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Abstract
Natural language generation in real-time settings with raw sensor data is a challenging task. We find that formulating the task
as an end-to-end problem leads to two major challenges in content selection – the sensor data is both redundant and diverse
across environments, thereby making it hard for the encoders to select and reason on the data. We here present a new corpus for
a specific domain that instantiates these properties. It includes handover utterances that an assistant for a semi-autonomous
drone uses to communicate with humans during the drone flight. The corpus consists of sensor data records and utterances
in 8 different environments. As a structured intermediary representation between data records and text, we explore the use
of description logic (DL). We also propose a neural generation model that can alert the human pilot of the system state and
environment in preparation of the handover of control.
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1. Introduction
Sensor technology has evolved in the last decade driven
by the need to delegate routine tasks to machines. An ex-
ample of such delegation is the Internet of Things (IoT)
represented in wearables, smart homes, autonomous
driving, etc. In the high-stakes applications, the system
must continuously monitor the sensor data stream to de-
tect any situation deterioration and react on it promptly.
Moreover, in the case of a constantly changing envi-
ronment, faithful data records can be very diverse and
contain a lot of superfluous information. In this set-
ting, it becomes challenging to detect an abnormality
automatically.
In this work, we consider an example that embodies
both of these aspects of sensor data: redundancy and di-
versity. Particularly, as a recent technological advance,
drones with impressive features, advanced sensors and
capabilities have become commonplace (Fuhrman et al.,
2019) (e.g. for aerial surveys, mapping, aerial movies
and even selfie-drones). The amount of sensor informa-
tion routinely processed during a flight such as altitude,
wind speed, air pressure, temperature, etc. is enormous.
This is related to the fact that drones are extremely use-
ful in the most remote and hard-to-reach places where
very little can be controlled by human operators. As
these drones are used for an increasingly wide range of
tasks, interacting with drones becomes more important.
To enable these interactions, it is essential to devise a
natural language generation (NLG) setup that can flexi-
bly connect to a variety of data records collected by the
drone and convey information reliably. In this paper,
we propose a neural generation model (or drone assis-
tant) that verbalizes messages from sensor data records
in order to perform a controlled handover to a human
drone pilot (see Figure 1). Recent data-driven meth-
ods have achieved good performance on various NLG

tasks (Liu et al., 2018; Freitag and Roy, 2018; Chen
et al., 2019). However, most studies focus on surface
descriptions of simple record sequences, for example,
attribute-value pairs of fixed or very limited schema,
such as E2E (Novikova et al., 2017) and WikiBio (Le-
bret et al., 2016). In contrast, there is a much larger
variety of data records available in the present setup,
and the content selection task is substantially harder
(only critical information, not all available information,
should be mentioned at handover time).

Handover Message

A tree is in path within 0.3 meter and the 
battery is low. Please resume human control.  

Drone Pilot Autonomous Drone

Figure 1. We focus on the drone handover as the main com-
municative function.

An on-device drone utterance generation model is thus
faced with two challenges due to its diverse and large
sensor data inputs (see Figure 2): (1) In real world sce-
narios, deployed drone dialogue systems are constantly
exposed to drastically different environments; therefore,
the ability of the system to generalize to diverse as well
as unseen environments is desirable. (2) The redundancy
of raw sensor records adds overheads to the encoder, and
result in texts with low fidelity, where wrong facts are
selected to be verbalized or even hallucinated.
To this end, we argue that it is necessary to leverage
intermediate content representations to achieve faithful
and controllable logical generation in such real-time
settings with redundant data. In this paper, these repre-



Figure 2.Depiction of one data sample from the dataset and the corresponding natural language utterance. For full drone status
refer to Table 2.

sentations are generated using description logic (DL) on-
tologies (Baader et al., 2007). Thisremoves the burden
of logical reasoning from the neural realization model
and allows for more �exible and high �delity utterances
to be produced. To allow us to study the utterance vari-
ability across different environments, we release a new
dataset that consists of316data records derived from
drone footage across8 environments. The corpus offers
insights into the challenges of real-time assistants using
continuous streams of sensor data records.
In summary, our contributions are the following.

