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Abstract. Ontologies based on Description Logics may contain errors,
which are usually detected when reasoning produces consequences that
follow from the ontology, but do not hold in the modelled application
domain. In previous work, we have introduced repair approaches for EL
ontologies that are optimal in the sense that they preserve a maximal
amount of consequences. In this paper, we will, on the one hand, review
these approaches, but with an emphasis on motivation rather than on
technical details. On the other hand, we will describe new results that
address the problems that optimal repairs may become very large or need
not even exist unless strong restrictions on the terminological part of the
ontology apply. We will show how one can deal with these problems by
introducing concise representations of optimal repairs.

1 Introduction

Description Logics (DLs) [4, 5] are a prominent family of logic-based knowledge
representation formalisms, which offer a good compromise between expressive-
ness and the complexity of reasoning and are the formal basis for the Web ontol-
ogy language OWL.3 In a DL ontology, the important notions of the application
domain are introduced as background knowledge in the terminology (TBox),
and then these notions are used to represent a specific application situation in
the ABox. The DLs of the EL family have drawn considerable attention since
their reasoning problems are tractable [3], but they are nevertheless expressive
enough to represent ontologies in many application domains, such as biology
and medicine.4 For instance, the medical ontology SNOMED CT employs EL
and contains the following concept inclusion (CI) in its TBox:

Common cold ⊑ Disease ⊓ ∃causative agent.Virus
⊓ ∃finding site.Upper respiratory tract structure
⊓ ∃pathological process.Infectious process,

3 https://www.w3.org/TR/owl2-overview/
4 see. e.g., https://bioportal.bioontology.org and https://www.snomed.org/
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which says that a common cold is a disease that is caused by a virus, can be
found in the upper respiratory tract, and has as pathological process an in-
fectious process. A GP can then employ this concept to store in the ABox
that patient Alice is diagnosed with common cold using the concept asser-
tion (∃has diagnosis.Common cold)(alice). The GP’s ABox may also contain
the information that Charles is Alice’s father, expressed as role assertion
has father(alice, charles), which might be of interest in the context of heredi-
tary diseases.

Like all large human-made digital artefacts, the ontologies employed in such
applications may contain errors, and this problem gets even worse if parts of
the ontology (usually the ABox) are automatically generated by inexact meth-
ods based on information retrieval or machine learning. Errors in ontologies are
often detected when the reasoner generates a consequence that formally follows
from the knowledge base, but is incorrect in the sense that it does not hold in the
application domain that is supposed to be modelled. For example, in a previous
version of SNOMED CT, the concept “Amputation of finger” was classified as
a subconcept of “Amputation of hand,” which is fortunately wrong in the real
world. To correct such errors in large ontologies, the knowledge engineer (KE)
should be supported by an appropriate repair tool. Such a tool receives as input
one or more consequences of the given ontology that are unwanted, and it should
return one or more repaired ontologies that no longer have these consequences
(called repairs). The KE can then choose one of the computed repairs and ei-
ther use it as the new ontology, or continue the repair process from it if other
unwanted consequences are detected. Of course, it makes no sense to use as a
repair an arbitrary ontology that does not have the unwanted consequences. The
repaired ontology should (a) not introduce new information and (b) be as close
as possible to the original ontology. There are different possibilities for how to
formalize these conditions.

The classical approaches for ontology repair return maximal subsets of the
ontology that do not have the unwanted consequence, and employ methods in-
spired by model-based diagnosis [33] to compute these sets [17, 32, 34]. Thus,
these approaches interpret the above conditions in a syntactic way: (a) is read
as “no new axioms” and (b) is realized by the maximality condition. In [15] we
called classical repairs that satisfy this maximality condition optimal classical
repairs. While these approaches preserve as many of the axioms in the ontology
as possible, they need not preserve a maximal amount of consequences, and they
are syntax-dependent. For example, consider the ABoxes A := {(A⊓B)(a)} and
B := {A(a), B(a)}, which both say that individual a belongs to the concepts A
and B, and are thus equivalent. However, with respect to the unwanted conse-
quence A(a), the ABox A has the empty ABox as only optimal classical repair,
whereas B has the optimal classical repair {B(a)}. Thus, the latter repair retains
the consequence B(a), whereas the former does not. To overcome this problem,
more gentle repair approaches have been introduced, e.g., in [15, 21, 23, 26, 35].
The basic idea underlying these approaches is to replace some axioms of the
ontology by weaker ones, rather than just removing them, as in the classical



Optimal Repairs in the Description Logic EL Revisited 3

approach. In our example, one can replace the axiom (A⊓B)(a) in the ABox A
with the weaker axiom B(a), and thus retain the consequence B(a) even if one
starts with A rather than B. However, these gentle repairs are still dependent on
the syntactic structure of the axioms in the ontology, and how well they realize
condition (b) depends on the employed weakening relation between axioms and
the strategy used to apply it.

Providing the KE with syntax-dependent repair tools is not in line with the
functional approach to knowledge representation [18,27] adopted by DLs. In this
approach, the syntactic structure of the axioms in the ontology is supposed to
be irrelevant. What counts is what queries are entailed by the ontology, which
in DLs are usually instance queries (IQ) or conjunctive queries (CQ). In this
functional setting, (a) should be read as “no new consequences” (expressed in
the adopted query formalism) and (b) as preserving a maximal set of such con-
sequences. This leads us to the definition of an optimal repair [7, 15], which is
an ontology that does not have the unwanted consequences, is entailed by the
original ontology (thus realizing property (a)), and preserves a maximal amount
of consequences in the sense that there is no repair (i.e., no ontology satisfying
the first two properties) that strictly entails it (property (b)). Entailment can be
IQ-entailment or CQ-entailment, depending on whether we are interested only
in instance queries, or also in conjunctive queries [28]. Maximizing the retained
consequences is also motivated by the following observation. All the repair tool
knows is the original ontology and the consequences that should be removed,
which are specified in what we call a repair request. If it were to remove more
consequences than are strictly needed to satisfy the repair request, then the de-
cision which additional consequences to remove would be a random choice by
the tool, not based on any application knowledge, which is held by the KE. In
case the optimal repair retains consequences that should be removed, the KE
needs to specify this in a subsequent repair request.

If a repair problem consisting of an ontology and a repair request does not
have a repair, then it cannot have an optimal one. In general, however, optimal
repairs of repair problems that have a repair need not exist either, even in the
simple setting of EL ABoxes without a TBox. This is illustrated in the following
example, where the ABox A = {V (n), ℓ(n, n)} says that Narcissus is a vain
individual that loves itself, and the repair request R = {V (n)} wants us to
remove the consequence that Narcissus is vain. Intuitively, to obtain a repair, we
must remove V (n). However, since all assertions of the form ∃ℓ.(V ⊓(∃ℓ.)k⊤)(n),
saying that Narcissus loves a vain individual that is the starting point of a
loves-chain of length k, are consequences of A and can be added to {ℓ(n, n)}
without entailing V (n), it is easy to see that there is no finite EL ABox that
is an optimal repair. In fact, since Narcissus is no longer vain, the retained
cycle ℓ(n, n) cannot be used to generate the loves-chains of arbitrary length
starting from a vain individual. Even if a given repair problem has optimal
repairs, they may not cover all repairs in the sense that every repair is entailed
by an optimal one. To see this, we can look at a modified version of the above
example. Consider the ABox B = {k(t, n), V (n), ℓ(n, n)}, which contains the
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additional information that Tiresias knows Narcissus, and the repair request
Q = {(∃k.V )(t)}. Removing k(t, n) from B yields an optimal repair. However,
there are also repairs that retain this assertion, but there is no optimal one
among them for the same reason as in the previous example. Thus, if the KE
is only offered the optimal repair {V (n), ℓ(n, n)} by the repair tool, the repair
options that retain the assertion k(t, n) are missed. This illustrates that the use
of optimal repairs in a repair tool requires a setting where the optimal repairs
always cover all repairs.

This can be achieved by using a more general notion of ABoxes, called quanti-
fied ABoxes (qABoxes) [16], where in addition to the usual named individuals we
also have anonymous objects, which are represented as (existentially quantified)
variables. In our Narcissus example, an optimal repair of A for R is obtained
by removing V (n) and introducing an anonymous vain and self-loving lover of
Narcissus, which yields the qABox ∃{x}.{ℓ(n, n), ℓ(n, x), ℓ(x, n), ℓ(x, x), V (x)}.
Note that we could not have used a named individual b instead of the variable
x since then the resulting ABox would have entailed instance relationships for
b, such as V (b), that are not entailed by A. One might think that retaining a
consequence like (∃ℓ.V )(n) is not justified since one of the reasons for this being
a consequence of A, namely V (n), has been removed. However, with this argu-
ment, we would be back at the classical repair approach. As argued above, since
the repair request only specifies that V (n) should no longer be a consequence,
other consequences like (∃ℓ.V )(n) should not be lost unless this is needed to
remove V (n).

