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Abstract. Logic-based approaches to AI have the advantage that their
behavior can in principle be explained with the help of proofs of the com-
puted consequences. For ontologies based on Description Logic (DL), we
have put this advantage into practice by showing how proofs for con-
sequences derived by DL reasoners can be computed and displayed in a
user-friendly way. However, these methods are insufficient in applications
where also numerical reasoning is relevant. The present paper considers
proofs for DLs extended with concrete domains (CDs) based on the ra-
tional numbers, which leave reasoning tractable if integrated into the
lightweight DL EL⊥. Since no implemented DL reasoner supports these
CDs, we first develop reasoning procedures for them, and show how they
can be combined with reasoning approaches for pure DLs, both for EL⊥
and the more expressive DL ALC. These procedures are designed such
that it is easy to extract proofs from them. We show how the extracted
CD proofs can be combined with proofs on the DL side into integrated
proofs that explain both the DL and the CD reasoning.

1 Introduction

Description Logics (DLs) [10] are a well-investigated family of logic-based knowl-
edge representation languages, which are frequently used to formalize ontologies
for various application domains. As the sizes of DL-based ontologies grow, tools
that support improving the quality of such ontologies become more important.
DL reasoners3 can be used to detect inconsistencies and to infer other implicit
consequences, such as subsumption relationships. However, for developers or
users of DL-based ontologies, it is often hard to understand why a consequence
computed by the reasoner actually follows from the given, possibly very large
ontology. In principle, such a consequence can be explained by producing a proof
for it, which shows how the consequence can be derived from the axioms in the
ontology by applying certain easy-to-understand inference rules. In recent work,
we have investigated how proofs for consequences derived by DL reasoners can

3 See http://owl.cs.manchester.ac.uk/tools/list-of-reasoners/
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be computed [1,2] and displayed [28] in a user-friendly way [5]. However, like
previous work [17,18], this was restricted to DLs without concrete domains.

Concrete domains [9,24] (CDs) have been introduced to enable reference
to concrete objects (such as numbers) and predefined predicates on these ob-
jects (such as numerical comparisons) when defining concepts. For example,
assume that we measure the systolic and the diastolic blood pressure of pa-
tients. Then we can describe patients with a pulse pressure of 25mmHg as
Patient ⊓ [sys − dia = 25], where sys and dia are features that are interpreted
as partial functions that return the systolic and the diastolic blood pressure of a
patient, respectively, as rational numbers (if available). We can then state that
such patients need attention using the general concept inclusion (GCI)

Patient ⊓ [sys− dia = 25] ⊑ NeedAttention.

In the presence of GCIs, integrating a CD into a DL may cause undecidabil-
ity [25,12] even if solvability of the constraint systems that can be formulated in
the CD (in our example, sets of constraints of the form x− y = q for q ∈ Q) is
decidable. One way to overcome this problem is to disallow role paths [16,29,8]
in concrete domain restrictions, which means that these restrictions can only
constrain feature values of single individuals, as in our example. Comparing fea-
ture values of different individuals, such as the age of a woman with that of her
children, is then no longer possible.

For tractable (i.e., polynomially decidable) DLs like EL⊥, preserving decid-
ability is not sufficient: one wants to preserve tractability. As shown in [8], this
is the case if one integrates a so-called p-admissible concrete domain into EL⊥.
The only numerical p-admissible concrete domain exhibited in [8] is the CD
DQ,diff, which supports constraints of the form x = q, x > q, and x + q = y
(for constants q ∈ Q). Recently, additional p-admissible concrete domains have
been introduced in [12], such as DQ,lin, whose constraints are given by linear
equations

∑n
i=1 aixi = b. In the present paper, we will concentrate on these

two p-admissible CDs, though the developed ideas and techniques can also be
used for other CDs. The constraint used in our example can be expressed in
both DQ,diff and DQ,lin. Unfortunately, no implemented DL reasoner supports
these two CDs. In particular, the highly efficient EL⊥ reasoner Elk [19] does
not support any concrete domain. Instead of modifying Elk or implementing
our own reasoner for EL⊥ with concrete domains, we develop here an iterative
algorithm that interleaves Elk reasoning with concrete domain reasoning. For
the CD reasoning, we could in principle employ existing algorithms and imple-
mentations, like Gaussian elimination or the simplex method [31,15] for DQ,lin,
and SMT systems that can deal with difference logic [22,7], such as Z3,4 for
DQ,diff. However, since our main purpose is to generate proofs, we develop our
own reasoning procedures for DQ,diff and DQ,lin, which may not be as efficient
as existing ones, but can easily be adapted such that they produce proofs.

