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ABSTRACT
The question of how a given knowledge base can be modified
such that certain unwanted consequences are removed has
been investigated in the area of ontology engineering under
the name of repair and in the area of belief change under the
name of contraction. Whereas in the former area the empha-
sis was more on designing and implementing concrete repair
algorithms, the latter area concentrated on characterizing
classes of contraction operations by certain postulates they
satisfy. In the classical setting, repairs and contractions are
subsets of the knowledge base that no longer have the un-
wanted consequence. This makes these approaches syntax-
dependent and may result in removal of more consequences
than necessary. To alleviate this problem, gentle repairs and
pseudo-constractions have been introduced in the respective
research areas, and their connections have been investigated
in recent work. Optimal repairs preserve a maximal amount
of consequences, but they may not always exist. We show
that, if they exist, then they can be obtained by certain
pseudo-contraction operations, and thus they comply with
the postulates that these operations satisfy. Conversely, un-
der certain conditions, pseudo-contractions are guaranteed
to produce optimal repairs. Recently, contraction opera-
tions have also been defined for concepts rather than for
whole knowledge bases. We show that there is again a close
connection between such operations and optimal repairs of
a restricted form of knowledge bases.

CCS Concepts
•Theory of computation → Description logics; •Computing
methodologies → Ontology engineering; Nonmonotonic, de-
fault reasoning and belief revision;
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1. INTRODUCTION
Representing knowledge in a logic-based knowledge repre-
sentation language allows one to draw implicit consequences
from the explicitly represented knowledge. If such a conse-
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quence is deemed to be incorrect or no longer wanted for
some reason, then it is often not obvious how to modify the
knowledge base to get rid of this consequence. In ontology
engineering, the knowledge base (also called ontology) usu-
ally defines the important notions of the application domain
as background knowledge in the terminology, and then uses
these notions to represent a specific application situation.
Modelling errors are detected when the reasoner generates a
consequence that formally follows from the knowledge base,
but is incorrect in the sense that it does not hold in the ap-
plication domain that is supposed to be modelled. The ques-
tion is then how to repair the knowledge base such that no
new consequences are added, the unwanted consequence no
longer follows, and other consequences are not lost unneces-
sarily. The classical approaches for ontology repair consider
as repairs maximal subsets of the ontology (viewed as a set
of logical sentences) that do not have the unwanted conse-
quence, and employ methods inspired by model-based diag-
nosis [28] to compute these sets [26, 31, 10], which are called
optimal classical repairs in [8]. While these approaches pre-
serve as many of the sentences in the ontology as possible,
they need not preserve a maximal amount of consequences
(see [8] as well as the examples at the end of Section 2 and
the beginning of Section 4 of the present paper). To over-
come this problem, more gentle repair approaches have been
introduced, e.g., in [23, 32, 8], but these methods still need
not produce optimal repairs, i.e., ones that preserve a max-
imal set of consequences. In general, such optimal repairs
need not exist [8]. In the setting of repairing ABoxes of the
description logic EL w.r.t. static EL TBoxes, methods for
computing optimal repairs (if they exist) are available [6].

In belief change [14], one usually assumes that the knowl-
edge base represents the beliefs of a rational agent. These
beliefs may change if the agent receives new information, and
the question is how this can be reflected by a change of the
knowledge base. Removing (implied) information is called
contraction in this setting. Instead of directly constructing
contraction operations, the belief change community has for-
mulated properties (called postulates) that should be sat-
isfied by reasonable contraction operations, and then de-
veloped approaches for constructing contraction operations
that capture exactly those contraction operations that sat-
isfy a certain combination of postulates. This approach,
which was pioneered in [1], is called the AGM approach.
The original AGM approach works with belief sets, which
are assumed to be closed under consequences. From a prac-



tical point of view, it makes more sense to work with non-
deductively closed (and ideally finite) representations of be-
lief sets, called belief bases [16, 13, 18]. Similar to clas-
sical repairs, the original approaches for belief base con-
traction consider subsets of the knowledge base as possi-
ble contractions. For the same reasons as for repairs, op-
erations that preserve more consequences, called pseudo-
contractions, have been introduced in the belief change lit-
erature [15, 17, 30, 24, 25].

Although contractions and classical repairs as well as pseudo-
contractions and repairs tackle basically the same problems,
there has until recently been little interaction between the
two communities, and thus the connections between the de-
veloped approaches remained unclear. In [24, 25], this prob-
lem is addressed with an emphasis on showing connections
between gentle repairs and certain pseudo-contraction ap-
proaches called partial meet and kernel pseudo-contractions.
In the present paper, we concentrate on optimal repairs,
both in the classical and the general sense. We show that,
under certain conditions, operations that compute optimal
(classical) repairs can be obtained as partial meet and ker-
nel pseudo-contractions (contractions), and vice versa. This
shows, on the one hand, that the approaches developed in
ontology engineering satisfy the postulates required in belief
change. On the other hand, under certain conditions the
approaches developed in belief change yield optimal (classi-
cal) repairs. We instantiate our results using the setting of
repairing ABoxes of the description logic EL w.r.t. static EL
TBoxes.

The main novelty of this work is that we consider the rela-
tionship of contraction operations from belief change with
optimal repairs (both in the classical and the general sense),
i.e., repairs that are maximal subsets of the knowledge base
to be repaired (classical case) or repairs that are entailed
by the knowledge base to be repaired and preserve a max-
imal amount of consequences (general case). This notion
of optimality usually does not play an important rôle in
belief change (there is no optimality postulate), but under
the assumption that the repair process should not lose con-
sequences unnecessarily, it is important for ontology engi-
neering. In [24, 25], classical repairs and gentle repairs are
respectively set in relationship with contraction and pseudo-
contraction operations, but optimal repairs are not consid-
ered. Work on revision and contraction for description log-
ics [27] usually adapts the approaches from the belief change
community to description logics as underlying logical formal-
ism, but does not compare them with other ontology repair
approaches, and in particular not with optimal repairs.

In recent work [29], the notion of a contraction has been
introduced for EL concepts rather than knowledge bases.
Basically, given two concepts C and D such that D is more
general than C, a concept contraction of C w.r.t. D is a
new concept C′ such that C′ is more general than C, but
D is not more general than C′. The authors introduce con-
cept contraction operations inspired by partial meet contrac-
tions, and characterize them using appropriate postulates.
We will see that there is a close connection between such
concept contractions and optimal repairs of the knowledge
base {C(a)} w.r.t. the unwanted consequence D(a).

The next section introduces the general notion of a logical

consequence operator, and then instantiates it with entail-
ment from EL ABoxes w.r.t. an EL TBox. The definitions
of contractions and repairs in the subsequent sections will
be formulated in the general setting, with the concrete in-
stance providing us with (counter)-examples. In Section 3,
we first review relevant notions from belief change. In par-
ticular, we introduce partial meet and kernel contractions,
and recall the postulates they satisfy. We then show that
certain partial meet and kernel contractions always yield
optimal classical repairs. Conversely, we note that a con-
traction operation that always returns an optimal classical
repair (in case there is any repair) satisfies three of the four
postulates characterizing partial meet contractions, but not
the fourth (called uniformity). In Section 4, we introduce
pseudo-contractions and in particular the “pseudo-versions”
of partial meet and kernel contraction [30, 25]. Roughly
speaking, we show that there always exists a partial meet
pseudo-contraction that produces optimal repairs whenever
such repairs exist, and optimal classical repairs otherwise.
In general, however, partial meet pseudo-contractions need
not yield optimal repairs (even if they exist) unless an ad-
ditional property is satisfied. In Section 5, we recall the
definitions and results for concept contractions of [29]. We
relate concept contractions to optimal repairs of very simple
knowledge bases, and show that this can be used to improve
on the results obtained in [29] for this notion. Note that this
section was not included in the earlier work [3] this work is
based on. Section 6 summarizes the results achieved in this
work and gives some hints regarding interesting future work.

