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Abstract
Natural language generation in real-time settings with raw sensor data is a challenging task. We find that formulating the task
as an end-to-end problem leads to two major challenges in content selection – the sensor data is both redundant and diverse
across environments, thereby making it hard for the encoders to select and reason on the data. We here present a new corpus for
a specific domain that instantiates these properties. It includes handover utterances that an assistant for a semi-autonomous
drone uses to communicate with humans during the drone flight. The corpus consists of sensor data records and utterances
in 8 different environments. As a structured intermediary representation between data records and text, we explore the use
of description logic (DL). We also propose a neural generation model that can alert the human pilot of the system state and
environment in preparation of the handover of control.
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1. Introduction
Sensor technology has evolved in the last decade driven
by the need to delegate routine tasks to machines. An ex-
ample of such delegation is the Internet of Things (IoT)
represented in wearables, smart homes, autonomous
driving, etc. In the high-stakes applications, the system
must continuously monitor the sensor data stream to de-
tect any situation deterioration and react on it promptly.
Moreover, in the case of a constantly changing envi-
ronment, faithful data records can be very diverse and
contain a lot of superfluous information. In this set-
ting, it becomes challenging to detect an abnormality
automatically.
In this work, we consider an example that embodies
both of these aspects of sensor data: redundancy and di-
versity. Particularly, as a recent technological advance,
drones with impressive features, advanced sensors and
capabilities have become commonplace (Fuhrman et al.,
2019) (e.g. for aerial surveys, mapping, aerial movies
and even selfie-drones). The amount of sensor informa-
tion routinely processed during a flight such as altitude,
wind speed, air pressure, temperature, etc. is enormous.
This is related to the fact that drones are extremely use-
ful in the most remote and hard-to-reach places where
very little can be controlled by human operators. As
these drones are used for an increasingly wide range of
tasks, interacting with drones becomes more important.
To enable these interactions, it is essential to devise a
natural language generation (NLG) setup that can flexi-
bly connect to a variety of data records collected by the
drone and convey information reliably. In this paper,
we propose a neural generation model (or drone assis-
tant) that verbalizes messages from sensor data records
in order to perform a controlled handover to a human
drone pilot (see Figure 1). Recent data-driven meth-
ods have achieved good performance on various NLG

tasks (Liu et al., 2018; Freitag and Roy, 2018; Chen
et al., 2019). However, most studies focus on surface
descriptions of simple record sequences, for example,
attribute-value pairs of fixed or very limited schema,
such as E2E (Novikova et al., 2017) and WikiBio (Le-
bret et al., 2016). In contrast, there is a much larger
variety of data records available in the present setup,
and the content selection task is substantially harder
(only critical information, not all available information,
should be mentioned at handover time).

Handover Message

A tree is in path within 0.3 meter and the 
battery is low. Please resume human control.  

Drone Pilot Autonomous Drone

Figure 1. We focus on the drone handover as the main com-
municative function.

An on-device drone utterance generation model is thus
faced with two challenges due to its diverse and large
sensor data inputs (see Figure 2): (1) In real world sce-
narios, deployed drone dialogue systems are constantly
exposed to drastically different environments; therefore,
the ability of the system to generalize to diverse as well
as unseen environments is desirable. (2) The redundancy
of raw sensor records adds overheads to the encoder, and
result in texts with low fidelity, where wrong facts are
selected to be verbalized or even hallucinated.
To this end, we argue that it is necessary to leverage
intermediate content representations to achieve faithful
and controllable logical generation in such real-time
settings with redundant data. In this paper, these repre-



Warning! The drone is approaching a moving toy
car fast from a distance of 0.5 meters at 0:02.

Time-step 

Drone Status

Handover Message

0:02      toy car 1         Yes          Yes           0.5

0:03      toy car 2         Yes          Yes             1

0:09      orange shelf    No          No              3
             cashier desk    No          No              5

Time     Object          Moving     InPath     Distance

Battery Level   PilotExperienced   WindSpeed (m/s)   DroneSpeed (m/s)  ...  Criticality

70%                       No                       0                            10            RiskOfPhysicalDamage    

Drone Video Snapshot
Data Record

Figure 2. Depiction of one data sample from the dataset and the corresponding natural language utterance. For full drone status
refer to Table 2.

sentations are generated using description logic (DL) on-
tologies (Baader et al., 2007). This removes the burden
of logical reasoning from the neural realization model
and allows for more flexible and high fidelity utterances
to be produced. To allow us to study the utterance vari-
ability across different environments, we release a new
dataset that consists of 316 data records derived from
drone footage across 8 environments. The corpus offers
insights into the challenges of real-time assistants using
continuous streams of sensor data records.
In summary, our contributions are the following.