Proofs for reasoning results in EL⊥ with a p-admissible CD can in principle be
represented using the calculus introduced in [8] or an appropriate extension of the

4 https://theory.stanford.edu/˜nikolaj/programmingz3.html

https://theory.stanford.edu/~nikolaj/programmingz3.html


Proofs for DLs with Concrete Domains 3

calculus employed by Elk. However, in these calculi, the result of CD reasoning
(i.e., that a set of constraints is unsatisfiable or entails another constraint) is used
as an applicability condition for certain rules, but the CD reasoning leading to
the satisfaction of the conditions is not explained. Instead of augmenting such
a proof with separate proofs on the CD side that show why the applicability
conditions are satisfied, our goal is to produce a single proof that explains both
the EL⊥ and the CD reasoning in a uniform proof format.

We also consider the integration of the CDs DQ,diff and DQ,lin into the more
expressive DL ALC. To this purpose, we develop a new calculus for subsumption
w.r.t. ALC ontologies, which is inspired by the one in [21], but has a better worst-
case complexity, and then show how it can be extended to deal with concrete
domain restrictions. We have implemented our reasoning and proof extraction
approaches for DLs with concrete domains and have evaluated them on several
self-created benchmarks designed specifically to challenge the CD reasoning and
proof generation capabilities. Proofs for all results and more details about the
experiments can be found in [4,3].

2 Description Logics with Concrete Domains

We recall the DLs EL⊥ and ALC [10], and then discuss their extensions EL⊥[D]
and ALC[D] with a concrete domain D [9,8]. Following [12], we use square brack-
ets to indicate that no role paths are allowed. We also introduce the two p-
admissible concrete domains DQ,diff and DQ,lin [8,12].

2.1 Description Logics

Starting with disjoint, countably infinite sets of concept and role names NC and
NR, EL⊥ concepts are defined by the grammar C,D ::= ⊤ | ⊥ | A | C ⊓D | ∃r.C,
where A ∈ NC and r ∈ NR. In ALC, we additionally have negation ¬C as concept
constructor. As usual, we then define C⊔D := ¬(¬C⊓¬D) and ∀r.C := ¬∃r.¬C.
An ALC (EL⊥) TBox (a.k.a. ontology) O is a finite set of general concept in-
clusions (GCIs, a.k.a. axioms) C ⊑ D for ALC (EL⊥) concepts C and D. We
denote by sub(O) the set of subconcepts of all concepts appearing in O.

An interpretation is a pair I = (∆I , ·I), where the domain ∆I is a non-empty
set, and the interpretation function ·I assigns to every concept name A ∈ NC a
set AI ⊆ ∆I and to every role name r ∈ NR a binary relation rI ⊆ ∆I ×∆I .
This function is extended to complex concepts by defining ⊤I := ∆I , ⊥I := ∅,
(∃r.C)I := {d ∈ ∆I | ∃e ∈ ∆I . (d, e) ∈ rI ∧ e ∈ CI}, (¬C)I = ∆I \ CI , and
(C⊓D)I := CI∩DI . The interpretation I is amodel of C ⊑ D if CI ⊆ DI (writ-
ten I |= C ⊑ D), and it is a model of an ontology O (I |= O) if it is a model of all
axioms in O. An ontology O is consistent if it has a model, and an axiom C ⊑ D
is entailed by O (written O |= C ⊑ D) if every model of O is a model of C ⊑ D;
in this case, we also say that C is subsumed by D w.r.t. O. The classification
of O is the set CL(O) := {⟨C,D⟩ | C,D ∈ sub(O), O |= C ⊑ D}.5 The three

5 Often, the classification is done only for concept names in O, but we use a variant
that considers all subconcepts, as it is done by the EL⊥ reasoner Elk.
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reasoning problems of deciding consistency, checking subsumption, and comput-
ing the classification are mutually reducible in polynomial time. Reasoning is
P-complete in EL⊥ and ExpTime-complete in ALC [10].

2.2 Concrete Domains.

Concrete domains have been introduced as a means to integrate reasoning about
quantitative features of objects into DLs [9,24,12]. Given a set NP of concrete
predicates and an arity ar(P ) ∈ N for each P ∈ NP, a concrete domain (CD)
D = (∆D, ·D) over NP consists of a set ∆D and relations PD ⊆ (∆D)ar(P ) for all
P ∈ NP. We assume that NP always contains a nullary predicate ⊥, interpreted
as ⊥D := ∅, and a unary predicate ⊤ interpreted as ⊤D := ∆D. Given a set NV

of variables, a constraint P (x1, . . . , xar(P )), with P ∈ NP and x1, . . . , xar(P ) ∈ NV,
is a predicate whose argument positions are filled with variables.

