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Abstract. Reasoning in Description Logics (DLs) with numerical con-
crete domains combines abstract logical with concrete numerical reason-
ing. We show how consequences computed by such combined reasoning
engines can be explained in a uniform way by proofs that integrate the
numerical reasoning steps into the proofs on the DL side.

Proofs for explaining DL reasoning

For developers or users of DL-based ontologies, it is often hard to understand
why a consequence computed by a DL reasoner3 actually follows from the given,
possibly very large ontology. In principle, such a consequence can be explained
by producing a proof for it, i.e. by showing how the consequence can be derived
from the axioms in the ontology by applying certain easy-to-understand inference
rules. Until recently, work on explaining DL entailment was focused on comput-
ing so-called justifications, i.e. minimal subsets of the ontology from which the
consequence in question follows [25,11,15]. With few exceptions [16,17], figur-
ing out how the consequence can be derived from the justification was left to
the user. In recent work, we have investigated how proofs for consequences de-
rived by DL reasoners can be computed [2,3] and displayed [1] in a user-friendly
way [6]. However, this work was restricted to DLs without concrete domains. In
particular, we considered the DL EL⊥, which has concept constructors conjunc-
tion (C⊓D), existential restriction (∃r.C) as well as the top (⊤) and the bottom
(⊥) concepts, and its extension by negation (¬C), called ALC [10].

The need for concrete domains

Concrete domains [9,22] (CDs) have been introduced to enable reference to con-
crete objects (such as numbers) and predefined predicates on these objects (such

⋆ This is an extended abstract of [4]
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as numerical comparisons) when defining concepts. Using these predicates, we
can then formulate constraints on the concrete values that can be associated
with abstract individuals. In the presence of general concept inclusions (GCIs),
integrating a CD into a DL may cause undecidability [23,12] even if solvability
of the constraints that can be formulated in the CD is decidable. One way to
overcome this problem is to disallow role paths [14,24,8] in concrete domain re-
strictions, which means that these restrictions can only constrain feature values
of single individuals. Comparing feature values of different individuals, such as
the age of a woman with that of her children, is then no longer possible. In the
present paper, we adopt this approach. However, for tractable (i.e. polynomially
decidable) DLs like EL⊥, preserving decidability is not sufficient: one wants to
preserve tractability. As shown in [8], this is the case if one integrates a so-called
p-admissible concrete domain into EL⊥. The only numerical p-admissible con-
crete domain exhibited in [8] is the CD DQ,diff, which supports constraints of the
form x = q, x > q and x + q = y (for constants q ∈ Q) over the rational num-
bers. Recently, additional p-admissible concrete domains have been introduced
in [12], such as the CD DQ,lin, whose constraints are given by linear equations∑n

i=1 aixi = b over Q. In the present paper, we will concentrate on these two
p-admissible CDs, though the developed ideas and techniques can also be used
for other CDs. The following example illustrates how DQ,lin can be used in a
medical application.

Example 1. In an intensive care unit, values for the systolic and diastolic blood
pressure, the heart rate, and the age of patients are available. We refer to them
using the features sys, dia, hr, and age, respectively, which are interpreted as par-
tial functions that assign rational numbers to patients. The pulse pressure, rep-
resented by pp, can then be defined via the GCI ICUpatient ⊑ [sys−dia−pp = 0],
and the maximal heart rate by ICUpatient ⊑ [maxHR + age = 220]. If the heart
rate almost reaches the maximal one or if the pulse pressure sinks to a very
low value, we want to raise an alarm, which can be expressed using the GCIs
ICUpatient ⊓ [maxHR − hr = 5] ⊑ NeedAttention and ICUpatient ⊓ [pp = 25] ⊑
NeedAttention.