In [16] we consider a setting where ontologies are qABoxes and the repair
requests consist of entailed EL instance relationships.5 Given such a repair prob-
lem, we show how to construct a finite set of repairs, called the canonical repairs,
which cover all repairs. The canonical repairs are of exponential size, and there
may be exponentially many of them. Not every canonical repair is optimal, but
due to the covering property, the set of them contains all optimal repairs up
to equivalence. The set of optimal repairs can thus be obtained by removing
non-optimal canonical repairs, i.e., ones that are strictly entailed by another
canonical repair, and this set covers all repairs. The construction of the canoni-
cal repairs is actually the same for the CQ and the IQ case. The only difference
is that, when removing non-optimal canonical repairs, the respective entailment
relation must be used. Since CQ-entailment implies IQ-entailment, but not vice
versa, more canonical repairs may be removed as non-optimal in the IQ setting.
In addition, since CQ-entailment is NP-complete and IQ-entailment is tractable,
the complexity of removing non-optimal repairs is higher in the CQ case.

The differences between the CQ and the IQ case get more pronounced if we
add an EL TBox. In [7], we assume that this TBox is correct, and thus should
not be changed in the repair process. In order to adapt the approach and the
results of [16] to this setting, the first step is to saturate the given qABox w.r.t.

5 The paper [16] actually calls repairs “compliant anonymisations” and repair requests
“privacy policies” since it considers a situation where consequences are to be removed
not because they are incorrect, but since this information should be hidden.
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the TBox, to reduce entailment with TBox to entailment without TBox. For the
IQ case, such a saturation always exists and can be computed in polynomial
time. For the CQ case, a finite saturation need not exist in general. However,
for cycle-restricted TBoxes [2], it always exists, but may be of exponential size.
Continuing the repair process with the saturated qABox, we still need to take the
TBox into account when defining canonical repairs, to ensure that consequences
that have been removed from the qABox cannot be reintroduced by the TBox.
With this adapted notion of canonical repairs, we obtain the same results as
for the case without TBox. The canonical repairs cover all repairs and can be
computed in exponential time. From them the set of all optimal repairs can
be obtained by removing non-optimal ones using entailment test [7]. This works
both for the IQ and the CQ case, but in the latter only if we can compute a finite
saturation, which is always the case if the TBox is cycle-restricted. For TBoxes
that are not cycle-restricted, optimal repairs need not exist in the CQ case. For
example, with respect to the TBox {V ⊑ ∃ℓ.V,∃ℓ.V ⊑ V }, which says that vain
individuals are exactly the ones that love a vain individual, the qABox {V (n)}
does not have an optimal repair for the repair request R = {V (n)}. Intuitively,
the reason is that the qABox together with the TBox implies the existence of
arbitrarily long loves-chains starting from n, which are no longer entailed by the
TBox if V (n) is removed (see Example 9 in [11] for a more detailed argument).
One might think that the first GCI V ⊑ ∃ℓ.V is enough to destroy existence of
an optimal repair. This is, however, not the case. Without the second GCI one
can introduce an anonymous vain individual x that is loved by n and loves itself
to obtain an optimal repair.

In the first part of the paper (Section 2 and Section 3), we will describe the
repair approaches developed in our previous work [7, 16], but with an emphasis
on motivation rather than on technical details. The second part of the paper
(Section 4 and Section 5) describes new result. We will consider more concise
representations of optimal repairs, to deal both with the exponential size of
canonical repairs in the IQ case and the non-existence problem w.r.t. cyclic
TBoxes in the CQ case.

The former problem is due to the fact that the canonical repairs employed in
our approach are by construction of exponential size. To alleviate this problem,
we have, on the one hand, developed in [7] an optimized algorithm for computing
repairs, which yields optimized repairs that are equivalent to the canonical ones,
but in most cases considerably smaller, though in the worst case they may still
be exponential. On the other hand, each canonical repair is induced by a so-
called repair seed, whose size is polynomial in the size of the TBox and the repair
request. We have seen in [13] that, for the IQ case, one can compute consequences
of canonical repairs and check IQ-entailment between them by working only with
the seed functions inducing them. This way, the exponential blow-up due to the
construction of the canonical repair can be avoided. In Section 4, we report
on experimental results that compare the performance on answering instance
queries between the optimized repairs and the canonical ones represented by
seed functions.
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In Section 5, we show that, also in the CQ case, optimal repairs always exist
and cover all repairs if we allow for certain infinite, but finitely represented
qABoxes. To be more precise, we introduce the notion of a shell unfolding of a
given qABox, which basically unravels parts of the qABox into (possibly infinite)
trees. The shell unfoldings of IQ-saturations turn out to be CQ-saturations, and
this also works for cyclic TBoxes. If we then consider the canonical IQ-repairs
for a given repair problem, then we can prove that their shell unfoldings yields
a set of (possibly infinite) CQ-repairs that cover all CQ-repairs. In addition,
consequences from such shell unfolded repairs and entailment between them can
be decided based on their finite representation without an increase in complexity.
Thus, one can work with them as if they were finite.

2 Preliminaries

We recall the definition of the DL EL and then introduce quantified ABoxes as
well as the two entailment relations we employ for them.

The Description Logic EL As usual in DL, knowledge about an application
domain is represented in EL using classes (called concepts), relationships (called
roles), and objects (called individuals), which are collected in the signature Σ,
consisting of pairwise disjoint sets of concept names ΣC, role names ΣR, and
individual names ΣI. Concept descriptions C of EL are then constructed using
the grammar rule C ::= ⊤ | A | C ⊓ C | ∃r.C, where A ranges over concept
names and r over role names. An atom is a concept name A or an existential
restriction ∃r.C. Each concept description C is a conjunction of atoms, with ⊤
corresponding to the empty conjunction. We denote the set of these atoms as
Conj(C).

An EL TBox can be used to state subconcept-superconcept relationships
between such concept descriptions, i.e., it is a finite set of concept inclusions
(CIs) C⊑D, where C,D are EL concept descriptions. In the ABox one can then
relate individuals with concepts and with other individuals, i.e., it is a finite set
of concept assertions C(a) and role assertions r(a, b), where a, b are individual
names, r is a role name, and C is an EL concept description. An EL ontology is
a pair consisting of an EL ABox and an EL TBox.

The semantics of EL is defined as usual [5] based on the notion of an in-
terpretation I = (Dom(I), ·I), which assigns subsets AI of the non-empty set
Dom(I) to concept names A, binary relations rI on Dom(I) to role names r,
and elements aI of Dom(I) to individual names a. This mapping is extended to
concept descriptions according to the semantics of the constructors. The inter-
pretation I is a model of the TBox T if it satisfies all its CIs, i.e., CI ⊆ DI

holds for all CIs C ⊑D in T . Similarly, I is a model of the ABox A if it satisfies
its assertions, i.e., aI ∈ CI and (aI , bI) ∈ rI holds for all concept assertions
C(a) and role assertion r(a, b) in A. It is a model of the ontology (T ,A) if it is
a model of both T and A.
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Reasoning makes implicit consequences of an ontology explicit. For instance,
we say that a concept assertion C(a) is entailed by an ABox A w.r.t. a TBox T
if C(a) is satisfied in all models of A and T ; this is abbreviated as A |=T C(a)
and we also say that a is an instance of C w.r.t. A and T . Similarly, a CI C⊑D
is entailed by T if C⊑D is satisfied in every model of T ; we then write C ⊑T D
and also say that C is subsumed by D w.r.t. T . In case T = ∅, we may omit
the superscript ∅ and just write |= instead of |=∅. Both the instance and the
subsumption problem are decidable in polynomial time in EL [3].

Quantified ABoxes Quantified ABoxes were first introduced in [16], but they
were also considered, as relational datasets with labelled nulls, in [20], and their
existentially quantified variables correspond to the “anonymous individuals” in
the OWL 2 standard [31]. Also, as explained in [16], quantified ABoxes are ba-
sically the same as Boolean conjunctive queries. Informally, a quantified ABox
is an EL ABox where concept assertions are restricted to concept names and in
addition to individuals one can use variables in assertions. To indicate that the
names of these variables are irrelevant, we quantify them existentially.

More formally, a quantified ABox (qABox) ∃X.A consists of a finite set X
of variables, which is disjoint with the signature Σ, and of a matrix A, which
is a finite set of assertions A(u) and r(u, v), where A is a concept name, r a
role name, and u, v individual names or variables. We call the individual names
and variables occurring in ∃X.A its objects, and denote the set of them by
Obj(∃X.A). Regarding the semantics of a qABox ∃X.A, we can translate it
in an obvious way into a first-order formula by taking the conjunction of the
assertions in A (viewed as atomic formulas) and prefacing it with an existential
quantifier prefix containing exactly the variables in X. The models of ∃X.A are
then the first-order models of this formula.

Based on this semantics, we can now define when a qABox entails another
qABox or a concept assertion in the usual way. If α is an EL concept assertion or
a qABox, then ∃X.A entails α w.r.t. the EL TBox T (written ∃X.A |=T α) if
every model of ∃X.A and T is a model of α. Again, we may omit the superscript
∅ if T is empty. If α is a concept assertion, then entailment |=T can be decided in
polynomial time whereas it is NP-complete if α is a qABox [7,16]. NP-hardness
already holds without a TBox.