Example 1. The concrete domain DQ,diff has the set Q of rational numbers as
domain and, in addition to ⊤ and ⊥, the concrete predicates x = q, x > q, and
x + q = y, for constants q ∈ Q, with their natural semantics [8]. For example,
(x+ q = y)DQ,diff = {(p, r) ∈ Q×Q | p+ q = r}.6

The concrete domain DQ,lin has the same domain as DQ,diff, but its predicates
other than {⊤,⊥} are given by linear equations

∑n
i=1 aixi = b, for ai, b ∈ Q, with

the natural semantics [12], e.g. the linear equation x+y−z = 0 is interpreted as
the ternary addition predicate (x+ y− z = 0)DQ,lin = {(p, q, s) ∈ Q3 | p+ q = s}.

The expressivity of these two CDs is orthogonal: The DQ,diff predicate x > q
cannot be expressed as a conjunction of constraints in DQ,lin, whereas the DQ,lin

predicate x+ y = 0 cannot be expressed in DQ,diff. ⊓⊔

A constraint α = P (x1, . . . , xar(P )) is satisfied by an assignment v : NV → ∆D

(written v |= α) if
(
v(x1), . . . , v(xar(P ))

)
∈ PD. An implication is of the form

γ → δ, where γ is a conjunction and δ a disjunction of constraints; it is valid if
all assignments satisfying all constraints in γ also satisfy some constraint in δ
(written D |= γ → δ). A conjunction γ of constraints is satisfiable if γ → ⊥ is
not valid. The CD D is convex if, for every valid implication γ → δ, there is a
disjunct α in δ s.t. γ → α is valid. It is p-admissible if it is convex and validity of
implications is decidable in polynomial time. This condition has been introduced
with the goal of obtaining tractable extensions of EL⊥ with concrete domains [8].

Example 2. The CDs DQ,diff and DQ,lin are both p-admissible, as shown in [8]
and [12], respectively. However, if we combined their predicates into a single
CD, then we would lose convexity. In fact, DQ,diff has the constraints x > 0 and
x = 0. In addition, y > 0 (of DQ,diff) and x + y = 0 (of DQ,lin) express x < 0.
Thus, the implication x + y = 0 → x > 0 ∨ x = 0 ∨ y > 0 is valid, but none of
the implications x+ y = 0 → α for α ∈ {x > 0, x = 0, y > 0} is valid. ⊓⊔
6 The index diff in its name is motivated by the fact that such a predicate fixes the
difference between the values of two variables.
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To integrate a concrete domain D into description logics, the most general
approach uses role paths r1 . . . rk followed by a concrete feature f to instanti-
ate the variables in constraints, where the ri are roles and f is interpreted as a
partial function fI : ∆I → ∆D. Using the concrete domain DQ,lin, the concept
Human⊓∃age, parent age.[2x−y = 0], for age being a concrete feature and parent
a role name, describes humans with a parent that has twice their age.7 How-
ever, in the presence of role paths, p-admissibility of the CD does not guarantee
decidability of the extended DL. Even if we just take the ternary addition pred-
icate of DQ,lin, the extension of ALC with it becomes undecidable [11], and the
paper [12] exhibits a p-admissible CD whose integration into EL⊥ destroys decid-
ability. Therefore, in this paper we disallow role paths, which effectively restricts
concrete domain constraints to the feature values of single abstract objects. Un-
der this restriction, the integration of a p-admissible CD leaves reasoning in P
for EL⊥ [8] and in ExpTime for ALC [23].8 Disallowing role paths also enables
us to simplify the syntax by treating variables directly as concrete features.

Formally, the description logics EL⊥[D] and ALC[D] are obtained from EL⊥
and ALC by allowing constraints α from the CD D to be used as concepts, where
we employ the notation [α] to distinguish constraints visually from classical
concepts. Interpretations I are extended by associating to each variable x ∈ NV

a partial function xI : ∆I → ∆D, and defining [α]I as the set of all d ∈ ∆I for
which (a) the assignment vId (x) := xI(d) is defined for all variables x occurring
in α, and (b) vId |= α.

Example 3. Extending the medical example from the introduction, we can state
that, for a patient in the intensive care unit, the heart rate and blood pres-
sure are monitored, using the GCI ICUpatient ⊑ [⊤(hr)] ⊓ [⊤(sys)] ⊓ [⊤(dia)],
which says that, for all elements of the concept ICUpatient, the values of the
variables hr, sys, dia are defined. The pulse pressure pp can then be defined via
ICUpatient ⊑ [sys − dia − pp = 0]. Similarly, the maximal heart rate can be
defined by ICUpatient ⊑ [maxHR + age = 220]. All the constraints employed in
these GCIs are available in DQ,lin. One might now be tempted to use the GCI
ICUpatient⊓([pp > 50]⊔[hr > maxHR]) ⊑ NeedAttention to say that ICU patients
whose pulse pressure is larger than 50 mmHG or whose heart rate is larger than
their maximal heart rate need attention. However, while [pp > 50] is a DQ,diff

constraint, it is not available in DQ,lin, and [hr > maxHR] is available in neither.
But we can raise an alert when the heart rate gets near the maximal one using
[maxHR− hr = 5] ⊑ NeedAttention since it is a statement over DQ,lin. ⊓⊔

3 Combined Concrete and Abstract Reasoning

We start by showing how classification in EL⊥[D] can be realized by interleaving a
classifier for EL⊥ with a constraint solver for D. Then we describe our constraint
solvers for DQ,lin and DQ,diff.