• We propose the �rst dataset that simulates real-
world environments consisting of rawdrone sensor
data recordspaired withDL annotationsand natu-
ral languageutterances. We hope that our dataset
encourages further research towards building real-
time dialogue systems for large, real-time sensor
data records.

• We develop a DL drone ontology and four queries
to (i) automatically detect a critical situation and
establish its urgency; (ii) if a handover is required,
highlight justi�ably relevant sensor records. These
records combined into a DNF formula form aDL
expression. A DL annotationcombines the infor-
mation acquired in (i)-(ii).

• For message generation, we use the DL annotations
as intermediate content representation.

• We show the ef�cacy of our proposed technique for
dealing withdiverseandredundantraw sensor data.
The code and the dataset are available online.1

2. Related Work
NLG from structured data or knowledge has been stud-
ied for many years. There are various applications, such
as the automatic generations of weather reports (Liang
et al., 2009), sport reports (Wiseman et al., 2017), or
response generation in task-oriented dialogue systems
(Wen et al., 2015; Budzianowski et al., 2018; Du�sek et
al., 2019).

1https://gitlab.com/erniecyc/drone/

Recent data-driven methods tend to con�ate the pipeline
modules into end-to-end neural networks, such as (Liu
et al., 2018; Wiseman et al., 2017; Wiseman et al., 2018;
Gong et al., 2019). However, purely neural models often
suffer from problems with content �delity (omission or
halucination of facts) (Du�sek et al., 2018). More recent
work has begun to focus on preserving the �delity of
the generation, such as (Dhingra et al., 2019; Tian et
al., 2019). Their work obtains good performance on
surface-level NLG. In contrast, our work focuses on
reducing content selection overheads for complex input
data with high variability.

Recent NLG datasets mostly focus on surface-level gen-
eration. This includes WeatherGov (Liang et al., 2009),
E2E (Novikova et al., 2017), WikiBio (Lebret et al.,
2016), and ToTTo (Parikh et al., 2020). However, these
datasets contain natural language sentences which are
simple restatements of data records, and involve no ab-
stract logical inference. In fact, the model in (Chen et al.,
2020a) only obtains a 20% factual correctness rate based
on human evaluation, which is far from an acceptable
level in real-world systems. In contrast, our work fo-
cuses on the logical formulations executed on complex
data records that can be derived from real-time systems
realistically. To this end, we believe our new dataset can
help future development of on-device real-time drone
assistants.

3. Drone Sensor Data

This section describes the collected corpus and the sim-
ulated environments. We �rst describe the collection
process in Section 3.1, then discuss the data schema
in Section 3.2 and annotations (Section 3.4 and Sec-
tion 3.5). In this work, the drone assistant is used in
handover situations, where it sends a message to human
pilots when there is a problem and the drone cannot con-
tinue �ying autonomously. The type of handover is also
categorized according to thelevel of criticality, which
describes the drone's environment and corresponds to
how urgent it is for control to be handed over to the
human drone pilot.

https://gitlab.com/erniecyc/drone/


3.1. Video Data Collection

We collected drone videos in 8 different environments:
Disturbance (Di), Urban (Ur), Rural (Ru), Ocean (Oc),
Desert (De), Island (Is), Factory (Fa) and Miscellaneous
(Mi). These drone videos are recorded from the per-
spective of drones from either real drone manoeuvres
or a drone simulator. The environments have drastically
different settings; a detailed analysis is provided in Sec-
tion 5. We split the original records into316snapshot
videos of10seconds each. They are selected based on
human judgement of whether the level of criticality rises
to the point where a handover is required.

