenges, we incorporate DL reason- 2https://cloud.perspicuous-computing.
ing in our drone assistant. science/s/zLoBagLxo2fgqw4



Types of Criticality Description Example DL Expression
RiskOfPhysicalDamage Potential physical damage..crash) Altitude (m): 20 Batterjevel: 30 OR InPath: true Distance: 3 at 00:02

RiskOfInternalDamage Potential internal damage weather: gloomy waterpdroihe: false
RiskOfHumanDamage Risk of injuring nearby humans indoor: true Distance: 0.5 Type: Human at 00:16
LostConnection Drone connectivity/signal strength Distanftem_remotecontrol (m): 162 Batteryevel: 0

Table 1.Information on the types of criticality.

‘Ig’:;‘:ésspeeidd(znnq’fg) ‘1)0 a formal ontology to encode background knowledge.
Pilot,éxSerienced FALSE Since it has its own format, it is independent of the
Altitude (m) 20 platform or the programming language. This allows
Temperature (celcius) 5 an ontology to be viewed, extended, and debugged by
g;ﬁ?ﬁgfg{‘ -remote control (m) = domain experts regardless of the end application. More-
Cow visibility FALSE over, in general, such ontologies can also be learned
Normal frame FALSE (semi-automatically) from other sources such as anno-
weather sunny tated data, text, and alignment with high-level ontolo-
;gzﬁii?g\:rjcondition "?ngI‘EE gies (Lehmann and &lker, 2014). Existing ontology
going backwards FALSE editing platformse.g. Prote@®, also incorporate tools
indoor TRUE for visualisation, automatic analysis and reasoning, such
Wfaterproof,drone FALSE as query answering.

ying _over ground

3.5. Collection of Natural Utterances

As ground truth, we employed human experts to label
O Risk of physical damage! There is a skyscraper in the ight eagh snapshot with an Uttera_nce that d_escnbe,S the sit-
path of the drone at a distance of 2m. uation detected by DL. As discussed in Section 3.4,
P Risk of physical damage! The drone has a damaged frame the type and level of criticality already determine the
and is ying indoors. There's a skyscraper in the drone path  character of the utterances. However, the example
ata distance of 2m. : above demonstrates that the criticality can be created
'I_'here |sadama_ged frame and a dangerous oor in the drone's by various combined reasons. For instance, an “ad-
ight path at a distance of 2m. : s 1 . . L.
The drone has a damaged frame and is ying indoors. Risk visory” criticality type RiskOfPhysicalDamages in-
of physical damage! There's a skyscraper on the ight path te_n,ded to aler,t the human pilot to ma!f_e prompt Cie_
of the drone at a distance of 2m. cisions regarding the ight course. An “informative
RiskOfPhysicalDamageommunicates a suboptimal in-
Table 3. Examples of original (O) text and its thré&-  ternal state of the drone, such as a low power level, after
paraphrases (P). which the human pilot can decide how to act on it. At
this stage, the human experts are able to prioritise and
aggregate the informatiogg.an utterance could con-
tain a solution recommendation or a partial situation
report containing the data to be changed.

Table 2.Sample of a status report that is part of a data record

example, the ontology has axioms suchFgng u
Not_Normalframev RiskOfPhysicalDamagg ying

a defective drone raises the risk of the drone beingp i i o
physically damaged”) an@reachableinPath:> v araphrase Augmentation. To enrich the variability
RiskOfPhysicalDamag@an object located at a reach- Of the texts, we us&5 to generate paraphrases of the
able distance on a drone trajectory raises the risk ofeXts. For each utterance, we generate an additional
the drone being physically damaged”). These axioméhree sentences by varying the beam size during decod-
applied to the data infer a critical state. Then, we aulnd- By obtainingl0 sentences initially, linguistic ex-
tomatically trace back which data records trigger thisP€rts were prompted to select the ®pentences based

conclusion and combine them into a DL expression. PN their uency and the perceivetxtual similaritywith
this example, it would look as follows: the original reference. We display some examples in

Table 3.
[Altitude (m):20AND Normal _frame : FALSH  We next describe the approach for automatically gener-

OR[Object :toycar LAND InPath :YesAND  afing such utterances.

