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ABSTRACT
In ontology-based applications, the authoring of complex concepts

or queries written in a description logic (DL) is a difficult task. An

established approach to generate complex expressions from exam-

ples provided a user, is the bottom-up approach. This approach

employs two inferences: the most specific concept (MSC), which

generalizes an ABox individual into a concept and the least common
subsumer (LCS), which generalizes a collection of concepts into a

single concept. In ontology-based situation recognition the situa-

tion to be recognized is formalized by a DL query using temporal

operators and that is to answered over a sequence of ABoxes. Now,

while the bottom-up approach is well-investigated for the DL EL,

there are so far no methods for temporalized DLs.

We consider here the temporalized DL that extends the DL EL
with the LTL operators next (X) and global (G) and we present an

approach that extends the LCS and the MSC to the temporalized

setting. We provide computation algorithms for both inferences–

even in the presence of rigid symbols–and show their correctness.
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1 INTRODUCTION
In description logic knowledge bases (KBs) each concept corre-

sponds to a notion from the application domain written in a partic-

ular DL. Generally, concepts correspond to unary predicates and

roles to binary relationships. A (complex) concept is an expression

that combines concepts and roles by concept constructor available
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in the DL. The TBox part of a DL KB, states concept inclusions,

which are sub-concept relationships. The ABox part of a DL KB,

describes concrete objects. Two prominent DL reasoning problems

are subsumption, i.e. to decide for two given concepts, if one is

a specialization of the other, and instance checking, i.e. to decide

whether a given individual is an instance of a given concept. For the

DL EL that admits conjunction and existential restrictions (a form

of existential quantification) as concept constructors, subsumption

and instance checking can be decided in polynomial time [3].

When KBs or complex query concepts are built, it is often difficult

for users to come up with a formulation of the concept they intend

to use. Often it is easier to select example instances of the intended

concept. An approach to generate complex concepts from a set of

examples is the bottom-up approach [4] where the resulting concept
is computed by applying two inferences. The first is themost specific
concept (MSC), which computes from an ABox individual a concept

(in a given DL) that is the least w.r.t. subsumption. The second

inference is the least common subsumer (LCS), which computes

a concept from a set of input concepts that subsumes all input

concepts and is the least concept w.r.t. subsumption. Applying the

MSC to all examples selected by the user and then applying the

LCS results in a concept description of the selected examples.

LCS and MSC are typically studied for DLs that do not admit

disjunction as a concept constructor, since in the presence of dis-

junction the LCS is simply the disjunction of the input concepts

and thus not informative. Both inferences have been investigated

for unfoldable TBoxes, which are TBoxes that use assign complex

concepts to concept names by acyclic definitions. In this case the

TBox can simply be treated in a pre-processing step that essentially

“unfolds” the concept definitions from the TBox. For EL and some

of its extensions, the LCS and MSC were investigated in [4, 5, 7, 10].

If a cyclic TBox is used, the LCS need not exist, since cyclic concepts

cannot be expressed by finite concepts. For cyclic ABoxes the MSC

need also not exist, due to the same reason [7]. Conditions for the

existence of the LCS (and the MSC) in EL w.r.t. general TBoxes

have given in [11]. However, often an approximation of the LCS or

the MSC can be sufficient. Methods for computing the LCS or the

MSC up to a given nesting depth of quantification, i.e. up to a role

depth bound have been studied in [6–8].

In this paper we provide a first study on the computation of the

LCS and the MSC for temporalized DLs. Temporalized DLs have

been intensively investigated in the last decade mainly motivated

by the application of ontology-based situation recognition. In such

applications, the situation to be recognized is formalized as a query

with temporal operators in the query language. The task of situation

recognition is then to answer a temporalized query over a DL

knowledge base. Since reasoning in temporalized DLs can easily
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become undecidable, the query is answered over a classical TBox

and a sequence of classical ABoxes. The sequence captures the

temporal data and models observations made over time. See [1, 2]

for recent surveys on reasoning in this kind of setting. Many of the

results for reasoning have been achieved for combinations of linear

temporal logic (LTL) [9] and a range of DLs.

Example-based learning in temporalized DLs has so far not been

studied in the literature, although automated support for authoring

temporal query concepts (or temporal conjunctive queries) would

be very helpful for situation recognition applications. In this pa-

per, we lift the LCS and MSC to the temporal setting. We consider

the logic LTL
X,G
EL , which uses the temporal operators next (X) and

global (G) from LTL together with EL constructors. Our choice

of temporal operators is motivated by the fact, that operators that

imply a disjunction such as until (U) or finally (F), render the LCS
again uninformative, since the resulting temporal concept would

simply enumerate the variants found in the temporal data. Thus

we concentrate on the “deterministic” temporal operators next (X)
and global (G). Intuitively, the semantics of a LTL

X,G
EL concept is

interpreted in two dimensions. The EL constructors express rela-

tions to other elements in object domain, while the LTL operators

express the evolution of objects in the temporal dimension.

We consider here only empty or unfoldable TBoxes as the LCS

or MSC need not exist in the presence of general TBoxes. How-

ever, our techniques admit the computation of approximations of

the LCS and the MSC by a role depth bound, if general TBoxes

(or cyclic ABoxes) are used. Reasoning in temporal logics usually

distinguishes whether the signature contains rigid symbols, whose

extension cannot change over time, or not. We consider here the

cases without and with rigid concepts and rigid roles.

The bottom-up approach in the temporal setting means that

the user selects a set of example individuals from the sequence

of ABoxes and each individual is generalized into a LTL
X,G
EL con-

cept by the MSC and subsequently these are generalized into a

single LTL
X,G
EL concept by the computing their LCS. The general

approach for computing the LCS and the MSC in LTL
X,G
EL follows

the approach in [4]. To compute the LCS, the input concepts are

normalized such that the consequences of the interaction of the

concept constructors are made explicit. The normalized concepts

are then represented by description trees and their cross-product

yields (a representation of) the LCS. We devise a new normal form

that treats the interaction of next and global. The central part here

is our characterization of subsumption for LTL
X,G
EL concepts, which

we use to show the correctness of our LCS computation algorithm.

To compute the MSC of an ABox individual from a sequence of

ABoxes, is essentially to extract the connected component start-

ing from that individual. The re-occurrence of an individual in the

next ABox in the temporal sequence is modeled by connecting the

individual and its re-occurrence by a new role reflecting the tempo-

ral information. This construction can be approximated for cyclic

ABoxes, if a role depth bound is provided. In order to show the

correctness of our MSC algorithm, we develop a characterization

of the instance relationship in LTL
X,G
EL .

2 PRELIMINARIES
We briefly recall EL and propositional LTL to define the temporal

DL LTL
X,G
EL that extends EL concepts with X (next) and G (global).

The Description Logic EL. Let NC, NR, NI be sets of concept
names, role names and individual names, respectively. Let 𝐴 ∈ NC,

𝑟 ∈ NR and let 𝐶 and 𝐷 be EL concepts. Then EL concepts are
defined by the following grammar:

𝐶, 𝐷 ::= 𝐴 | 𝐶 ⊓ 𝐷 | ∃𝑟 .𝐶 | ⊤

An interpretation I = (ΔI , ·I ) consists of a nonempty domain ΔI

and a function ·I that maps every 𝐴 ∈ NC to a subset 𝐴I ⊆ ΔI
,

every 𝑟 ∈ NR to a relation 𝑟 I ⊆ ΔI × ΔI
, and every individual

name 𝑎 ∈ NR to an element 𝑎I ∈ ΔI
. Complex EL concepts are

interpreted as follows: (⊤)I = ΔI
, (𝐶 ⊓ 𝐷)I = 𝐶I ∩ 𝐷I

, and

(∃𝑟 .𝐶)I = {𝑥 ∈ ΔI | ∃𝑦.𝑦 ∈ ΔI
s.t. (𝑥,𝑦) ∈ 𝑟I and 𝑦 ∈ 𝐶I }.