From a syntactic point of view, EL ABoxes that use compound concept de-
scriptions in concept assertions are not qABoxes, but it is easy to see that every
EL ABox can be transformed into an equivalent qABox (i.e., one having the
same models) [16]. Conversely, not every qABox has an equivalent EL ABox, the
simplest example being ∃{y}.{r(y, y)}, which enforces an r-loop in every model,
but without naming the element that has this loop. In contrast, EL ABoxes can
only enforce loops for named individuals, i.e., elements of ΣI. Also note that a
qABox cannot entail C(x) for a variable x since this is not a well-formed concept
assertion. We can, however, view the matrix A as a normal ABox (where the
variables are treated as individuals), and then one can derive concept assertions
for elements of X from A. The following lemma, which gives a recursive charac-
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terization of the instance relationship for the case of an empty TBox is relevant
for our construction of canonical repairs.

Lemma 1 ([16]). Let ∃X.A be a qABox, D an EL concept description, and
u ∈ Obj(∃X.A). Then A |= D(u) iff the following statements are satisfied for
every C ∈ Conj(D):

1. if C = A is a concept name, then A contains A(u),
2. if C = ∃r.E is an existential restriction, then A contains a role assertion

r(u, v) such that A |= E(v).

Two entailment relations between qABoxes As motivated in the intro-
duction, it makes sense to compare qABoxes w.r.t. the queries they entail rather
than w.r.t. the models they have. Instance queries (IQ) are just concept as-
sertions whereas (Boolean) conjunctive queries (CQ) are just qABoxes. The
qABox ∃X.A IQ-entails the qABox ∃Y.B w.r.t. T (written ∃X.A |=T

IQ ∃Y.B)
if ∃Y.B |=T C(a) implies ∃X.A |=T C(a) for every EL concept assertion C(a).
The definition of CQ-entailment considers all qABoxes ∃Z.C in place of concept
assertions C(a). It is easy to see that the CQ-entailment relation |=T

CQ actually
coincides with the model-based entailment relation |=T introduced above [7,16].
Since every concept assertion can be translated into an equivalent qABox, CQ-
entailment is a stronger requirement that IQ-entailment.

With respect to the empty TBox, these query-based entailment relations have
structural characterizations by means of simulations and homomorphisms [16].
In the IQ case, ∃X.A |=IQ ∃Y.B iff there is a simulation from ∃Y.B to ∃X.A,
which is a relation S ⊆ Obj(∃Y.B)× Obj(∃X.A) satisfying the following:

(S1) If a is an individual name, then (a, a) ∈ S.
(S2) If (u, u′) ∈ S and A(u) ∈ B, then A(u′) ∈ A.
(S3) If (u, u′)∈S and r(u, v)∈B, then (v, v′)∈S and r(u′, v′)∈A for some v′.

A homomorphism from ∃Y.B to ∃X.A is a function h : Obj(∃Y.B) →
Obj(∃X.A) for which the relation { (u, h(u)) | u ∈ Obj(∃Y.B) } is a simula-
tion. In the CQ case, entailment is characterized as follows: ∃X.A |=CQ ∃Y.B
iff there is a homomorphism from ∃Y.B to ∃X.A.

To extend these characterizations of the entailment relations to the case of
non-empty TBoxes, we must first saturate the qABox on the left-hand side. We
defer describing saturation to the second part of the next section, where we
extend our repair approach from the setting without TBox to the one with a
TBox.

3 Canonical and Optimal Repairs

We start with introducing (optimal) repairs in the general setting, but then
concentrate first on the CQ case without a TBox for didactic reasons, before
considering the IQ case and explaining how non-empty TBoxes can be tackled.
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As unwanted consequences we consider EL concept assertions. Whereas it
would be useful to be able to specify unwanted consequences via CQs, this may
cause non-existence of optimal repairs unless one considers a strongly restricted
class of CQs [11]. For this reason, a repair request will in the following be a finite
set of concept assertions, both in the IQ and in the CQ case.

Definition 2. Let T be an EL TBox, ∃X.A a qABox, R a repair request, and
QL ∈ {IQ,CQ}.

– The qABox ∃Y.B is a QL-repair of ∃X.A for R w.r.t. T if ∃X.A |=T
QL ∃Y.B

and ∃Y.B ̸|=T C(a) for each C(a) ∈ R.
– Such a repair ∃Y.B is optimal if there is no QL-repair ∃Z.C such that

∃Z.C |=T
QL ∃Y.B, but ∃Y.B ̸|=T

QL ∃Z.C.
– We say that a set R of QL-repairs of ∃X.A for R w.r.t. T covers all QL-

repairs if every QL-repair of ∃X.A for R w.r.t. T is QL-entailed by an
element of R.

Since CQ-entailment implies IQ-entailment, every CQ-repair is also an IQ-repair,
but the converse need not hold. The latter can be illustrated by the second
version of our Narcissus example from the introduction. Consider the TBox
T = {V ⊑ ∃ℓ.V,∃ℓ.V ⊑ V }, the qABox ∃∅.{V (n)} and the repair request
R = {V (n)}. Then ∃{x}.{ℓ(n, x), ℓ(x, x)} is an IQ-repair, but not a CQ-repair.
In fact, this qABox is not CQ-entailed w.r.t. T by ∃∅.{V (n)} since there are
models of ∃∅.{V (n)} and T that do not contain an individual with a loop. It is
IQ-entailed, basically since all EL concept assertions of the form (∃ℓ.)k⊤(n) are
entailed by ∃∅.{V (n)} w.r.t. T .

The question is now how one can actually compute all optimal repairs of a
given repair problem, consisting of an EL TBox, a qABox, and a query language
QL ∈ {IQ,CQ}. We start with the case where the TBox is empty and QL = CQ.

Blind search A first idea could be to start with the input qABox and then
generate a chain of qABoxes with entailment relationships between them, until
a qABox that does not entail any element of R has been found. Such a chain can
be generated by applying the following rules successively to the current qABox
∃X.A:

Copy Rule. Choose an object u of ∃X.A as well as a fresh variable y ̸∈
Obj(∃X.A), and return the qABox ∃(X ∪ {y}).

(
A ∪ {A(y) | A(u) ∈ A } ∪

{ r(t, y) | r(t, u) ∈ A} ∪ { r(y, y) | r(u, u) ∈ A} ∪ { r(y, v) | r(u, v) ∈ A}
)
.

Delete Rule. Choose an assertion α in A and return the qABox ∃X.(A\{α}),
or choose a variable x ∈ X that does not occur in A and return the qABox
∃(X \ {x}).A.

It is easy to see that the qABox obtained from ∃X.A by application of ones of
these rules is CQ-entailed by ∃X.A. The following proposition shows that these
rules indeed cover the whole search space of entailed qABoxes.
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Proposition 3. If ∃X.A |=CQ ∃Y.B, then there is a finite chain of applications
of the Copy and Delete Rules that starts with ∃X.A and ends with ∃Y.B.

Proof sketch. If ∃X.A |=CQ ∃Y.B, then there is a homomorphism from ∃Y.B to
∃X.A. If this homomorphism is not injective, then we can make it injective by
adding copies of individuals that are images of several elements of Obj(∃Y.B)
to ∃X.A. After that, we can remove assertions that are in the image, but not
in the pre-image. Finally, we can rename variables and remove variables that do
not have a pre-image (see [6] for a more detailed proof). ⊓⊔

If one starts with the input qABox ∃X.A and generates a search tree by
applying the above rules, this process need not terminate since one can generate
an arbitrary number of copies of objects. But now Proposition 11 in [11] comes
to the rescue: if ∃X.A contains m objects and R contains n atoms, then any
repair of ∃X.A for R is CQ-entailed by a repair that has at most m · 2n objects.
Thus, we can restrict the search to qABoxes that have at most this many objects,
which makes the search tree finite. We can be sure that the repairs found this
way cover all repairs. The optimal repair can be obtained from this covering set
by removing non-optimal elements, i.e., elements that are strictly entailed by
another element.

Canonical repairs Obviously, the blind search approach for computing optimal
repairs sketched above is very inefficient. However, it provides us with several
interesting ideas for how to construct, in a more direct way, a set of repairs that
covers all repairs. First, we notice that we must generate copies of objects, and
then may need to remove assertions for these copies. Second, the cited result
from [11] tells us that creating at most exponentially many copies of each object
is sufficient.

In our canonical repairs, each object u of the input qABox ∃X.A receives
copies of the form ⟨⟨u,K⟩⟩, where the second component specifies which assertions
C(u) that are entailed by A must not hold for this copy. More formally, K is a
repair type for u, i.e., a subset of the set of atoms occurring in R that satisfies
the following two properties:

(RT1) A |= C(u) for each atom C ∈ K,
(RT2) C ̸⊑∅ D for each pair of distinct atoms C, D in K.

The first condition is due to the fact that we only need to remove instance
relationships that hold in A. The second reduces the number of different repair
types. It is justified by the fact that requiring to remove D(u) ensures that also
C(u) must be removed if C ⊑∅ D.