• We propose the first dataset that simulates real-
world environments consisting of raw drone sensor
data records paired with DL annotations and natu-
ral language utterances. We hope that our dataset
encourages further research towards building real-
time dialogue systems for large, real-time sensor
data records.

• We develop a DL drone ontology and four queries
to (i) automatically detect a critical situation and
establish its urgency; (ii) if a handover is required,
highlight justifiably relevant sensor records. These
records combined into a DNF formula form a DL
expression. A DL annotation combines the infor-
mation acquired in (i)-(ii).

• For message generation, we use the DL annotations
as intermediate content representation.

• We show the efficacy of our proposed technique for
dealing with diverse and redundant raw sensor data.
The code and the dataset are available online.1

2. Related Work
NLG from structured data or knowledge has been stud-
ied for many years. There are various applications, such
as the automatic generations of weather reports (Liang
et al., 2009), sport reports (Wiseman et al., 2017), or
response generation in task-oriented dialogue systems
(Wen et al., 2015; Budzianowski et al., 2018; Dušek et
al., 2019).

1https://gitlab.com/erniecyc/drone/

Recent data-driven methods tend to conflate the pipeline
modules into end-to-end neural networks, such as (Liu
et al., 2018; Wiseman et al., 2017; Wiseman et al., 2018;
Gong et al., 2019). However, purely neural models often
suffer from problems with content fidelity (omission or
halucination of facts) (Dušek et al., 2018). More recent
work has begun to focus on preserving the fidelity of
the generation, such as (Dhingra et al., 2019; Tian et
al., 2019). Their work obtains good performance on
surface-level NLG. In contrast, our work focuses on
reducing content selection overheads for complex input
data with high variability.

Recent NLG datasets mostly focus on surface-level gen-
eration. This includes WeatherGov (Liang et al., 2009),
E2E (Novikova et al., 2017), WikiBio (Lebret et al.,
2016), and ToTTo (Parikh et al., 2020). However, these
datasets contain natural language sentences which are
simple restatements of data records, and involve no ab-
stract logical inference. In fact, the model in (Chen et al.,
2020a) only obtains a 20% factual correctness rate based
on human evaluation, which is far from an acceptable
level in real-world systems. In contrast, our work fo-
cuses on the logical formulations executed on complex
data records that can be derived from real-time systems
realistically. To this end, we believe our new dataset can
help future development of on-device real-time drone
assistants.

3. Drone Sensor Data

This section describes the collected corpus and the sim-
ulated environments. We first describe the collection
process in Section 3.1, then discuss the data schema
in Section 3.2 and annotations (Section 3.4 and Sec-
tion 3.5). In this work, the drone assistant is used in
handover situations, where it sends a message to human
pilots when there is a problem and the drone cannot con-
tinue flying autonomously. The type of handover is also
categorized according to the level of criticality, which
describes the drone’s environment and corresponds to
how urgent it is for control to be handed over to the
human drone pilot.

https://gitlab.com/erniecyc/drone/


3.1. Video Data Collection
We collected drone videos in 8 different environments:
Disturbance (Di), Urban (Ur), Rural (Ru), Ocean (Oc),
Desert (De), Island (Is), Factory (Fa) and Miscellaneous
(Mi). These drone videos are recorded from the per-
spective of drones from either real drone manoeuvres
or a drone simulator. The environments have drastically
different settings; a detailed analysis is provided in Sec-
tion 5. We split the original records into 316 snapshot
videos of 10 seconds each. They are selected based on
human judgement of whether the level of criticality rises
to the point where a handover is required.

