
Optimal Repairs in Ontology Engineering as Pseudo-Contractions
in Belief Change

Franz Baader

TU Dresden, Institute of Theoretical Computer Science

Dresden, Germany

Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI)

Dresden/Leipzig, Germany

franz.baader@tu-dresden.de

ABSTRACT
The question of how a given knowledge base can be modified such

that certain unwanted consequences are removed has been inves-

tigated in the area of knowledge engineering under the name of

repair and in the area of belief change under the name of con-

traction. Whereas in the former area the emphasis was more on

designing and implementing concrete repair algorithms, the latter

area concentrated on characterizing classes of contraction oper-

ations by certain postulates they satisfy. In the classical setting,

repairs and contractions are subsets of the knowledge base that

no longer have the unwanted consequence. This makes these ap-

proaches syntax-dependent and may result in removal of more con-

sequences than necessary. To alleviate this problem, gentle repairs

and pseudo-constractions have been introduced in the respective

research areas, and their connections have been investigated in

recent work. Optimal repairs preserve a maximal amount of conse-

quences, but they may not always exist. We show that, if they exist,

then they can be obtained by certain pseudo-contraction operations,

and thus they comply with the postulates that these operations

satisfy. Conversely, under certain conditions, pseudo-contractions

are guaranteed to produce optimal repairs.

CCS CONCEPTS
• Theory of computation → Description logics; • Comput-
ing methodologies → Ontology engineering; Nonmonotonic,
default reasoning and belief revision;
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1 INTRODUCTION
Representing knowledge in a logic-based knowledge representa-

tion language allows one to draw implicit consequences from the

explicitly represented knowledge. If such a consequence is deemed

to be incorrect or no longer wanted for some reason, then it is often

not obvious how to modify the knowledge base to get rid of this

consequence. In ontology engineering, the knowledge base usually

defines the important notions of the application domain as back-

ground knowledge in the terminology, and then uses these notions

to represent a specific application situation. Modelling errors are

detected when the reasoner generates a consequence that formally

follows from the knowledge base, but is incorrect in the sense that it

does not hold in the application domain that is supposed to be mod-

elled. The question is then how to repair the knowledge base such

that no new consequences are added, the unwanted consequence no

longer follows, and other consequences are not lost unnecessarily.

The classical approaches for ontology repair consider as repairs

maximal subsets of the ontology (viewed as a set of logical sen-

tences) that do not have the unwanted consequence, and employ

methods inspired by model-based diagnosis [22] to compute these

sets [6, 20, 24], which are called optimal classical repairs in [5].

While these approaches preserve as many of the sentences in the

ontology as possible, they need not preserve a maximal amount of

consequences (see [5] as well as the examples at the end of Section 2

and the beginning of Section 4 of the present paper). To overcome

this problem, more gentle repair approaches have been introduced,

e.g., in [5, 17, 25], but these methods still need not produce opti-

mal repairs, i.e., ones that preserve a maximal set of consequences.

In general, such optimal repairs need not exist [5]. In the setting

of repairing ABoxes of the description logic EL w.r.t. static EL
TBoxes, methods for computing optimal repairs (if they exist) are

available [4].

In belief change [10], one usually assumes that the knowledge

base represents the beliefs of a rational agent. These beliefs may

change if the agent receives new information, and the question

is how this can be reflected by a change of the knowledge base.

Removing (implied) information is called contraction in this setting.

Instead of directly constructing contraction operations, the belief

change community has formulated properties (called postulates)

that should be satisfied by reasonable contraction operations, and

then developed approaches for constructing contraction operations

that capture exactly those contraction operations that satisfy a

certain combination of postulates. This approach, which was pi-

oneered in [1], is called the AGM approach. The original AGM

approach works with belief sets, which are assumed to be closed
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under consequences. From a practical point of view, it makes more

sense to work with non-deductively closed (and ideally finite) rep-

resentations of belief sets, called belief bases [9, 12, 14]. Similar to

classical repairs, the original approaches for belief base contraction

consider subsets of the knowledge base as possible contractions.

For the same reasons as for repairs, operations that preserve more

consequences, called pseudo-contractions, have been introduced in

the belief change literature [11, 13, 18, 19, 23].

Although contractions and classical repairs as well as pseudo-

contractions and repairs tackle basically the same problems, there

has until recently been little interaction between the two commu-

nities, and thus the connections between the developed approaches

remained unclear. The papers [18, 19] address this problem, with

an emphasis on showing connections between gentle repairs and

certain pseudo-contraction approaches called partial meet and ker-

nel pseudo-contractions. In the present paper, we concentrate on

optimal repairs, both in the classical and the general sense. We

show that, under certain conditions, operations that compute opti-

mal (classical) repairs can be obtained as partial meet and kernel

pseudo-contractions (contractions), and vice versa. This shows, on

the one hand, that the approaches developed in ontology engineer-

ing satisfy the postulates required in belief change. On the other

hand, under certain conditions the approaches developed in belief

change yield optimal (classical) repairs. We instantiate our results

using the setting of repairing ABoxes of the description logic EL
w.r.t. static EL TBoxes.

The main novelty of this work is that we consider the relation-

ship of contraction operations from belief change with optimal
repairs (both in the classical and the general sense), i.e., repairs

that are maximal subsets of the knowledge base to be repaired

(classical case) or repairs that are entailed by the knowledge base

to be repaired and preserve a maximal amount of consequences

(general case). This notion of optimality usually does not play an

important rôle in belief change (there is no optimality postulate),

but under the assumption that the repair process should not lose

consequences unnecessarily, it is important for ontology engineer-

ing. In [18, 19], classical repairs and gentle repairs are respectively

set in relationship with contraction and pseudo-contraction opera-

tions, but optimal repairs are not considered. Work on revision and

contraction for DLs [21] usually adapts the approaches from the

belief change community to DLs as underlying logical formalism,

but does not compare them with other ontology repair approaches,

and in particular not with optimal repairs.