2. PRELIMINARIES
Following [24], we assume that a logic is given by its lan-
guage L, i.e., the set of sentences one can build in it, and
its consequence operator Cn : 2L → 2L, which maps each set
of sentences X to the set of its consequences Cn(X ). Usu-
ally, L will consist of certain first-order sentences, such as
sentences expressed in some description logic, and Cn is first-
order consequence restricted to L. Given sets of sentences
X ,Y ⊆ L (a sentence α ∈ L), we write X |= Y (X |= α) to
indicate that Y ⊆ Cn(X ) (α ∈ Cn(X )). In general, we only
assume that Cn satisfies the following properties:

• X ⊆ Cn(X ) (inclusion),

• X ⊆ Y implies Cn(X ) ⊆ Cn(Y) (monotonicity),

• Cn(Cn(X )) = Cn(X ) (idempotency),

• α ∈ Cn(X ) implies that there is a finite set X ′ ⊆ X
such that α ∈ Cn(X ′) (compactness).

These four properties are satisfied by first-order consequence,
and thus also for most description logics.

As a concrete example, we consider ABoxes of the descrip-
tion logic EL as (finite) sets of sentences and consequence
w.r.t. an EL TBox as the consequence operator. Our in-
troduction of EL concepts, TBoxes, and ABoxes follows the
presentation in [6].

The name space available for defining EL concepts and ABox
assertions is given by a signature Σ, which is the disjoint
union of sets ΣI, ΣC, and ΣR of individual names, concept



names, and role names. Starting with concept names and
the top concept >, EL concepts are defined inductively: if
C,D are EL concepts and r is a role name, then C u D
(conjunction) and ∃r.C (existential restriction) are also EL
concepts. An EL general concept inclusion (GCI) is of the
form C v D, an EL concept assertion is of the form C(a),
and a role assertion is of the form r(a, b), where C,D are EL
concepts, r ∈ ΣR, and a, b ∈ ΣI. An EL assertion is a concept
or a role assertion. An EL TBox is a finite set of EL GCIs
and an EL ABox is a finite set of EL concept assertions and
role assertions. Since, in this paper, we consider only one
description logic, we sometimes omit the prefix EL, and write
assertion, ABox, etc. in place of EL assertion, EL ABox, etc.

The semantics of the syntactic entities introduced above can
either be defined directly using interpretations or by a trans-
lation into first-order logic (FO) [4]. To make the connection
to FO clearer, we choose here the latter approach. In the
translation, the elements of ΣI, ΣC, and ΣR are respectively
viewed as constant symbols, unary predicate symbols, and
binary predicate symbols. EL concepts C are inductively
translated into FO formulas φC(x) with one free variable x:

• concept A for A ∈ ΣC is translated into A(x) and >
into A(x) ∨ ¬A(x) for an arbitrary A ∈ ΣC;

• if C,D are translated into φC(x), φD(x), then C u D
is translated into φC(x) ∧ φD(x). The concept ∃r.C
is translated into ∃y.(r(x, y) ∧ φC(y)), where φC(y) is
obtained from φC(x) by replacing the free variable x
by a variable y not occurring in φC(x).

GCIs C v D yield sentences φCvD := ∀x.(φC(x)→ φD(x))
and TBoxes T sets of sentences ΦT := {φCvD | C v D ∈
T }. Concept assertions C(a) are translated into φC(a) :=
φC(a), role assertions r(a, b) stay the same, i.e., φr(a,b) :=
r(a, b), and ABoxes A are translated into sets of sentences
ΦA := {φα | α ∈ A}.

The concept C is subsumed by the concept D w.r.t. the
TBox T (written C vT D) if φCvD is a consequence of ΦT
according to the semantics of FO. We write C ≡T D and
say that C is equivalent to D w.r.t. T if they subsume each
other w.r.t. T . The concept C is strictly subsumed by the
concept D w.r.t. the TBox T (written C <T D) if C vT D
and C 6≡T D.

The assertion α is a consequence of the set of assertions A
w.r.t. the TBox T (written A |=T α) if φα is a consequence
of the set of sentences ΦA ∪ ΦT according to the semantics
of FO. This yields the consequence operator CnT , which
takes as input a set of assertions A, is parameterized with
an EL TBox T , and yields the following set of assertions as
consequences:

CnT (A) = {α | A |=T α where α is an EL assertion}.

Since its semantics is based on first-order consequence, CnT
clearly satisfies inclusion, monotonicity, idempotency, and
compactness.

As an example, consider a situation where our rational agent
believes that Ben has a parent called Jerry, who is both rich
and famous. The agent also believes that people that have

a rich and famous parent are arrogant. The former belief is
represented in the ABox

A := { has parent(BEN, JERRY),

Famous(JERRY), Rich(JERRY) }

whereas the latter is expressed in the TBox

T := { ∃has parent.(Famous u Rich) v Arrogant }.

Clearly, we have Arrogant(BEN) ∈ CnT (A). Now assume
that the agent actually meets Ben and notices that he is
not arrogant. Since the agent insists on sticking with the
prejudice that children of rich and famous people are arro-
gant, the unwanted consequence Arrogant(BEN) can only
be removed by modifying the ABox. In the classical re-
pair approach, this can be achieved by removing one of its
three assertions from A. Let us assume that the agent de-
cides to remove Famous(JERRY). This removes the un-
wanted consequence Arrogant(BEN), but also the conse-
quence ∃has parent.Famous(BEN).

Removing Famous(JERRY) from A, but adding the asser-
tion ∃has parent.Famous(BEN) to the ABox yields a repair
that retains more consequences than the classical repair.
This improved repair corresponds to the agent’s new be-
lief that Jerry is only rich, and that Ben has another famous
parent, whose name is not known to the agent.

3. CLASSICAL REPAIRS AND
CONTRACTIONS

The classical notions of contraction and repair resort to sub-
sets of the given knowledge base to remove an unwanted con-
sequence. Following [30, 24, 25], we first define contractions
and recall two approaches for constructing them. Then, we
describe their connection to classical repairs.

3.1 Contractions in Belief Change
Let L be a logical language and Cn a monotone, idempotent,
and compact consequence operator satisfying inclusion. A
belief base is an arbitrary subset of L. Contractions get rid
of unwanted consequences of a belief base by removing some
of its sentences. More formally, a contraction operation ctr
accepts a belief base B ⊆ L and a sentence α ∈ L as input,
and produces as output a belief base ctr(B, α) that satisfies
the following two postulates:

• ctr(B, α) ⊆ B (inclusion),

• if α 6∈ Cn(∅), then α 6∈ Cn(ctr(B, α)) (success).

In the belief change literature, reasonable contraction oper-
ations are usually assumed to satisfy additional postulates.
This is the case for contractions obtained by applying one
of the following two prominent approaches for constructing
contraction operations: partial meet contraction [1, 18] and
kernel contraction [19]. To define the former, we must in-
troduce remainders, remainder sets, and selection functions.
Let B be a belief base and α a sentence.