7 See [23] for syntax and semantics of concepts using role paths.
8 The result in [23] applies to p-admissible CDs D since it is easy to show that the
extension of D with the negation of its predicates satisfies the required conditions.
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Algorithm 1: Classification algorithm for EL⊥[D]

1 O′ := O−D, N := ∅
2 while N ≠ CL(O′) do
3 N := CL(O′)

4 foreach C ∈ sub(O−D) do
5 DC := {α ∈ C(O) | ⟨C,Aα⟩ ∈ CL(O′)}
6 if D |=

∧
DC → ⊥ then

7 O′ := O′ ∪
{d

α∈DC
Aα ⊑ ⊥

}
8 else
9 O′ := O′ ∪

{d
α∈DC

Aα ⊑ Aβ | β ∈ C(O),D |=
∧

DC → β
}

10 return N [Aα 7→ α | α ∈ C(O)]

3.1 Reasoning in EL⊥[D]

The idea is that we can reduce reasoning in EL⊥[D] to reasoning in EL⊥ by
abstracting away CD constraints by new concept names, and then adding GCIs
that capture the interactions between constraints. To be more precise, let D be
a p-admissible concrete domain, O an EL⊥[D] ontology, and C(O) the finite set
of constraints occurring in O. We consider the ontology O−D that results from
replacing each α ∈ C(O) by a fresh concept name Aα. Since D is p-admissible,
the valid implications over the constraints in C(O) can then be fully encoded by
the EL⊥ ontology

OD := {Aα1 ⊓ · · · ⊓Aαn ⊑ ⊥ | α1, . . . , αn ∈ C(O), D |= α1 ∧ · · · ∧ αn → ⊥} ∪
{Aα1 ⊓ · · · ⊓Aαn ⊑ Aβ | α1, . . . , αn, β ∈ C(O), D |= α1 ∧ · · · ∧ αn → β}.

The definition of OD is an adaptation of the construction introduced in [23,
Theorem 2.14] for the more general case of admissible concrete domains. The
problem is, however, that OD is usually of exponential size since it considers
all subsets {α1, . . . , αn} of C(O). Thus, the reasoning procedure for EL⊥[D] ob-
tained by using O−D ∪ OD as an abstraction of O would also be exponential.
To avoid this blow-up, we test implications of the form α1 ∧ · · · ∧ αn → ⊥ and
α1∧· · ·∧αn → β for validity in D only if this information is needed, i.e., if there
is a concept C that is subsumed by the concept names Aα1

, . . . , Aαn
.

The resulting approach for classifying the EL⊥[D] ontology O, i.e., for com-
puting CL(O) = {⟨C,D⟩ | C,D ∈ sub(O), O |= C ⊑ D} is described in Algo-
rithm 1, where we assume that CL(O′) is computed by a polynomial-time EL⊥
classifier, such as Elk, and that the validity of implications in D is tested using
an appropriate constraint solver for D. Since D is assumed to be p-admissible,
there is a constraint solver that can perform the required tests in polynomial
time. Thus, we can show that this algorithm is sound and complete, and also
runs in polynomial time.

Theorem 4. Algorithm 1 computes CL(O) in polynomial time.

Next, we show how constraint solvers for DQ,lin and DQ,diff can be obtained.



Proofs for DLs with Concrete Domains 7

3.2 Reasoning in DQ,lin

To decide whether a finite conjunction of linear equations is satisfiable or whether
it implies another equation, we can use Gaussian elimination [31], which itera-
tively eliminates variables from a set of linear constraints in order to solve them.
Each elimination step consists of a choice of constraint α that is used to elimi-
nate a variable xi from another constraint γ by adding a suitable multiple q ∈ Q
of α, such that, in the sum γ + qα, the coefficient ai of xi becomes 0. This
can be used to eliminate xi from all constraints except α, which can then be
discarded to obtain a system of constraints with one less variable. For example,
using α : 2x+3y = 5 to eliminate x from γ : 4x− 6y = 1 using q = −2 yields the
new equation −12y = −9.