The canonical repairs have the same set of objects and the same matrix.
They have all tuples ⟨⟨u,K⟩⟩ as their objects, where u ∈ Obj(∃X.A) and K is
a repair type for u. Using these objects, the matrix B of the canonical repairs
consists of the following assertions:

(CR1) A(⟨⟨u,K⟩⟩) ∈ B if A(u) ∈ A and A ̸∈ K,
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(CR2) r(⟨⟨u,K⟩⟩, ⟨⟨v,L⟩⟩) ∈ B if r(u, v) ∈ A and, for each ∃r.C ∈ K
with A |= C(v), there is an atom D ∈ L such that C ⊑∅ D.

To understand this definition, one needs to consider Lemma 1. Regarding concept
names A ∈ K, not adding the concept assertion A(⟨⟨u,K⟩⟩) to B ensures that this
assertion is not entailed by B. For existential restrictions ∃r.C ∈ K, we can only
have the role assertion r(⟨⟨u,K⟩⟩, ⟨⟨v,L⟩⟩) in B if B does not entail C(⟨⟨v,L⟩⟩). This
non-entailment is ensured by having an atom D ∈ L that satisfies C ⊑∅ D. In
fact, B |= C(⟨⟨v,L⟩⟩) would otherwise imply B |= D(⟨⟨v,L⟩⟩), which is forbidden
due to D ∈ L.

To determine a concrete canonical repair, we choose, for each individual a of
∃X.A, one of its copies as representative of a in B. Of course, this choice must
be made such that the obtained qABox really is a repair, i.e., does not entail any
of the unwanted consequences in R. Formally, this is realized by fixing a repair
seed S, which maps each individual name a to a repair type Sa for a such that
the following condition is satisfied:

(RS) If C(a) ∈ R and A |= C(a), then there is an atom D in Sa s.t. C ⊑∅ D.

Given such a repair seed S, the canonical repair rep(∃X.A,S) induced by S is
the qABox ∃Y.B, where individual names a and their copies ⟨⟨a,Sa⟩⟩ are used
as synonyms, and Y consists of the other objects of B. This construction works
both in the CQ and in the IQ case, and yields a set of repairs that covers all
repairs.

Proposition 4 ([16]). Consider a qABox ∃X.A, an EL repair request R, and
a query language QL ∈ {IQ,CQ}. For each repair seed S, the induced canonical
repair rep(∃X.A,S) is a QL-repair of ∃X.A for R. Conversely, if ∃Z.C is a QL-
repair of ∃X.A for R, then there is a repair seed S such that rep(∃X.A,S) |=QL
∃Z.C.

The set of all canonical repairs can obviously be computed in exponential
time. To obtain the optimal repairs, one needs to employ entailment tests to
remove the non-optimal ones from it. Since IQ-entailment is in P and CQ-
entailment is NP-complete, this yields the complexity results stated in the fol-
lowing theorem. Obviously, after removing redundant elements, the obtained set
still covers all repairs.

Theorem 5 ([16]). The set of optimal QL-repairs of ∃X.A for R covers all
QL-repairs. There is a (deterministic) algorithm that computes this set and runs
in exponential time. If QL = CQ, then this algorithm needs access to an NP
oracle, whereas no such oracle is required for QL = IQ.

Let us come back to the first variant of the Narcissus example from the intro-
duction, where the input qABox is ∃∅.A for A = {V (n), ℓ(n, n)} and the repair
request is R = {V (n)}. The only atom in R is V , and both ∅ and {V } is a repair
type for n. The only repair seed is S with Sn = {V }. If we denote ⟨⟨n,Sn⟩⟩ with n
and ⟨⟨n, ∅⟩⟩ with x, then the qABox ∃{x}.{ℓ(n, n), ℓ(n, x), ℓ(x, n), ℓ(x, x), V (x)}
is the only canonical repair, which thus is an optimal repair both in the CQ and
in the IQ case.
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Adding a static TBox As mentioned before, we restrict the attention to the
case where the TBox is assumed to be correct, and thus is static in the sense that
it must not be changed in the repair process. Our main idea for dealing with an
EL TBox T is to extend the given qABox ∃X.A with consequences entailed by
the CIs in T . We call this extension process saturation [7].

Intuitively, if C ⊑D ∈ T , then saturation adds the assertion D(u) to the
matrix A if A |= C(u), but A ̸|= D(u). However, if D is a compound concept
description, then this does not generate a well-formed new qABox. For this
reason, one must express D(u) by atomic assertions. Obviously, for each concept
name A ∈ Conj(D), we must add the assertion A(u) to A. For each existential
restriction ∃r.E ∈ Conj(D), we add a new variable x to X and the assertions
r(u, x) and E(x) to A. In case E is still compound, we apply the process of
expressing such an assertion by atomic ones recursively. To be more precise, the
treatment of existential restrictions differs depending on whether we are in the
CQ or the IQ case. In the former, we always need to use a new variable x. In the
IQ case, for each concept description E occurring in an existential restriction
∃r.E in T , we introduce the variable xE , and reuse this variable whenever we
encounter an existential restriction with E in the second position. Let us call
this process of expressing a concept assertion D(u) for a compound concept
description D the QL-unfolding of D(u), for QL ∈ {IQ,CQ}. QL-saturation is
the process of applying the following saturation rule exhaustively:

QL-Saturation Rule. Choose an object u of ∃X.A as well as a CI C ⊑ D
in T with A |= C(u), but A ̸|= D(u), and add D(u) to A. Then apply
QL-unfolding to D(u).

Example 6. Consider again the TBox T = {V ⊑ ∃ℓ.V,∃ℓ.V ⊑ V } and the
qABox ∃∅.{V (n)}. The first application of the IQ-saturation rule to n adds
the assertion (∃ℓ.V )(n) to the qABox. The IQ-unfolding of this assertion in-
troduces one new variable xV , adds the assertions ℓ(n, xV ) and V (xV ), and
removes the compound assertion. The IQ-saturation rule now applies to xV ,
adding (∃ℓ.V )(xV ). The IQ-unfolding of this assertion reuses the variable xV ,
and adds the assertion ℓ(xV , xV ). This completes the IQ-saturation process with
the IQ-saturated qABox ∃{xV }.{V (n), ℓ(n, xV ), V (xV ), ℓ(xV , xV )}.

This qABox is IQ-entailed by ∃∅.{V (n)} w.r.t. T , but it is not CQ-entailed.
The reason for the latter non-entailment is that there are models of ∃∅.{V (n)}
and T where no element has a loop. To avoid introducing a loop or a cy-
cle, we must use a new variable in each CQ-unfolding of an assertion of the
form (∃ℓ.V )(x). But this clearly leads to non-termination of the CQ-saturation
process. To ensure termination for the CQ case, we restrict the attention
in [7] to cycle-restricted TBoxes, where an EL TBox T is cycle-restricted if
there are no role names r1, . . . , rn and no EL concept description C such that
C ⊑T ∃r1. · · · ∃rn.C.

Proposition 7 ([7]). Let QL ∈ {IQ,CQ}, ∃X.A a qABox, and T an EL TBox,
which is cycle-restricted if QL = CQ. Then QL-saturation always terminates
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with a qABox satTQL(∃X.A) that satisfies ∃X.A |=T
QL ∃Y.B iff satTQL(∃X.A) |=QL

∃Y.B for all qABoxes ∃Y.B. The IQ-saturation satTIQ(∃X.A) can be computed
in polynomial time, whereas the computation of satTCQ(∃X.A) may require expo-
nential time in the worst case.

The idea is now to apply the repair process described above to the saturated
qABox rather than the original one. This ensures that, in RT1, the entailment is
then w.r.t. the TBox. However, without additional changes to our construction
of canonical repairs, the obtained qABox would not be a repair. In our example,
a canonical repair of ∃{xV }.{V (n), ℓ(n, xV ), V (xV ), ℓ(xV , xV )} for R = {V (n)}
could choose as synonym for n the copy ⟨⟨n, {V }⟩⟩ that does not belong to V ,
but still has an ℓ-successor that belongs to V . Together with the CI ∃ℓ.V ⊑ V ,
this qABox would then still entail V (n).

To avoid this problem, we amend the definition of repair types as follows.
First, we now consider subsets of the atoms occurring in R or T as possible
repair types. Second, we add an additional condition to the definition:

(RT3) If C is an atom in K and E⊑F is a CI in T with A |= E(u) and F ⊑∅ C,
then there is an atom D in K such that E ⊑∅ D.6

In our example, K = {V } does not satisfy RT3 since the saturated qABox entails
∃ℓ.V (n), there is a CI that has ∃ℓ.V as left-hand side and V ∈ K as right-hand
side, but K does not contain an atom that subsumes ∃ℓ.V (n). In fact, with the
additional condition RT3, any repair type for n that contains V must also contain
∃ℓ.V . The copy ⟨⟨n, {V,∃ℓ.V }⟩⟩ of n does not belong to V in the canonical repair,
and also does not have an ℓ-successor that belongs to V .