• A remainder of B with respect to α is a maximal subset
X of B such that α 6∈ Cn(X ). We denote the set of all
remainders of B with respect to α as rem(B, α).



• A selection function γ for B takes such sets of remain-
ders as input and satisfies the following properties for
each α ∈ L:

– ∅ 6= γ(rem(B, α)) ⊆ rem(B, α) if rem(B, α) 6= ∅,
– γ(rem(B, α)) = {B} if rem(B, α) = ∅.

Note that the value returned by the selection function does
not depend of α itself, but on the set rem(B, α). In case
this set is non-empty, this value is a non-empty subset of
rem(B, α). Otherwise, the set consisting of B is returned.
This second case occurs iff α ∈ Cn(∅). Each selection func-
tion γ induces a partial meet contraction operation ctrγ as
follows:

ctrγ(B, α) :=
⋂
γ(rem(B, α)).

As shown by Hansson in [18], the operation ctrγ satisfies
inclusion and success, and thus is a contraction operation,
and additionally the following postulates:

• if β ∈ B\ctr(B, α), then there is B′ such that ctr(B, α) ⊆
B′ ⊆ B, α 6∈ Cn(B′), and α ∈ Cn(B′∪{β}) (relevance),

• if α ∈ Cn(B′) iff β ∈ Cn(B′) holds for all B′ ⊆ B, then
ctr(B, α) = ctr(B, β) (uniformity).

Hansson [18] also shows that any contraction operation that
satisfies the postulates inclusion, success, relevance, and uni-
formity can be obtained as a partial meet contraction. In [19]
he introduces another construction for obtaining contraction
operations, which is based on the notions of kernels and in-
cision functions.

• The kernel ker(B, α) of B with respect to α consists of
the minimal subsets X of B satisfying α ∈ Cn(X ).

• An incision function σ for B takes such kernel sets
as input and satisfies the following properties for each
α ∈ B:

– σ(ker(B, α)) ⊆
⋃

ker(B, α),

– If X is a non-empty element of ker(B, α), then
X ∩ σ(ker(B, α)) 6= ∅.

Like selection functions, incision functions depend only on
the kernel set ker(B, α), and not on the sentence α itself. It
is easy to see that ∅ ∈ ker(B, α) iff ker(B, α) = {∅} iff α ∈
Cn(∅). Each incision function σ induces a kernel contraction
operation ctrσ as follows:

ctrσ(B, α) := B \ σ(ker(B, α)).

As shown by Hansson in [19], the operation ctrσ satisfies
inclusion, success, and uniformity, but relevance needs to
be replaced by the following weaker postulate:

• if β ∈ B \ ctr(B, α), then there is B′ ⊆ B such that
α 6∈ Cn(B′) and α ∈ Cn(B′ ∪ {β}) (core-retainment).

Any contraction operation that satisfies the postulates in-
clusion, success, core-retainment, and uniformity can be ob-
tained as a kernel contraction [19].

3.2 Classical Repairs in Ontology
Engineering

Knowledge bases in ontology engineering are usually as-
sumed to be finite. Thus, given a logical language L and
a monotone, idempotent, and compact consequence opera-
tor Cn satisfying inclusion, a knowledge base is a finite subset
of L.

A classical repair is then just a contraction, i.e., given a
knowledge base B ⊆ L and a sentence α ∈ L, a classical
repair of B with respect to α is (by definition) a subset X
of B that satisfies α 6∈ Cn(X ) [8]. Thus, if we consider an
operation ctrrep that, on input B and α, returns a classical
repair of B with respect to α if α 6∈ Cn(∅), and B other-
wise, then ctrrep satisfies inclusion and success, and thus is
a contraction operation (see Proposition 3 in [24]).

In ontology engineering, one usually wants to remove a min-
imal amount of information to eliminate an unwanted conse-
quence. Thus, one is interested in computing optimal clas-
sical repairs. Given a knowledge base B ⊆ L and a sentence
α ∈ L, an optimal classical repair of B with respect to α is
a maximal subset X of B satisfying α 6∈ Cn(X ). Obviously,
the notions optimal classical repair and remainder coincide,
which yields the following proposition.

Proposition 1. Let B be a knowledge base, α a sentence,
and γ a selection function for B such that |γ(rem(B, α))| = 1
for all α ∈ L. Then ctrγ(B, α) is an optimal classical repair
of B with respect to α for all sentences α satisfying α 6∈
Cn(∅), and ctrγ(B, α) = B if α ∈ Cn(∅).

In [1, 24], a partial meet contraction operation defined using
a selection function γ satisfying |γ(rem(B, α))| = 1 for all
sentences α is called a maxichoice contraction operation.
Thus, one can rephrase the statement of Proposition 1 as
follows.

Corollary 2. If ctr is a maxichoice contraction oper-
ation and B has a classical repair with respect to α, then
ctr(B, α) is an optimal classical repair of B with respect to α.

Optimal classical repairs can also be obtained as kernel con-
tractions. In fact, in ontology engineering, optimal clas-
sical repairs are often constructed using justifications and
Reiter’s hitting set duality [28]. Before we can describe this
approach, we must introduce the relevant notions. Let B be
a knowledge base and α a sentence.

• A justification of α in B is a minimal subset X of B such
that α ∈ Cn(X ). We denote the set of all justifications
of α in B as jus(B, α). Note that jus(B, α) = ∅ if α 6∈
Cn(B), and jus(B, α) = {∅} if α ∈ Cn(∅).

• Given a collection {X1, . . . ,Xk} of subsets Xi of B, a
hitting set H of this collection is a subset of X1 ∪ . . .∪
Xk such that H ∩ Xi 6= ∅ for all i = 1, . . . , k. This
hitting set is minimal if no other hitting set is strictly
contained in it. Note: if the collection is empty (i.e.,
if k = 0), then ∅ is a minimal hitting set; if it contains
the empty set (i.e., if Xi = ∅ for some i, 1 ≤ i ≤ k),
then it has no hitting set.



It is well-known [28, 8] that the optimal classical repairs of
B with respect to α are exactly the sets B \ H where H
ranges over the minimal hitting sets of jus(B, α). Note that
this characterization also works in the following borderline
cases. If α ∈ Cn(∅), then there is no optimal classical repair,
and neither is there a hitting set of jus(B, α) = {∅}. If
α 6∈ Cn(B), then B is the only optimal classical repair, and
jus(B, α) = ∅ has ∅ as its only minimal hitting set.

Obviously, the set of all justifications of α in B coincides
with ker(B, α), i.e., jus(B, α) = ker(B, α). In addition, if
α 6∈ Cn(∅), then σ(ker(B, α)) is a hitting set of jus(B, α) =
ker(B, α) for every incision function σ. We call an incision
function minimal if σ(ker(B, α)) is a minimal hitting set of
ker(B, α) for all α with α 6∈ Cn(∅), and σ(ker(B, α)) = ∅ if
α ∈ Cn(∅).

Proposition 3. Let B be a knowledge base, α a sentence,
and σ a minimal incision function for B. Then ctrσ(B, α)
is an optimal classical repair of B with respect to α for all
sentences α satisfying α 6∈ Cn(∅), and ctrσ(B, α) = B if
α ∈ Cn(∅).

Using Reiter’s hitting set duality [28], it is easy to see that
every maxichoice partial meet contraction can be obtained
as a kernel contraction induced by a minimal incision func-
tion, and vice versa (see [12] for details).

Now, consider a special case ctrorep of the contraction opera-
tion ctrrep introduced above, where we require that ctrorep(B, α)
is an optimal classical repair of B with respect to α if α 6∈
Cn(∅).