Let 𝐶 and 𝐷 be EL concepts, 𝑟 ∈ NR, and 𝑎, 𝑏 ∈ NI. An EL
concept inclusion (CI) is of the form𝐶 ⊑ 𝐷 . An EL concept assertion
is of the form 𝐶 (𝑎) and a role assertion of the form 𝑟 (𝑎, 𝑏). An
interpretation I satisfies: a concept assertion 𝐶 (𝑎) if 𝑎I ∈ 𝐶I

; a

role assertion 𝑟 (𝑎, 𝑏) if (𝑎I , 𝑏I ) ∈ 𝑟 I ; and a CI 𝐶 ⊑ 𝐷 if 𝐶I ⊆ 𝐷I
.

The LTL Fragment LTLX,G. Let 𝑃 be a set of propositional vari-

ables. LTL
X,G

formulae are defined inductively: every propositional

variable is an LTL
X,G

formula; and if 𝜙 and𝜓 are LTL
X,G

formulae,

then 𝜙 ∧𝜓 (conjunction), X𝜙 (next), and G𝜙 (global) are LTL
X,G

formulae. The semantics of LTL
X,G

formulae is based on the notion

of an LTL structure. An LTL structure is a sequence ℑ = (𝑤𝑖 )𝑖≥0
of worlds𝑤𝑖 ⊆ 𝑃 . Intuitively,𝑤𝑖 is a set of propositional variables

that are true at time point 𝑖 . The validity of an LTL
X,G

formula 𝜙 in

an LTL structure ℑ at time point 𝑖 ≥ 0 (denoted ℑ, 𝑖 |= 𝜙) is defined

inductively:

• ℑ, 𝑖 |= 𝑝 for 𝑝 ∈ 𝑃 iff 𝑝 ∈ 𝑤𝑖 ;

• ℑ, 𝑖 |= 𝜙 ∧𝜓 iff ℑ, 𝑖 |= 𝜙 and ℑ, 𝑖 |= 𝜓 ;

• ℑ, 𝑖 |= X𝜙 iff ℑ, 𝑖 + 1 |= 𝜙 ;

• ℑ, 𝑖 |= G𝜙 iff ℑ, 𝑗 |= 𝜙 for all 𝑗 ≥ 𝑖 .

An LTL
X,G

formula 𝜙 is satisfiable if there exists an LTL structure

ℑ s.t. ℑ, 0 |= 𝜙 . Deciding satisfiability for LTL is PSpace-complete,

but it is trivial for LTL
X,G

, due to the absence of negation.

The Temporal DL LTLX,GEL . Let 𝐴 ∈ NC and 𝑟 ∈ NR. LTL
X,G
EL

concepts are defined by the following grammar:

𝐶, 𝐷 ::= 𝐴 | 𝐶 ⊓ 𝐷 | ∃𝑟 .𝐶 | X𝐶 | G𝐶 | ⊤.

A TBox T a finite set of concept inclusions (CIs) 𝐶 ⊑ 𝐷 . An ABox
A is a finite set of concept assertions 𝐶 (𝑎) and role assertions 𝑟 (𝑎, 𝑏)
where 𝑎, 𝑏 ∈ NI. An axiom is either a CI or an assertion.

The semantics of LTL
X,G
EL is based on temporal interpretations,

which extends LTL structures. A temporal interpretation is a se-

quence ℑ = (I𝑖 )0≤𝑖 of interpretations I𝑖 = (Δ, ·I𝑖 ) over a common

domain Δ and that respects rigid individual names, i.e., 𝑎I𝑖 = 𝑎I𝑗

for all 𝑎 ∈ NI and 𝑖, 𝑗 ≥ 0. The top concept (⊤)I𝑖 = Δ. Complex

LTL
X,G
EL concepts are interpreted as follows:

• (𝐶 ⊓ 𝐷)I𝑖 = 𝐶I𝑖 ∩ 𝐷I𝑖

• (∃𝑟 .𝐶)I𝑖 = {𝑥 ∈ Δ | ∃𝑦 : (𝑥,𝑦) ∈ 𝑟 I𝑖 and 𝑦 ∈ 𝐶I𝑖 }
• (X𝐶)I𝑖 = {𝑥 ∈ Δ | 𝑥 ∈ 𝐶I𝑖+1 }
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• (G𝐶)I𝑖 = {𝑥 ∈ Δ | 𝑥 ∈ 𝐶I𝑗
for all 𝑗 ≥ 𝑖}

A temporal interpretation ℑ at time point 𝑖 satisfies axiom 𝛼 (de-

noted ℑ, 𝑖 |= 𝛼) of the form: CI 𝐶 ⊑ 𝐷 iff 𝐶I𝑖 ⊆ 𝐷I𝑖
; concept asser-

tion 𝐶 (𝑎) iff 𝑎I𝑖 ∈ 𝐶I𝑖
; and role assertion 𝑟 (𝑎, 𝑏) iff (𝑎I𝑖 , 𝑏I𝑖 ) ∈ 𝑟I𝑖 .

ℑ = (I𝑖 )0≤𝑖 is amodel of a concept𝐶 if𝐶 is satisfied at time point

0, i.e., 𝐶I0 ≠ ∅. ℑ is a model of a CI 𝐶 ⊑ 𝐷 iff ℑ, 𝑖 |= 𝐶 ⊑ 𝐷 for all

𝑖 ≥ 0. ℑ is a model of an ABox A𝑖 at time point 𝑖 iff it is a model of

all 𝛼 ∈ A𝑖 at time point 𝑖 . ℑ = (I𝑖 )0≤𝑖 is a model of a sequence of
ABoxes (A𝑖 )0≤𝑖≤𝑛 iff it is a model of all ABox A𝑖 , 0 ≤ 𝑖 ≤ 𝑛. We

sometimes abbreviate (A𝑖 )0≤𝑖≤𝑛 with
®A𝑛 .

In temporal settings, some concepts or roles do not change over

time. We use Nrig
C ⊆ NC for the set of rigid concepts and Nrig

R ⊆ NR
for the set of rigid roles. The elements in NC \Nrig

C or NR \Nrig
R are

called flexible. A temporal interpretation ℑ = (I𝑖 )0≤𝑖 respects rigid
concepts (roles) iff𝐴I𝑝 = 𝐴I𝑞

(𝑟I𝑝 = 𝑟 I𝑞 ) for all𝐴 ∈ Nrig
C (𝑟 ∈ Nrig

R )

and all 0 ≤ 𝑝 ≤ 𝑞.

Every LTL
X,G
EL concept is satisfiable. Two DL reasoning problems

are the basis for the LCS and the MSC. 𝐶 subsumes 𝐷 (𝐶 ⊑ 𝐷)

w.r.t. T iff for all models ℑ of T , 𝐶ℑ ⊆ 𝐷ℑ
holds. Given concept

𝐶 , individual 𝑎, and time point 𝑖 , instance checking tests whether

𝑎I𝑖 ∈ 𝐶I𝑖
holds for all models ofT∪ ®A𝑛 , denoted by

®A𝑛, 𝑖 |=T 𝐶 (𝑎).
We assume TBox T is unfolded into concept descriptions.

Definition 2.1 (LCS & MSC). An LTL
X,G
EL concept 𝐷 is the least

common subsumer (LCS) of the concepts𝐶1, . . . ,𝐶𝑛 (lcs(𝐶1, . . . ,𝐶𝑛)
for short) iff it satisfies

• 𝐶𝑖 ⊑ 𝐷 for all 𝑖 = 1, . . . , 𝑛, and

• 𝐷 is the least concept with this property, i.e., if an LTL
X,G
EL

concept 𝐸 satisfies 𝐶𝑖 ⊑ 𝐸 for all 𝑖 = 1, . . . , 𝑛, then 𝐷 ⊑ 𝐸.