3.2. Data Record Schema
Each snapshot video from Section 3.1 is then manually
annotated with realistic data records, which are based
on the supposed sensor data that a drone can capture.
We show an example of the data in Figure 2, which
consists of a time step record of nearby objects, and a
separate drone status record. The time step data reports
9 attributes that show the dynamics of the surrounding
objects; for example, the object type, along with other
information related to the flight path, such as InPath or
Moving. The time step data are collected at 1-second
intervals. The drone status record remains the same
during the snapshot, as it indicates information of more
permanence; for an example see Table 2. Together, they
constitute a snapshot of data covering up to a 10-second
interval. Snapshots are used as input data to the drone
assistant.
In this section, examples of such data are written in
bold.

3.3. Challenges
An end-to-end model using the raw snapshots as inputs
faces the following problems.

1. The data record contains variable length informa-
tion as the number and types of detected objects
change between videos.

2. As the data is permutation invariant (Lee et al.,
2019), the output of the model should not change
under any permutation of the elements in the input
data record.

3. Snapshots are long-form (containing at least 30
cells each). Irrelevant information in the data will
tend to confuse the model.

4. By its design, transformer-based models are unable
to process long sequences due to their self-attention
operation, which scales quadratically with the se-
quence length.

To address these challenges, we incorporate DL reason-
ing in our drone assistant.

3.4. Annotation with Description Logic
Here, we describe the process of criticality annotation,
where the type (see Table 1) and level (“informative”,
“warning”or “advisory”) of criticality as well as DL ex-
pressions are added to each snapshot, in order to achieve
more robust text generation.
Criticality prediction determines the type of utterance
intent. To determine the type and the level of criti-
cality, we employ description logic reasoning (Baader
et al., 2007), based on an ontology consisting of ax-
ioms that describe background knowledge about drones
and surrounding objects. For our test scenarios, the
hand-crafted ontology2 contains 62 predicates and 55 ax-
ioms. We use ontology-mediated queries that determine
whether a certain critical situation is present in the input
data (Borgida et al., 2003; Bienvenu and Ortiz, 2015).
In the following text, ontology axioms and queries are
in sans serif. For example, the ontology contains ax-
ioms Foggy ⊑ LowVisibility and ∃env.LowVisibility ⊓
∃near.Object ⊑ RiskOfPhysicalDamage, which char-
acterize fog as a visibility impairment and describe a
critical situation of the drone flying close to another ob-
ject in a low-visibility environment. The query predicate
RiskOfPhysicalDamage indicates an increased critical-
ity.
The general process of DL annotation works as follows.
Based on the data record schema from Section 3.2, do-
main experts create a mapping from the records to the
DL ontology predicates. Using the four query predi-
cates from Table 1, for each snapshot DL reasoning can
then automatically derive which type of criticality holds.
For the most common criticality in the video collection,
RiskOfPhysicalDamage, we distinguish three levels of
urgency depending on the ontology axiom triggering
the criticality. We break ties between multiple reasons
for criticality by keeping the most compelling one, i.e.
between “informative” and “advisory” we choose the
latter. Additionally, DL justifications (Horridge, 2011)
are used to extract those parts of the input record that
are responsible for the criticality. This information is
encoded here into DL expressions, which takes the form
of grounded DNF formulas (disjunctive normal form)
expressing all reasons for the positive evaluation of the
criticality queries. In the prototype implementation,
since the ontology and the criticality queries are fixed,
we did not use a DL reasoner to perform query answer-
ing. Instead we implemented the whole procedure as
macros inside an annotation platform.

Example The partial status report in Table 2 is re-
ceived from a defective drone steered by an inexperi-
enced pilot inside a relatively cold room with differ-
ent objects logged in Figure 2. Some of these data
instances, on their own or in combination with oth-
ers, indicate that safe piloting is not possible. The
system must promptly recommend a handover. For

2https://cloud.perspicuous-computing.
science/s/zLoBagLxo2fgqw4

https://cloud.perspicuous-computing.science/s/zLoBagLxo2fgqw4
https://cloud.perspicuous-computing.science/s/zLoBagLxo2fgqw4


Types of Criticality Description Example DL Expression

RiskOfPhysicalDamage Potential physical damage (e.g. crash) Altitude (m): 20 Battery level: 30 OR InPath: true Distance: 3 at 00:02
RiskOfInternalDamage Potential internal damage weather: gloomy waterproof drone: false
RiskOfHumanDamage Risk of injuring nearby humans indoor: true Distance: 0.5 Type: Human at 00:16
LostConnection Drone connectivity/signal strength Distance from remote control (m): 162 Battery level: 0

Table 1. Information on the types of criticality.