The next section introduces the general notion of a logical con-

sequence operator, and then instantiates it with entailment from

EL ABoxes w.r.t. an EL TBox. The definitions of contractions and

repairs in the subsequent sections will be formulated in the general

setting, with the concrete instance providing us with (counter)-

examples. In Section 3, we first review relevant notions from belief

change. In particular, we introduce partial meet and kernel con-

tractions, and recall the postulates they satisfy. We then show that

certain partial meet and kernel contractions always yield optimal

classical repairs. Conversely, we note that a contraction operation

that always returns an optimal classical repair (in case there is

any repair) satisfies three of the four postulates characterizing par-

tial meet contractions, but not the fourth (called uniformity). In
Section 4, we introduce pseudo-contractions and in particular the

“pseudo-versions” of partial meet and kernel contraction [19, 23].

Roughly speaking, we show that there always exists a partial meet

pseudo-contraction that produces optimal repairs whenever such

repairs exist, and optimal classical repairs otherwise. In general,

however, partial meet pseudo-contractions need not yield optimal

repairs (even if they exist) unless an additional property is satisfied.

2 PRELIMINARIES
Following [18], we assume that a logic is given by its language 𝔏,

i.e., the set of sentences one can build in it, and its consequence

operator Cn : 2
𝔏 → 2

𝔏
, which maps each set of sentences X

to the set of its consequences Cn(X). Usually, 𝔏 will consist of

certain first-order sentences, such as sentences expressed in some

description logic, and Cn is first-order consequence restricted to

𝔏. Given sets of sentences X,Y ⊆ 𝔏 (a sentence 𝛼 ∈ 𝔏), we write

X |= Y (X |= 𝛼) to indicate that Y ⊆ Cn(X) (𝛼 ∈ Cn(X)). In
general, we only assume that Cn satisfies the following properties:

• X ⊆ Cn(X) (inclusion),

• X ⊆ Y implies Cn(X) ⊆ Cn(Y) (monotonicity),

• Cn(Cn(X)) = Cn(X) (idempotency),

• 𝛼 ∈ Cn(X) implies that there is a finite set X′ ⊆ X such

that 𝛼 ∈ Cn(X′) (compactness).

These four properties are satisfied by first-order consequence, and

thus also for most description logics.

As a concrete example, we consider ABoxes of the description

logic EL as (finite) sets of sentences and consequence w.r.t. an

EL TBox as the consequence operator. Our introduction of EL
concepts, TBoxes, and ABoxes follows the presentation in [4].

The name space available for defining EL concepts and ABox

assertions is given by a signature Σ, which is the disjoint union

of sets ΣI, ΣC, and ΣR of individual names, concept names, and
role names. Starting with concept names and the top concept ⊤,
EL concepts are defined inductively: if 𝐶, 𝐷 are EL concepts and

𝑟 is a role name, then 𝐶 ⊓ 𝐷 (conjunction) and ∃𝑟 .𝐶 (existential

restriction) are also EL concepts. An EL general concept inclusion
(GCI) is of the form 𝐶 ⊑ 𝐷 , an EL concept assertion is of the form

𝐶 (𝑎), and a role assertion is of the form 𝑟 (𝑎, 𝑏), where 𝐶, 𝐷 are EL
concepts, 𝑟 ∈ ΣR, and 𝑎, 𝑏 ∈ ΣI. An EL assertion is a concept or a

role assertion. An EL TBox is a finite set of EL GCIs and an EL
ABox is a finite set of EL concept assertions and role assertions.

Since, in this paper, we consider only one description logic, we

sometimes omit the prefix EL, and write assertion, ABox, etc. in

place of EL assertion, EL ABox, etc.

The semantics of the syntactic entities introduced above can ei-

ther be defined directly using interpretations or by a translation into

first-order logic (FO) [2]. To make the connection to FO clearer, we

choose here the latter approach. In the translation, the elements of

ΣI, ΣC, and ΣR are respectively viewed as constant symbols, unary

predicate symbols, and binary predicate symbols. EL concepts 𝐶

are inductively translated into FO formulas 𝜙𝐶 (𝑥) with one free

variable 𝑥 :

• concept 𝐴 for 𝐴 ∈ ΣC is translated into 𝐴(𝑥) and ⊤ into

𝐴(𝑥) ∨ ¬𝐴(𝑥) for an arbitrary 𝐴 ∈ ΣC;
• if𝐶, 𝐷 are translated into 𝜙𝐶 (𝑥), 𝜙𝐷 (𝑥), then 𝐶 ⊓𝐷 is trans-

lated into𝜙𝐶 (𝑥)∧𝜙𝐷 (𝑥) and∃𝑟 .𝐶 into∃𝑦. (𝑟 (𝑥,𝑦) ∧ 𝜙𝐶 (𝑦)),
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where 𝜙𝐶 (𝑦) is obtained from 𝜙𝐶 (𝑥) by replacing the free

variable 𝑥 by a variable 𝑦 not occurring in 𝜙𝐶 (𝑥).
GCIs 𝐶 ⊑ 𝐷 yield sentences 𝜙𝐶⊑𝐷 := ∀𝑥 . (𝜙𝐶 (𝑥) → 𝜙𝐷 (𝑥)) and
TBoxes T sets of sentences ΦT := {𝜙𝐶⊑𝐷 | 𝐶 ⊑ 𝐷 ∈ T }. Concept
assertions 𝐶 (𝑎) are translated into 𝜙𝐶 (𝑎) := 𝜙𝐶 (𝑎), role assertions
𝑟 (𝑎, 𝑏) stay the same, i.e., 𝜙𝑟 (𝑎,𝑏) := 𝑟 (𝑎, 𝑏), and ABoxes A are

translated into sets of sentences ΦA := {𝜙𝛼 | 𝛼 ∈ A}.
The assertion 𝛼 is a consequence of the set of assertions A w.r.t.

the TBox T (written A |=T 𝛼) if 𝜙𝛼 is a consequence of the set of

sentencesΦA∪ΦT according to the semantics of FO. This yields the

consequence operator CnT , which takes as input a set of assertions

A, is parameterized with an EL TBox T , and yields the following

set of assertions as consequences:

CnT (A) = {𝛼 | A |=T 𝛼 where 𝛼 is an EL assertion}.