An LTL
X,G
EL concept 𝐷 is the most specific concept (MSC) of the indi-

vidual 𝑎 w.r.t. the sequence of ABoxes
®A𝑛 at time point 𝑖 (𝑀𝑆𝐶𝑖 (𝑎)

for short) iff

• ®A𝑛, 𝑖 |= 𝐷 (𝑎), and
• 𝐷 is the least concept with this property, i.e., if 𝐸 is an LTL

X,G
EL

concept satisfying
®A𝑛, 𝑖 |= 𝐸 (𝑎), then 𝐷 ⊑ 𝐸.

In combination, the MSC and the LCS facilitate the learning of

an LTL
X,G
EL concept from a set of individuals described in a sequence

of ABoxes. To ease presentation, we focus on the computation of

the LCS from two input concepts w.l.o.g., since the 𝑛-ary LCS can

be obtained from applying the binary one repeatedly.

3 REPRESENTING LTLX,GEL CONCEPTS

In order to characterize the LCS and the MSC in LTL
X,G
EL , we need

a characterization of subsumption and of instance. We extend the

approach for EL from [4], where concepts are normalized and

represented by EL-description trees. The subsumption test is then

simply deciding the existence of a homomorphism between such

trees. We first assume Nrig
C = Nrig

R = ∅ and then describe how to

handle rigid symbols by a preprocessing step (Section 3.3).

3.1 Normal Form and LTLX,GEL Description Trees

We extend description trees for EL to LTL
X,G
EL by accommodat-

ing temporal operators X and G. We treat both temporal opera-

tors as special roles and exemplify their effects by a normal form

for LTL
X,G
EL concepts and a propagation phase. W.l.o.g. we assume

X,G ∉ NR.

First, observe that each domain element of a temporal inter-

pretation is only directly connected “in the next time point” to

itself. This justifies to treat X like a (partial) functional role which

in turn admits restriction to only one X subconcept per concept.

Second, the information from the G subconcepts for one element

need to be propagated to each time point of that element. Since

G has “non-local” temporal effects, we use a role that represents

the information that holds at every time point of an element. The

G-successor node then represents the concept that needs to be sat-

isfied at all future time points. The following normal form realizes

the functional behavior of X and G in LTL
X,G
EL concepts. Note that

any domain element is an instance of X⊤ and G⊤.

Definition 3.1 (Normal form). Let 𝐴1, . . . , 𝐴𝑛 ∈ NC. An LTL
X,G
EL

concept 𝐶 is in normal form (NF) if it is of the form

𝐶 = 𝐴1 ⊓ . . . ⊓𝐴𝑛 ⊓ ∃𝑟1 .𝐷1 ⊓ . . . ⊓ ∃𝑟𝑚 .𝐷𝑚 ⊓ X𝐸 ⊓G 𝐹 ,

where 𝐷1, . . . , 𝐷𝑚, 𝐸, 𝐹 are LTL
X,G
EL concepts in normal form, and 𝐹

does have neither X nor G on the top-level conjunction.

Note, that equivalent concepts can result in different normalized

concepts. To see this, consider 𝐶 = 𝐴 ⊓ X(𝐴 ⊓ G𝐴) ⊓ G𝐴 and

𝐷 = 𝐴 ⊓G𝐴. Both are equivalent and each of them is in NF. The

following rules transform any LTL
X,G
EL concept 𝐶 into NF and also

propagate information from G concepts “along” the time line:

X𝐶1 ⊓ X𝐶2 ⇝ X(𝐶1 ⊓𝐶2) [MergeX]
G𝐶1 ⊓G𝐶2 ⇝ G(𝐶1 ⊓𝐶2) [MergeG]

G(G𝐶1) ⇝ G𝐶1 [FlattenG]
G(X𝐶1) ⇝ X(G𝐶1) [MoveG]

G𝐶1 ⇝ 𝐶1 ⊓G𝐶1 [DistributeG]
X𝐶1 ⊓G𝐶2 ⇝ X(𝐶1 ⊓G𝐶2) ⊓G𝐶2 [PropagateG]

All rules are applied exhaustively, but MergeX, MergeG, FlattenG

and MoveG have higher priority. Applying these four rules exhaus-

tively already results in a concept in NF. DistributeG and Propa-

gateG are applied to the nested subconcepts first and then to the

root concept. MergeX and MergeG make X and G functional roles

by collecting all X and G concepts into one subconcept. FlattenG

and MoveG ensure thatG concepts do not contain X andG directly.

DistributeG and PropagateG make the global information explicit

at the current and all future time points referred to in the concept.

Normalization might cause an exponential blow-up of a concept

due to PropagateG which copies concept 𝐶 from G𝐶 along the

chain of X-successors. For a concept 𝐶 , 𝐶∗
denotes 𝐶 in NF.

Proposition 3.2. Let𝐶 be an LTL
X,G
EL concept. Then, it holds that

𝐶 ≡ 𝐶∗. The size of 𝐶∗ can be exponential in the size of 𝐶 .

Proof Sketch. Using well-known equivalences for LTL formu-

lae, it is clear that the rules are equivalence preserving. The ex-

ponential blow-up in size comes from the interaction of the rules

DistributeG and PropagateG, where concepts are copied. However,

since there is no rule that extends a X-chain and PropagateG is only

applicable as many times as the length of the longest X-chain in 𝐶 .

This ensures termination of the NF transformation. □
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𝑣0 : {𝑀𝑎𝑐ℎ𝑖𝑛𝑒, 𝐵𝑢𝑠𝑦}

𝑣4 : {𝑀𝑎𝑐ℎ𝑖𝑛𝑒}𝑣2 : {𝑀𝑎𝑐ℎ𝑖𝑛𝑒 ,

𝐼𝑛𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒}

𝑣3 : {𝑀𝑎𝑐ℎ𝑖𝑛𝑒}
G

𝑣1 : {𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑖𝑛𝑔}

ℎ𝑎𝑠𝑃𝑟𝑜𝑏𝑙𝑒𝑚 X G

Figure 1: LTLX,GEL description tree.

Concepts in NF can be represented by description trees which

have originally been introduced for EL in [4] and are essentially

syntax trees of concepts. We extend these to LTL
X,G
EL concepts.

Definition 3.3 (LTLX,GEL description tree). An LTL
X,G
EL description

tree is of the form G = (𝑉 , E, 𝑣0, ℓ), where G is a tree with root 𝑣0
and where

• the edges 𝑣𝑟𝑤 ∈ E are labeled with a role name 𝑟 ∈ NR ∪
{X,G}; and

• the nodes 𝑣 ∈ 𝑉 are labeled with sets ℓ (𝑣) of concept names

from NC. The empty label corresponds to ⊤.

Any LTL
X,G
EL concept𝐶 can be translated into an LTL

X,G
EL descrip-

tion tree G𝐶 = (𝑉 , E, 𝑣0, ℓ). Intuitively, concepts of the form ∃𝑟 .𝐶 ,
X𝐶 , and G𝐶 give rise to successor nodes, while (conjunctions of)

concept names build the node labels. The reverse construction, i.e.

to read off an LTL
X,G
EL concept 𝐶G from an LTL

X,G
EL description tree

G, is done in the obvious way. For a description tree G𝐶 and a node

𝑤 , we denote the subtree of G𝐶 with root𝑤 by G𝐶 (𝑤). An X-path
in a description tree is a path, where each edge is labelled with X.

Example 3.4 (LTLX,GEL description tree). The LTLX,GEL concept

𝐶 := 𝑀𝑎𝑐ℎ𝑖𝑛𝑒 ⊓ 𝐵𝑢𝑠𝑦 ⊓ ∃ℎ𝑎𝑠𝑃𝑟𝑜𝑏𝑙𝑒𝑚.𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑖𝑛𝑔 ⊓
X(𝑀𝑎𝑐ℎ𝑖𝑛𝑒 ⊓ 𝐼𝑛𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 ⊓G(𝑀𝑎𝑐ℎ𝑖𝑛𝑒)) ⊓
G(𝑀𝑎𝑐ℎ𝑖𝑛𝑒)

corresponds to the description treeG𝐶 depicted in Figure 1. Concept

𝐶 describes that busy machines with the problem of overheating

will get maintenance in the next time point.