Overall, for T = {V ⊑ ∃ℓ.V,∃ℓ.V ⊑ V }, the qABox ∃X.A = ∃∅.{V (n)},
and the repair request R = {V (n)}, we obtain the following canonical IQ-repair
induced by the (unique) repair seed S with Sn = {V,∃ℓ.V }:

repTIQ(∃X.A,S) : n y2

y1

V

y3

V

ℓ
ℓ

ℓ

ℓ
ℓ

ℓ

where y1 stands for ⟨⟨n, ∅⟩⟩, y2 for ⟨⟨xN , {N, ∃ℓ.N}⟩⟩, and y3 for ⟨⟨xN , ∅⟩⟩.
In general, let repTQL(∃X.A,S) be the canonical repairs obtained by first QL-

saturating ∃X.A w.r.t. T and then applying the amended repair approach that
takes RT3 into account. Then Proposition 4 and Theorem 5 hold accordingly in
the presence of a static TBox T if we replace rep(∃X.A,S) with repTQL(∃X.A,S)
and in the CQ case add the assumption that T is cycle-restricted (see [7]).
6 This condition differs from the one given in [7]. However, this third condition is only

employed in Lemma XIII in [8] to show that the canonical repairs are saturated, for
which the simpler condition given here suffices.
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4 Concise Representations of Canonical IQ-Repairs

Canonical IQ-repairs are of exponential size, not only in the worst case, but also
in the best case. In this section, we consider two approaches for alleviating this
problem. One approach produces considerably smaller repairs in practice, which
may, however, still be exponential in the worst case. The second approach uses
the polynomial-sized repair seeds as representations for the exponentially large
canonical repairs.

Optimized IQ-repairs To avoid generating exponential-sized repairs also in the
best case, we have developed in [7] an optimized algorithm for computing repairs
induced by repair seeds. Intuitively, these optimized repairs do not contain all
the objects occurring in the canonical repair, but only those that are really
needed. We have shown that the optimized IQ-repair induced by a repair seed S
is IQ-equivalent to the canonical one induced by S, and thus the set of optimized
IQ-repairs can be used in place of the set of canonical ones when computing the
optimal repairs. The experiments described in [7] show that the optimized repairs
are in most cases considerably smaller than the canonical ones. For example,
in the canonical IQ-repair we have just computed for our Narcissus example,
the objects y1 and y3 are not needed since they are not reachable from n. IQ-
equivalence of the optimized repair ∃{y2}.{ℓ(n, y2), ℓ(y2, y2)} with the canonical
one can be seen by using the identity on the objects n and y2 as simulation in
both directions.

Note, however, that in general an exponential blow-up cannot be avoided,
as already shown in [12] for a restricted class of qABoxes without a TBox. This
blow-up is not only a problem when computing the repair, but also when using
it later on to answer queries. While answering IQs is polynomial for the original
(unrepaired) qABox, it may become exponential after the repair if we measure
the complexity in the size the repair problem, consisting of the original qABox,
the TBox, and the repair request.

Representing canonical IQ-repairs by repair seeds The size of a repair
seed S is polynomial in the size of the repair problem, and it uniquely determines
the induced canonical repair repTIQ(∃X.A,S). To take advantage of this more
concise representation of canonical repairs, we must be able to work directly
with this representation when comparing the repairs w.r.t. IQ-entailment and
when answering IQs w.r.t. them. The following proposition shows how this can
be realized.

Proposition 8 ([10,13]). Let T be an EL TBox, ∃X.A a qABox, R a repair
request, S,S ′ repair seeds, and E(b) an EL concept assertion. Then,

1. repTIQ(∃X.A,S) |=T
IQ repTIQ(∃X.A,S ′) iff for each individual name a and for

each atom C ∈ Sa, there is an atom D ∈ S ′
a with C ⊑∅ D.

2. repTIQ(∃X.A,S) |=T E(b) iff ∃X.A |=T E(b) and Sb does not contain any
atom D with E ⊑T D.
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The conditions formulated in this proposition are clearly decidable in time poly-
nomial in the size of the repair problem. Thus, from a theoretical point of view,
representing canonical repairs using repair seeds is preferable to using optimized
repairs since the worst-case complexity of the relevant inference problems is poly-
nomial for the former, whereas it is exponential for the latter. Comparing the
worst-case complexity of two algorithms does not always tell us which algorithm
will perform better in practice. To investigate the advantages and disadvantages
of our two concise representations of canonical IQ-repairs in practice, we per-
formed experiments on real-world ontologies.

Experimental evaluation The goal of the experiments was to evaluate the
performance of the two representations with respect to the time needed for an-
swering instance queries. To this end, we created a benchmark consisting of EL
ontologies, instance queries, and repair requests. As in the experiments in [7],
which mainly compared the sizes of the optimized repairs with that of the canon-
ical ones, we took the ontologies from the OWL EL Materialization track of the
OWL Ontology Reasoner Evaluation 2015 [30], filtering out axioms that cannot
be expressed in EL. To test the limits of both approaches, we this time included
all 109 ontologies from this corpus, instead of considering only ontologies of up to
100,000 axioms as in [7]. Table 1 provides information on how large the employed
ontologies were.

For each ontology, we randomly generated 100 IQs. To generate repair re-
quests, we used the approach employed in [7], which generates requests where
the concept assertions involve only concept names. In addition, we this time also
generated repair requests containing assertions with compound concept descrip-
tions. The repair requests generated in these two ways are respectively denoted
RR1 and RR2 in the following. We attempted to compute 10 repair seeds per
ontology based on the generated repair requests, which was, however, not al-
ways possible within a timeout of 10 minutes. For each tuple of ontology, repair
request, and repair seed, we first computed the induced optimized IQ-repair,
which was possible in most, but not all, cases within a timeout of 1 hour. Then
we compared the performance of answering IQs from the optimized repairs and
from the repair seeds. Any required EL reasoning was performed using Elk [24].
More information on the experimental setup can be found in [6].

Figure 1 shows the results of this comparison, where each point corresponds
to a tuple of ontology, repair request, and seed function, the x-axis to the run-
time of evaluating all 100 IQs using the repair seed, and the y-axis of evaluating
all IQs using the optimized repair, where the red color denotes that we also
count the computation time of the optimized repair, and the blue color denotes
that we do not. For RR1 with the simple repair requests, using the repair seed
instead of the precomputed repair was faster in 98.7% of cases if we also count
the time for computing the repair, and otherwise in 17.9% of cases. As we can see
however in Figure 1, using the optimized repair was almost never significantly
faster, and there were many cases in which using the repair seed instead of the
repair was significantly faster even if we do not count the time for computing the
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Size Ontology Size ABox Size TBox
min. max. med. avg. min. max. med. avg. min. max. med. avg.
154 891,452 6,751 77,761.5 103 747,998 2,089 46,625.7 61 473,254 2,706 31,135.8

Table 1. Statistics of the used corpus of EL ontologies after filtering out non-EL axioms.
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Fig. 1. Run times of evaluating 100 instance queries on repairs using the seed function
(x-axis) vs. using the optimized repairs (y-axis). Color intensity corresponds to size of
the input ontology. Orange-red crosses include times for computing the repair, whereas
cyan-blue circles do not. Results of RR1 on the left, and for RR2 on the right.

repair. For RR2 with the complex repair requests, using the repair seed was faster
in 64.6% of cases if we count the time for computing the repair, and otherwise
almost never (0.13% of cases). The reason for this was that after obtaining
the query answers from Elk, we still have to do a subsumption check for each
individual in the answer when using the repair seed only (see the condition
in Proposition 8). In RR2, each of these tests was more expensive, since we were
comparing complex EL concepts. When using the precomputed optimized repair,
no additional subsumption tests are necessary.

The results show that computing the optimized repair explicitly rather than
using the repair seed is only advisable if this repair is considered to be the
final one, which is then used for many instance tests. This is not the case for
intermediate repairs in a setting where the KE iteratively repairs the ontology
by (a) choosing a repair seed, then (b) checking out the induced canonical repair
by looking at some of its consequences, and based on this inspection deciding
whether (c) to choose a different repair seed or (d) to use this repair seed, but
maybe repair the obtained ontology further by formulating a new repair request.
It then makes sense to compute the optimized repair only after the iterative
repair process is finished.

If the repair is assumed to be the final one, a good indicator for when com-
puting the optimized repair does not pay off is the size of the original ontology.
If we consider RR1 and do not count the time for computing the repair, for on-
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tologies with at most 404,509 axioms (85% of the corpus), using the repair seed
was faster in only 6.8% of the cases, while for the larger ontologies, it was faster
in 80.5% of the cases. The numbers are similar if we look at the size increase of
the repair: if the repair contained at most 132,622 axioms more than the original
ontology (85% of the corpus), then using the repair seed was faster in 5.5% of
the cases, and otherwise in 87.5% of the cases.