To decide whether α1 ∧ · · · ∧αn → ⊥ is valid in DQ,lin, we must test whether
the system of linear equations α1, . . . , αn is unsolvable. For this, we apply Gaus-
sian elimination to this system. If we obtain a constraint of the form 0 = b for
non-zero b, then the system is unsolvable; otherwise, we obtain 0 = 0 after all
variables have been eliminated, which shows solvability. In case α1∧· · ·∧αn → ⊥
is not valid, Algorithm 1 requires us to test whether α1 ∧ · · · ∧ αn → β is valid
for constraints β different from ⊥. This is the case iff the equation β is a linear
combination of the equations α1, . . . , αn. For this, we can also apply Gaussian
elimination steps to eliminate all variables from β using the equations α1, . . . , αn.
If this results in the constraint 0 = 0, it demonstrates that β is a linear combi-
nation; otherwise, it is not.

In principle, one could use standard libraries from linear algebra (e.g. for
Gaussian elimination or the simplex method [31,15,27]) to implement a con-
straint solver for DQ,lin. We decided to create our own implementation based
on Gaussian elimination, mainly for two reasons. First, most existing numerical
libraries are optimized for performance and use floating-point arithmetic. Hence,
the results may be erroneous due to repeated rounding [13]. Second, even if ra-
tional arithmetic with arbitrary precision is used [15], it is not trivial to extract
from these tools a step-by-step account of how the verdict (valid or not) was
obtained, which is a crucial requirement for extracting proofs.

3.3 Reasoning in DQ,diff

The constraints of DQ,diff can in principle be simulated in difference logic, which
consists of Boolean combinations of expressions of the form x − y ≤ q, and for
which reasoning can be done using the Bellman-Ford algorithm for detecting
negative cycles [22,7]. However, it is again not clear how proofs for the validity
of implications can be extracted from the run of such a solver. For this reason,
we implemented a simple saturation procedure that uses the rules in Fig. 1
to derive implied constraints, where side conditions are shown in gray; these
rules are similar to the rewrite rules for DL-Lite queries with CDs in [6]. We
eagerly apply the rules R ̸=, R<, and R+

̸=, which means that we only need to
keep one constraint of the form x+ q = y in memory, for each pair (x, y). Since
x > q implies x > p for all p < q, it similarly suffices to remember one unary
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x = q x = p
R ̸= : q ̸= p

⊥
x+ q = y y + p = z

R+
x+ (q + p) = z

R0x+ 0 = x

x+ q = y x+ p = y
R+
̸= : q ̸= p

⊥
x = q y = p

R−
x+ (p− q) = y

x+ q = y
R↔

y + (−q) = x

x = q x > p
R< : q < p

⊥
x = q x+ p = y

R=y = q + p

x > q x+ p = y
R>y > q + p

Fig. 1. Saturation rules for DQ,diff constraints

Algorithm 2: Reasoning algorithm for DQ,diff

Input: An implication
∧

D → β in DQ,diff

Output: true iff DQ,diff |=
∧

D → β
1 D′ := saturate(D)
2 if ⊥ ∈ D′ or β ∈ D′ then return true
3 if β is x > q then
4 if x = p ∈ D′ with p > q then return true
5 if x > p ∈ D′ with p ≥ q then return true

6 return false

constraint of the form x = q or x > q for each variable x. Apart from the three
rules deriving ⊥, we can prioritize rules in the order R−, R↔, R0, R+, R=, R>,
since none of the later rules can enable the applications of earlier rules to derive
new constraints. The full decision procedure is described in Algorithm 2.

Theorem 5. Algorithm 2 terminates in time polynomial in the size of
∧

D → β
and returns true iff DQ,diff |=

∧
D → β.

4 Proofs for EL⊥[D] Entailments

Our goal is now to use the procedures described in Section 3 to obtain separate
proofs for the DL part and the CD part of an entailment, which we then want
to combine into a single proof, as illustrated in Fig. 2.

Fig. 2(a) shows an example of an Elk-proof, a proof generated by the Elk
reasoner [18] for the final ontology O′ ⊇ O−D from Algorithm 1. The labels R⊑
and R+

⊓ indicate the rules from the internal calculus of Elk [19], and (∗) marks
an axiom added by Algorithm 1, where α is 2x + 3y = 5, β is 4y = 3, and γ is
4x−6y = 1. We now describe how to obtain the proof (b) for the CD implication
α ∧ β → γ, and how to integrate both proofs into the EL⊥[DQ,lin] proof (c).