Wind speed (m/s) 0
Drone speed (m/s) 10
Pilot experienced FALSE
Altitude (m) 20
Temperature (celcius) 5
Distance from remote control (m) 16
Battery level 70
Low visibility FALSE
Normal frame FALSE
weather sunny
upside down FALSE
good motor condition TRUE
going backwards FALSE
indoor TRUE
waterproof drone FALSE
flying over ground

Table 2. Sample of a status report that is part of a data record.

O Risk of physical damage! There is a skyscraper in the flight
path of the drone at a distance of 2m.

P Risk of physical damage! The drone has a damaged frame
and is flying indoors. There’s a skyscraper in the drone path
at a distance of 2m.
There is a damaged frame and a dangerous floor in the drone’s
flight path at a distance of 2m.

The drone has a damaged frame and is flying indoors. Risk
of physical damage! There’s a skyscraper on the flight path
of the drone at a distance of 2m.

Table 3. Examples of original (O) text and its three T5-
paraphrases (P).

example, the ontology has axioms such as Flying ⊓
Not Normal frame ⊑ RiskOfPhysicalDamage (“flying
a defective drone raises the risk of the drone being
physically damaged”) and ∃reachable.∃inPath.⊤ ⊑
RiskOfPhysicalDamage (“an object located at a reach-
able distance on a drone trajectory raises the risk of
the drone being physically damaged”). These axioms
applied to the data infer a critical state. Then, we au-
tomatically trace back which data records trigger this
conclusion and combine them into a DL expression. In
this example, it would look as follows:

[Altitude(m) : 20 AND Normal frame : FALSE]

OR [Object : toy car 1 AND InPath : Yes AND
Distance : 0.5 AT Time : 0:02].

For moving objects, we include the identifier and the
time stamp. At this stage, according to the mapping,
the abstract property of Flying is replaced by the raw
information of Altitude(m) : 20, which confirms that
the drone is in the air.
In a real-world system, there are many benefits of using

a formal ontology to encode background knowledge.
Since it has its own format, it is independent of the
platform or the programming language. This allows
an ontology to be viewed, extended, and debugged by
domain experts regardless of the end application. More-
over, in general, such ontologies can also be learned
(semi-automatically) from other sources such as anno-
tated data, text, and alignment with high-level ontolo-
gies (Lehmann and Völker, 2014). Existing ontology
editing platforms, e.g. Protegé3, also incorporate tools
for visualisation, automatic analysis and reasoning, such
as query answering.

3.5. Collection of Natural Utterances
As ground truth, we employed human experts to label
each snapshot with an utterance that describes the sit-
uation detected by DL. As discussed in Section 3.4,
the type and level of criticality already determine the
character of the utterances. However, the example
above demonstrates that the criticality can be created
by various combined reasons. For instance, an “ad-
visory” criticality type RiskOfPhysicalDamage is in-
tended to alert the human pilot to make prompt de-
cisions regarding the flight course. An “informative”
RiskOfPhysicalDamage communicates a suboptimal in-
ternal state of the drone, such as a low power level, after
which the human pilot can decide how to act on it. At
this stage, the human experts are able to prioritise and
aggregate the information e.g. an utterance could con-
tain a solution recommendation or a partial situation
report containing the data to be changed.

Paraphrase Augmentation. To enrich the variability
of the texts, we use T5 to generate paraphrases of the
texts. For each utterance, we generate an additional
three sentences by varying the beam size during decod-
ing. By obtaining 10 sentences initially, linguistic ex-
perts were prompted to select the top 3 sentences based
on their fluency and the perceived textual similarity with
the original reference. We display some examples in
Table 3.
We next describe the approach for automatically gener-
ating such utterances.

4. The Approach
The neural drone assistant primarily consists of two
modules described in detail in Sections 4.1-4.2 and in
Figure 3. The first one is a data record linearizer where
table-formatted records are converted into a linear string

3https://protege.stanford.edu/

https://protege.stanford.edu/


                                 Moving     InPath     DistanceTime     Object              

0:02       toy car                                             Yes          Yes             1

Battery Level   PilotExperienced  WindSpeed (m/s)    

70%                       No                       0                                

RiskOfPhysicalDamage

T5

...
D

at
a 

re
co

rd

is indoor,  moving,  attitude of 2m,  has damaged frame

Description Logic Module

DL Sequence

Data Record

D
L 

Se
qu

en
ce

Risk of physical damage and internal damage! The drone has a damaged frame. It's flying
indoors in a low-temperature setting at an altitude of 2m. 