3.2. Data Record Schema

Each snapshot video from Section 3.1 is then manually
annotated with realistic data records, which are based
on the supposed sensor data that a drone can capture.
We show an example of the data in Figure 2, which
consists of atime steprecord of nearby objects, and a
separatedrone statusrecord. Thetime stepdata reports
9 attributes that show the dynamics of the surrounding
objects; for example, the object type, along with other
information related to the �ight path, such asInPath or
Moving . The time step data are collected at1-second
intervals. Thedrone statusrecord remains the same
during the snapshot, as it indicates information of more
permanence; for an example see Table 2. Together, they
constitute asnapshotof data covering up to a10-second
interval. Snapshots are used as input data to the drone
assistant.
In this section, examples of such data are written in
bold.

3.3. Challenges

An end-to-end model using the raw snapshots as inputs
faces the following problems.

1. The data record contains variable length informa-
tion as the number and types of detected objects
change between videos.

2. As the data ispermutation invariant(Lee et al.,
2019), the output of the modelshould not change
under any permutation of the elements in the input
data record.

3. Snapshots are long-form (containing at least 30
cells each). Irrelevant information in the data will
tend to confuse the model.

4. By its design, transformer-based models are unable
to process long sequences due to their self-attention
operation, which scales quadratically with the se-
quence length.

To address these challenges, we incorporate DL reason-
ing in our drone assistant.

3.4. Annotation with Description Logic
Here, we describe the process of criticality annotation,
where thetype(see Table 1) andlevel (“informative”,
“warning”or “advisory”)of criticality as well as DL ex-
pressions are added to each snapshot, in order to achieve
more robust text generation.
Criticality prediction determines the type of utterance
intent. To determine the type and the level of criti-
cality, we employdescription logicreasoning (Baader
et al., 2007), based on anontologyconsisting ofax-
iomsthat describe background knowledge about drones
and surrounding objects. For our test scenarios, the
hand-crafted ontology2 contains62predicates and55ax-
ioms. We useontology-mediated queriesthat determine
whether a certain critical situation is present in the input
data (Borgida et al., 2003; Bienvenu and Ortiz, 2015).
In the following text, ontology axioms and queries are
in sans serif. For example, the ontology contains ax-
iomsFoggyv LowVisibility and9env:LowVisibilityu
9near:Object v RiskOfPhysicalDamage, which char-
acterize fog as a visibility impairment and describe a
critical situation of the drone �ying close to another ob-
ject in a low-visibility environment. The query predicate
RiskOfPhysicalDamageindicates an increased critical-
ity.
The general process of DL annotation works as follows.
Based on the data record schema from Section 3.2, do-
main experts create a mapping from the records to the
DL ontology predicates. Using the four query predi-
cates from Table 1, for each snapshot DL reasoning can
then automatically derive whichtype of criticalityholds.
For the most common criticality in the video collection,
RiskOfPhysicalDamage, we distinguish threelevelsof
urgency depending on the ontology axiom triggering
the criticality. We break ties between multiple reasons
for criticality by keeping the most compelling one,i.e.
between “informative” and “advisory” we choose the
latter. Additionally, DLjusti�cations (Horridge, 2011)
are used to extract those parts of the input record that
are responsible for the criticality. This information is
encoded here intoDL expressions, which takes the form
of grounded DNF formulas (disjunctive normal form)
expressing all reasons for the positive evaluation of the
criticality queries. In the prototype implementation,
since the ontology and the criticality queries are �xed,
we did not use a DL reasoner to perform query answer-
ing. Instead we implemented the whole procedure as
macros inside an annotation platform.

Example The partial status report in Table 2 is re-
ceived from a defective drone steered by an inexperi-
enced pilot inside a relatively cold room with differ-
ent objects logged in Figure 2. Some of these data
instances, on their own or in combination with oth-
ers, indicate that safe piloting is not possible. The
system must promptly recommend a handover. For

2https://cloud.perspicuous-computing.
science/s/zLoBagLxo2fgqw4



Types of Criticality Description Example DL Expression

RiskOfPhysicalDamage Potential physical damage (e.g.crash) Altitude (m): 20 Batterylevel: 30 OR InPath: true Distance: 3 at 00:02
RiskOfInternalDamage Potential internal damage weather: gloomy waterproofdrone: false
RiskOfHumanDamage Risk of injuring nearby humans indoor: true Distance: 0.5 Type: Human at 00:16
LostConnection Drone connectivity/signal strength Distancefrom remotecontrol (m): 162 Batterylevel: 0

Table 1.Information on the types of criticality.