Lemma 3.5. Let𝐶 be an LTLX,GEL concept in NF andG𝐶 = (𝑉 , E, 𝑣0, ℓ)
be the LTLX,GEL description tree of 𝐶 . Then the following holds:

(1) 𝐶 = 𝐶G𝐶
up to commutativity and associativity of conjunction,

and G𝐶 = G𝐶G𝐶
up to renaming nodes.

(2) For each node 𝑣 ∈ 𝑉 , 𝑣 has at most one outgoing edge labeled
X and at most one outgoing edge labeled G.

(3) Let 𝑣 G𝑤 ∈ E. Then, there does not exists 𝑥 ∈ 𝑉 such that
either 𝑤 X𝑥 ∈ E or 𝑤 G𝑥 ∈ E, i.e., 𝐶G does not have a
subconcept of the form GX𝐷 or GG𝐷 .

(4) Let 𝑣 G𝑤 ∈ E and 𝐷 be the LTLX,GEL concept corresponding to
the subtree of G𝐶 with root𝑤 . Then for any 𝑣 ′ s.t. there is an
X-path from 𝑣 to 𝑣 ′, and 𝐷 ′ the LTLX,GEL concept corresponding
to the subtree of G𝐶 with root 𝑣 ′, 𝐷 ′ ⊑ 𝐷 holds.

To characterize subsumption, we need to use the connection

between description trees and the semantics of LTL
X,G
EL concepts

given by temporal interpretations. Specifically, next we describe

how to generate a temporal interpretation from a description tree.

3.2 Canonical Interpretation of LTLX,GEL Concepts
Consider 𝐶ex = 𝑀𝑎𝑐ℎ𝑖𝑛𝑒 ⊓ ∃𝑖𝑠𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑.(𝑀𝑎𝑐ℎ𝑖𝑛𝑒 ⊓ X𝐶𝑙𝑒𝑎𝑛) ⊓
(X(𝑁𝑜𝑖𝑠𝑦 ⊓ G∃ℎ𝑎𝑠𝑃𝑟𝑜𝑏𝑙𝑒𝑚.𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑖𝑛𝑔)) as an example. In Fig-

ure 2, that shows description tree G𝐶ex
, the nodes can be classi-

fied according to their distance from the root 𝑣0 in terms of X-
edges, i.e. number of time steps. If a pair of nodes is connected by

an X-edge, then they represent the same element in the domain,

but at subsequent points in time. In an LTL
X,G
EL description tree

G𝐶 = (𝑉 , E, 𝑣0, ℓ) a node 𝑣 ∈ 𝑉 is called a

• next copy if there exists𝑤 X 𝑣 ∈ E,
• global copy, if𝑤 G 𝑣 ∈ E,
• temporal copy iff 𝑣 is either a next copy or a global copy, and

• temporal root iff 𝑣 is not a temporal copy.

The temporal depth of 𝑣 (td(𝑣)) is the number of X-edges that
occur in the path from 𝑣0 to 𝑣 . We use the following sets: 𝑉𝑋 for

next copies, 𝑉𝐺 for global copies, and 𝑉𝑅 for temporal roots, For a

temporal copy 𝑣 ∈ 𝑉𝐺 ,𝑤 ∈ 𝑉𝑅 is the temporal root of 𝑣 (𝑤 = tr(𝑣))
if𝑤 G 𝑣 ∈ E or there is an X-path from𝑤 to 𝑣 in G𝐶 . For a temporal

root, its temporal copies are the same object in the domain, but at

later time points. Note, that a temporal root is its own temporal

root. Next, we define the canonical temporal interpretation over

the temporal roots as its domain gained from a description tree.

Definition 3.6 (Canonical Interpretation). Let 𝐶 be an LTL
X,G
EL

concept in NF and G𝐶 = (𝑉 , E, 𝑣0, ℓ) the LTLX,GEL description tree of

𝐶 . The canonical interpretation of 𝐶 is the temporal interpretation

ℑ𝐶 = ((I𝐶 )𝑖 )0≤𝑖 , with (I𝐶 )𝑖 = (𝑉𝑅, ·(I𝐶 )𝑖 ) for each 𝑖 ≥ 0, where

• for each 𝐴 ∈ NC and 𝑖 ≥ 0

𝐴(I𝐶 )𝑖
:= {𝑣 ∈ 𝑉𝑅 | 𝐴 ∈ ℓ (𝑣) and td(𝑣) = 𝑖} ∪

{𝑣 ∈ 𝑉𝑅 | ∃𝑤 ∈ 𝑉𝑋 : 𝑣 = tr(𝑤), 𝐴 ∈ ℓ (𝑤) and td(𝑤) = 𝑖} ∪
{𝑣 ∈ 𝑉𝑅 | ∃𝑤 ∈ 𝑉𝐺 : 𝑣 = tr(𝑤), 𝐴 ∈ ℓ (𝑤) and td(𝑤) ≤ 𝑖}

• for 𝑟 ∈ NR and 𝑖 ≥ 0

𝑟 (I𝐶 )𝑖 := {(𝑣,𝑤) | 𝑣 ∈ 𝑉𝑅, 𝑣𝑟𝑤 ∈ E and td(𝑣) = 𝑖} ∪
{(𝑣,𝑤) | 𝑣 = tr(𝑥) and𝑤 = tr(𝑦) where

𝑣,𝑤 ∈ 𝑉𝑋 , 𝑥𝑟𝑦 ∈ E and td(𝑥) = td(𝑦) = 𝑖} ∪
{(𝑣,𝑤) | 𝑣 = tr(𝑥), 𝑥 ∈ 𝑉𝐺 , 𝑥𝑟𝑤 ∈ E and td(𝑥) ≤ 𝑖}.

Lemma 3.7. Let 𝐶 be a LTL
X,G
EL concept, 𝑣0 the root of G𝐶 , and

ℑ𝐶 = ((I𝐶 )𝑖 )0≤𝑖 its canonical interpretation. Then 𝑣0 ∈ 𝐶ℑ𝐶 holds.

Proof Sketch. We proceed by induction on the depth of G𝐶 .
The proof for the base case and the case of 𝑟 -successors (for 𝑟 ∈ NR)

are similar, since they concern temporal roots. Intuitively, we show

that each concept name in top conjunction is satisfied since they

are contained in ℓ (𝑣0). For each ∃𝑟 .𝐷 , we show that there exists𝑤

such that (𝑣,𝑤) ∈ 𝑟 (I𝐶 )𝑖 and𝑤 ∈ 𝐷 (I𝐶 )𝑖
.

For the case of X𝐸, we show there exists a domain element

𝑤 ∈ 𝑉𝑅 s.t. tr(𝑤) = 𝑣0 and td(𝑤) = td(𝑣0) + 1. Furthermore, 𝑤 ∈
(𝐸G𝐶 (𝑤) )ℑ𝐶

implies 𝑣0 ∈ (X𝐸G𝐶 (𝑤) )ℑ𝐶
. For the case of G 𝐹 , we

show there exists 𝑤 ∈ 𝑉𝑅 s.t. tr(𝑤) = 𝑣0 and td(𝑤) = td(𝑣0)
and thus 𝑤 is a G-successor of 𝑣0. Then, we use the existence of
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𝑡𝑑 (𝑣) = 0 𝑡𝑑 (𝑣) = 1 𝑡𝑑 (𝑣) = 2

𝑣0 : {𝑀𝑎𝑐ℎ𝑖𝑛𝑒 }

𝑣1 : {𝑀𝑎𝑐ℎ𝑖𝑛𝑒 }

𝑣2 : {𝑁𝑜𝑖𝑠𝑦 }

𝑣4 : {𝐶𝑙𝑒𝑎𝑛}

𝑣3 : {𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑖𝑛𝑔} 𝑣5 : {}

𝑣6 : {𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑖𝑛𝑔}

𝑣7 : {}

𝑣8 : {𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑖𝑛𝑔} 𝑣9 : {}

𝑣10 : {𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑖𝑛𝑔}

𝑖𝑠𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

X

X

X

ℎ𝑎𝑠𝑃𝑟𝑜𝑏 G

ℎ𝑎𝑠𝑃𝑟𝑜𝑏

ℎ𝑎𝑠𝑃𝑟𝑜𝑏 G

ℎ𝑎𝑠𝑃𝑟𝑜𝑏

Figure 2: LTLX,GEL description tree for 𝐶ex in NF and with annotations for temporal depths.