4.1 Proofs for the Concrete Domains

For DQ,diff, the saturation rules in Fig. 1 can be seen as proof steps. Thus, the
algorithms in [1,2] can easily be adapted to extract DQ,diff proofs. Inferences due
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(a)C ⊑ Aα C ⊑ Aβ
R+
⊓C ⊑ Aα ⊓Aβ Aα ⊓Aβ ⊑ Aγ (∗)

R⊑
C ⊑ Aγ

(b)

2x+ 3y = 5

4y = 3
[−3]

−12y = −9
[2, 1]

4x− 6y = 1

=⇒

(c)

C ⊑ [2x+ 3y = 5]

C ⊑ [4y = 3]
[−3]

C ⊑ [−12y = −9]
[2, 1]

C ⊑ [4x− 6y = 1]

Fig. 2. (a) EL⊥ proof over O′, (b) DQ,lin proof and (c) integrated EL⊥[DQ,lin] proof.

to Lines 2, 4 and 5 in Algorithm 2 are captured by the following additional rules:

⊥ R⊥β

x = p
R+
> : p > qx > q

x > p
R−
> : p ≥ qx > q

For DQ,lin, inferences are Gaussian elimination steps that derive σ+ cρ from
linear constraints σ and ρ, and we label them with [1, c] to indicate that σ is
multiplied by 1 and ρ by c. This directly gives us a proof if the conclusion is ⊥ (or,
equivalently, 0 = b for non-zero b). However, proofs for implications

∧
D → γ

need to be treated differently. The Gaussian method would use D to eliminate
the variables from γ to show that γ is a linear combination of D, and would
yield a rather uninformative proof with final conclusion 0 = 0. To obtain a proof
with γ as conclusion, we reverse the proof direction by recursively applying the
following transformation starting from an inference step that has γ as a premise:

σ ρ
[1, c]τ ⇝

ρ τ
[−c, 1]σ (†)

Then we transform the next inference to obtain an inference that has τ as the
conclusion, and continue this process until 0 = 0 becomes a leaf, which we then
remove from the proof.

In our example, we would start with the following “proof” for D |= α∧β → γ:

4x− 6y = 1 2x+ 3y = 5
[1,−2]

−12y = −9 4y = 3
[1, 3]

0 = 0

After applying two transformation steps (†), we obtain the proof in Fig. 2(b).

4.2 Combining the Proofs

It remains to integrate the concrete domain proofs into the DL proof over O−D.
As a consequence of Algorithm 1, in Fig. 2(a), the introduced concept names
Aα, Aβ , Aγ occur in axioms with the same left-hand side C. The idea is to
add this DL context C to every step of the CD proof (b) to obtain the EL⊥[D]-
proof (c). This proof replaces the applications of R+

⊓ and R⊑ in the original DL
proof (a), and both (a) and (c) have essentially the same leafs and conclusion,
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except that the auxiliary concept names Aα, Aβ , Aγ were replaced by the original
constraints and the auxiliary axiom (∗) was eliminated. In general, such proofs
can be obtained by simple post-processing of proofs obtained separately from
the DL and CD reasoning components, and we conjecture that the integrated
proof (c) is easier to understand in practice than the separate proofs (a) and (b),
since the connection between the DL and CD contexts is shown in all steps.

Lemma 6. Let O′ be the final ontology computed in Algorithm 1. Given an Elk-
proof P ′ for O′ |= C−D ⊑ D−D and proofs for all D-implications α1∧· · ·∧αn → β
used in P ′, we can construct in polynomial time an EL⊥[D]-proof for O |= C ⊑ D.

5 Generating Proofs for ALC[D]

For ALC[D], a black-box algorithm as for EL⊥[D] is not feasible, even though
we consider only p-admissible concrete domains and no role paths. The intuitive
reason is that ALC itself is not convex, and we cannot simply use the classifica-
tion result to determine which implications α1 ∧ . . .∧αn → β in D are relevant.
On the other hand, adding all valid implications is not practical, as there can
be exponentially many. We thus need a glass-box approach, i.e. a modified ALC
reasoning procedure that determines the relevant CD implications on-demand.

Moreover, to obtain proofs for ALC[D], we need a reasoning procedure that
derives new axioms from old ones, and thus classical tableau methods [14,26]
are not suited. However, existing consequence-based classification methods for
ALC [30] use complicated calculi that are not needed for our purposes. Instead,
we use a modified version of a calculus from [21], which uses only three inference
rules, but performs double exponentially many inferences in the worst case. Our
modification ensures that we perform at most exponentially many inferences,
and are thus worst-case optimal for the ExpTime-complete ALC[D].

5.1 A Simple Resolution Calculus for ALC

The calculus represents GCIs ⊤ ⊑ L1 ⊔ · · · ⊔ Ln as clauses of the form

L1 ⊔ . . . ⊔ Ln Li ::= A | ¬A | ∃r.D | ∀r.D

where n ≥ 0, A,D ∈ NC and r ∈ NR. To decide O |= A ⊑ B, we normalize O
into a set of clauses, introducing fresh concept names for concepts under role
restrictions, and add two special clauses ALHS⊔A, ARHS⊔¬B, with fresh concept
names ALHS and ARHS. The latter are used to track relevant inferences for
constructing the final proof, for which we transform all clauses back into GCIs.