Proposition 4. The operation ctrorep satisfies inclusion,
success, and relevance, but it need not satisfy uniformity.

Proof. We already know that inclusion and success are
satisfied even in the more general setting where an arbi-
trary repair, rather than an optimal one, is chosen. To
show relevance, assume that β ∈ B \ ctrorep(B, α). If we take
B′ := ctrorep(B, α), then ctrorep(B, α) ⊆ B′ ⊆ B is satisfied.
Maximality of ctrorep(B, α) yields α ∈ Cn(B′ ∪ {β}).

Without additional assumptions on how the optimal repairs
are chosen, uniformity need not be satisfied. This is demon-
strated by the example presented below.

Example 5. Consider the logical language that consists
of EL assertions and the consequence operator CnT for the
EL TBox T := {A u B v C,A u B v D}, and set B :=
{A(a), B(a)}, α := C(a), and β := D(a). Then α ∈ CnT (B′)
iff β ∈ CnT (B′) holds for all B′ ⊆ B. In fact, for B′ = B, both
α and β belong to CnT (B′), whereas for B′ ⊂ B neither α nor
β belongs to CnT (B′). However, our contraction operation
ctrorep could choose the optimal classical repair {A(a)} for α
and {B(a)} for β, thus violating uniformity.

The problem in this example is caused by the fact that α
and β produce the same sets of optimal classical repairs. If
in such a situation we insist that ctrorep chooses the same
element of this set for both α and β, then ctrorep is actually
a maxichoice partial meet contraction, and thus also satisfies
uniformity.

4. OPTIMAL REPAIRS AND
PSEUDO-CONTRACTIONS

The classical notions of contraction and repair have the dis-
advantage that they are syntax-dependent in the sense that
a contraction (repair) can only use the sentences that are
explicitly present in the belief (knowledge) base. This may
lead to removal of more consequences than is necessary to get
rid of the unwanted one. For example, consider the ABoxes
A := {(A uB)(a)} and B := {(A(a), B(a)}, and let the un-
wanted consequence be α := A(a). The two ABoxes A, B
are equivalent (i.e., Cn∅(A) = Cn∅(B)). However, with re-
spect to α, the ABox A has the empty ABox as only optimal
classical repair for the consequence operator Cn∅, whereas B
has the optimal classical repair {B(a)}. Thus, the latter re-
pair retains the consequence B(a), whereas the former does
not. Pseudo-contractions and optimal repairs try to over-
come this problem.

4.1 Pseudo-Contractions in Belief Change
The problem of syntax-dependency is caused by the inclu-
sion postulate. In the definition of pseudo-contractions, this
postulate is replaced by logical inclusion [15, 17]:

• Cn(ctr(B, α)) ⊆ Cn(B) (logical inclusion).

The operation ctr : 2L × L → 2L is a pseudo-contraction
operation if it satisfies success and logical inclusion.

To construct pseudo-contractions that retain more conse-
quences than contractions, one can first add some of the
logical consequences of B to the given belief base B, and
then apply the partial meet or the kernel contraction ap-
proach to the resulting extended belief base [30, 24, 25]. In
the cited literature, both one-place and two-place extension
functions Cn∗ are considered, where the former add conse-
quences independently of the unwanted sentence α, whereas
the latter also take α into account. Here, we consider the
two-place setting since it makes it easier to obtain a connec-
tion with optimal repairs. A two-place consequence operator
is a function Cn∗ : 2L×L → 2L. We call such an operator a
two-place extension function with respect to Cn if it satisfies
B ⊆ Cn∗(B, α) ⊆ Cn(B) for all belief bases B and sentences
α. This operator is further called finite if Cn∗(B, α) is finite
whenever its first argument B is finite. In case the value re-
turned by Cn∗ does not depend on the second argument, we
write Cn∗(B) in place of Cn∗(B, α) and call Cn∗ a one-place
extension function with respect to Cn.

Example 6. In the EL ABox setting, one can define a
one-place extension function with respect to CnT by break-
ing conjunctions in concept assertions into their conjuncts,
i.e., if C(a) ∈ B and C = C1u . . .uCn where the Ci are exis-
tential restrictions or concept names, then C1(a), . . . , Cn(a)
are added to Cn∗(B) (see Example 6 in [25]). Clearly, this
yields a finite extension function with respect to CnT . In
our introductory example, for A = {(A uB)(a)}, we obtain
Cn∗∅(A) = A ∪ {(A(a), B(a)}.
Another possibility is to add assertions entailed by the TBox.
To keep the extension function finite, we can, e.g., restrict
this to concept assertions for concept names: for every con-
cept name A ∈ ΣC and every individual name a occurring



in B, add A(a) to Cn∗(B) if B |=T A(a). This yields a finite
extension function since it is easy to see that A(a) can only
be entailed if the concept name A occurs in B or T .

The idea is now to apply the partial meet or the kernel con-
traction approach to Cn∗(B, α) rather than to B. A Cn∗ par-
tial meet pseudo-contraction is thus obtained by considering
remainders and selection functions of Cn∗(B, α). Given the
set of remainders rem(Cn∗(B, α), α) and a selection function
γ∗ of Cn∗(B, α), the Cn∗ partial meet pseudo-contraction
induced by γ∗ is then defined as

ctr∗γ∗(B, α) :=
⋂
γ∗(rem(Cn∗(B, α), α)).

For the ABox A = {(A u B)(a)} of Example 6, the only
remainder of Cn∗∅(A) = A ∪ {(A(a), B(a)} with respect to
α = A(a) is {B(a)}, and thus the selection function γ∗

must choose this remainder. This shows that ctr∗γ∗(A, α) =
{B(a)}.

Cn∗ kernel pseudo-contractions are defined analogously, by
using kernels and incision functions for Cn∗(B, α) rather
than for B. In the example, the kernel set of Cn∗∅(B, α) con-
sists of the sets {(AuB)(a)} and {A(a)}, and thus the only
hitting set is {(AuB)(a), (A(a)}, which thus must be chosen
by the incision function δ∗. This shows that the Cn∗∅ kernel
pseudo-contractions ctr∗δ∗(A, α) is in this case also {B(a)}.

Basically, these pseudo-contractions inherit the postulates
satisfied by the underlying contraction operations, but they
need to be formulated in a “starred” variant that takes the
application of Cn∗ into account, and they may depend also
on properties of Cn∗ (like monotonicity). More details re-
garding postulates can be found in [30, 24, 25]. Here, we
only point out that, as an obvious consequence of the def-
inition of extension function and the fact that kernel and
partial meet contractions satisfy inclusion and success, the
Cn∗ kernel and partial meet pseudo-contractions introduced
above satisfy logical inclusion and success, and thus are in-
deed pseudo-contractions.

4.2 Repairs and Optimal Repairs
in Knowledge Engineering

Given a knowledge base A and a sentence α, a repair of A
with respect to α is a knowledge base B that satisfies B ⊆
Cn(A) and α 6∈ Cn(B) [8]. Thus, like pseudo-contractions,
repairs must satisfy logical inclusion and success. Since the
repair must again be a knowledge base, a pseudo-contraction
ctr only yields repairs if it additionally satisfies the following
postulate:

• if B is finite, then ctr(B, α) is also finite (finiteness).

Contractions satisfy finiteness since they yield a subset of
the input set B. Since Cn∗ partial meet or kernel pseudo-
contractions yield contractions of Cn∗(B, α), their output is
finite if Cn∗(B, α) is finite.