𝑤 ∈ (𝐹G𝐶 (𝑤) ) (I𝐶 )𝑖 which propagates that 𝑣0 ∈ (𝐹G𝐶 (𝑤) ) (I𝐶 ) 𝑗
for all time points 𝑗 ≥ 𝑖 due to the construction of ℑ𝐶 where

each temporal copy of 𝑣0 is connected to𝑤 for all time points and

𝑤 ∈ 𝐹
ℑ𝐶

G𝐶 (𝑤) . Thus, we have that 𝑣0 ∈ (G 𝐹G𝐶 (𝑤) )ℑ𝐶 □

3.3 Admitting Rigid Names
Note that G𝐴 differs from a rigid concept 𝐴 semantically, because

G𝐴 is forward-looking only. Since LTL
X,G
EL has no past temporal

operators, a rigid concept 𝐴, can be simulated by using the concept

G𝐴 at the initial time point.

Definition 3.8 (Nrig
C -induced concept, Nrig

R -induced concept). Let
𝐶 = 𝐴1⊓ . . .⊓𝐴𝑛⊓∃𝑟1 .𝐷1⊓ . . .⊓∃𝑟𝑚 .𝐷𝑚⊓X𝐸⊓G 𝐹 be an arbitrary

LTL
X,G
EL concept and for all 1 ≤ 𝑖 ≤ 𝑘 with 𝑘 ≤ 𝑛 let 𝐴𝑖 ∈ Nrig

C and

let there exist X𝑛𝑖 𝐴𝑖 (𝑛𝑖 ∈ N) in the top-level conjunction of𝐶 . We

define the Nrig
C -induced concept of 𝐶 (denoted rigC(𝐶)) recursively:

rigC(𝐶) := 𝐴1 ⊓ . . . ⊓𝐴𝑛 ⊓ ∃𝑟1 .rigC(𝐷1) ⊓ . . . ⊓ ∃𝑟𝑚 .rigC(𝐷𝑚) ⊓
X𝐸 ⊓G 𝐹 ⊓G(𝐴1 ⊓ . . . ⊓𝐴𝑘 ).

For all 1 ≤ 𝑖 ≤ 𝑘 with 𝑘 ≤ 𝑚, let 𝑟𝑖 ∈ Nrig
R and let there exist

X𝑚𝑖 (∃𝑟𝑖 .rigR(𝐷𝑖 )) at the top-level conjunction of 𝐶; and 𝐹𝑖 is the

global operand (G 𝐹𝑖 ) at the top-level conjunction of rigR(𝐷𝑖 ). We

define the Nrig
R -induced concept of 𝐶 (denoted rigR(𝐶)) recursively:

rigR(𝐶) := 𝐴1 ⊓ . . . ⊓𝐴𝑛 ⊓ ∃𝑟1 .rigR(𝐷1) ⊓ . . . ⊓ ∃𝑟𝑚 .rigR(𝐷𝑚) ⊓
X𝐸 ⊓G 𝐹 ⊓G(∃𝑟1 .𝐹1 ⊓ . . . ⊓ ∃𝑟𝑘 .𝐹𝑘 )

Notice that we assume rigC(𝐶) and rigR(𝐶) are transformed into

normal form afterwards.

Proposition 3.9. Let 𝐶 be an LTL
X,G
EL concept and ℑ a temporal

interpretation.

(1) ℑ is a model of 𝐶 w.r.t. Nrig
C iff ℑ is a model of rigC(𝐶)

(2) ℑ is a model of 𝐶 w.r.t. Nrig
R if ℑ is a model of rigR(𝐶)

While rigC(𝐶) incorporates the semantics of rigid concept names,

this is not the case for rigR(𝐶). Proposition 3.9 shows that the set of

models of 𝐶 w.r.t. rigid concept names and rigC(𝐶) coincide. Thus,
we do not need to distinguish between rigid and flexible concept

names. However, rigid concept names can have a negative effect

on the computation, since a single rigid concept name may gener-

ate a G conjunct which can cause an exponential blow-up during

normalization.

The set of models of 𝐶 w.r.t. rigid concept names is contained in

those for rigR(𝐶), but the sets do not coincide. However, we show

later that this extension is sufficient to characterize subsumption

and LCS in LTL
X,G
EL .

4 CHARACTERIZATION OF SUBSUMPTION
AND THE LCS

In order to decide subsumption, it needs to be fixed, up to which

depth to consider the concepts in the X-chains. Clearly, such chains

can get arbitrarily long, if repeatedly G concepts are propagated

onto a X concept. For a subsumption 𝐶1 ⊑ 𝐶2 to be decided, G𝐶1

needs to have a temporal depth greater or equal to the one of G𝐶2
, in

order to be able to employ homomorphisms for the comparison. If

concept𝐶1 describes “less time points” than𝐶2, then some padding

is needed to achieve the same temporal depth.

Definition 4.1 (LTLX,GEL concept padding). Let𝐶1 and𝐶2 be LTL
X,G
EL

concepts in normal form. A function to pad 𝐶1 w.r.t. 𝐶2 (denoted
by 𝑝𝑎𝑑𝐶2

(𝐶1)) proceeds as follows:
• for each existential restriction ∃𝑟 .𝐷1 in the top-level of 𝐶1,

replace ∃𝑟 .𝐷1 with ∃𝑟 .𝑝𝑎𝑑𝐷 𝑗
(𝐷1) recursively for all ∃𝑟 .𝐷 𝑗

occurring in the top-level of 𝐶2;

• if there exists X𝐸2 in the top-level conjunction of 𝐶2, then

– if there exists X𝐸1 in the top-level of 𝐶1, then replace it

with X𝑝𝑎𝑑𝐸2
(𝐸1);

– otherwise:

∗ if there existsG 𝐹 in the top-level of𝐶1, replace𝐶1 with

𝐶1 ⊓ X(𝑝𝑎𝑑𝐸2
(𝐹 ⊓G 𝐹 )); and

∗ otherwise, replace 𝐶1 with 𝐶1 ⊓ X(𝑝𝑎𝑑𝐸2
(⊤)).

Furthermore, we say that 𝐶1 is aligned w.r.t. 𝐶2 if 𝑝𝑎𝑑𝐶2
(𝐶1) = 𝐶1.

Observe that the use of global concepts ensures that rigid con-

cepts are used for the padding. The padding function preserves

equivalence of LTL
X,G
EL concepts. Now, using the notion of aligned

concepts, we can ensure that the description tree for 𝐶1 is deep

enough in the temporal dimension to be compared with the one

for 𝐶2. We can thus use homomorphisms between two description

trees to characterize subsumption.

Definition 4.2 (Homomorphism between LTL
X,G
EL description trees).

Let H = (𝑉𝐻 , E𝐻 ,𝑤0, ℓ𝐻 ) and G = (𝑉𝐺 , E𝐺 , 𝑣0, ℓ𝐺 ) be LTL
X,G
EL

description trees. A homomorphism fromH into G is a mapping

𝜑 : 𝑉𝐻 ↦→ 𝑉𝐺 where
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(1) 𝜑 (𝑤0) = 𝑣0;

(2) ℓ𝐻 (𝑣) ⊆ ℓ𝐺 (𝜑 (𝑣)) for all 𝑣 ∈ 𝑉𝐻 ; and

(3) 𝜑 (𝑣)𝑟𝜑 (𝑤) ∈ E𝐺 for all 𝑣𝑟𝑤 ∈ E𝐻 .