Wind speed (m/s) 0
Drone speed (m/s) 10
Pilot experienced FALSE
Altitude (m) 20
Temperature (celcius) 5
Distance from remote control (m) 16
Battery level 70
Low visibility FALSE
Normal frame FALSE
weather sunny
upside down FALSE
good motor condition TRUE
going backwards FALSE
indoor TRUE
waterproof drone FALSE
�ying over ground

Table 2.Sample of a status report that is part of a data record.

O Risk of physical damage! There is a skyscraper in the �ight
path of the drone at a distance of 2m.

P Risk of physical damage! The drone has a damaged frame
and is �ying indoors. There's a skyscraper in the drone path
at a distance of 2m.
There is a damaged frame and a dangerous �oor in the drone's
�ight path at a distance of 2m.

The drone has a damaged frame and is �ying indoors. Risk
of physical damage! There's a skyscraper on the �ight path
of the drone at a distance of 2m.

Table 3. Examples of original (O) text and its threeT5-
paraphrases (P).

example, the ontology has axioms such asFlying u
Not Normal framev RiskOfPhysicalDamage(“�ying
a defective drone raises the risk of the drone being
physically damaged”) and9reachable:9inPath:> v
RiskOfPhysicalDamage(“an object located at a reach-
able distance on a drone trajectory raises the risk of
the drone being physically damaged”). These axioms
applied to the data infer a critical state. Then, we au-
tomatically trace back which data records trigger this
conclusion and combine them into a DL expression. In
this example, it would look as follows:

[Altitude (m) : 20 AND Normal frame : FALSE]

OR [Object : toy car 1AND InPath : YesAND

Distance : 0:5 AT Time : 0:02]:

For moving objects, we include the identi�er and the
time stamp. At this stage, according to the mapping,
the abstract property ofFlying is replaced by the raw
information ofAltitude (m) : 20, which con�rms that
the drone is in the air.
In a real-world system, there are many bene�ts of using

a formal ontology to encode background knowledge.
Since it has its own format, it is independent of the
platform or the programming language. This allows
an ontology to be viewed, extended, and debugged by
domain experts regardless of the end application. More-
over, in general, such ontologies can also be learned
(semi-automatically) from other sources such as anno-
tated data, text, and alignment with high-level ontolo-
gies (Lehmann and V̈olker, 2014). Existing ontology
editing platforms,e.g.Proteǵe3, also incorporate tools
for visualisation, automatic analysis and reasoning, such
as query answering.

3.5. Collection of Natural Utterances
As ground truth, we employed human experts to label
each snapshot with an utterance that describes the sit-
uation detected by DL. As discussed in Section 3.4,
the type and level of criticality already determine the
character of the utterances. However, the example
above demonstrates that the criticality can be created
by various combined reasons. For instance, an “ad-
visory” criticality type RiskOfPhysicalDamageis in-
tended to alert the human pilot to make prompt de-
cisions regarding the �ight course. An “informative”
RiskOfPhysicalDamagecommunicates a suboptimal in-
ternal state of the drone, such as a low power level, after
which the human pilot can decide how to act on it. At
this stage, the human experts are able to prioritise and
aggregate the informatione.g.an utterance could con-
tain a solution recommendation or a partial situation
report containing the data to be changed.

Paraphrase Augmentation. To enrich the variability
of the texts, we useT5 to generate paraphrases of the
texts. For each utterance, we generate an additional
three sentences by varying the beam size during decod-
ing. By obtaining10 sentences initially, linguistic ex-
perts were prompted to select the top3 sentences based
on their�uency and the perceivedtextual similaritywith
the original reference. We display some examples in
Table 3.
We next describe the approach for automatically gener-
ating such utterances.