Proposition 7. If Cn∗ is finite, B is a knowledge base,
and α is a sentence, then ctr(B, α) is a repair whenever ctr
is a Cn∗ partial meet or kernel pseudo-contraction.

To obtain repairs that preserve more consequences than clas-
sical repairs, an approach similar to the one described in the
previous subsection is used, e.g., in [20, 11]. In these papers,
a specific syntactic structural transformation is applied to
the axioms in an ontology, which replaces them by sets of
logically weaker axioms. The knowledge bases obtained by
this approach are then repaired using the classical approach.
There are also repair methods that directly apply weakening
operations to axioms to construct a repair, such as the ones
described in [23, 32, 8]. The connection between such “gen-
tle repairs” and pseudo-contractions has been investigated
in [24, 25].

Here, we concentrate on optimal repairs instead. Given a
knowledge base A and a sentence α, the repair B of A with
respect to α is optimal if there is no repair C of A with
respect to α such that C |= B and B 6|= C [8]. As shown in [8],
optimal repairs need not exists even if there are repairs.

Example 8 ([8]). Consider the logical language that
consists of EL assertions and the consequence operator CnT
for the EL TBox T := {A v ∃r.A,∃r.A v A}, and set
A := {A(a)} and α := A(a). The empty ABox is clearly
a repair in this case. However, as shown in the proof of
Proposition 2 in [8], A does not have an optimal repair. In-
tuitively, the reason for this is that any ABox of the form
An := {(∃r.)n>(a)} for n ≥ 1 is a repair, but any fixed
repair can entail only finitely many of them. Thus, if B is
a repair, then there is an n such that B 6|=T An. But then
B ∪ An is a repair that entails B, but is not entailed by B,
which shows that B cannot be optimal.

Moreover, even if optimal repairs exist, they need not cover
all repairs in a sense to be made more precise below. First,
note that optimal classical repairs cover all classical repairs
in the sense that every classical repair is contained in an
optimal classical repair. For general repairs, the notion of
containment needs to be replaced by entailment, i.e., con-
tainment of the consequence sets. We say that the set of all
optimal repairs of A with respect to α covers all repairs of
A with respect to α if, for every repair B of A with respect
to α, there is an optimal repair C of A with respect to α
such that C |= B.

Example 9 ([6]). Consider the TBox T , ABox A, and
sentence α, where T := {B v ∃r.B,∃r.B v B}, A :=
{A(a), r(a, b), B(b)}, and α := (A u ∃r.B)(a). As shown
in [6] (Example 12), for the consequence operator CnT , the
ABox C := {r(a, b), B(b)} is the only optimal repair of A
with respect to α. However, the ABox B := {A(a), r(a, b),
(∃r.∃r.>)(b)} is also a repair of A with respect to α, but
it is not entailed by C. Thus, in this example, the set of
optimal repairs does not cover all repairs.

In the remainder of this section, we investigate the connec-
tion between optimal repairs and partial meet and kernel
pseudo-contractions. For this, we first need to define an ap-
propriate consequence operator Cn∗. Let A be a knowledge
base and α a sentence. We define Orep(A, α) to consists of
the optimal repairs of A with respect to α,1 and set

Cn∗(A, α) := A ∪
⋃

Orep(A, α).

1More precisely, we assume that Orep(A, α) contains one



This operator is a two-place extension function w.r.t. Cn
since A ⊆ Cn∗(A, α) by definition and Cn∗(A, α) ⊆ Cn(A)
holds because every repair of A is entailed by A. This exten-
sion function is finite iff Orep(A, α) is finite for all knowledge
bases A and sentences α. This condition is satisfied in our
ABox setting.

Proposition 10. Let T be an EL TBox and CnT the in-
duced consequence operator on EL ABoxes. Then Cn∗T is a
finite extension function that can effectively be computed.

Proof. It remains to show that Cn∗T is finite and com-
putable. This is an easy consequence of the results proved
in [6]. In fact, it is shown there that the optimal ABox
repairs of A with respect to α can be computed by first
computing the optimal quantified ABox (qABox) repairs of
A with respect to α for IRQ-entailment. This set is finite
and can effectively be computed. The optimal ABox repairs
are obtained from this set by computing, for each qABox in
this set, its optimal ABox approximation, if it exists. Ex-
istence of this approximation is decidable, and if it exists,
then the approximation can be computed.

The next lemma yields a connection between optimal repairs
and the notion of a remainder.

Lemma 11. Let A be a knowledge base and α a sentence.
If B ∈ Orep(A, α), then B is equivalent to a remainder of
Cn∗(A, α) with respect to α.

Proof. We must show that B ∈ Orep(A, α) is equivalent
to a maximal subset of Cn∗(A, α) that does not have the
consequence α. Since it is a repair with respect to α, it
does not have the consequence α. Assume that B is not
maximal, i.e., there is B ⊂ B′ ⊆ Cn∗(A, α) such that α 6∈
Cn(B′). We can assume without loss of generality that B′
is a remainder.2 If B′ is equivalent to B, then we are done.
Otherwise, we obtain a contradiction to our assumption that
B is an optimal repair.

The following result is an easy consequence of this lemma.

Theorem 12. Let A be a knowledge base and α a sen-
tence. There exists a Cn∗ partial meet pseudo-contraction
ctr∗γ∗ such that ctr∗γ∗(A, α) is an optimal repair of A w.r.t.
α if Orep(A, α) 6= ∅, and an optimal classical repair of A
w.r.t. α if Orep(A, α) = ∅ and α 6∈ Cn(∅).

Proof. Define γ∗ such that it chooses an element of the
set Orep(A, α) if it is non-empty, and an arbitrary remainder
of Cn∗(A, α) otherwise. By Lemma 11, this indeed yields
a selection function for Cn∗(A, α). In case Orep(A, α) =
∅, we know that Cn∗(A, α) = A, and thus a remainder is
an optimal classical repair in this case, unless there is no
repair.

representative of every equivalence class of optimal repairs,
where two knowledge bases are equivalent if they entail each
other.
2If Cn∗(A, α) is finite, then this is trivial. Otherwise, one
needs to use transfinite induction and the fact that Cn is
compact.

In general, remainders of Cn∗(A, α) need not be optimal
repairs even if Orep(A, α) 6= ∅.

Example 13. Consider the ABox A, the TBox T , and
the sentence α of Example 9. Since in this case the only
optimal repair is a subset of A, we have Cn∗T (A, α) = A.
The ABox B′ := {A(a), r(a, b)} is a remainder of Cn∗T (A, α),
but it is not optimal since B = {A(a), r(a, b), (∃r.∃r.>)(b)}
is a repair that strictly entails B′.

This problem cannot occur if Orep(A, α) covers all repairs.

Lemma 14. Let A be a knowledge base and α a sentence
such that Orep(A, α) covers all repairs of A w.r.t. α. If B
is a remainder of Cn∗(A, α) w.r.t. α, then B is an optimal
repair of A w.r.t. α.

Proof. First, note that B is entailed by A since B ⊆
Cn∗(A, α) ⊆ Cn(A). In addition, α 6∈ Cn(B) holds by the
definition of a remainder. Thus, B is a repair of A with
respect to α.