Theorem 4.3 (Characterization of subsumption). Let 𝐶, 𝐷
be LTLX,GEL concepts in NF and 𝐶 is aligned w.r.t. 𝐷 . Then, we have
that 𝐶 ⊑ 𝐷 iff there exists a homomorphism from G𝐷 to G𝐶 .

Proof Sketch. “⇐”: we prove 𝑣0 ∈ 𝐷ℑ
by induction on |𝑉𝐷 |,

i.e. the number of nodes in G𝐷 . In the induction step, we prove that

if 𝑎 ∈ 𝐶ℑ
, i.e., 𝑎 is a witness of each top-level conjunct in 𝐶 , then it

has an appropriate successor for each top-level conjunct in 𝐷 . We

separate cases depending on the type of conjunct and utilize the

existence of a homomorphism to show, necessary successors exists

for each element in NR ∪ {X,G}.
“⇒”: is shown by induction on depth(𝐷) by constructing an

appropriate homomorphism on-the-fly. For the base case this is

straightforward, since ℓ𝐷 ⊆ ℓ𝐶 . In the induction step, we show for

each 𝑤0𝑟𝑤 ∈ E𝐷 , that there exists an appropriate 𝑣0𝑟𝑣 for each

𝑟 ∈ NR ∪ {X,G} and 𝐶G𝐶 (𝑣) ⊑ 𝐶G𝐷 (𝑤) . Then, we map 𝑤0 to 𝑣0 in

the construction of the homomorphism inductively. □

We use this characterization of subsumption to show correctness

of our LCS construction. The LCS concept is the concept corre-

sponding to the product of description trees of the rigidity-induced,

normalized and aligned input concepts.

Definition 4.4 (Product of LTLX,GEL description trees). Let G =

(𝑉𝐺 , E𝐺 , 𝑣0, ℓ𝐺 ) and H = (𝑉𝐻 , E𝐻 ,𝑤0, ℓ𝐻 ) be LTLX,GEL description

trees. The product of G andH is G ×H := (𝑉 , E, (𝑣0,𝑤0), ℓ) with
• (𝑣0,𝑤0) is the root of G ×H , labeled with ℓ𝐺 (𝑣0) ∩ ℓ𝐻 (𝑣0),
• for each 𝑟 -successor (𝑟 ∈ NR ∪ {X,G}) 𝑣 of 𝑣0 in G and𝑤 of

𝑤0 in H , there is an 𝑟 -successor (𝑣,𝑤) of (𝑣0,𝑤0) in G ×H
that is the root of G(𝑣) × H (𝑤).

Theorem 4.5. Let 𝐶1,𝐶2 be LTL
X,G
EL concepts in normal form and

𝐶1 is aligned w.r.t. 𝐶2 and 𝐶2 is aligned w.r.t. 𝐶1. Then, 𝐶G𝐶
1
×G𝐶

2

is
the LCS of 𝐶1 and 𝐶2.

Proof Sketch. We show the following: (1) 𝐶1 ⊑ 𝐶G𝐶
1
×G𝐶

2

,

(2)𝐶2 ⊑ 𝐶G𝐶
1
×G𝐶

2

, and (3) for each LTL
X,G
EL concept 𝐸 with𝐶1 ⊑ 𝐸

and 𝐶2 ⊑ 𝐸, we have that 𝐶G𝐶
1
×G𝐶

2

⊑ 𝐸. The statements (1) and

(2) can be proven by showing that the product of description trees

captures, by construction, properties of both𝐶1 and𝐶2. Due to this,

there exist the required homomorphisms which in turn shows that

both subsumption relationships hold.

Since 𝐸 is a common subsumer of 𝐶1 and 𝐶2, there exists ho-

momorphisms 𝜑1 from G𝐸 to G𝐶1
and 𝜑2 from G𝐸 to G𝐶2

. Then,

(3) can be shown by defining a mapping 𝜑 := ⟨𝜑1, 𝜑2⟩ from G𝐸 to

G𝐶1
×G𝐶2

as the product of 𝜑1 and 𝜑2, i.e., 𝜑 (𝑣 ′) := (𝜑1 (𝑣 ′), 𝜑2 (𝑣 ′))
for all 𝑣 ′ ∈ 𝑉𝐸 of G𝐸 . Then, 𝜑 is well-defined, i.e., 𝜑 (𝑣 ′) ∈ 𝑉G𝐶

1
×G𝐶

2

for all 𝑣 ′ ∈ 𝑉𝐸 by induction. Finally, we show 𝜑 is a homomorphism

from G𝐸 to G𝐶1
× G𝐶2

due to the construction of the product of

LTL
X,G
EL description trees. □

4.1 Subsumption and LCS with Rigid Names
Since rigid concepts can be expressed by G directly, we focus on

rigid roles and extend the result from Theorem 4.3 to these roles.

Theorem 4.6. Let 𝐶, 𝐷 be LTLX,GEL concepts. Then we have :

(1) if rigR(𝐶) is aligned w.r.t. rigR(𝐷), then it holds that
rigR(𝐶) ⊑ rigR(𝐷) w.r.t. rigid names iff there exists a homo-
morphism from GrigR(𝐷) to GrigR(𝐶) .

(2) if rigR(𝐶) is aligned w.r.t. rigR(𝐷), then we have that
𝐶GrigR(𝐶 )×rigR(𝐷 ) is the LCS of 𝐶1 and 𝐶2 w.r.t. rigid role names.

Proof Sketch. The proof of (1) is an extension of the proof of

Theorem 4.3. Notice that the models of 𝐶 w.r.t. rigid role names do

not coincide with the models of rigC(𝐶). Consider the case of ∃𝑟 .𝐴
and 𝑎 is an instance of ∃𝑟 .𝐴. If 𝑟 is rigid, ∃𝑟 .𝐴 would be extended by

rigR () with G∃𝑟 .⊤ at the top-level conjunction. Observe G∃𝑟 .⊤
does not restrict 𝑎 to be connected with the same individual at

each time point. However, this is not problematic, since the concept

constructors in LTL
X,G
EL cannot distinguish those two cases and

neither can the homomorphism.

Since (1) holds, we can prove (2) in a similar manner as we did

in Theorem 4.5. Since the characterization of LCS make use of the

characterization of subsumption, the proof is almost identical. □

While the computation is similar with the case without rigid

names, the concepts are larger due to construction of rigR(𝐶). Since
a rigid role needs to be induced to G successor and propagated, it

increases the complexity exponentially.

5 CHARACTERIZATION OF THE INSTANCE
RELATIONSHIP AND MSC

Next, we develop a method for computing a LTL
X,G
EL concept that

describes an individual from a sequence of ABoxes best, i.e. a com-

putation method for the MSC in LTL
X,G
EL . To show correctness of the

method, we develop a characterization of the instance relationship

in LTL
X,G
EL . The general approach used here follows [7], but extends

it to temporal operators and sequences of ABoxes as the input.

5.1 Characterization of the Instance
Relationship

Since there are 𝑛 ABoxes in
®A𝑛 , we have to consider information

from each time point on the input individual 𝑎. We can use the

X operator to describe the temporal information in one concept.

Intuitively, we construct a concept 𝐶 that represents 𝑎 from (a

user-selected) time point 𝑖 on. Let 𝐼𝑛𝑑 ( ®A𝑛) denote the set of all
individuals occurring in

®A𝑛 . For each 𝑎 ∈ 𝐼𝑛𝑑 ( ®A𝑛), we define

𝐶𝑎 :=
d

0≤𝑖≤𝑛
(d

𝐷 (𝑎) ∈A𝑖
X𝑖 𝐷

)
,

if there exists an assertion 𝐷 (𝑎) ∈ A𝑖 for any 𝑖; and ⊤ otherwise.