Since its semantics is based on first-order consequence,CnT clearly

satisfies inclusion, monotonicity, idempotency, and compactness.

As an example, consider a situation where our rational agent

believes that Ben has a parent called Jerry, who is both rich and

famous. The agent also believes that people that have a rich and

famous parent are arrogant. The former belief is represented in the

ABox

A := { has_parent(BEN, JERRY), Famous(JERRY), Rich(JERRY) }

whereas the latter is expressed in the TBox

T := { ∃has_parent. (Famous ⊓ Rich) ⊑ Arrogant }.

Clearly, we have Arrogant(BEN) ∈ CnT (A). Now assume that

the agent actually meets Ben and notices that he is not arrogant.

Since the agent insists on sticking with the prejudice that chil-

dren of rich and famous people are arrogant, the unwanted con-

sequence Arrogant(BEN) can only be removed by modifying the

ABox. In the classical repair approach, this can be achieved by

removing one of its three assertions from A. Let us assume that

the agent decides to remove Famous(JERRY). This removes the

unwanted consequence Arrogant(BEN), but also the consequence

∃has_parent.Famous(BEN). Removing Famous(JERRY) fromA, but

adding the assertion ∃has_parent.Famous(BEN) to the ABox yields
a repair that retains more consequences than the classical repair.

This improved repair corresponds to the agent’s new belief that

Jerry is only rich, and that Ben has another famous parent, whose

name is not known to the agent.

3 CLASSICAL REPAIRS AND CONTRACTIONS
The classical notions of contraction and repair resort to subsets of

the given knowledge base to remove an unwanted consequence.

Following [18, 19, 23], we first define contractions and recall two ap-

proaches for constructing them. Then, we describe their connection

to classical repairs.

3.1 Contractions in Belief Change
Let 𝔏 be a logical language and Cn a monotone, idempotent, and

compact consequence operator satisfying inclusion. A belief base is
an arbitrary subset of 𝔏. Contractions get rid of unwanted conse-

quences of a belief base by removing some of its sentences. More

formally, a contraction operation ctr accepts a belief base B ⊆ 𝔏

and a sentence 𝛼 ∈ 𝔏 as input, and produces as output a belief base

ctr(B, 𝛼) that satisfies the following two postulates:

• ctr(B, 𝛼) ⊆ B (inclusion),

• if 𝛼 ∉ Cn(∅), then 𝛼 ∉ Cn(ctr(B, 𝛼)) (success).

In the belief change literature, reasonable contraction operations

are usually assumed to satisfy additional postulates. This is the

case for contractions obtained by applying one of the following

two prominent approaches for constructing contraction operations:

partial meet contraction [1, 14] and kernel contraction [15]. To

define the former, we must introduce remainders, remainder sets,

and selection functions. Let B be a belief base and 𝛼 a sentence.

• A remainder of B with respect to 𝛼 is a maximal subset X of

B such that 𝛼 ∉ Cn(X). We denote the set of all remainders

of B with respect to 𝛼 as rem(B, 𝛼).
• A selection function 𝛾 for B takes such sets of remainders as

input and satisfies the following properties for each 𝛼 ∈ B:

– If rem(B, 𝛼) ≠ ∅, then ∅ ≠ 𝛾 (rem(B, 𝛼)) ⊆ rem(B, 𝛼).
– If rem(B, 𝛼) = ∅, then 𝛾 (rem(B, 𝛼)) = {B}.

Note that the value returned by the selection function does not

depend of 𝛼 itself, but on the set rem(B, 𝛼). In case this set is non-

empty, this value is a non-empty subset of rem(B, 𝛼). Otherwise,
the set consisting of B is returned. This second case occurs iff 𝛼 ∈
Cn(∅). Each selection function 𝛾 induces a partial meet contraction
operation ctr𝛾 as follows:

ctr𝛾 (B, 𝛼) :=
⋂

𝛾 (rem(B, 𝛼)).

As shown by Hansson in [14], the operation ctr𝛾 satisfies inclusion
and success, and thus is a contraction operation, and additionally

the following postulates:

• if 𝛽 ∈ B \ ctr(B, 𝛼), then there is B′
such that ctr(B, 𝛼) ⊆

B′ ⊆ B, 𝛼 ∉ Cn(B′), and 𝛼 ∈ Cn(B′ ∪ {𝛽}) (relevance),

• if 𝛼 ∈ Cn(B′) iff 𝛽 ∈ Cn(B′) holds for all B′ ⊆ B, then

ctr(B, 𝛼) = ctr(B, 𝛽) (uniformity).

Hansson [14] also shows that any contraction operation that satis-

fies the postulates inclusion, success, relevance, and uniformity can

be obtained as a partial meet contraction. In [15] he introduces

another construction for obtaining contraction operations, which

is based on the notions of kernels and incision functions.

• The kernel ker(B, 𝛼) of B with respect to 𝛼 consists of the

minimal subsets X of B satisfying 𝛼 ∈ Cn(X).
• An incision function 𝜎 for B takes such kernel sets as input

and satisfies the following properties for each 𝛼 ∈ B:

– 𝜎 (ker(B, 𝛼)) ⊆ ⋃
ker(B, 𝛼),

– If X is a non-empty element of ker(B, 𝛼), then
X ∩ 𝜎 (ker(B, 𝛼)) ≠ ∅.

Like selection functions, incision functions depend only on the

kernel set ker(B, 𝛼), and not on the sentence 𝛼 itself. It is easy

to see that ∅ ∈ ker(B, 𝛼) iff ker(B, 𝛼) = {∅} iff 𝛼 ∈ Cn(∅). Each
incision function 𝜎 induces a kernel contraction operation ctr𝜎 as

follows:

ctr𝜎 (B, 𝛼) := B \ 𝜎 (ker(B, 𝛼)).
As shown by Hansson in [15], the operation ctr𝜎 satisfies inclusion,
success, and uniformity, but relevance needs to be replaced by the

following weaker postulate:
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• if 𝛽 ∈ B \ ctr(B, 𝛼), then there is B′ ⊆ B such that 𝛼 ∉

Cn(B′) and 𝛼 ∈ Cn(B′ ∪ {𝛽}) (core-retainment).