4. The Approach
The neural drone assistant primarily consists of two
modules described in detail in Sections 4.1-4.2 and in
Figure 3. The �rst one is adata record linearizerwhere
table-formatted records are converted into a linear string

3https://protege.stanford.edu/



Figure 3. TheT5+DL pipeline. A data record at timet is �rst processed by the DL module and linearized into the input
sequence. This sequence is then fed into theT5 model and used to generate an utterance. The attention map on the right
demonstrates the DL-transformation of the data record being apermutation invariant, shorter subset sequence.

sequence along with auxiliary information. The second
module, aDL-to-text rewriter, transforms the linearized
sequence into a human-readable sentence. Finally, at
the end of this section, we summarize the bene�ts of
incorporating the DL reasoning seen from the NLG
perspective.

Raw Data Records:
”frames”: [ f ”actions”: [ f ”act”: ”IN-
FORM”, ”canonicalvalues”: [ ”warning” ], ”slot”:
”risk of physicaldamage”, ”values”: [ ”warning” ]g, f
”act”: ”INFORM”, ”canonical values”: [ ”0.0” ], ”slot”:
”normal frame”, ”values”: [ ”0.0” ] g, . . . (more rows
omitted) ], ”service”: ”Drone 1”, ”slots”: [] g ],

Linearized Data Records:
servicename=Drone1,description=
f schema['description']g,inform,name=
risk of physicaldamage, description=risk of physical dam-
age or not, values = warning, inform, name=normalframe,
description=Normal frame or not, examples =1.0,0.0,
values = 0.0, inform, . . . (more rows omitted)

Figure 4.An abridged example of a data recordbefore
andafter linearization.

4.1. Data Record Linearization

To linearize data records into sequences, we employ
a technique previously used (Kale and Rastogi, 2020),
where slot descriptions are added to each slot so as to
ease the generation process (see Figure 4). While the
slot descriptions are easy to obtain, it remains dif�cult
to encode the semantics of large data records that con-
tain irrelevant cells and duplicate information. Thus, we
propose an extension of the schema-guided represen-
tation (Kale and Rastogi, 2020) by replacing the slot
names with their natural language descriptions and also
selecting them based on DL expressions (Section 3.4)
so as to only focus on the relevant data records.

4.2. DL-to-Text Rewriting
The goal of the rewriting module is to convert DL ex-
pressions (generated as described in Section 3.4) to a
natural language response with the same semantic con-
tent. Thus, we �netune a Text-to-Text Transfer Trans-
former (T5) (Raffel et al., 2019) model, which is a pre-
trained sequence-to-sequence transformer, to generate
the natural language response using the linearized DL
expression sequence as input. Figure 3 depicts the re-
sulting framework. For ease of comparison, we perform
100-epoch updates for all training, as was empirically
found to be suf�cient for convergence.

4.3. DL Operation As Set Transformation
With the challenges from Section 3.3 in mind, we de-
scribe how the DL expression reduces the data complex-
ity for T5 in a way that is functionally similar to aset
transformer (Lee et al., 2019).
T5 follows an encoder-decoder structure using stacked
self-attention layers for both the encoder and decoder.
Self-attention layers typically map one variable-length
sequence of symbol representationsX = ( x1; : : : ; xn )
to another sequence of equal length(z1; : : : ; zn ), with
x i ; zi 2 Rd, for d being the embedding dimension of a
word. The per-layer computational complexity of self-
attention isO(n2d)4 (Vaswani et al., 2017). By applying
thepermutation invariantdata record linearization func-
tion based on DL expressions to the input data sequence,
DL( X ) = ( x i 1 ; : : : ; x i m ), as a pre-processing step, we
can decrease the length of layer input. Indeed, since
DL( �) is basically a �lter, it guarantees thatm � n
and, in practice (e.g.see the �rst two lines of Table 4),
m � n. This results in much lower processing times

4In the transformer models, attention weights are calcu-
lated using all the words in the input sequence at once. There-
fore, for estimating computational bene�ts of a new input
size we can observe a difference already in the self-attention
complexity.
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