Assume that B is not optimal. Then there is a repair B′ of
A with respect to α that strictly entails B. Since Orep(A, α)
covers all repairs, there is an element C of Orep(A, α) that
entails B′, and thus strictly entails B. Consequently, there
is β ∈ C that is not entailed by B. Thus, β ∈ Cn∗(A, α),
but β 6∈ B, which shows that B ⊂ B ∪ {β} ⊆ Cn∗(A, α).
This yields a contradiction to our assumption that B is a
remainder of Cn∗(A, α) with respect to α if we can show that
α 6∈ Cn(B ∪ {β}). This finishes the proof since α 6∈ Cn(B ∪
{β}) is an easy consequence of the facts that B ⊆ Cn(C),
β ∈ C, and α 6∈ Cn(C).

As a consequence of this lemma, we can show that maxi-
choice Cn∗ partial meet pseudo-contractions (i.e., ones where
the selection function returns a singleton set) always produce
optimal repairs in case Orep(A, α) covers all repairs.

Theorem 15. Let A be a knowledge base and α a sen-
tence such that Orep(A, α) covers all repairs of A with re-
spect to α. If ctr∗γ∗ is a maxichoice Cn∗ partial meet pseudo-
contraction, then ctr∗γ∗(A, α) is an optimal repair of A with
respect to α.

Proof. In the maxichoice case, the selection function
returns a remainder of Cn∗(A, α) with respect to α. By
Lemma 14, this remainder is an optimal repair of A with
respect to α.

Since every kernel contraction induced by a minimal inci-
sion function can be obtained as a maxichoice partial meet
contraction, the theorem also holds if we replace “maxi-
choice Cn∗ partial meet pseudo-contraction” with “Cn∗ ker-
nel pseudo-contraction induced by a minimal incision func-
tion.”

Corollary 16. Let A be a knowledge base and α a sen-
tence such that Orep(A, α) covers all repairs of A with re-
spect to α. If ctr∗δ∗ is a Cn∗ kernel pseudo-contraction in-
duced by a minimal incision function δ∗, then ctr∗δ∗(A, α) is
an optimal repair of A with respect to α.



In the ABox repair setting, the condition that Orep(A, α)
covers all repairs of A with respect to α is satisfied if we
restrict the ABox to being acyclic and the TBox to being
cycle-restricted. The ABox A is called cyclic if, for some
n ≥ 1, there are role names r1, . . . , rn and individual names
a0, a1, . . . , an such that the role assertions r1(a0, a1), . . . ,
rn(an−1, an) belong to A and a0 = an. Otherwise, A is
called acyclic. The EL TBox T is called cycle-restricted if
there is no EL concept C such that C vT ∃r1. · · · ∃rk.C for
k ≥ 1 and role names r1, . . . , rk.

Proposition 17 ([6], Corollary 20). If A is acyclic
and T is cycle-restricted, then Orep(A, α) covers all repairs
of A w.r.t. α.

We have already seen in Example 9 that the proposition need
not hold if the TBox is not cycle-restricted. The following
example demonstrates why acyclicity of A is needed.

Example 18. Assume that T = ∅ and consider the cyclic
ABox A := {A(a), r(a, a)}. If we set α := ∃r.A(a), then
B := {A(a)} is a repair of A with respect to α. Assume that
C is an optimal repair of A with respect to α that entails B.
Then C cannot contain the role assertion r(a, a), and thus it
can entail (∃r.)n>(a) only for finitely many n. Hence, there
is an n such that C does not entail (∃r.)n>(a), which implies
that C∪{(∃r.)n>(a)} is a repair that strictly entails C. This
contradicts our assumption that C is optimal.

5. CONCEPT CONTRACTIONS AND
OPTIMAL REPAIRS

In [29], a concept contraction operation for the description
logic EL has been introduced, which is akin to partial meet
contraction, but uses the least common subsumer (lcs) to
combine the remainders chosen by the selection function. It
is then proved that the contraction operations obtained this
way can be characterized by appropriate postulates. In this
section, we recall this contraction approach and then show
how results obtained in the context of optimal repairs can
be used to improve on the results in [29]. Following [29], we
start with a setting where the TBox is empty.

5.1 The Case of an Empty TBox
A concept contraction operation ctr for EL accepts EL con-
cepts C,D as input, and produces as output an EL concept
ctr(C,D) that satisfies the following two postulates:

• C v∅ ctr(C,D) (inclusion),

• if > 6≡∅ D, then ctr(C,D) 6v∅ D (success).

The interesting case is of course the one where C v∅ D. In
fact, if C 6v∅ D, then C itself can be used as contraction.
The following postulates restricts the attention to contrac-
tion operations that actually choose C in this case:

• if C 6v∅ D, then ctr(C,D) ≡∅ C (vacuity).

Another reasonable requirement is that the result of con-
tracting w.r.t. D should depend only on the semantics of
D, and not on its syntactic form. This is expressed by the
following postulate:

• if D ≡∅ D′, then ctr(C,D) ≡∅ ctr(C,D′)
(preservation).

Finally, a concept contraction operation should always yield
a result, even if there is no concept C′ such that C v∅
C′ and C′ 6v∅ D. This is obviously the case iff D ≡∅ >.
The following postulate states that, in this case, the input
concept C should be returned:

• if D ≡∅ >, then ctr(C,D) ≡∅ C (failure).

This corresponds to the fact that, for the case of belief base
contraction, the contraction operations ctr(B, α) returns B
if α ∈ Cn(∅). However, in the belief base case, no extra pos-
tulate is needed since this follows both from relevance and
from core-retainment. For partial meet contractions, this
property is achieved by requiring that the selection function
returns {B} if the set of remainders is empty.

To construct concept contractions that satisfy the above pos-
tulates, the authors of [29] adapt the partial meet contrac-
tion approach to the concept case. First, the definitions of
remainders and selection functions are transferred from be-
lief bases B and sentences α to EL concepts C and D as
follows:

• a remainder of C with respect to D is an EL concept C′

such that C v∅ C′, C′ 6v∅ D, and C′ is most specific
with this property, i.e., there is no EL concept C′′ such
that C v∅ C′′, C′′ 6v∅ D , and C′′ <∅ C′. As before,
we denote the set of all remainders as rem(C,D).3

• A selection function γ for C takes such sets of remain-
ders as input and satisfies the following properties for
each EL concept D:

– ∅ 6= γ(rem(C,D)) ⊆ rem(C,D) if rem(C,D) 6= ∅,
– γ(rem(C,D)) = {C} if rem(C,D) = ∅.

In the case of belief base contraction, the remainders chosen
by the selection function are intersected to obtain the partial
meet contraction, i.e., this contraction requires only proper-
ties that all elements of γ(rem(B, α)) have in common. For
concepts rather than belief bases, this corresponds to build-
ing the least common subsumer:

• the EL concept C is a least common subsumer (lcs) of

the EL concepts C1, . . . , Cn if Ci v∅ C for i = 1, . . . , n,
and C is most specific with this property, i.e. there is
no EL concept C′ such that Ci v∅ C′ for i = 1, . . . , n
and C′ <∅ C.

By definition, least common subsumers are unique up to
equivalence. In the following, we write lcs(C1, . . . , Cn) to
denote an arbitrary element of the equivalence class of the
least common subsumers of C1, . . . , Cn. It was shown in [9]
that the lcs of EL concepts always exists, and can effectively
by computed, but its size may be exponential in the size of
the input C1, . . . , Cn, unless n is assumed to be constant.

3More precisely, rem(C,D) contains one representative for
each equivalence class of concepts that are remainders.



Given a finite set of EL concepts, its lcs is the lcs of the
sequence of its elements, enumerated in an arbitrary order.