5 Finite Representations of Optimal CQ-Repairs

The results concerning optimal CQ-repairs of [7] recalled in Section 3 assume
that the TBox is cycle-restricted. We have seen an example (the version of our
Narcissus example with a TBox) that for TBoxes not satisfying this restriction,
optimal repairs need not exist. To overcome this problem, we allow for infinite
qABoxes as repairs, but require that they have an appropriate finite representa-
tion. In our construction of optimal CQ-repairs, cycle-restrictedness of the TBox
is needed to ensure that CQ-saturation terminates. For IQ-saturation, cycles in
the TBox do not lead to non-termination since the saturation process can reuse
variables. This is not possible for CQ-saturation since it may generate cycles in
the saturated qABox that are not CQ-entailed by the original qABox. Whereas
IQs cannot distinguish such cycles from their unfoldings, CQs obviously can.
The idea is now to use appropriate unfoldings of IQ-saturations and canonical
IQ-repairs in the CQ case.

Infinite qABoxes An infinite qABox is still of the form ∃X.A, but now both
the variable set X and the matrix A may be infinite. The model-based semantics
can straightforwardly be extended from finite qABoxes to infinite ones, and the
correspondence between (model-based) entailment and the existence of a homo-
morphism is still easy to show. However, the equivalence between entailment
and CQ-entailment no longer holds. While the existence of a homomorphism is
still sufficient for CQ-entailment, it is no longer necessary, as illustrated by the
following example.

Example 9. As left-hand side of the entailment, we consider the qABox repre-
senting the natural numbers with their usual order relation: ∃X.A with variables
X := N and matrix A := { r(m,n) | m < n }. As right-hand side, we take the real
numbers: ∃Y.B with variables Y := R and matrix B := { r(x, y) | x < y }. Each
finite qABox entailed by ∃Y.B is also entailed by ∃X.A, i.e., ∃X.A |=CQ ∃Y.B.
However, there is no homomorphism from ∃Y.B to ∃X.A. In fact, no mapping
from R (the objects of ∃Y.B) to N (the objects of ∃X.A) can be injective. Thus,
if h was a homomorphism, then it would send two real numbers x < y to the
same natural number n, which would be a contradiction since B contains the
role assertion r(x, y), whereas A does not contain its image r(n, n).

A slightly more complicated example can be used to show that this problem
persists even if we consider only countable qABoxes [6]. The intuitive reason
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for the difference between entailment and CQ-entailment is that CQs (which are
finite) cannot capture differences of infinite qABoxes that manifest themselves
only “in the infinite.” Fortunately, the problem goes away if we restrict the at-
tention to shell unfoldings of finite ABoxes. Shell unfolding are similar to what
is called unraveling in the DL literature [5], but it is applied to ABoxes rather
than to interpretations.

Shell unfoldings and homomorphisms Consider a (finite) quantified ABox
∃X.A, the objects of which are divided into kernel objects and shell objects,
such that each individual name is a kernel object, each shell object is reachable
from some kernel object, but no kernel object is reachable from any shell object.
Later on, we will apply the shell unfolding operation to the IQ-saturation ∃X.A
of a given finite qABox ∃Y.B. In this setting, the kernel objects of ∃X.A are
the objects of ∃Y.B, and the shell objects are the additional objects introduced
during the saturation process. It is easy to see that this division into kernel and
shell objects satisfies the requirements we have just formulated.

A shell path is a sequence u0
r1−→u1

r2−→ · · · rn−→un that starts with a kernel object
u0 but otherwise only contains shell objects u1, . . . , un such that A contains
ri(ui−1, ui) for all i ∈ {1, . . . , n}. We call n ≥ 0 its length, u0 its source, and
un its target. Note that kernel objects, and thus also individuals, can be seen
as shell paths of length 0. The target of such a shell path representing a kernel
object is this object itself.

Definition 10. The shell unfolding of ∃X.A is defined as the qABox ∃X ′.A′

with the following components:

X ′ := { p | p is a shell path where p ̸∈ ΣI },
A′ := {A(p) | p is a shell path with target u and A(u) ∈ A} ∪

{ r(u, v) | u, v are kernel objects and r(u, v) ∈ A} ∪
{ r(p, q) | p, q are shell paths such that q = p r−→u for a shell object u }.

Note that a finite qABox can be seen as the shell unfolding of itself where all
objects are assumed to be kernel objects. If the matrix A contains cycles among
shell objects, then the shell unfolding ∃X ′.A′ of ∃X.A is infinite. However, since
∃X ′.A′ is uniquely determined by the finite qABox ∃X.A and the division of
its objects into kernel and shell objects, we can use this as a finite representation
of the infinite qABox ∃X ′.A′.

We can show [6] that, for shell unfoldings, CQ-entailment can again be char-
acterized by the existence of a homomorphism, and thus coincides with (model-
based) entailment.

Proposition 11 ([6]). If ∃X ′.A′ and ∃Y ′.B′ are shell unfoldings, then
∃X ′.A′ |=CQ ∃Y ′.B′ iff there is a homomorphism from ∃Y ′.B′ to ∃X ′.A′.

If we want to work with (finitely represented) shell unfoldings in the context
of CQ-repairs, we must be able to decide CQ-entailment, and thus the existence of
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a homomorphism between shell unfoldings. This is possible in non-deterministic
polynomial time in the size of the finite representation.

Theorem 12 ([6]). Let ∃X.A and ∃Y.B be two finite qABoxes whose object
sets are partitioned into kernel objects and shell objects as introduced above, and
let ∃X ′.A′ and ∃Y ′.B′ be their shell unfoldings. Then the problem of deciding
whether there is a homomorphism from ∃X ′.A′ to ∃Y ′.B′ is NP-complete in
the size of the input ∃X.A and ∃Y.B.

Since a finite qABox can be seen as the shell unfolding of itself (with empty set
of shell objects), this theorem also shows that answering CQs for shell unfoldings
is NP-complete in the size of their finite representations.

Infinite CQ-saturation and CQ-repair The idea is now to extend the notion
of a CQ-repair to a setting where qABoxes need not be finite, but must be finitely
representable as the shell unfoldings of finite qABoxes. We call such qABoxes
rational qABoxes since they consist of a finite part (the kernel) out of which
grow (possibly) infinite trees, which are however rational [19]. We start with
showing that, in this setting, finite qABoxes always have a CQ-saturation, even
if the TBox is not cycle-restricted.

Given a finite qABox ∃X.A and an EL TBox T , we consider the shell un-
folding of the IQ-saturation satTIQ(∃X.A), where all objects of the sub-qABox
∃X.A are kernel objects and all other objects (added by applications of the
IQ-Saturation Rule) are shell objects. We can show that this rational qABox
CQ-entails exactly those rational qABoxes that are CQ-entailed by ∃X.A and
T . It can thus replace the finite CQ-saturation from [7], but is not limited
to cycle-restricted TBoxes. For this reason, we denote this shell unfolding by
satTCQ(∃X.A) and call it the CQ-saturation of ∃X.A w.r.t. T .

Proposition 13 ([6]). Let ∃X.A be a finite qABox and T an EL TBox. Then
∃X.A |=T

CQ ∃Z.C iff satTCQ(∃X.A) |=CQ ∃Z.C for each rational qABox ∃Z.C.

Coming back to Example 6, where we constructed the IQ-saturation with
kernel object n and shell object xN , we now obtain as shell unfolding the
CQ-saturation satTCQ(∃X.A) = ∃{x1, x2, . . . }.{N(n), ℓ(n, x1), N(x1), ℓ(x1, x2),
N(x2), . . . }, where xk := n ℓ−→ xN

ℓ−→ · · · ℓ−→xN︸ ︷︷ ︸
k times

.

satTCQ(∃X.A) : n

N

x1

N

x2

N

x3

N

. . .ℓ ℓ ℓ ℓ

Regarding repairs, we now allow them to be rational qABoxes, i.e., in Defi-
nition 2 the qABoxes ∃Y.B and ∃Z.C are allowed to be rational qABoxes rather
than just finite one. We call such repairs rational CQ-repairs. But note that the
input qABox is still assumed to be finite.

In this setting, the rôle of canonical CQ-repairs is now taken on by shell
unfoldings of canonical IQ-repairs. In such an IQ-repair repTIQ(∃X.A,S), an object
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⟨⟨u,K⟩⟩ is a kernel object if u is a kernel object in the underlying IQ-saturation,
and otherwise it is a shell object. We denote the shell unfolding of repTIQ(∃X.A,S)
as repTCQ(∃X.A,S), and call it again the canonical CQ-repair induced by S. The
following proposition shows that using this notation is justified.

Proposition 14 ([6]). Consider a finite qABox ∃X.A, an EL TBox T , and
an EL repair request R. For each repair seed S, the induced canonical repair
repTCQ(∃X.A,S) is a rational CQ-repair of ∃X.A for R. Conversely, if ∃Z.C
is a rational CQ-repair of ∃X.A for R, then there is a repair seed S such that
repTCQ(∃X.A,S) |=CQ ∃Z.C.

Note that the canonical CQ-repair must be constructed as shell unfolding of the
full canonical IQ-repair, not from the optimized IQ-repair or any another qABox
that is IQ-equivalent to it. In our Narcissus example with TBox, the canonical
IQ-repair contains objects belonging to N , which are, however, not reachable
from n. The optimized IQ-repair no longer contains such objects. Thus, the shell
unfolding of the optimized repair does not entail ∃{x}.{N(x)}, but there are
CQ-repairs that do, such as the shell unfolding of the canonical IQ-repair.