Our inference rules are shown in Fig. 3. A1 is the standard resolution rule
from first-order logic, which is responsible for direct inferences on concept names.
The rules r1 and r2 perform inferences on role restrictions. They consider an
existential role restriction ∃r.D and a (possibly empty) set of value restrictions
over r, whose conjunction is unsatisfiable due to a clause over the nested con-
cepts. The concept D may not be relevant for this, which is why there are two
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A1:
C1 ⊔A, C2 ⊔ ¬A

C1 ⊔ C2
r1:

C ⊔ ∃r.D, C1 ⊔ ∀r.D1, . . . , Cn ⊔ ∀r.Dn, ¬D1 ⊔ . . . ⊔ ¬Dn

C ⊔ C1 ⊔ . . . ⊔ Cn

r2:
C ⊔ ∃r.D, C1 ⊔ ∀r.D1, . . . , Cn ⊔ ∀r.Dn, ¬D ⊔ ¬D1 ⊔ . . . ⊔ ¬Dn

C ⊔ C1 ⊔ . . . ⊔ Cn

Fig. 3. Inference rules for ALC clauses.

rules. Those rules are the main difference to the original calculus in [21], where
a more expensive, incremental mechanism was used instead. To transform this
calculus into a practical method, we use optimizations common for resolution-
based reasoning in first-order logic: ordered resolution, a set-of-support strategy,
as well as backward and forward subsumption deletion. In particular, our set-of-
support strategy starts with a set of support clauses containing only the clauses
with ALHS and ARHS. Inferences are always performed with at least one clause
from this set, and the conclusion becomes a new support clause. If a support
clause contains a literal ∃r.D/∀r.D, we also add all clauses containing ¬D as
support clauses [20].

5.2 Incorporating the Concrete Domain and Creating the Proof

To incorporate concrete domains, we again work on the translation O−D replac-
ing each constraint α with Aα. In ALC[D], constraints can also occur in negated
form, which means that we can have literals ¬Aα expressing the negation of
a constraint. We keep track of the set D of concrete domain constraints α for
which Aα occurs positively in a support clause. We then use the proof procedure
for D (see Section 4.1) to generate all implications of the form α1∧ . . .∧αn → β,
where {α1, . . ., αn} ⊆ D is subset-minimal, for which we add the corresponding
clauses ¬Aα1

⊔ . . . ⊔ ¬Aαn
⊔Aβ . If β = ⊥, we instead add ¬Aα1

⊔ . . . ⊔ ¬Aαn
.

Theorem 7. Let O be an ALC[D] ontology and N the normalization of O−D.
Then our method takes at most exponential time, and it derives ALHS ⊔ ARHS

or a subclause from N iff O |= C ⊑ D.

Proofs generated using the calculus operate on the level of clauses. We trans-
form them into proofs of O−D |= A ⊑ B by 1) adding inference steps that reflect
the normalization, 2) if necessary, adding an inference to produce ALHS ⊔ARHS

from a subclause 3) replacing ALHS by ¬A and ARHS by B, 4) replacing all
other introduced concept names by the complex concepts they were introduced
for, and 5) transforming clauses into more human-readable GCIs using some sim-
ple rewriting rules (see [4] for details). In the resulting proof, the initial clauses
A⊔ALHS and ¬B⊔ARHS then correspond to the tautologies A ⊑ A and B ⊑ B.
To get a proof for O |= A ⊑ B, we use a procedure similar to the one from Sec-
tion 4.2 to integrate concrete domain proofs. Because the integration requires
only simple structural transformations, the complexity of computing the com-
bined proofs is determined by the corresponding complexities for the DL and
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Fig. 5. ALC[D]: total reasoning and
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the concrete domain. We can thus extend the approaches from [1,2] to obtain
complexity bounds for finding proofs of small size and depth.

Theorem 8. For D ∈ {DQ,lin,DQ,diff}, deciding the existence of a proof of at
most a given size can be done in NP for EL⊥[D], and in NExpTime for ALC[D].
For proof depth, the corresponding problem is in P for EL⊥[DQ,diff], in NP for
EL⊥[DQ,lin], and in ExpTime for ALC[D] (for both concrete domains).