Each selection function γ induces an lcs partial meet concept
contraction operation ctrγ as follows:

ctrγ(C,D) := lcs(γ(rem(C,D))).

In [29], both arbitrary lcs partial meet concept contraction
operations and maxichoice lcs partial meet concept contrac-
tion operations, where the selection function always returns
a singleton set, are characterized by appropriate postulates.
The characterization of the maxichoice variant requires the
following additional postulate:

• if C v∅ X and ctr(C,D) 6v∅ X, then

ctr(C,D) uX v∅ D (fullness).

It is shown in [29] (Theorem 1 in [29]) that a concept con-
traction operator ctr is a maxichoice lcs partial meet concept
contraction iff it satisfies the postulates preservation, inclu-
sion, success, failure, and fullness. Note that vacuity need
not be required explicitly since it is implied by inclusion and
fullness (see Proposition 2 in [29]).

In the characterization of arbitrary lcs partial meet concept
contraction operations (Theorem 2 in [29]), fullness is re-
placed with relevance:

• if C v∅ X and ctr(C,D) 6v∅ X, then there is Y s.t.

C <∅ Y v∅ ctr(C,D), Y 6v∅ D, and Y uX v∅ D
(relevance).

Obviously, fullness implies relevance.4 Again, vacuity need
not be required explicitly since it is implied by inclusion and
relevance.

Proposition 19. If ctr satisfies inclusion and relevance,
then it satisfies vacuity.

Proof. Assume that ctr satisfies inclusion and relevance.
To show vacuity, we consider the situation where C 6v∅ D.
We must show that ctr(C,D) ≡∅ C. Since inclusion yields

C v∅ ctr(C,D), it is enough to prove ctr(C,D) v∅ C.

Assume to the contrary that ctr(C,D) 6v∅ C. If we set
X := C, then the prerequisite for relevance is satisfied. This
yields a concept Y such that C <∅ Y v∅ ctr(C,D) and

Y u C v∅ D. However, C <∅ Y implies C ≡∅ Y u C, and
thus C ≡∅ Y u C v∅ D, which contradicts our assumption
that C 6v∅ D.

The proof of Theorem 2 in [29] makes use of the following
covering property of remainders.

Proposition 20 ([29]). If C v∅ X and X 6v∅ D, then

there is a remainder Z of C w.r.t. D such that Z v∅ X.

If one wants to apply the lcs partial meet concept contrac-
tion approach in practice, one needs to be able to compute

4In [29], the implication is stated erroneously in the other
direction.

remainders. Although the main focus of the paper [29] is on
proving characterization theorems, the authors also sketch
how remainders can in principle be found. For this purpose,
they use what they call most specific generalizations (MSGs)
of EL concepts. Under the name of upper neighbors, MSGs
had been defined and characterized before in [8]: given two
EL concepts C,D, the concept D is an upper neighbor of
C if C <∅ D and there is no EL concept D′ such that
C <∅ D′ <∅ D. It is shown in [8] that

• the set of upper neighbors of a given EL concept C con-
tains polynomially many elements (in the size of C),
and it can be computed in polynomial time;

• the subsumption pre-order on EL concepts is one-step
generated, i.e., if C v∅ D for EL concepts C and D,
then there are an integer n ≥ 0 and EL concepts C =
C0, . . . , Cn = D such that Ci+1 is an upper neighbor
of Ci for all i, 0 ≤ i < n;

• the upper neighbor relation is well-founded, i.e., there
is no infinite sequence of EL concepts C0, C1, C2, . . .
such that Ci+1 is an upper neighbor of Ci for all i ≥ 0.

Let C,D be EL concepts such that C v∅ D and D 6≡∅ >.5

Based on the results for upper neighbors recalled above,
one can search for remainders of C w.r.t. D by starting
with C0 = C and generating an upper neighbor sequence
C0, C1, C2, . . . until a concept Cn with Cn 6v∅ D is reached.
There are, however, two problems with this approach. First,
while well-foundedness implies that such a concept Cn is al-
ways found after finitely many steps, the length of upper
neighbor sequences starting with C cannot be bounded by
an elementary function in the size of C. In fact, as shown
in [22], the length of any upper neighbor sequence from
∃r1.∃r2. · · · ∃rn.(A1 u . . . uAk) (with k ≥ 3) to > is asymp-
totically bounded from below by a tower of exponential of
height n. It is, however, not clear whether such a worst-case
example also exists for sequences where the concepts Ci are
subsumed by a given EL concept D 6≡∅ >. Second, while the
concept Cn found this way satisfies C v∅ Cn and Cn 6v∅ D,
it need not be most specific with this property, as illustrated
by the following example.

Example 21. Let C := A1 uA2 and D := A1. If we con-
sider the upper neighbor sequence C0 = C,C1 = A1, C2 =
>, then C2 is the first element that is not subsumed by D.
For the sequence C′0 = C,C′1 = A2, C

′
2 = >, C′1 is the first

element not subsumed by D. The concept C′1 = A2 is a
remainder of C w.r.t. D, whereas C2 = > is not.

This second problem demonstrates that, even if one is only
interested in finding a single remainder, it is not sufficient
to generate just a single upper neighbor sequence starting
with C since one cannot be sure that the first concept Cn
in this sequence satisfying Cn 6v∅ D is really a remainder.

Fortunately, instead of using such a blind search for remain-
ders along upper neighbor sequences, as suggested in [29],
one can employ an algorithm for computing optimal repairs

5If one of these two properties is not satisfied, then C is the
only remainder or there is no remainder.



to obtain the set of all remainders. The following lemma,
which states the connection between optimal repairs and re-
mainders, is easy to show.

Lemma 22. Let C,D be EL concepts. Then C′ is a re-
mainder of C w.r.t. D iff the ABox {C′(a)} is an optimal
repair of the ABox {C(a)} with respect to α = D(a) for the
consequence relation Cn∅.

The problem of computing optimal repairs for ABoxes con-
sisting of single concept assertions (called instance stores [21])
has been investigated in [7]6 in the more general setting
where more than one unwanted consequence can be speci-
fied. In terms of concept contraction, this would correspond
to the setting where one is given EL concepts C,D1, . . . , Dn
and looks for concepts C′ such C v∅ C′ and C′ 6v∅ Di for
i = 1, . . . , n. It is shown in [7] that, in the general setting,
the set of all optimal repairs can be computed in exponen-
tial time. Up to equivalence, there are at most exponentially
many optimal repairs of at most exponential size. Example 2
in [7] demonstrates that these exponential bounds are tight.
However, for the case of a single unwanted consequence, a
close inspection of Definition 4 in [7] reveals that in this
special case there are only linearly many optimal repairs of
polynomial size, which can be computed in polynomial time.
Together with Lemma 22, this yields the following complex-
ity result for computing remainders.

Theorem 23. Let C,D be EL concepts. The set of all
remainders of C w.r.t. D can be computed in polynomial
time.

Since lcs partial meet concept contraction operations return
the lcs of a subset of the set of all remainders, and the size
of such an lcs may be exponential in the cardinality of this
set [9], we obtain the following complexity results for com-
puting such concept contractions.

Corollary 24. If the selection function γ can be com-
puted in exponential time, then the lcs partial meet concept
contraction operation ctrγ can be computed in exponential
time. In addition, if the selection function γ always returns
singleton sets and can be computed in polynomial time, then
the maxichoice lcs partial meet concept contraction operation
ctrγ can be computed in polynomial time.