We assume that each𝐶𝑎 for all 𝑎 is rigidity induced and normalized.

As relational structures in the ABoxes can be arbitrary, we need

to represent the information on 𝑎 by graphs instead of trees [7]

for EL. An LTL
X,G
EL description graph is a labeled graph of the form

G = (𝑉 , E, ℓ) whose edges 𝑣𝑟𝑤 ∈ E are labeled with role names

𝑟 ∈ NR ∪ {X,G} and whose nodes 𝑣 ∈ 𝑉 are labeled with sets

ℓ (𝑣) ⊆ NC. Let G𝐶𝑎
= (𝑉𝑎, E𝑎, 𝑎, ℓ𝑎) denote the LTLX,GEL description

tree for𝐶𝑎 . W.l.o.g. assume that the sets𝑉𝑎 for all 𝑎 ∈ 𝐼𝑛𝑑 ( ®A𝑛) are
pairwise disjoint. Given an individual 𝑎 ∈ 𝐼𝑛𝑑 ( ®A𝑛), we define the
temporal copy of 𝑎 at time point 𝑖 as tc𝑖 (𝑎) = 𝑣 , where 𝑣 ∈ 𝑉𝑎 such
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that there is anX-path of length 𝑖 from 𝑎 to 𝑣 in G𝐶𝑎
. The description

graph of a sequence of ABoxes is G( ®A𝑛) = (𝑉 , E, ℓ), with:
• 𝑉 =

⋃
𝑎∈Ind( ®A𝑛) 𝑉𝑎 ;

• E = {𝑥𝑟𝑦 | 𝑟 (𝑎, 𝑏) ∈ A𝑖 , 𝑥 = tc𝑖 (𝑎) and 𝑦 = tc𝑖 (𝑏)} ∪⋃
𝑎∈𝐼𝑛𝑑 ( ®A𝑛) E𝑎 ; and

• ℓ (𝑣) = ℓ𝑎 (𝑣) for all 𝑣 ∈ 𝑉𝑎 .

Example 5.1 (Description graph). Let ®A2 = (A𝑖 )0≤𝑖≤2 be the

following sequence of ABoxes:

A0 = {𝑀𝑎𝑐ℎ𝑖𝑛𝑒 (𝑎)}
A1 = {(𝑁𝑜𝑖𝑠𝑦 ⊓G(∃ℎ𝑎𝑠𝑃𝑟𝑜𝑏𝑙𝑒𝑚.𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑖𝑛𝑔)) (𝑎), 𝑀𝑎𝑐ℎ𝑖𝑛𝑒 (𝑏)}
A2 = {𝑁𝑜𝑖𝑠𝑦 (𝑎), 𝑁𝑜𝑖𝑠𝑦 (𝑏), 𝑖𝑠𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 (𝑎, 𝑏)}

The description graph G( ®A2) is depicted in Figure 3. Although 𝑏

does not occur in A0, G( ®A2) contains 𝑏 at time point 0.

For a sequence of interpretations, one might be interested in

concept membership from a certain time point on, not only in

those that hold from the beginning. We characterize the instance

relationship using G( ®A𝑛) and G𝐶 . To put starting point 𝑖 into

consideration, we place the temporal copy tc𝑖 (𝑎) as the temporal

root instead of 𝑎.

Theorem 5.2 (Characterization of instance). Let ®A𝑛 be a
sequence of ABoxes, 𝑎 ∈ 𝐼𝑛𝑑 ( ®A𝑛),𝐶 be a LTLX,GEL concept, and 0 ≤ 𝑖 .
Then, ®A𝑛, 𝑖 |= 𝐶 (𝑎) if there exists a homomorphism 𝜑 from G𝐶 into
G( ®A𝑛) such that 𝜑 (𝑣0) = tc𝑖 (𝑎), where 𝑣0 is the root of G𝐶 .

Proof Sketch. We show by induction that the concept repre-

sented by subtree with root tc𝑖 (𝑎) together with existence of ho-

momorphism yield tc𝑖 (𝑎) ∈ 𝐶I𝑖
of the canonical interpretation.

Let 𝐶
tc𝑖 (𝑎) :=

d
0≤𝑖≤𝑛

(d
𝐷 (tc𝑖 (𝑎) ∈A𝑖

X𝑖 𝐷
)
, then ℑ |= ®A𝑛 implies

that 𝑎 ∈ 𝐶ℑ
tc𝑖 (𝑎) due to the construction of G( ®A𝑛). Then, we show

𝑎ℑ ∈ 𝐶ℑ
by induction on the depth(𝐶) by utilizing the existence of

homomorphism. □

5.2 Computing the 𝑘-MSC in LTLX,GEL
The role depth of 𝐶 (denoted rdepth(𝐶)) is the maximum number

of nested quantifiers in 𝐶 . The MSC in LTL
X,G
EL suffers the same

problem as the one in EL: cycles in the description graph would

cause infinite role depth in the MSC [7] and thus the MSC need not

exist since concepts are finite descriptions. A common approach is

to approximate the MSC by the 𝑘-MSC, i.e. to limit the role depth

of the MSC concept to 𝑘 ∈ N.

Definition 5.3 (𝑘-MSC). Let ®A𝑛 be a sequence of ABoxes, 𝑎 ∈
𝐼𝑛𝑑 ( ®A𝑛), 𝐶 an LTL

X,G
EL concept, and 𝑖, 𝑘 ≥ 0. Then, 𝐶 is the 𝑘-MSC

of 𝑎 w.r.t.
®A𝑛 and time point 𝑖 (𝑘-msc𝑖 (𝑎)) iff

• ®A𝑛, 𝑖 |= 𝐶 (𝑎);
• rdepth(𝐶) ≤ 𝑘 ; and

• 𝐶 ⊑ 𝐶 ′
for all LTL

X,G
EL concepts 𝐶 ′

with
®A𝑛, 𝑖 |= 𝐶 ′(𝑎) and

rdepth(𝐶 ′) ≤ 𝑘 .

The computation of the 𝑘-MSC performs the following steps.

First, it performs a tree unraveling of G( ®A𝑛) with root 𝑎 to obtain a

LTL
X,G
EL description tree T (𝑎,G( ®A𝑛)). The starting point is tc𝑖 (𝑎)

as the root instead of 𝑎. Second, it prunes all paths to length 𝑘 to

obtain T𝑘 (𝑎,G( ®A𝑛)). We give conditions for the existence of the

MSC in following theorem. Note that this condition is necessary,

but in may not be sufficient— similar to the condition for the MSC

in ALE given in [7].

Theorem 5.4. Let ®A𝑛 be a sequence of ABoxes, 𝑎 ∈ 𝐼𝑛𝑑 ( ®A𝑛), let
𝑖, 𝑘 ≥ 0, and 𝑇 = T𝑘 (tc𝑖 (𝑎),G( ®A𝑛)). Then

(1) 𝐶𝑇 is the 𝑘-MSC of 𝑎 w.r.t. ®A𝑛 at time point 𝑖 .
(2) If no cyclic path is reachable from tc𝑖 (𝑎) in G( ®A𝑛), then 𝐶𝑇

is the MSC of individual 𝑎 w.r.t. ®A𝑛 at time 𝑖 .

Proof Sketch. Proving (1) is mainly an extension of Lemma 5.2.

We can map tc𝑖 (𝑎) of G𝐶𝑇
to tc𝑖 (𝑎) of G ®A𝑛

to obtain a homomor-

phism, since it G ®A𝑛
contains G𝐶𝑇

with root tc𝑖 (𝑎). This yields that
𝑎 is an instance of𝐶𝑇 . Then, if𝐶 is a LTL

X,G
EL concept such that 𝑎 is

an instance of 𝐶 with depth(𝐶) ≤ 𝑘 , we can construct a homomor-

phism from G𝐶 to G𝐶𝑇
. Then, we have that 𝐶𝑇 ⊑ 𝐶 and finally 𝐶𝑇

is the 𝑘-MSC.