Attention Map

Linearizer Module

Figure 3. The T5+DL pipeline. A data record at time t is first processed by the DL module and linearized into the input
sequence. This sequence is then fed into the T5 model and used to generate an utterance. The attention map on the right
demonstrates the DL-transformation of the data record being a permutation invariant, shorter subset sequence.

sequence along with auxiliary information. The second
module, a DL-to-text rewriter, transforms the linearized
sequence into a human-readable sentence. Finally, at
the end of this section, we summarize the benefits of
incorporating the DL reasoning seen from the NLG
perspective.

Raw Data Records:
”frames”: [ { ”actions”: [ { ”act”: ”IN-
FORM”, ”canonical values”: [ ”warning” ], ”slot”:
”risk of physical damage”, ”values”: [ ”warning” ] }, {
”act”: ”INFORM”, ”canonical values”: [ ”0.0” ], ”slot”:
”normal frame”, ”values”: [ ”0.0” ] }, . . . (more rows
omitted) ], ”service”: ”Drone 1”, ”slots”: [] } ],

Linearized Data Records:
service name=Drone 1,description=
{schema[’description’]},inform,name=
risk of physical damage, description=risk of physical dam-
age or not, values = warning, inform, name=normal frame,
description=Normal frame or not, examples =1.0,0.0,
values = 0.0, inform, . . . (more rows omitted)

Figure 4. An abridged example of a data record before
and after linearization.

4.1. Data Record Linearization
To linearize data records into sequences, we employ
a technique previously used (Kale and Rastogi, 2020),
where slot descriptions are added to each slot so as to
ease the generation process (see Figure 4). While the
slot descriptions are easy to obtain, it remains difficult
to encode the semantics of large data records that con-
tain irrelevant cells and duplicate information. Thus, we
propose an extension of the schema-guided represen-
tation (Kale and Rastogi, 2020) by replacing the slot
names with their natural language descriptions and also
selecting them based on DL expressions (Section 3.4)
so as to only focus on the relevant data records.

4.2. DL-to-Text Rewriting
The goal of the rewriting module is to convert DL ex-
pressions (generated as described in Section 3.4) to a
natural language response with the same semantic con-
tent. Thus, we finetune a Text-to-Text Transfer Trans-
former (T5) (Raffel et al., 2019) model, which is a pre-
trained sequence-to-sequence transformer, to generate
the natural language response using the linearized DL
expression sequence as input. Figure 3 depicts the re-
sulting framework. For ease of comparison, we perform
100-epoch updates for all training, as was empirically
found to be sufficient for convergence.

4.3. DL Operation As Set Transformation
With the challenges from Section 3.3 in mind, we de-
scribe how the DL expression reduces the data complex-
ity for T5 in a way that is functionally similar to a set
transformer (Lee et al., 2019).
T5 follows an encoder-decoder structure using stacked
self-attention layers for both the encoder and decoder.
Self-attention layers typically map one variable-length
sequence of symbol representations X = (x1, . . . , xn)
to another sequence of equal length (z1, . . . , zn), with
xi, zi ∈ Rd, for d being the embedding dimension of a
word. The per-layer computational complexity of self-
attention is O(n2d)4 (Vaswani et al., 2017). By applying
the permutation invariant data record linearization func-
tion based on DL expressions to the input data sequence,
DL(X) = (xi1 , . . . , xim), as a pre-processing step, we
can decrease the length of layer input. Indeed, since
DL(·) is basically a filter, it guarantees that m ≤ n
and, in practice (e.g. see the first two lines of Table 4),
m ≪ n. This results in much lower processing times

4In the transformer models, attention weights are calcu-
lated using all the words in the input sequence at once. There-
fore, for estimating computational benefits of a new input
size we can observe a difference already in the self-attention
complexity.



and maintains a high level of representational power,
thus yielding better robustness w.r.t. diverse input data.
Similarly to how the approaches (Moryossef et al., 2019;
Hua and Wang, 2019; Koncel-Kedziorski et al., 2019),
the function DL(·) performs an over-approximated text
planning, which includes the selection of relevant con-
tent (what to say). Thus, controllability, measured by
whether the generation correctly reflects the key seman-
tic information in the input, improves naturally over the
target output.