Any contraction operation that satisfies the postulates inclusion,
success, core-retainment, and uniformity can be obtained as a kernel

contraction [15].

3.2 Classical Repairs in Ontology Engineering
Knowledge bases in ontology engineering are usually assumed to

be finite. Thus, given a logical language 𝔏 and a monotone, idem-

potent, and compact consequence operator Cn satisfying inclusion,

a knowledge base is a finite subset of 𝔏.
A classical repair is then just a contraction, i.e., given a knowl-

edge base B ⊆ 𝔏 and a sentence 𝛼 ∈ 𝔏, a classical repair of B
with respect to 𝛼 is (by definition) a subset X of B that satisfies

𝛼 ∉ Cn(X) [5]. Thus, if we consider an operation ctrrep that, on

input B and 𝛼 , returns a classical repair of B with respect to 𝛼 if

𝛼 ∉ Cn(∅), and B otherwise, then ctrrep satisfies inclusion and suc-
cess, and thus is a contraction operation (see Proposition 3 in [18]).

In ontology engineering, one usually wants to remove a minimal

amount of information to eliminate an unwanted consequence.

Thus, one is interested in computing optimal classical repairs. Given

a knowledge base B ⊆ 𝔏 and a sentence 𝛼 ∈ 𝔏, an optimal classical
repair of B with respect to 𝛼 is a maximal subset X of B satisfying

𝛼 ∉ Cn(X). Obviously, the notions optimal classical repair and

remainder coincide, which yields the following proposition.

Proposition 3.1. Let B be a knowledge base, 𝛼 a sentence, and 𝛾
a selection function for B such that |𝛾 (rem(B, 𝛼)) | = 1 for all 𝛼 ∈ 𝔏.
Then ctr𝛾 (B, 𝛼) is an optimal classical repair of B with respect to
𝛼 for all sentences 𝛼 satisfying 𝛼 ∉ Cn(∅), and ctr𝛾 (B, 𝛼) = B if
𝛼 ∈ Cn(∅).

In [1, 18], a partial meet contraction operation defined using a se-

lection function 𝛾 satisfying |𝛾 (rem(B, 𝛼)) | = 1 for all sentences 𝛼

is called amaxichoice contraction operation. Thus, one can rephrase
the statement of Proposition 3.1 as follows.

Corollary 3.2. If ctr is a maxichoice contraction operation and
B has a classical repair with respect to 𝛼 , then ctr(B, 𝛼) is an optimal
classical repair of B with respect to 𝛼 .

Optimal classical repairs can also be obtained as kernel contrac-

tions. In fact, in ontology engineering, optimal classical repairs are

often constructed using justifications and Reiter’s hitting set dual-

ity [22]. Before we can describe this approach, we must introduce

the relevant notions. Let B be a knowledge base and 𝛼 a sentence.

• A justification of 𝛼 in B is a minimal subsetX of B such that

𝛼 ∈ Cn(X). We denote the set of all justifications of 𝛼 in

B as jus(B, 𝛼). Note that jus(B, 𝛼) = ∅ if 𝛼 ∉ Cn(B), and
jus(B, 𝛼) = {∅} if 𝛼 ∈ Cn(∅).

• Given a collection {X1, . . . ,X𝑘 } of subsets X𝑖 of B, a hitting
set H of this collection is a subset of X1 ∪ . . .∪X𝑘 such that

H ∩ X𝑖 ≠ ∅ for all 𝑖 = 1, . . . , 𝑘 . This hitting set is minimal
if no other hitting set is strictly contained in it. Note: if the

collection is empty (i.e., if 𝑘 = 0), then ∅ is a minimal hitting

set; if it contains the empty set (i.e., if X𝑖 = ∅ for some

𝑖, 1 ≤ 𝑖 ≤ 𝑘), then it has no hitting set.

It is well-known [5, 22] that the optimal classical repairs of B with

respect to 𝛼 are exactly the sets B \ H where H ranges over the

minimal hitting sets of jus(B, 𝛼). Note that this characterization
also works in the following borderline cases. If 𝛼 ∈ Cn(∅), then
there is no optimal classical repair, and neither is there a hitting

set of jus(B, 𝛼) = {∅}. If 𝛼 ∉ Cn(B), then B is the only optimal

classical repair, and jus(B, 𝛼) = ∅ has ∅ as its only minimal hitting

set.

Obviously, the set of all justifications of 𝛼 in B coincides with

ker(B, 𝛼), i.e., jus(B, 𝛼) = ker(B, 𝛼). In addition, if 𝛼 ∉ Cn(∅),
then 𝜎 (ker(B, 𝛼)) is a hitting set of jus(B, 𝛼) = ker(B, 𝛼) for ev-
ery incision function 𝜎 . We call an incision function minimal if
𝜎 (ker(B, 𝛼)) is a minimal hitting set of ker(B, 𝛼) for all 𝛼 with

𝛼 ∉ Cn(∅), and 𝜎 (ker(B, 𝛼)) = ∅ if 𝛼 ∈ Cn(∅).

Proposition 3.3. Let B be a knowledge base, 𝛼 a sentence, and
𝜎 a minimal incision function for B. Then ctr𝜎 (B, 𝛼) is an optimal
classical repair of B with respect to 𝛼 for all sentences 𝛼 satisfying
𝛼 ∉ Cn(∅), and ctr𝜎 (B, 𝛼) = B if 𝛼 ∈ Cn(∅).

Using Reiter’s hitting set duality [22], it is easy to see that every

maxichoice partial meet contraction can be obtained as a kernel

contraction induced by a minimal incision function, and vice versa

(see [8] for details).

Now, consider a special case ctrorep of the contraction operation

ctrrep introduced above, where we require that ctrorep (B, 𝛼) is an
optimal classical repair of B with respect to 𝛼 if 𝛼 ∉ Cn(∅).

Proposition 3.4. The operation ctrorep satisfies inclusion, suc-
cess, and relevance, but it need not satisfy uniformity.