As an immediate consequence of the previous proposition, we obtain the main
result of this section.

Theorem 15 ([6]). Let ∃X.A be a finite qABox, T an EL TBox, and R an
EL repair request. Then we can compute, in (deterministic) exponential time
using an NP-oracle, a finite set of repair seeds {S1, . . . ,Sm} such that the set
{repTCQ(∃X.A,S1), . . . , repTCQ(∃X.A,Sm)} consists of all optimal rational CQ-
repairs of ∃X.A for R w.r.t. T (up to CQ-equivalence). This set covers all
rational CQ-repairs of ∃X.A for R w.r.t. T .

Also note that the optimal repairs repTCQ(∃X.A,Si) are saturated w.r.t. T in
the sense that they CQ-entail a rational qABox w.r.t. T if they already entail
it without T . By Theorem 12, this implies that conjunctive queries can be an-
swered for repTCQ(∃X.A,Si) in non-deterministic polynomial time in the size of
repTIQ(∃X.A,Si) and the query.

6 Conclusion

In the first part of this paper we have mainly recalled the approaches and results
from [7,16]. In other work, we have extended these results in several directions.
The paper [11] extends the expressivity of the underlying DL considerably, by
adding nominals, inverse roles, regular role inclusions and the bottom concept to
EL, which yields a fragment of the well-known DL Horn-SROIQ [29]. In [9], we
investigate whether and how one can obtain optimal repairs if one restricts the
output of the repair process to being ABoxes rather than qABoxes. In general,
such optimal ABox repairs need not exist. The main contribution of the paper is
an approach that can decide the existence of optimal ABox repairs in exponential
time, and can compute all such repairs in case they exist. The papers [13,14] con-
sider error-tolerant reasoning based on optimal repairs and [1] compares optimal
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repairs with contractions from the area of belief change. Moreover, an approach
to computing optimal repairs of EL TBoxes is developed in [25].

In the second part of this paper we have presented new results on how to
represent exponentially large repairs in a polynomial way and infinite repairs in
a finite way. It would be interesting to see whether such approaches can also
be extended to other settings. We conjecture that non-cycle-restricted TBoxes
can still be tackled by using shell-unfoldings for the DLs considered in [11].
However, in [11] we also show that optimal repairs need not exist if the role
inclusions are not regular. It is unclear whether this problem can be overcome
by an appropriate finite representation of infinite repairs. Another interesting
topic for future research is to investigate whether finitely represented rational
repairs can be used in practice.

Authors’ Contributions. FB and FK contributed equally to the paper. PK
ran the experiments and wrote the description of them. He also wrote a first
version of the proof of the last proposition in Section 5 of [6].

Acknowledgements. This work has been supported by Deutsche Forschungs-
gemeinschaft (DFG) in projects 430150274 (Repairing Description Logic Ontolo-
gies) and 389792660 (TRR 248: Foundations of Perspicuous Software Systems).

References
1. Baader, F.: Optimal repairs in ontology engineering as pseudo-contractions in belief

change. In: Proceedings of the 38th ACM/SIGAPP Symposium on Applied Com-
puting (SAC ’23), March 27–31, 2023, Tallinn, Estonia. pp. 983–990. Association
for Computing Machinery (2023), https://doi.org/10.1145/3555776.3577719

2. Baader, F., Borgwardt, S., Morawska, B.: SAT Encoding of Unification in
ELHR+ w.r.t. Cycle-Restricted Ontologies. In: Gramlich, B., Miller, D., Sattler,
U. (eds.) Automated Reasoning - 6th International Joint Conference, IJCAR
2012, Manchester, UK, June 26-29, 2012. Proceedings. Lecture Notes in Com-
puter Science, vol. 7364, pp. 30–44. Springer (2012), https://doi.org/10.1007/
978-3-642-31365-3_5

3. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Kaelbling, L.P.,
Saffiotti, A. (eds.) IJCAI-05, Proceedings of the Nineteenth International Joint
Conference on Artificial Intelligence, Edinburgh, Scotland, UK, July 30 - Au-
gust 5, 2005. pp. 364–369. Professional Book Center (2005), http://ijcai.org/
Proceedings/05/Papers/0372.pdf

4. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press (2003)

5. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Descrip-
tion Logic. Cambridge University Press (2017), https://doi.org/10.1017/
9781139025355

6. Baader, F., Koopmann, P., Kriegel, F.: Optimal repairs in the description logic EL
revisited (extended version). LTCS-Report 23-03, Chair of Automata Theory, In-
stitute of Theoretical Computer Science, Technische Universität Dresden, Dresden,
Germany (2023), https://doi.org/10.25368/2023.121

https://doi.org/10.1145/3555776.3577719
https://doi.org/10.1007/978-3-642-31365-3_5
https://doi.org/10.1007/978-3-642-31365-3_5
http://ijcai.org/Proceedings/05/Papers/0372.pdf
http://ijcai.org/Proceedings/05/Papers/0372.pdf
https://doi.org/10.1017/9781139025355
https://doi.org/10.1017/9781139025355
https://doi.org/10.25368/2023.121


22 Franz Baader, Patrick Koopmann, and Francesco Kriegel

7. Baader, F., Koopmann, P., Kriegel, F., Nuradiansyah, A.: Computing optimal
repairs of quantified ABoxes w.r.t. static EL TBoxes. In: Platzer, A., Sutcliffe,
G. (eds.) Automated Deduction - CADE 28 - 28th International Conference on
Automated Deduction, Virtual Event, July 12-15, 2021, Proceedings. Lecture Notes
in Computer Science, vol. 12699, pp. 309–326. Springer (2021), https://doi.org/
10.1007/978-3-030-79876-5_18

8. Baader, F., Koopmann, P., Kriegel, F., Nuradiansyah, A.: Computing optimal
repairs of quantified ABoxes w.r.t. static EL TBoxes (extended version). LTCS-
Report 21-01, Chair of Automata Theory, Institute of Theoretical Computer Sci-
ence, Technische Universität Dresden, Dresden, Germany (2021), https://doi.
org/10.25368/2022.64

9. Baader, F., Koopmann, P., Kriegel, F., Nuradiansyah, A.: Optimal ABox repair
w.r.t. static EL TBoxes: from quantified ABoxes back to ABoxes. In: 19th Extended
Semantic Web Conference, ESWC 2022, Hersonissos, Greece, May 29 – June 2,
2022, Proceedings. Lecture Notes in Computer Science, vol. 13261, pp. 130–146.
Springer (2022), https://doi.org/10.1007/978-3-031-06981-9_8

10. Baader, F., Koopmann, P., Kriegel, F., Nuradiansyah, A.: Optimal ABox repair
w.r.t. static EL TBoxes: from quantified ABoxes back to ABoxes (extended ver-
sion). LTCS-Report 22-01, Chair of Automata Theory, Institute of Theoretical
Computer Science, Technische Universität Dresden, Dresden, Germany (2022),
https://doi.org/10.25368/2022.65

11. Baader, F., Kriegel, F.: Pushing optimal ABox repair from EL towards more expres-
sive Horn-DLs. In: Kern-Isberner, G., Lakemeyer, G., Meyer, T. (eds.) Proceedings
of the 19th International Conference on Principles of Knowledge Representation
and Reasoning, KR 2022, Haifa, Israel, July 31 – August 5, 2022. pp. 22–32 (2022),
https://doi.org/10.24963/kr.2022/3

12. Baader, F., Kriegel, F., Nuradiansyah, A.: Privacy-preserving ontology publishing
for EL instance stores. In: Calimeri, F., Leone, N., Manna, M. (eds.) Logics in
Artificial Intelligence - 16th European Conference, JELIA 2019, Rende, Italy, May
7-11, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11468, pp. 323–
338. Springer (2019), https://doi.org/10.1007/978-3-030-19570-0_21

13. Baader, F., Kriegel, F., Nuradiansyah, A.: Error-tolerant reasoning in the de-
scription logic EL based on optimal repairs. In: Governatori, G., Turhan, A.
(eds.) Rules and Reasoning - 6th International Joint Conference, RuleML+RR
2022, Virtual, September 26-28, 2022, Proceedings. Lecture Notes in Computer
Science, vol. 13752, pp. 227–243. Springer (2022), https://doi.org/10.1007/
978-3-031-21541-4_15

14. Baader, F., Kriegel, F., Nuradiansyah, A.: Treating role assertions as first-
class citizens in repair and error-tolerant reasoning. In: Proceedings of the 38th
ACM/SIGAPP Symposium on Applied Computing (SAC ’23), March 27–31,
2023, Tallinn, Estonia. pp. 974–982. Association for Computing Machinery (2023),
https://doi.org/10.1145/3555776.3577630

15. Baader, F., Kriegel, F., Nuradiansyah, A., Peñaloza, R.: Making repairs in descrip-
tion logics more gentle. In: Thielscher, M., Toni, F., Wolter, F. (eds.) Principles of
Knowledge Representation and Reasoning: Proceedings of the Sixteenth Interna-
tional Conference, KR 2018, Tempe, Arizona, 30 October - 2 November 2018. pp.
319–328. AAAI Press (2018), https://aaai.org/ocs/index.php/KR/KR18/paper/
view/18056