5. Corpus Analysis
This section and Table 4 present the details of our corpus.
We begin by describing the high-level characteristics
for each environment, then analyze both the data record
complexity and lexical richness of the utterance.

Characteristics of Environments. Generally speak-
ing, the generated types of criticalities as in Section 3.4
vary between environments due to differences in the
types and numbers of objects, settings, distance be-
tween remote control and drone, etc. Those environ-
ments which contain more humans (e.g. Ur) present
more human obstacles, which detect criticalities based
on a different set of parameters than the non-human
obstacles. The environments in more desolate areas
(e.g. De, Oc) generally have fewer objects, thereby pro-
voking fewer obstacle/nearby object warnings. Certain
environments with open, outdoor settings (e.g. Ru, Is)
contain more instances of long-distance remote drone
control, and thus produce more LostConnection warn-
ings than those in more enclosed environments (e.g. Fa,
Mi). Lastly, some environments (e.g. Mi, Di) trigger
substantially more RiskOfInternalDamage criticalities
than others, which are typically prompted by a non-
waterproof drone flying in a wet environment. Further,
the two aforementioned environments are the only ones
containing moving obstacles/nearby objects which war-
rant RiskOfPhysicalDamage warnings.

Data Record Complexity. Two crucial properties of
the given data records are their redundancy and variable
length when linearized. The performance of a neural
drone assistant will very much be influenced by these
factors since such records cannot be properly processed
in a low resource setting. For instance, we observe that
some attributes such as going backwards are rarely
used in the DL expressions or in the utterance: it should
only add overhead to the encoding process in the rare
occasion of the drone flying backwards. Thus, we com-
pute the average number of cells per data record to get
a sense of the distribution of raw data redundancy. We
found that some environments (e.g. Di) tend to have
more objects perceived by the drone, and so tend to
have a larger time step record. Importantly, Table 4
indicates that in average the number of relevant cells for
all environments is significantly reduced with the use of
DL-transformation.

Lexical Richness. We used the Lexical Complexity
Analyser (Lu, 2012) to measure various dimensions of

lexical richness of the utterances from Section 3.5. We
complement the traditional measure of lexical diversity
type-token ratio (TTR) with the more robust measure
of mean segmental TTR (MSTTR)5 (Lu, 2012). The
higher the value of MSTTR, the more diverse is the
measured text. Table 4 shows that the highest MSTTR
value is for Is and Mi while Di and Fa has the lowest
value. In addition, we measure lexical sophistication
(LS)6, also known as lexical rareness and find that Oc
has the highest LS score.

6. Experiments
We conduct experiments on the collected drone corpus
that is split into training, validation and testing sets as
reported in Table 5.

Vocabulary. We use SentencePiece (Kudo and
Richardson, 2018) to encode text as WordPiece tokens.
For all experiments, we use a vocabulary of 32,000
wordpieces as in T5 (Raffel et al., 2019), which is shared
across both the input and output of our model.

Configurations. Our baseline model T5 is designed
so that the encoder and decoder are each similar in
size and configuration as in the previous work (Devlin
et al., 2018). Specifically, both the encoder and de-
coder consist of 12 blocks, and each block comprises of
self-attention, optional encoder-decoder attention, and
a feed-forward network layer. The “key” and “value”
matrices of all attention mechanisms have an inner di-
mensionality of 64 and all attention mechanisms have
12 heads, resulting in a model with about 220 million
parameters. For regularization, we use a dropout proba-
bility of 0.1 everywhere dropout is applied in the model.

Test Scenarios. Based on the split in Table 5, we de-
sign four different test scenarios for the drone assistant
model with different training and testing sets. For all
inference scenarios, we either test the model on the data
records of environments previously seen in the training
set (seen) or not (unseen). In all, we train the model
on data derived from all environments so that it obtains
inductive bias that is more diverse and robust to environ-
mental changes. We also simulate the scenario where
we only have training data from one environment (ind.)
or all except one. In the latter case, the model will be
exposed to this unseen environment for testing. This
is to simulate the real-time scenario where the drone
assistant model is situated in new environments. For all
scenarios, the drone assistant is to generate a handover
message in relation to the input data record.