Proof. We already know that inclusion and success are satis-

fied even in the more general setting where an arbitrary repair,

rather than an optimal one, is chosen. To show relevance, assume

that 𝛽 ∈ B \ ctrorep (B, 𝛼). If we take B′
:= ctrorep (B, 𝛼), then

ctrorep (B, 𝛼) ⊆ B′ ⊆ B is satisfied. Maximality of ctrorep (B, 𝛼)
yields 𝛼 ∈ Cn(B′ ∪ {𝛽}).

Without additional assumptions on how the optimal repairs are

chosen, uniformity need not be satisfied. This is demonstrated by

the example presented below. □

Example 3.5. Consider the logical language that consists of EL
assertions and the consequence operator CnT for the EL TBox

T := {𝐴⊓𝐵 ⊑ 𝐶,𝐴⊓𝐵 ⊑ 𝐷}, and set B := {𝐴(𝑎), 𝐵(𝑎)}, 𝛼 := 𝐶 (𝑎),
and 𝛽 := 𝐷 (𝑎). Then 𝛼 ∈ CnT (B′) iff 𝛽 ∈ CnT (B′) holds for all
B′ ⊆ B. In fact, for B′ = B, both 𝛼 and 𝛽 belong to CnT (B′),
whereas for B′ ⊂ B neither 𝛼 nor 𝛽 belongs to CnT (B′). However,
our contraction operation ctrorep could choose the optimal classical

repair {𝐴(𝑎)} for 𝛼 and {𝐵(𝑎)} for 𝛽 , thus violating uniformity.

The problem in this example is caused by the fact that 𝛼 and

𝛽 produce the same sets of optimal classical repairs. If in such a

situation we insist that ctrorep chooses the same element of this set

for both 𝛼 and 𝛽 , then ctrorep is actually a maxichoice partial meet

contraction, and thus also satisfies uniformity.

4 OPTIMAL REPAIRS AND
PSEUDO-CONTRACTIONS

The classical notions of contraction and repair have the disadvan-

tage that they are syntax-dependent in the sense that a contraction

(repair) can only use the sentences that are explicitly present in the
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belief (knowledge) base. This may lead to removal of more conse-

quences than is necessary to get rid of the unwanted one. For exam-

ple, consider the ABoxesA := {(𝐴⊓𝐵) (𝑎)} andB := {(𝐴(𝑎), 𝐵(𝑎)},
and let the unwanted consequence be𝛼 := 𝐴(𝑎). The twoABoxesA,

B are equivalent (i.e., Cn∅ (A) = Cn∅ (B)). However, with respect

to 𝛼 , the ABox A has the empty ABox as only optimal classical re-

pair for the consequence operator Cn∅ , whereas B has the optimal

classical repair {𝐵(𝑎)}. Thus, the latter repair retains the conse-

quence 𝐵(𝑎), whereas the former does not. Pseudo-contractions

and optimal repairs try to overcome this problem.

4.1 Pseudo-Contractions in Belief Change
The problem of syntax-dependency is caused by the inclusion pos-

tulate. In the definition of pseudo-contractions, this postulate is

replaced by logical inclusion [11, 13]:

• Cn(ctr(B, 𝛼)) ⊆ Cn(B) (logical inclusion).

The operation ctr : 2𝔏 × 𝔏 → 2
𝔏
is a pseudo-contraction operation

if it satisfies success and logical inclusion.
To construct pseudo-contractions that retain more consequences

than contractions, one can first add some of the logical conse-

quences of B to the given belief base B, and then apply the partial

meet or the kernel contraction approach to the resulting extended

belief base [18, 19, 23]. In the cited literature, both one-place and

two-place extension functions Cn∗ are considered, where the for-
mer add consequences independently of the unwanted sentence

𝛼 , whereas the latter also take 𝛼 into account. Here, we consider

the two-place setting since it makes it easier to obtain a connection

with optimal repairs. A two-place consequence operator is a function
Cn∗ : 2

L ×L → 2
L
. We call such an operator a two-place extension

function with respect to Cn if it satisfies B ⊆ Cn∗ (B, 𝛼) ⊆ Cn(B)
for all belief bases B and sentences 𝛼 . This operator is further called

finite if Cn∗ (B, 𝛼) is finite whenever its first argument B is finite.

In case the value returned by Cn∗ does not depend on the second

argument, we write Cn∗ (B) in place of Cn∗ (B, 𝛼) and call Cn∗ a
one-place extension function with respect to Cn.

Example 4.1. In the EL ABox setting, one can define a one-place

extension function with respect to CnT by breaking conjunctions

in concept assertions into their conjuncts, i.e., if 𝐶 (𝑎) ∈ B and

𝐶 = 𝐶1⊓ . . .⊓𝐶𝑛 where the𝐶𝑖 are existential restrictions or concept

names, then 𝐶1 (𝑎), . . . ,𝐶𝑛 (𝑎) are added to Cn∗ (B) (see Example 6

in [19]). Clearly, this yields a finite extension function with respect

to CnT . In our introductory example, for A = {(𝐴 ⊓ 𝐵) (𝑎)}, we
obtain Cn∗∅ (A) = A ∪ {(𝐴(𝑎), 𝐵(𝑎)}.

Another possibility is to add assertions entailed by the TBox.

To keep the extension function finite, we can, e.g., restrict this

to concept assertions for concept names: for every concept name

𝐴 ∈ ΣC and every individual name 𝑎 occurring in B, add 𝐴(𝑎) to
Cn∗ (B) if B |=T 𝐴(𝑎). This yields a finite extension function since

it is easy to see that 𝐴(𝑎) can only be entailed if the concept name

𝐴 occurs in B or T .

The idea is now to apply the partial meet or the kernel con-

traction approach to Cn∗ (B, 𝛼) rather than to B. A Cn∗ partial
meet pseudo-contraction is thus obtained by considering remainders

and selection functions of Cn∗ (B, 𝛼). Given the set of remainders

rem(Cn∗ (B, 𝛼), 𝛼) and a selection function 𝛾∗ of Cn∗ (B, 𝛼), the

Cn∗ partial meet pseudo-contraction induced by 𝛾∗ is then defined

as

𝑐𝑡𝑟∗𝛾∗ (B, 𝛼) :=
⋂

𝛾∗ (rem(Cn∗ (B, 𝛼), 𝛼)) .