Reasoning in DLs extended with concrete domains

We denote by EL⊥[D] the DL obtained by extending EL⊥ with any p-admissible
concrete domain D. The main reasoning task is subsumption, i.e. to decide
whether a GCI C ⊑ D follows from an ontology, in which case we also say
that C is subsumed by D. The paper [8] describes an inference procedure that
can decide the subsumption problem in EL⊥[D] in polynomial time. Thus, this
procedure can also be used for EL⊥[DQ,lin] an EL⊥[DQ,diff]. Unfortunately, no
implemented DL reasoner supports these two CDs. In particular, the highly ef-
ficient EL⊥ reasoner Elk [18] does not support any concrete domain. Instead
of modifying Elk appropriately or implementing our own reasoner for EL⊥[D],
we have developed an iterative algorithm that interleaves Elk reasoning with
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concrete domain reasoning. Basically, the concrete domain restrictions are ab-
stracted away by new concepts and Elk is used to classify (i.e. compute the
subsumption hierarchy) of the ontology obtained this way. If some concept C is
subsumed by a collection A1, . . . , An of abstraction concepts, then CD reasoning
is used to check whether the corresponding conjunction of constraints is unsatis-
fiable in the CD or implies the constraint corresponding to another abstraction
concept B. In the first case, A1 ⊓ . . .⊓An ⊑ ⊥ is added to the abstracted ontol-
ogy, and in the second A1 ⊓ . . .⊓An ⊑ B. For example, if the DQ,lin restrictions
[age = 42], [age+maxHR = 220], and [maxHR = 178] have been abstracted away
by the concept names A1, A2, and B, respectively, and Elk has derived C ⊑ A1

and C ⊑ A2, then A1 ⊓ A2 ⊑ B is added. After this CD reasoning step, Elk is
invoked again, and this interleaving of EL⊥ and CD reasoning is continued until
no new subsumptions are computed. We can show that this approach yields a
polynomial-time classification procedure for EL⊥[D] if D is p-admissible.

For the CD reasoning in DQ,lin and DQ,diff, we could in principle have em-
ployed existing algorithms and implementations, like Gaussian elimination or
the simplex method [26,13] for DQ,lin, and SMT systems that can deal with dif-
ference logic [20,7], such as Z3,4 for DQ,diff. However, since our main purpose
was to generate proofs, we developed our own reasoning procedures for DQ,diff

and DQ,lin, which were designed such that it is easy to extract proofs from them.
For DQ,diff, this is a simple constraint propagation approach, and for DQ,lin we
use Gaussian elimination.

Generating proofs for DLs extended with concrete domains

Proofs for reasoning results in EL⊥ with a p-admissible CD can in principle be
represented using the calculus introduced in [8] or an appropriate extension of the
calculus employed by Elk. However, in these calculi, the result of CD reasoning
(i.e. that a set of constraints is unsatisfiable or entails another constraint) is used
as an applicability condition for certain rules, but the CD reasoning leading to
the satisfaction of the conditions is not explained. Instead of augmenting such
a proof with separate proofs on the CD side that show why the applicability
conditions are satisfied, our goal was to produce a single proof that explains
both the EL⊥ and the CD reasoning in a uniform proof format.

Our basic idea for generating proofs in EL⊥[D] was to look at the last run of
Elk in our iterative procedure, and extract a pure EL⊥ proof from the abstracted
ontology to which this last run was applied. This proof contains as asserted
conclusions GCIs of the form A1 ⊓ . . . ⊓ An ⊑ ⊥ and A1 ⊓ . . . ⊓ An ⊑ B, which
have been added to the ontology due to the results of CD reasoning. In the above
example, we have added the implication A1⊓A2 ⊑ B. A proof for the implication
between the corresponding constraints based on Gaussian elimination looks as
follows:

age = 42 age+maxHR = 220
[−1, 1]

maxHR = 178
(1)

4 https://theory.stanford.edu/˜nikolaj/programmingz3.html
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Fig. 1. Proof for CurrentPatient ⊑ NeedAttention

where the features are now viewed as variables in the linear equations and the
label [−1, 1] for this proof step indicates that the constraint age+maxHR = 220
is multiplied by 1 and age = 42 by −1 before they are added together, resulting
in maxHR = 178.

To integrate such a CD proof into the EL⊥ proof, we note that CD reasoning
is always invoked in the context of a single concept C that is subsumed by the
abstraction concepts of the involved constraints. We can now use this concept
as the left-hand side of GCIs and thus transfer the CD proof (1) into a proof in
EL⊥[DQ,lin]:

C ⊑ [age = 42] C ⊑ [age+maxHR = 220]
[−1, 1]

C ⊑ [maxHR = 178]
(2)

Figure 1 shows a proof of the subsumption CurrentPatient ⊑ NeedAttention,
where we have added information on the status of our current patient using the
GCIs CurrentPatient ⊑ [age = 42], CurrentPatient ⊑ [hr = 173].
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Further results

We have implemented the iterative reasoning approach for EL⊥[D] described
above as well as inference procedures for the concrete domains DQ,lin and DQ,diff.
In addition, we have implemented proof extraction approaches for these concrete
domains and have integrated them into proof extraction approaches for EL⊥, as
sketched above. The proof shown in Figure 1 was automatically generated by
our implementation.