Benchmark Comparisons. In Table 6, we compare
our model with Fairseq (Ott et al., 2019) seq2seq base-
line, a simple retrieval method by using the data record
and text pairs as a dictionary, and retrieving the text

5It divides the corpus into successive segments of a given
length and then calculates the average TTR of all segments

6It is calculated as the proportion of lexical word types
not on the list of 2, 000 most frequent words from the British
National Corpus.



Di Ur Ru Oc De Is Fa Mi

Average number of cells 168.85 74.90 39.46 27.92 12.56 27.6 34.0 52.25
Average number of cells (DL) 3.26 2.05 2.24 2.44 3.16 2.36 1.68 2.68
LS 0.60 0.58 0.59 0.63 0.60 0.61 0.62 0.62
MSTTR 0.56 0.60 0.58 0.59 0.60 0.61 0.56 0.61

Table 4. Corpus statistics across all environments. Lexical sophistication (LS) and mean segmental type-token ratio (MSTTR)
are defined in Section 5. Average number of cells is defined as the average number of values per data record in the corpus.

Di Ur Ru Oc De Is Fa Mi

Train. 48 10 80 14 12 15 15 30
Valid. 6 5 10 5 5 5 5 5
Test. 6 5 10 5 5 5 5 5

Total 60 20 100 24 22 25 25 40

Table 5. Dataset splits in each environment.

of the closest7 data record representation at inference
time. A closely-related method is the template-based
generator (template) where we construct variations of
templates based on the training set. Lastly, we use
KGPT (Chen et al., 2020b) which is a pretrained data-
to-text model that learns to generate text from various
types of structured data. We finetune this model on the
training set.
We compare our approach, T5+DL described in Sec-
tion 4, with a baseline T5. In the latter, the transformer
model is simply finetuned on the linearized input se-
quence from each specified training set and tested on
the target environments.

7. Main Results
Here we present the experiment results and analysis by
first (A) comparing different models within the same
environments, so as to provide a more comprehensive
comparison of benchmark systems and our proposed
model. (B) We then examine how differences in en-
vironments influence the performance of each model.
(C) Lastly, we also examine the impact of removing the
testing environment from the training data, as a way
to test the generalizability of the models. This is cru-
cial to the development of real-time drone assistants as
there should be no assumptions made about the type of
environment that it will be exposed to.

(A) Benchmark Comparisons. Comparing our pro-
posed approach with the benchmarks, we see that our
proposed technique T5+DL+all outperforms all meth-
ods. In particular, Retrieval+all and Template+all
achieve the worst performance; while Seq2seq+all and
KGPT+all do slightly better. We find that our baseline
approach without DL, T5+all, already generates utter-
ances with more surface overlap with the reference than
other techniques. However, the significant improvement

7This is based on the string similarity.

Linearized Data Record:
name=flying over, description=Where the drone fly-
ing over, examples=ground,water,values = ground
name=risk of physical damage, description=risk of physi-
cal damage or not, values = warning
name=risk of internal damage, description=risk of inter-
nal damage or not, examples =1.0,0.0, values = 0.0
name=lost connection, description=Lost connection or not,
examples =1.0,0.0, values = 0.0 . . . (more rows omitted)

Linearized Data Record+DL:
name=risk of physical damage,description=risk of
physical damage or not, values = warning
name=object inpath, description=Object is in path or not,
examples =true, false, values = true
name=object distance, description=Distance of object,
values = 7

Reference: Risk of physical damage! The drone is flying
with a damaged frame. Risk of physical damage! There’s a
tree in 7m in the drone’s path.
T5+all : Distance of physical damage! The drone is flying
toward a tree in its path 7m ahead.
T5+DL+all (Ours): of physical damage! The drone’s
frame is in need of repair. Risk of physical damage! The
drone is flying toward a tree in its path 7m away.

Figure 5. An example of data records before and after DL-
transformation. We display generation outputs of T5+all and
T5+DL+all and show them side-by-side with the reference
text.

is brought about with the inclusion of DL – with differ-
ences up to 37.36 BLEU points. This correlates with our
other observation in Figure 5 where Data Record+DL
is much shorter than the raw data records. It is also
reflected in the poorer text quality of T5+all, which
produces a shorter utterance and is missing some es-
sential attributes. This shows that the combination of
linearization technique, additional slot descriptions and
DL transformation are highly beneficial for generating
utterances with high reference surface overlap.