For the ABoxA = {(𝐴⊓𝐵) (𝑎)} of Example 4.1, the only remain-

der of Cn∗∅ (A) = A ∪ {(𝐴(𝑎), 𝐵(𝑎)} with respect to 𝛼 = 𝐴(𝑎) is
{𝐵(𝑎)}, and thus the selection function 𝛾∗ must choose this remain-

der. This shows that ctr∗
𝛾∗ (A, 𝛼) = {𝐵(𝑎)}.

Cn∗ kernel pseudo-contractions are defined analogously, by using
kernels and incision functions for Cn∗ (B, 𝛼) rather than for B.

In the example, the kernel set of Cn∗∅ (B, 𝛼) consists of the sets

{(𝐴 ⊓ 𝐵) (𝑎)} and {𝐴(𝑎)}, and thus the only hitting set is {(𝐴 ⊓
𝐵) (𝑎), (𝐴(𝑎)}, which thus must be chosen by the incision function

𝛿∗. This shows that theCn∗∅ kernel pseudo-contractions ctr
∗
𝛿∗
(A, 𝛼)

is in this case also equal to {𝐵(𝑎)}.
Basically, these pseudo-contractions inherit the postulates sat-

isfied by the underlying contraction operations, but they need to

be formulated in a “starred” variant that takes the application of

Cn∗ into account, and they may depend also on properties of Cn∗

(like monotonicity). More details regarding postulates can be found

in [18, 19, 23]. Here, we only point out that, as an obvious con-

sequence of the definition of extension function and the fact that

kernel and partial meet contractions satisfy inclusion and success,
the Cn∗ kernel and partial meet pseudo-contractions introduced

above satisfy logical inclusion and success, and thus are indeed

pseudo-contractions.

4.2 Optimal Repairs in Knowledge Engineering
Given a knowledge base A and a sentence 𝛼 , a repair of A with

respect to 𝛼 is a knowledge base B that satisfies B ⊆ Cn(A) and
𝛼 ∉ Cn(B) [5]. Thus, like pseudo-contractions, repairs need to

satisfy logical inclusion and success. Since the repair must again be

a knowledge base, a pseudo-contraction ctr only yields repairs if it

additionally satisfies the following postulate:

• if B is finite, then ctr(B, 𝛼) is also finite (finiteness).

Contractions satisfy finiteness since they yield a subset of the input

set B. Since Cn∗ partial meet or kernel pseudo-contractions yield

contractions of Cn∗ (B, 𝛼), their output is finite if Cn∗ (B, 𝛼) is
finite.

Proposition 4.2. If Cn∗ is finite, B is a knowledge base, and 𝛼
is a sentence, then ctr(B, 𝛼) is a repair whenever ctr is a Cn∗ partial
meet or kernel pseudo-contraction.

To obtain repairs that preserve more consequences than classical

repairs, an approach similar to the one described in the previous

subsection is used, e.g., in [7, 16]. In these papers, a specific syntac-

tic structural transformation is applied to the axioms in an ontology,

which replaces them by sets of logically weaker axioms. The knowl-

edge bases obtained by this approach are then repaired using the

classical approach. There are also repair methods that directly apply

weakening operations to axioms to construct a repair, such as the

ones described in [5, 17, 25]. The connection between such “gentle

repairs” and pseudo-contractions has been investigated in [18, 19].

Here, we concentrate on optimal repairs instead. Given a knowl-

edge base A and a sentence 𝛼 , the repair B of A with respect to 𝛼

is optimal if there is no repair C of A with respect to 𝛼 such that
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C |= B and B ̸|= C [5]. As shown in [5], optimal repairs need not

exists even if there are repairs.

Example 4.3 ([5]). Consider the logical language that consists of
EL assertions and the consequence operator CnT for the EL TBox

T := {𝐴 ⊑ ∃𝑟 .𝐴, ∃𝑟 .𝐴 ⊑ 𝐴}, and set A := {𝐴(𝑎)} and 𝛼 := 𝐴(𝑎).
The empty ABox is clearly a repair in this case. However, as shown

in the proof of Proposition 2 in [5], A does not have an optimal

repair. Intuitively, the reason for this is that any ABox of the form

A𝑛 := {(∃𝑟 .)𝑛⊤(𝑎)} for 𝑛 ≥ 1 is a repair, but any fixed repair can

entail only finitely many of them. Thus, if B is a repair, then there

is an 𝑛 such that B ̸|=T A𝑛 . But then B∪A𝑛 is a repair that entails

B, but is not entailed by B, which shows that B cannot be optimal.

Moreover, even if optimal repairs exist, they need not cover all

repairs in a sense to be made more precise below. First, note that

optimal classical repairs cover all classical repairs in the sense that

every classical repair is contained in an optimal classical repair. For

general repairs, the notion of containment needs to be replaced by

entailment, i.e., containment of the consequence sets. We say that

the set of all optimal repairs ofA with respect to 𝛼 covers all repairs
of A with respect to 𝛼 if, for every repair B of A with respect to

𝛼 , there is an optimal repair C of A with respect to 𝛼 such that

C |= B.

Example 4.4 ([4]). Consider the ABox A := {𝐴(𝑎), 𝑟 (𝑎, 𝑏), 𝐵(𝑏)},
the TBox T := {𝐵 ⊑ ∃𝑟 .𝐵, ∃𝑟 .𝐵 ⊑ 𝐵}, and the sentence 𝛼 :=

(𝐴 ⊓ ∃𝑟 .𝐵) (𝑎). As shown in [4] (Example 12), for the consequence

operator CnT , the ABox C := {𝑟 (𝑎, 𝑏), 𝐵(𝑏)} is the only optimal re-

pair ofA with respect to 𝛼 . However, the ABox B := {𝐴(𝑎), 𝑟 (𝑎, 𝑏),
(∃𝑟 .∃𝑟 .⊤)(𝑏)} is also a repair of A with respect to 𝛼 , but it is not

entailed by C. Thus, in this example, the set of optimal repairs does

not cover all repairs.