16. Baader, F., Kriegel, F., Nuradiansyah, A., Peñaloza, R.: Computing compliant
anonymisations of quantified ABoxes w.r.t. EL policies. In: Pan, J.Z., Tamma,

https://doi.org/10.1007/978-3-030-79876-5_18
https://doi.org/10.1007/978-3-030-79876-5_18
https://doi.org/10.25368/2022.64
https://doi.org/10.25368/2022.64
https://doi.org/10.1007/978-3-031-06981-9_8
https://doi.org/10.25368/2022.65
https://doi.org/10.24963/kr.2022/3
https://doi.org/10.1007/978-3-030-19570-0_21
https://doi.org/10.1007/978-3-031-21541-4_15
https://doi.org/10.1007/978-3-031-21541-4_15
https://doi.org/10.1145/3555776.3577630
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18056
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18056


Optimal Repairs in the Description Logic EL Revisited 23

V.A.M., d’Amato, C., Janowicz, K., Fu, B., Polleres, A., Seneviratne, O., Kagal,
L. (eds.) The Semantic Web - ISWC 2020 - 19th International Semantic Web
Conference, Athens, Greece, November 2-6, 2020, Proceedings, Part I. Lecture
Notes in Computer Science, vol. 12506, pp. 3–20. Springer (2020), https://doi.
org/10.1007/978-3-030-62419-4_1

17. Baader, F., Suntisrivaraporn, B.: Debugging SNOMED CT using axiom pinpoint-
ing in the description logic EL+. In: Cornet, R., Spackman, K.A. (eds.) Proceedings
of the Third International Conference on Knowledge Representation in Medicine,
Phoenix, Arizona, USA, May 31st - June 2nd, 2008. CEUR Workshop Proceedings,
vol. 410. CEUR-WS.org (2008), http://ceur-ws.org/Vol-410/Paper01.pdf

18. Brachman, R.J., Fikes, R., Levesque, H.J.: Krypton: A functional approach to
knowledge representation. Computer 16(10), 67–73 (1983), https://doi.org/10.
1109/MC.1983.1654200

19. Colmerauer, A.: Prolog and infinite trees. In: Clark, K., Tarnlund, S.A. (eds.) Logic
Programming, pp. 231–251. Academic Press, New York (1982)

20. Cuenca Grau, B., Kostylev, E.V.: Logical foundations of linked data anonymisa-
tion. J. Artif. Intell. Res. 64, 253–314 (2019), https://doi.org/10.1613/jair.1.
11355

21. Du, J., Qi, G., Fu, X.: A practical fine-grained approach to resolving incoherent
OWL 2 DL terminologies. In: Proc. of the 23rd ACM Int. Conf. on Information
and Knowledge Management, (CIKM’14). pp. 919–928 (2014), http://doi.acm.
org/10.1145/2661829.2662046

22. Greiner, R., Smith, B.A., Wilkerson, R.W.: A correction to the algorithm in Re-
iter’s theory of diagnosis. Artif. Intell. 41(1), 79–88 (1989), https://doi.org/10.
1016/0004-3702(89)90079-9

23. Horridge, M., Parsia, B., Sattler, U.: Laconic and precise justifications in OWL.
In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T.W.,
Thirunarayan, K. (eds.) The Semantic Web - ISWC 2008, 7th International Se-
mantic Web Conference, ISWC 2008, Karlsruhe, Germany, October 26-30, 2008.
Proceedings. Lecture Notes in Computer Science, vol. 5318, pp. 323–338. Springer
(2008), https://doi.org/10.1007/978-3-540-88564-1_21

24. Kazakov, Y., Krötzsch, M., Simancik, F.: The incredible ELK - from polynomial
procedures to efficient reasoning with EL ontologies. Journal of Automed Reasoning
53(1), 1–61 (2014), https://doi.org/10.1007/s10817-013-9296-3

25. Kriegel, F.: Optimal fixed-premise repairs of EL TBoxes. In: Bergmann, R., Mal-
burg, L., Rodermund, S.C., Timm, I.J. (eds.) Proceedings of the 45th German Con-
ference on Artificial Intelligence (KI 2022), Virtual in Trier, Germany, September
19–23, 2022. Lecture Notes in Computer Science, vol. 13404, pp. 115–130. Springer
(2022), https://doi.org/10.1007/978-3-031-15791-2_11

26. Lam, J.S.C., Sleeman, D.H., Pan, J.Z., Vasconcelos, W.W.: A fine-grained approach
to resolving unsatisfiable ontologies. J. Data Semant. 10, 62–95 (2008), https:
//doi.org/10.1007/978-3-540-77688-8_3

27. Levesque, H.J.: Foundations of a functional approach to knowledge representation.
Artif. Intell. 23(2), 155–212 (1984), https://doi.org/10.1016/0004-3702(84)
90009-2

28. Lutz, C., Wolter, F.: Deciding inseparability and conservative extensions in the
description logic EL. J. Symb. Comput. 45(2), 194–228 (2010), https://doi.org/
10.1016/j.jsc.2008.10.007

29. Ortiz, M., Rudolph, S., Šimkus, M.: Worst-case optimal reasoning for the Horn-
DL fragments of OWL 1 and 2. In: Lin, F., Sattler, U., Truszczynski, M. (eds.)

https://doi.org/10.1007/978-3-030-62419-4_1
https://doi.org/10.1007/978-3-030-62419-4_1
http://ceur-ws.org/Vol-410/Paper01.pdf
https://doi.org/10.1109/MC.1983.1654200
https://doi.org/10.1109/MC.1983.1654200
https://doi.org/10.1613/jair.1.11355
https://doi.org/10.1613/jair.1.11355
http://doi.acm.org/10.1145/2661829.2662046
http://doi.acm.org/10.1145/2661829.2662046
https://doi.org/10.1016/0004-3702(89)90079-9
https://doi.org/10.1016/0004-3702(89)90079-9
https://doi.org/10.1007/978-3-540-88564-1_21
https://doi.org/10.1007/s10817-013-9296-3
https://doi.org/10.1007/978-3-031-15791-2_11
https://doi.org/10.1007/978-3-540-77688-8_3
https://doi.org/10.1007/978-3-540-77688-8_3
https://doi.org/10.1016/0004-3702(84)90009-2
https://doi.org/10.1016/0004-3702(84)90009-2
https://doi.org/10.1016/j.jsc.2008.10.007
https://doi.org/10.1016/j.jsc.2008.10.007


24 Franz Baader, Patrick Koopmann, and Francesco Kriegel

Principles of Knowledge Representation and Reasoning: Proceedings of the Twelfth
International Conference, KR 2010 (2010), http://aaai.org/ocs/index.php/KR/
KR2010/paper/view/1296

30. Parsia, B., Matentzoglu, N., Gonçalves, R.S., Glimm, B., Steigmiller, A.: The OWL
reasoner evaluation (ORE) 2015 competition report. J. Autom. Reason. 59(4), 455–
482 (2017), https://doi.org/10.1007/s10817-017-9406-8, test ontology corpus:
https://doi.org/10.5281/zenodo.18578

31. Parsia, B., Rudolph, S., Hitzler, P., Krötzsch, M., Patel-Schneider, P.: OWL 2 web
ontology language primer (second edition). W3C recommendation (2012), http:
//www.w3.org/TR/2012/REC-owl2-primer-20121211/

32. Parsia, B., Sirin, E., Kalyanpur, A.: Debugging OWL ontologies. In: Ellis, A.,
Hagino, T. (eds.) Proceedings of the 14th international conference on World Wide
Web, WWW 2005, Chiba, Japan, May 10-14, 2005. pp. 633–640. ACM (2005),
https://doi.org/10.1145/1060745.1060837

33. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95
(1987), https://doi.org/10.1016/0004-3702(87)90062-2, see the erratum [22].

34. Schlobach, S., Huang, Z., Cornet, R., van Harmelen, F.: Debugging incoherent
terminologies. J. Autom. Reason. 39(3), 317–349 (2007), https://doi.org/10.
1007/s10817-007-9076-z

35. Troquard, N., Confalonieri, R., Galliani, P., Peñaloza, R., Porello, D., Kutz, O.:
Repairing ontologies via axiom weakening. In: McIlraith, S.A., Weinberger, K.Q.
(eds.) Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18),
and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence
(EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018. pp. 1981–1988.
AAAI Press (2018), https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/
view/17189

http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1296
http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1296
https://doi.org/10.1007/s10817-017-9406-8
https://doi.org/10.5281/zenodo.18578
http://www.w3.org/TR/2012/REC-owl2-primer-20121211/
http://www.w3.org/TR/2012/REC-owl2-primer-20121211/
https://doi.org/10.1145/1060745.1060837
https://doi.org/10.1016/0004-3702(87)90062-2
https://doi.org/10.1007/s10817-007-9076-z
https://doi.org/10.1007/s10817-007-9076-z
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17189
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17189

	Optimal Repairs in the Description Logic EL Revisited 