(B) Impact of Environments On Performance.
Since the length of data records and vocabulary distribu-
tion is not homogeneous across different environments,
it also results in differences in model performance. We
observe that the length of the data records influences
the text quality very much, as indicated by the improve-
ments in terms of automatic evaluation i.e. BLEU-4
scores on T5+DL+all are generally higher than T5+all



Model Di Ur Ru Oc De Is Fa Mi

Template+all 22.43 41.87 37.62 34.27 26.58 22.11 34.82 38.63
Retrieval+all 18.91 45.20 40.80 31.89 24.62 21.89 33.34 42.77
Seq2seq+all 24.03 51.55 48.71 38.93 32.92 25.97 41.68 47.27
KGPT+all 25.14 54.50 50.28 40.01 34.52 28.22 45.51 50.93
T5+all 27.89 56.28 52.07 42.63 36.95 31.18 47.42 52.59
T5+DL+all 65.25 65.88 78.61 52.45 47.15 59.65 63.30 71.89

T5+ind. 15.88 33.90 40.47 28.16 33.04 22.06 46.15 35.56
T5+DL+ind. 42.52 39.26 73.09 29.06 38.30 32.56 42.61 44.69

Table 6. Performance in BLEU-4 (Papineni et al., 2002) on testing sets derived from the seen scenario across different
environments. Ind. means that the training set is only drawn from the target environment. Scores of proposed approach are
statistically-significant based on the two-tailed t-test with p < 0.05.

Model
seen unseen

Nat Miss Wr Nat Miss Wr

Human 4.76 0 0 4.58 0 0
Retrieval 3.32 49 63 2.95 57 48
Template 4.21 41 47 4.35 59 51
KGPT 3.45 46 66 4.23 48 44
Seq2seq 4.10 43 57 4.10 39 45
T5 4.20 45 51 4.15 49 51
T5+DL 4.38 39 44 4.27 31 39

Table 7. Human Evaluation on the sampled outputs (100
instances) for model comparison on REF-B for both seen
and unseen scenarios across all environments. The first row
is the (human) utterances from Section 3.5. We abbreviate
Naturalness and Wrong as Nat and Wr.

across all environments. This is especially true after
the DL-transformation, where the impact of length is
seemingly “erased”. For instance, almost all models
perform relatively poor in Di at while the addition of
DL boosted the BLEU score to 65.25.

Di Ur Ru Oc De Is Fa Mi
Environments
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Figure 6. Bar chart to indicate the contrast between seen and
unseen scenarios for our proposed approach T5+DL+all.

(C) On the Impact of Unseen Environments. For
more realistic settings, we expose the trained model to
environments unseen in Figure 6. The first observation
is that the scores are generally lower for the same en-
vironment for the model and also across environments.

This consistent degradation shows that unseen environ-
ments do require environmental-specific knowledge for
target utterance generation. Since the degradation is
less prominent on some environments, we attribute this
to the difference in vocabulary distribution across envi-
ronments, and to the intrinsic robustness that the model
has with the use of the DL-transformation, where the
long-form sequence is reduced to only its relevant sub-
set, thereby alleviating the overhead of the encoding
process.

Human Evaluation. We further ran a human eval-
uation on the model outputs (100 samples) to closely
check the generation quality. Again, the six models are
in consideration. Three annotators were asked to evalu-
ate the outputs based on the Naturalness (0-5), Miss (the
number of attributes in the data records that are missing
in the outputs), and Wrong (the number of hallucinated
attributes). We present the results in Table 7. We found
that the scores are generally consistent with the auto-
matic evaluation results (i.e. BLEU-4); our proposed
approach outperforms the other ones by a large margin
by generally yielding more natural utterances with fewer
missing or wrong facts.

8. Conclusion
In this work, we present the task of message generation
from real-time sensor data records and release a new
language generation corpus that differs from previous
corpora in terms of number and diversity in data records.
Our results demonstrate the difficulty of the task such
that it can serve as baseline for similar tasks where texts
are generated from raw data records. Furthermore, we
showed that description logic reasoning is able to trans-
form sensor data records and reduce the difficulty of the
encoding process to obtain better generation outputs.
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