We have also considered the integration of the CDs DQ,diff and DQ,lin into
the more expressive DL ALC. To this purpose, we developed a new calculus for
subsumption w.r.t. ALC ontologies, which is inspired by the one in [19], but has
a better worst-case complexity and can be used to produced proofs. This calculus
can easily be extended to deal with concrete domain restrictions for p-admissible
concrete domains, and our implementation can be used to generate proofs.

We have evaluated our implementations on several self-created benchmarks
made specifically to challenge the CD reasoning and proof generation capabili-
ties [5]. As results of the experiments, we could observe that the reasoning times
were often dominated by the (incremental) calls to Elk, which shows that the
CD reasoning did not add a big overhead, as long as the number of variables in
the constraints did not become very large. In comparison to the incremental use
of Elk as a black-box reasoner, the hypothetical “ideal” case of calling Elk only
once on the final ontology (after all the new GCIs have been added) would not
save a lot of time, which shows that the incremental nature of our approach also
does not create a large overhead. The additional runtime for producing proofs
was also mostly reasonable, staying within one order of magnitude of the pure
reasoning time.

On the theoretical side, we have extended the approaches [2,3] for formally
investigating the complexity of finding good (e.g. small) proofs to the case of
DLs with CDs.

Conclusion and future work

We have demonstrated that it is feasible to support p-admissible concrete do-
mains in DL reasoning algorithms, and even to produce integrated proofs to
explain consequences in EL⊥[D] and ALC[D]. Although we have only considered
subsumption reasoning here, the extension of our methods to data and reason-
ing about individuals, e.g. fred : ICUpatient ⊓ [hr = 90], encoded in so-called
ABoxes [10], is straightforward. Our experiments show, however, that the size of
the proofs can become quite large. Therefore, in future work we will study how
to reduce the size of these proofs by identifying the most important parts and
trying to condense the rest. On the theoretical side, we will also study the case
of ALC[D] with admissible CDs D [21], which would increase the expressivity
on the CD side considerably.

Acknowledgments This work was supported by the DFG grant 389792660 as
part of TRR 248 (https://perspicuous-computing.science).

https://perspicuous-computing.science


6 C. Alrabbaa et al.

References

1. Alrabbaa, C., Baader, F., Borgwardt, S., Dachselt, R., Koopmann, P., Méndez, J.:
Evonne: Interactive proof visualization for description logics (system description).
In: IJCAR (2022). https://doi.org/10.1007/978-3-031-10769-6_16

2. Alrabbaa, C., Baader, F., Borgwardt, S., Koopmann, P., Kovtunova, A.: Find-
ing small proofs for description logic entailments: Theory and practice. In: LPAR
(2020). https://doi.org/10.29007/nhpp

3. Alrabbaa, C., Baader, F., Borgwardt, S., Koopmann, P., Kovtunova, A.: Finding
good proofs for description logic entailments using recursive quality measures. In:
CADE (2021). https://doi.org/10.1007/978-3-030-79876-5_17

4. Alrabbaa, C., Baader, F., Borgwardt, S., Koopmann, P., Kovtunova, A.: Combin-
ing proofs for description logic and concrete domain reasoning. In: RuleML+RR
(2023), to appear

5. Alrabbaa, C., Baader, F., Borgwardt, S., Koopmann, P., Kovtunova, A.: Combining
Proofs for Description Logic and Concrete Domain Reasoning - RuleML+RR23 -
Resources (2023). https://doi.org/10.5281/zenodo.8208780

6. Alrabbaa, C., Borgwardt, S., Hirsch, A., Knieriemen, N., Kovtunova, A.,
Rothermel, A.M., Wiehr, F.: In the head of the beholder: Comparing differ-
ent proof representations. In: RuleML+RR (2022). https://doi.org/10.1007/
978-3-031-21541-4_14

7. Armando, A., Castellini, C., Giunchiglia, E., Maratea, M.: A SAT-based decision
procedure for the Boolean combination of difference constraints. In: SAT (2004).
https://doi.org/10.1007/11527695_2

8. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: IJCAI (2005),
http://ijcai.org/Proceedings/05/Papers/0372.pdf

9. Baader, F., Hanschke, P.: A scheme for integrating concrete domains into concept
languages. In: IJCAI (1991), http://ijcai.org/Proceedings/91-1/Papers/070.
pdf

10. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description
Logic. Cambridge Univ. Press (2017). https://doi.org/10.1017/9781139025355
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