In the remainder of this section, we investigate the connec-

tion between optimal repairs and partial meet and kernel pseudo-

contractions. For this, we first need to define an appropriate conse-

quence operator Cn∗. Let A be a knowledge base and 𝛼 a sentence.

We define Orep(A, 𝛼) to consists of the optimal repairs of A with

respect to 𝛼 ,1 and set

Cn∗ (A, 𝛼) := A ∪
⋃

Orep(A, 𝛼).
This operator is a two-place extension function w.r.t. Cn since

A ⊆ Cn∗ (A, 𝛼) by definition and Cn∗ (A, 𝛼) ⊆ Cn(A) holds
because every repair ofA is entailed byA. This extension function

is finite iff Orep(A, 𝛼) is finite for all knowledge bases A and

sentences 𝛼 . This condition is satisfied in our ABox setting.

Proposition 4.5. Let T be an EL TBox and CnT the induced
consequence operator on EL ABoxes. Then Cn∗T is a finite extension
function that can effectively be computed.

Proof. It remains to show that Cn∗T is finite and computable.

This is an easy consequence of the results proved in [4]. In fact, it

is shown there that the optimal ABox repairs of A with respect to

𝛼 can be computed by first computing the optimal quantified ABox

(qABox) repairs ofA with respect to 𝛼 for IRQ-entailment. This set

1
More precisely, we assume that Orep(A, 𝛼) contains one representative of every
equivalence class of optimal repairs, where two knowledge bases are equivalent if they

entail each other.

is finite and can effectively be computed. The optimal ABox repairs

are obtained from this set by computing, for each qABox in this

set, its optimal ABox approximation, if it exists. Existence of this

approximation is decidable, and if it exists, then the approximation

can be computed. □

The next lemma yields a connection between optimal repairs

and the notion of a remainder.

Lemma 4.6. Let A be a knowledge base and 𝛼 a sentence. If B ∈
Orep(A, 𝛼), then B is equivalent to a remainder of Cn∗ (A, 𝛼) with
respect to 𝛼 .

Proof. We must show that B ∈ Orep(A, 𝛼) is equivalent to a

maximal subset of Cn∗ (A, 𝛼) that does not have the consequence
𝛼 . Since it is a repair with respect to 𝛼 , it does not have the conse-

quence 𝛼 . Assume that B is not maximal, i.e., there is B ⊂ B′ ⊆
Cn∗ (A, 𝛼) such that 𝛼 ∉ Cn(B′). We can assume without loss of

generality that B′
is a remainder.

2
If B′

is equivalent to B, then we

are done. Otherwise, we obtain a contradiction to our assumption

that B is an optimal repair. □

The following result is an easy consequence of this lemma.

Theorem 4.7. Let A be a knowledge base and 𝛼 a sentence. Then
there exists a Cn∗ partial meet pseudo-contraction ctr∗

𝛾∗ such that
ctr∗

𝛾∗ (A, 𝛼) is an optimal repair of A w.r.t. 𝛼 if Orep(A, 𝛼) ≠ ∅,
and an optimal classical repair of A w.r.t. 𝛼 if Orep(A, 𝛼) = ∅ and
𝛼 ∉ Cn(∅).

Proof. Define 𝛾∗ such that it chooses an element ofOrep(A, 𝛼)
if this set is non-empty, and an arbitrary remainder of Cn∗ (A, 𝛼)
otherwise. By Lemma 4.6, this indeed yields a selection function for

Cn∗ (A, 𝛼). In caseOrep(A, 𝛼) = ∅, we know that Cn∗ (A, 𝛼) = A,

and thus a remainder is an optimal classical repair in this case,

unless there is no repair. □

In general, remainders of Cn∗ (A, 𝛼) need not be optimal repairs

even if Orep(A, 𝛼) ≠ ∅.

Example 4.8. Consider the ABox A, the TBox T , and the sen-

tence 𝛼 of Example 4.4. Since in this case the only optimal re-

pair is a subset of A, we have Cn∗T (A, 𝛼) = A. The ABox B′
:=

{𝐴(𝑎), 𝑟 (𝑎, 𝑏)} is a remainder of Cn∗T (A, 𝛼), but it is not optimal

since B = {𝐴(𝑎), 𝑟 (𝑎, 𝑏), (∃𝑟 .∃𝑟 .⊤)(𝑏)} is a repair that strictly

entails B′
.

This problem cannot occur if Orep(A, 𝛼) covers all repairs.

Lemma 4.9. LetA be a knowledge base and 𝛼 a sentence such that
Orep(A, 𝛼) covers all repairs of A w.r.t. 𝛼 . If B is a remainder of
Cn∗ (A, 𝛼) w.r.t. 𝛼 , then B is an optimal repair of A w.r.t. 𝛼 .

Proof. First, note thatB is entailed byA sinceB ⊆ Cn∗ (A, 𝛼) ⊆
Cn(A). In addition, 𝛼 ∉ Cn(B) holds by the definition of a remain-

der. Thus, B is a repair of A with respect to 𝛼 .

Assume that B is not optimal. Then there is a repair B′
of A

with respect to 𝛼 that strictly entails B. Since Orep(A, 𝛼) covers
all repairs, there is an element C of Orep(A, 𝛼) that entails B′

,

2
If Cn∗ (A, 𝛼) is finite, then this is trivial. Otherwise, one needs to use transfinite

induction and the fact that Cn is compact.
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and thus strictly entails B. Consequently, there is 𝛽 ∈ C that is

not entailed by B. Thus, 𝛽 ∈ Cn∗ (A, 𝛼), but 𝛽 ∉ B, which shows

that B ⊂ B ∪ {𝛽} ⊆ Cn∗ (A, 𝛼). This yields a contradiction to our

assumption that B is a remainder of Cn∗ (A, 𝛼) with respect to

𝛼 if we can show that 𝛼 ∉ Cn(B ∪ {𝛽}). This finishes the proof
since 𝛼 ∉ Cn(B ∪ {𝛽}) is an easy consequence of the facts that

B ⊆ Cn(C), 𝛽 ∈ C, and 𝛼 ∉ Cn(C). □

As a consequence of this lemma, we can show that maxichoice

Cn∗ partial meet pseudo-contractions (i.e., ones where the selection

function returns a singleton set) always produce optimal repairs in

case Orep(A, 𝛼) covers all repairs.