To prove (2), consider the case where the depth of the unraveled

tree is finite, e.g.,𝑘 ′. Then, the depth of the𝑘-MSC is bounded by𝑘 ≥
𝑘 ′, i.e., all concept with a larger role depth (𝑘 ′-MSC) are equivalent

to the 𝑘-MSC. Now consider the case where the unraveled tree has

infinite depth. Assume that there exists 𝑘-MSC that also serves as

MSC of 𝑎 and call it 𝐶𝑘 . Then, it is easy to see that there always

exists (𝑘 + 1)-MSC such that 𝐶𝑘+1 ⊑ 𝐶𝑘 due to the cycle. Then,

we have to construct an infinitely large 𝑘-MSC of 𝐶 for 𝑎. Since a

concept description only has a fixed and finite depth, 𝑎 cannot have

an MSC. □

5.3 Instance and 𝑘-MSC w.r.t. Rigid Names
The admission of rigid roles in the computation of 𝑘-MSC is not as

straightforward in as the case of subsumption and LCS. In ABoxes

with role assertions for rigid roles, these assertions affect the MSC.

In contrast to the LCS with rigid symbols, where 𝑟 always connects

to anonymous individuals, the MSC needs to use information on

other ABox individuals (possibly) at different time points.

Consider a sequence of ABoxes
®A𝑛 . Let ΣCrig ( ®A𝑛) ⊆ Nrig

C and

ΣRrig ( ®A𝑛) ⊆ Nrig
R denote the sets of rigid concept names and role

names that occur in
®A𝑛 , respectively. We collect the rigid assertions

in the rigid ABox (written Arig ( ®A𝑛)), which is defined as follows:

Arig ( ®A𝑛) = {𝐴(𝑎) | ∃𝑖, 0 ≤ 𝑖 ≤ 𝑛 s.t.

𝐴(𝑎) ∈ A𝑖 and 𝐴 ∈ ΣCrig ( ®A𝑛)} ∪
{𝑟 (𝑎, 𝑏) | ∃𝑖, 0 ≤ 𝑖 ≤ 𝑛 s.t.

𝑟 (𝑎, 𝑏) ∈ A𝑖 and 𝑟 ∈ ΣRrig ( ®A𝑛)}

All assertions in the rigid ABox hold at all time points and beyond

the observed time. Clearly, a temporal interpretation ℑ respects

rigid concepts and roles if ℑ, 𝑖 |= 𝛼 for all 𝛼 ∈ A𝑟𝑖𝑔 ( ®A𝑛) and 0 ≤ 𝑖 .

If
®A𝑛 is clear from the context, we simply write A𝑟𝑖𝑔 .

It is straightforward that we can simply augment each ABox A𝑖

in the sequence with the rigid information collected in the ABox

Arig from all of the ABoxes in the sequence, i.e., to use

®A𝑛
rig = (A𝑖 ∪ Arig)0≤𝑖≤𝑛

to propagate the rigid information to each time point. However,

this is not enough, since rigid information holds even beyond the
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𝑡𝑑 (𝑣) = 0 𝑡𝑑 (𝑣) = 1 𝑡𝑑 (𝑣) = 2

𝑎 : {𝑀𝑎𝑐ℎ𝑖𝑛𝑒 } 𝑎1 : {𝑁𝑜𝑖𝑠𝑦 }

𝑣1 : {𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑖𝑛𝑔} 𝑣2 : {}

𝑣3 : {𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑖𝑛𝑔}

𝑎2 : {𝑁𝑜𝑖𝑠𝑦 }

𝑣4 : {𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑖𝑛𝑔} 𝑣5 : {}

𝑣6 : {𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑖𝑛𝑔}

𝑏 : {} 𝑏1 : {𝑀𝑎𝑐ℎ𝑖𝑛𝑒 } 𝑏2 : {𝑁𝑜𝑖𝑠𝑦 }

X X

X X

ℎ𝑎𝑠𝑃𝑟𝑜𝑏 G

ℎ𝑎𝑠𝑃𝑟𝑜𝑏

ℎ𝑎𝑠𝑃𝑟𝑜𝑏 G

ℎ𝑎𝑠𝑃𝑟𝑜𝑏
𝑖𝑠𝐶𝑜𝑛𝑛

Figure 3: LTLX,GEL description graph for ®A2 from Example 5.1.

observed time points. This needs to be realized in the MSC in

LTL
X,G
EL by the use of G concepts.

Consider the example A0 = {𝑟 (𝑎, 𝑏), 𝑟 (𝑏, 𝑎)} and A1 = {𝐶 (𝑏)}
with 𝑟 and 𝐶 being rigid, then 1-𝑀𝑆𝐶0 (𝑎) = G∃𝑟 .𝐶 ⊓ ∃𝑟 .(G𝐶).

To compute the 𝑘-MSC of 𝑎 at time point 𝑖 , we employ a recur-

sive algorithm that proceeds as follows. First, it constructs
®A𝑛

rig
as

defined. Then, it performs a modified tree unraveling when travers-

ing the tree. Suppose, the current node is 𝑎, at time point 𝑖 and

𝑟 (𝑎, 𝑏) is contained in the ABox. In EL, one can compute this kind

of conjunct recursively by computing ∃𝑟 .((𝑘 − 1)-𝑀𝑆𝐶 (𝑏)). For
LTL

X,G
EL , however, we have to construct

∃𝑟 .((𝑘 − 1)-𝑀𝑆𝐶𝑖 (𝑏)ΣRrig ( ®A𝑛) )

instead. Furthermore, we have to extend the MSC with a conjunct

G∃𝑟 .𝐹 , where 𝐹 is the operand of G at the top-level conjunct of

∃𝑟 .(((𝑘 − 1)-𝑀𝑆𝐶𝑖 (𝑏)ΣRrig ( ®A𝑛) ) and this has to be computed recur-

sively with base 𝑘 = 0.

Note, that the rigid information is propagated “beyond” the ob-

served time points by theG branch for each individual at each time

point. Although a rigid concept name 𝐴 is already represented by

G𝐴 at the initial time point, the unraveling process can be extended

to accommodate this. When we traverse an X chain and find a rigid

concept, we go back to the temporal root and attach G𝐴 there.

6 CONCLUSIONS
For ontology-based application that use temporal DLs, the learning

of temporal concepts is an important task. So far learning concepts

written in a temporal DL has not been addressed in the literature.

In this paper, we have devised a method how to derive a tempo-

ral concept from example individuals occurring in the sequence

of ABoxes. Specifically, we investigated LTL
X,G
EL concepts, which

extend EL with temporal operators next (X) and global (G) and
have devised computation methods for the LCS and the (𝑘-)MSC in

this logic. We have investigated the settings with rigid concept and

roles, and can accommodate them by a preprocessing step in our

computation algorithm.

Intuitively, from a given sequence of LTL
X,G
EL -ABoxes, our meth-

ods can generalize a given set of example individuals into a LTL
X,G
EL -

concept by applying the (𝑘-)MSC and then the LCS. The result is

an LTL
X,G
EL -concept that captures the shared properties of all indi-

viduals as precise as possible in LTL
X,G
EL . The resulting concept can

serve as a query concept to be used in instance queries or it can be

used in concept definitions (or GCIs) to augment the knowledge

base.

Main extensions of the corresponding methods for EL are the

normal form which can cause an exponential blow-up of the input

concepts and the notion of concept padding. Clearly, an exhaustive

normalization need not be necessary in every case. It would be

desirable to devise a dynamic algorithm for normalization and even

a rewriting procedure to obtain succinct LTL
X,G
EL concepts.

Obvious extensions of our methods for the LCS and MSC are

to learn w.r.t. a general TBox and to use more expressive DLs or

temporal logics. In the longer run, we would like to use a bigger

fragment of LTL, e.g., 3 (eventually), and to investigate the case of

learning temporalized conjunctive queries.
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