Distance :0:5AT Time : 0:02} 4. The Approach

For moving objects, we include the identi er and the The neural drone assistant primarily consists of two
time stamp. At this stage, according to the mappingmodules described in detail in Sections 4.1-4.2 and in
the abstract property dflying is replaced by the raw Figure 3. The rst one is @ata record linearizewhere
information ofAltitude (m) : 20, which con rms that  table-formatted records are converted into a linear string
the drone is in the air.

In a real-world system, there are many bene ts of using  >https://protege.stanford.edu/




Figure 3. The T5+DL pipeline. A data record at timeis rst processed by the DL module and linearized into the input
sequence. This sequence is then fed intolthenodel and used to generate an utterance. The attention map on the right
demonstrates the DL-transformation of the data record bepegrautation invariantshorter subset sequence.

sequence along with auxiliary information. The second4.2. DL-to-Text Rewriting

sequence into a human-readable sentence. Finally, tEléessions (generated as described in Section 3.4) to a
the end of this section, we summarize the bene tS oiyatural language response with the same semantic con-
incorporating the DL reasoning seen from the NLGtent. Thus, we netune a Text-to-Text Transfer Trans-

perspective. former (T5) (Raffel et al., 2019) model, which is a pre-
trained sequence-to-sequence transformer, to generate
Raw Data Records the natural language response using the linearized DL
"frames™ [ f Tactions™ [ f Tact™  "IN- expression sequence as input. Figure 3 depicts the re-
FORM”, "canonicalvalues™ [ "warning” ], "slot™|  gylting framework. For ease of comparison, we perform

"risk_of_physicaldamage”, "values”: [ "warning” g, f
"act”. "INFORM?", "canonical.values”: [ "0.0" ], "slot™:

"normal frame”, "values” [ "0.0” ] g, ... (more rows
omitted) ], "service”: "Drone 1", "slots™: [] g ],

100-epoch updates for all training, as was empirically
found to be suf cient for convergence.

4.3. DL Operation As Set Transformation

Linearized Data Records: With the challenges from Section 3.3 in mind, we de-
servicename=Dronel description= scribe how the DL expression reduces the data complex-
:;g‘;r;ﬁggisaﬂg;%g%"g‘e);r:ri;gg;:isk of physical dam- ity for T5 in a way that is functionally similar to set

- : transformer (Lee et al., 2019).

age or not, values = warning, inform, name=noriframe, 5 foll der-d d . ked
description=Normal frame or not, examples =1.0,0.0, ollows an encoder-decoder structure using stacke

values = 0.0, inform, .. fore rows omitted) self-attention layers for both the encoder and decoder.
Self-attention layers typically map one variable-length
Figure 4.An abridged example of a data recdrefore ~ Sequence of symbol representatiohs: (x1;:::;Xn)
andafter linearization. to another sequence of equal len@th; : : :; zn), with

Xi;zi 2 RY, for d being the embedding dimension of a
word. The per-layer computational complexity of self-
attention iSO(n?d)# (Vaswani et al., 2017). By applying
thepermutation invariantlata record linearization func-
To linearize data records into sequences, we employon based on DL expressions to the input data sequence,
a technique previously used (Kale and Rastogi, 2020p (X ) = ( Xi,;::iiXi, ), as a pre-processing step, we
where slot descriptions are added to each slot so as ¥an decrease the length of layer input. Indeed, since
ease the generation process (see Figure 4). While they ( ) is basically a lter, it guarantees that n

slot descriptions are easy to obtain, it remains dif cult and, in practiced.g.see the rst two lines of Table 4),

to encode the semantics of large data records that cogr  n. This results in much lower processing times
tain irrelevant cells and duplicate information. Thus, we

pf‘?pose an extension OT the schema—gu@ed represen-4, the transformer models, attention weights are calcu-
tation (Kale and Rastogi, 2020) by replacing the slotizteq ysing all the words in the input sequence at once. There-
names with their natural language descriptions and alsfyre, for estimating computational bene ts of a new input
selecting them based on DL expressions (Section 3.4)ze we can observe a difference already in the self-attention
so as to only focus on the relevant data records. complexity.

4.1. Data Record Linearization
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