5.2 The Case of a Non-Empty TBox
Given an EL TBox T , the definitions and postulates intro-
duced in the previous section can be reformulated into T -
variants, by replacing subsumption w.r.t. the empty TBox
(v∅) with subsumption w.r.t. T (vT ).

For instance, a T -remainder of C w.r.t. D is an EL concept
C′ such that C vT C′, C′ 6vT D, and C′ is most specific
with this property, i.e., there is no EL concept C′′ such that
C vT C′′, C′′ 6vT D , and C′′ <T C′; the T -variant of the
postulate success is

• if > 6≡T D, then ctr(C,D) 6vT D (T -success);

6More precisely, optimal repairs are called optimal compli-
ant generalizations in [7].

and the lcs w.r.t. T is defined as follows:

• the EL concept C is a least common subsumer (T -lcs)
of the EL concepts C1, . . . , Cn w.r.t.T if Ci vT C for
i = 1, . . . , n, and C is most specific with this property,
i.e. there is no EL concept C′ such that Ci vT C′ for
i = 1, . . . , n and C′ <T C.

The definitions of concept contraction operations and (maxi-
choice) lcs partial meet concept contraction operations can
then be adapted to the setting of a non-empty TBox in the
obvious way. However, for these definitions to produce sen-
sible results, the existence of T -remainders and of the T -lcs
needs to be guaranteed

Without restrictions on the TBox T , this is neither the case
for T -remainders nor for the T -lcs. For T -remainders, this
is shown in [29] with an example that is basically the same
as our Example 8 demonstrating non-existence of optimal
repairs. For the T -lcs, this is, e.g., shown in [2]. To over-
come this problem, the authors of [29] restrict the attention
to acyclic TBoxes, which basically only introduce concept
names (called defined concepts) as abbreviations for com-
pound concepts [4]. For a given acyclic TBox T , concepts C
containing defined concepts can be expanded into concepts
CT not containing defined concepts by iteratedly replacing
defined concepts by their definitions. The idea underlying
the concept contraction approach for acyclic TBoxes intro-
duced in [29] is now to first expand the input concepts C
and D w.r.t. T , and then apply the concept contraction ap-
proach w.r.t. the empty TBox to the expanded concepts.

In the following, we show how to deal with a considerably
larger class of TBoxes, which are the cycle-restricted TBoxes
introduced above Proposition 17 in Section 4. First note
that Lemma 22 obviously also holds for the case of a non-
empty TBox.

Lemma 25. Let C,D be EL concepts and T an EL TBox.
Then C′ is a T -remainder of C w.r.t. D iff the ABox {C′(a)}
is an optimal repair of the ABox {C(a)} with respect to
α = D(a) for the consequence relation CnT .

If T is cycle-restricted, then Proposition 17 implies that
these optimal repairs actually cover all repairs. This shows
that Proposition 20 also holds w.r.t. such TBoxes rather
than just w.r.t. the empty TBox.

Proposition 26. Let T be a cycle-restricted TBox. If
C vT X and X 6vT D, then there is a T -remainder Z of C
w.r.t. D such that Z vT X

Second, the characterization of the existence of the T -lcs
given in [33] implies that the T -lcs always exists for cycle-
restricted TBoxes T . Thus, the definition of lcs partial
meet concept contraction operations also makes w.r.t. such
TBoxes. With Proposition 26 in place, it is now easy to
check that the proofs of Theorem 1 and 2 in [29] also go
through for cycle-restricted TBoxes.

Theorem 27. Let T be a cycle-restricted TBox. Then

1. ctr is a maxichoice lcs concept contraction operation
w.r.t. T iff it satisfies T -preservation, T -inclusion, T -
success, T -failure, and T -fullness.



2. ctr is an lcs concept contraction operation w.r.t. T iff
it satisfies T -preservation, T -inclusion, T -success, T -
failure, and T -relevance.

Finally, for cycle-restricted TBoxes, T -remainders and the
T -lcs not only exist, but can also effectively be computed.
The complexity result for computing optimal ABox repairs
proved in [6] yields the following complexity upper bound
for computing T -remainders.

Theorem 28. Let C,D be EL concepts and T a cycle-
restricted EL TBox. The set of all T -remainders of C w.r.t.
D can be computed in double-exponential time.

It should be noted that the double-exponential upper bound
is shown in [6] for a considerably more general setting, and
thus the complexity in our restricted setting might actually
be lower. Since computability of the T -lcs is shown in [33],
we can also compute the (maxichoice) lcs concept contrac-
tion operations w.r.t. T .

Corollary 29. Let T be a cycle-restricted EL TBox. If
the selection function γ is computable, then the lcs partial
meet concept contraction operation ctrγ w.r.t. T is also com-
putable.

6. CONCLUSION
The results shown is this paper complement recent results [24,
25] on the relationship between gentle repairs and pseudo-
contractions by demonstrating that there are close connec-
tions between optimal repairs and certain pseudo-contraction
operations. We have illustrated these results on the use case
of repairing EL ABoxes with respect to static EL TBoxes,
where optimal repairs can effectively be computed (if they
exists) [6].

In [5], it was shown that optimal repairs always exist and
cover all repairs if one uses quantified ABoxes (where some
of the individuals can be anonymized by representing them
as existentially quantified variables) in place of ABoxes. Ex-
tending the result of the present paper to this setting poses
new challenges since the first-order translation of a quanti-
fied ABox is not a set of sentences, but a single one, which
starts with an existential quantifier prefix. Thus, considering
subsets when constructing contractions does not make sense.
We conjecture that this problem can be overcome by in-
troducing an “inclusion” relation on quantified ABoxes that
shares enough properties with set inclusion for the construc-
tions and proofs regarding (pseudo-)contractions to continue
working.

On a more conceptual level, there are certain differences
between repair approaches in ontology engineering and con-
traction approaches in belief change that are worth investi-
gating. On the one hand, the work on optimal repairs [5,
6] usually considers a single repair problem and does not
investigate the relationship between repairs for different un-
wanted consequences, whereas postulates like uniformity in
belief change make statements on how results for different
unwanted consequences should be connected under certain
conditions on these consequences. It would be interesting
to see whether and how postulates like uniformity and their

variants in the context of pseudo-contractions [30, 25] can
be satisfied by methods that compute optimal repairs. On
the other hand, contraction and pseudo-contraction opera-
tors produces a single belief base as output, whereas work on
optimal repairs is also concerned with how to compute the
set of all such repairs and investigates properties of this set
(like whether it covers all repairs or not). In contrast, on the
belief change side, there are no postulates about the sets of
all pseudo-contractions that can be obtained be applying a
certain approach (e.g., in the partial meet case, if one looks
at all possible selection functions). It would be interesting
to see whether taking this “set view” can lead to interesting
kinds of new postulates.

Regarding concept contractions, it remains to determine the
exact complexity of computing remainders and lcs partial
meet concept contraction operations for the case of cycle-
restricted TBoxes. On a more conceptual level, it would
be interesting to see whether one can also adapt the kernel
contraction approach to this setting.
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D. Porello, and O. Kutz. Repairing ontologies via
axiom weakening. In S. A. McIlraith and K. Q.
Weinberger, editors, Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence,
(AAAI-18), pages 1981–1988. AAAI Press, 2018.

[33] B. Zarrieß and A. Turhan. Most specific
generalizations w.r.t. general EL-tboxes. In F. Rossi,
editor, IJCAI 2013, Proceedings of the 23rd
International Joint Conference on Artificial
Intelligence, Beijing, China, August 3-9, 2013, pages
1191–1197. IJCAI/AAAI, 2013.