6 Implementation and Experiments

We implemented the algorithms described above and evaluated their perfor-
mance and the produced proofs on the self-created benchmarks Diet, Artifi-
cial, D-Sbj and D-Obj, each of which consists of multiple instances scaling from
small to medium-sized ontologies. The latter two benchmarks are formulated
in EL⊥[DQ,diff], the rest in EL⊥[DQ,lin]. Our tool is written using Java 8 and
Scala. We used Elk 0.5, Lethe 0.85 and OWL API 4. The experiments were
performed on Debian Linux 10 (24 Intel Xeon E5-2640 CPUs, 2.50GHz) with
25 GB maximum heap size and a timeout of 3 minutes for each task. Fig. 4 shows
the runtimes of the approaches for EL⊥[D] from Sections 3 and 4 for reasoning
and explanation depending on the problem size, which counts all occurrences
of concept names, role names, and features in the ontology. A more detailed
description of the benchmarks and results can be found in [4].

We observe that pure reasoning time (crosses in Fig. 4) scales well w.r.t.
problem size. Producing proofs was generally more costly than reasoning, but the
times were mostly reasonable. However, there are several Artificial instances for
which the proof construction times out (blue dots). This is due to the nondeter-
ministic choices of which linear constraints to use to eliminate the next variable,
which we resolve using the Dijkstra-like algorithm described in [2], which results
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in an exponential runtime in the worst case. Another downside is that some
proofs were very large (> 2000 inference steps in D-Obj ). However, we designed
our benchmarks specifically to challenge the CD reasoning and proof generation
capabilities (in particular, nearly all constraints in each ontology are necessary to
entail the target axiom), and these results may improve for realistic ontologies.

Further analysis revealed that the reasoning times were often largely due to
the calls to Elk (ranging from 23% in Diet to 75% in Artificial), which shows
that the CD reasoning does not add a huge overhead, unless the number of
variables per constraint grows very large (e.g. up to 88 in Diet). In comparison
to the incremental use of Elk as a black-box reasoner, the hypothetical “ideal”
case of calling Elk only once on the final saturated ontology O′ would not save
a lot of time (average gain ranging from 42% in Diet to 14% in D-Obj ), which
shows that the incremental nature of our approach is also not a bottleneck.

Fig. 5 shows the runtime of the ALC[D] calculus from Section 5. As ex-
pected, it performs worse than the dedicated EL⊥[D] algorithms. In particular,
currently there is a bottleneck for the DQ,diff benchmarks (D-Sbj and D-Obj )
that is due an inefficiency in the computation of the relevant CD implications
α1∧· · ·∧αn → β. In order to evaluate the increased expressivity supported by the
ALC[D] reasoner, we have also incorporated axioms with negation and universal
restrictions into the Artificial benchmark. Currently, however, the reasoner can
solve only the smallest such instance before reaching the timeout.

We also compared our CD reasoning algorithms with Z3 [27], which supports
linear arithmetic (for DQ,lin) and difference logic (for DQ,diff). Ignoring the over-
head stemming from the interface between Java and C++, the runtime of both
approaches was generally in the same range, but our algorithms were faster on
many CD reasoning problems. This may be due to the fact that, although our
algorithms for DQ,lin and DQ,diff are not optimized very much, they are never-
theless tailored towards very specific convex fragments: linear arithmetic with
only =, and difference logic with only x+ q = y and x > q, respectively.

7 Conclusion

We have shown that it is feasible to support p-admissible concrete domains in DL
reasoning algorithms, and even to produce integrated proofs for explaining con-
sequences in the DLs EL⊥[D] and ALC[D], for the p-admissible concrete domains
DQ,lin and DQ,diff. In this work, we have restricted our attention to ontologies
containing only GCIs (i.e., TBoxes) and to classification as the main reasoning
problem. However, the extension of our methods to data and reasoning about
individuals, e.g. fred : ICUpatient ⊓ [hr = 90], encoded in so-called ABoxes [10],
is straightforward. Likewise, the approach for computing EL⊥[D] proofs can be
generalized to use other reasoning calculi for EL⊥ instead of the one employed by
Elk, which makes very small proof steps and thus generates rather large proofs.

One major problem with using proofs to explain consequences is that they
may become quite large. This problem already occurs for pure DLs without CDs,
and has also shown up in some of our benchmarks in this paper. One possibility



14 C. Alrabbaa et al.

to alleviate this problem is to use an interactive proof visualization tool like
Evonne [28], which allows zooming into parts of the proof and hiding uninter-
esting or already inspected parts. Since the integrated proofs that we generate
have the same shape as pure DL proofs, they can be displayed using Evonne. It
would, however, be interesting to add features tailored to CD reasoning, such as
visualizing the solution space of a system of linear equations.

In Example 3, we have seen that it would be useful to have the constraints
of DQ,lin and DQ,diff available in a single CD. Such a CD D would still preserve
decidability if integrated into ALC. However, since D is no longer convex, our
reasoning approach for ALC[D] does not apply. Thus, it would also be interesting
to see whether this approach can be extended to admissible CDsD [9,23], i.e. CDs
that are closed under negation and for which satisfiability of sets of constraints
is decidable.
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