Theorem 4.10. Let A be a knowledge base and 𝛼 a sentence such
that Orep(A, 𝛼) covers all repairs of A with respect to 𝛼 . If ctr∗

𝛾∗ is
a maxichoice Cn∗ partial meet pseudo-contraction, then ctr∗

𝛾∗ (A, 𝛼)
is an optimal repair of A with respect to 𝛼 .

Proof. In the maxichoice case, the selection function returns

a remainder of Cn∗ (A, 𝛼) with respect to 𝛼 . By Lemma 4.9, this

remainder is an optimal repair of A with respect to 𝛼 . □

Since every kernel contraction induced by a minimal incision

function can be obtained as a maxichoice partial meet contraction,

the theorem also holds if we replace “maxichoice Cn∗ partial meet

pseudo-contraction” with “Cn∗ kernel pseudo-contraction induced

by a minimal incision function.”

Corollary 4.11. Let A be a knowledge base and 𝛼 a sentence
such thatOrep(A, 𝛼) covers all repairs ofA with respect to 𝛼 . If ctr∗

𝛿∗

is a Cn∗ kernel pseudo-contraction induced by a minimal incision
function 𝛿∗, then ctr∗

𝛿∗
(A, 𝛼) is an optimal repair of A with respect

to 𝛼 .

In the ABox repair setting, the condition that Orep(A, 𝛼) covers
all repairs of A with respect to 𝛼 is satisfied if we restrict the ABox

to being acyclic and the TBox to being cycle-restricted. The ABox

A is called cyclic if, for some 𝑛 ≥ 1, there are role names 𝑟1, . . . , 𝑟𝑛
and individual names 𝑎0, 𝑎1, . . . , 𝑎𝑛 such that the role assertions

𝑟1 (𝑎0, 𝑎1), . . . , 𝑟𝑛 (𝑎𝑛−1, 𝑎𝑛) belong toA and 𝑎0 = 𝑎𝑛 . Otherwise,A
is called acyclic. The EL TBox T is called cycle-restricted if there is

no EL concept 𝐶 such that 𝐶 ⊑T ∃𝑟1 . · · · ∃𝑟𝑘 .𝐶 for 𝑘 ≥ 1 and role

names 𝑟1, . . . , 𝑟𝑘 .
3

Proposition 4.12 ([4], Corollary 20). If A is acyclic and T is
cycle-restricted, then Orep(A, 𝛼) covers all repairs of A w.r.t. 𝛼 .

We have already seen in Example 4.4 that the proposition need

not hold if the TBox is not cycle-restricted. The following example

demonstrates why acyclicity of A is needed.

Example 4.13. Assume that T = ∅ and consider the cyclic ABox

A := {𝐴(𝑎), 𝑟 (𝑎, 𝑎)}. If we set 𝛼 := ∃𝑟 .𝐴(𝑎), then B := {𝐴(𝑎)} is a
repair ofA with respect to 𝛼 . Assume that C is an optimal repair of

A with respect to 𝛼 that entails B. Then C cannot contain the role

assertion 𝑟 (𝑎, 𝑎), and thus it can entail (∃𝑟 .)𝑛⊤(𝑎) only for finitely

many 𝑛. Hence, there is an 𝑛 such that C does not entail (∃𝑟 .)𝑛⊤(𝑎),
which implies that C ∪ {(∃𝑟 .)𝑛⊤(𝑎)} is a repair that strictly entails

C. This contradicts our assumption that C is optimal.

3𝐶 ⊑T 𝐷 holds if 𝜙𝐶⊑𝐷 is a consequence of ΦT according to the semantics of FO.

5 CONCLUSION
The results shown is this paper complement recent results [18, 19]

on the relationship between gentle repairs and pseudo-contractions

by demonstrating that there are close connections between optimal

repairs and certain pseudo-contraction operations. We have illus-

trated these results on the use case of repairing EL ABoxes with

respect to static EL TBoxes, where optimal repairs can effectively

be computed (if they exists) [4].

In [3], it was shown that optimal repairs always exist and cover

all repairs if one uses quantified ABoxes (where some of the indi-

viduals can be anonymized by representing them as existentially

quantified variables) in place of ABoxes. Extending the result of

the present paper to this setting poses new challenges since the

first-order translation of a quantified ABox is not a set of sentences,

but a single one, which starts with an existential quantifier prefix.

Thus, considering subsets when constructing contractions does

not make sense. We conjecture that this problem can be overcome

by introducing an “inclusion” relation on quantified ABoxes that

shares enough properties with set inclusion for the constructions

and proofs regarding (pseudo-)contractions to continue working.

On a more conceptual level, there are certain differences be-

tween repair approaches in ontology engineering and contraction

approaches in belief change that are worth investigating. On the one

hand, the work on optimal repairs [3, 4] usually considers a single

repair problem and does not investigate the relationship between

repairs for different unwanted consequences, whereas postulates

like uniformity in belief change make statements on how results

for different unwanted consequences should be connected under

certain conditions on these consequences. It would be interesting to

see whether and how postulates like uniformity and their variants

in the context of pseudo-contractions [19, 23] can be satisfied by

methods that compute optimal repairs. On the other hand, contrac-

tion and pseudo-contraction operators produces a single belief base

as output, whereas work on optimal repairs is also concerned with

how to compute the set of all such repairs and investigates proper-

ties of this set (like whether it covers all repairs or not). In contrast,

on the belief change side, there are no postulates about the sets of

all pseudo-contractions that can be obtained be applying a certain

approach (e.g., in the partial meet case, if one looks at all possible

selection functions). It would be interesting to see whether taking

this “set view” can lead to interesting kinds of new postulates.
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