
Optimal Alignment of Temporal Knowledge Bases
Oliver Fernández Gil a,c;*, Fabio Patrizi b;**, Giuseppe Perelli b;*** and Anni-Yasmin Turhan a,c;****

aTheoretical Computer Science, Technische Universität Dresden, Germany
bSapienza University of Rome, Italy

cCenter for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI) Dresden/Leipzig, Germany

Abstract. Answering temporal CQs over temporalized Descrip-
tion Logic knowledge bases (TKB) is a main technique to realize
ontology-based situation recognition. In case the collected data in
such a knowledge base is inaccurate, important query answers can
be missed. In this paper we introduce the TKB Alignment problem,
which computes a variant of the TKB that minimally changes the
TKB, but entails the given temporal CQ and is in that sense (cost-)
optimal. We investigate this problem forALC TKBs and conjunctive
queries with LTL operators and devise a solution technique to com-
pute (cost-optimal) alignments of TKBs that extends techniques for
the alignment problem for propositional LTL over finite traces.

1 Introduction
Observing complex systems over time and drawing conclusions
about their behavior is a core task for many AI systems. In particular,
adaptive systems have to recognize situations in which an adaptation
is useful. A well-investigated approach to do this is ontology-based
situation recognition [3, 1, 24]. This approach is usually realized by
modeling the observed system by a temporal knowledge base (TKB),
where the data from the observed system is collected over time and
stored in a sequence of ABoxes and a TBox that models important
notions from the application domain. The situation to be recognized
by the system is then modeled by a temporal query that will be an-
swered over the sequence of ABoxes and the TBox. The situation
recognition is then to detect predefined situations that are formalized
as temporal (conjunctive) queries over the observed and enriched
ABox sequence. As in classical ontology-mediated query answering
[7], the TBox enriches the data in the ABox sequence as it restricts
its interpretation and allows for more conclusions. The semantics of
TKBs is given by an infinite sequence of first-order interpretations.
TKBs can be queried by temporal conjunctive queries (TCQs), which
combine LTL with conjunctive queries. Methods for answering tem-
poral queries over TKBs and testing entailment of Boolean TCQs
have been intensively investigated ([4, 8, 1]).

Now, in many applications, the data is collected from several
sources and need not always be accurate. Consider the medical do-
main, where deviations of classical symptoms are frequent for cer-
tain patient groups or where examination methods such as blood test
results can be inaccurate or discretized unsuitably. Thus the query
need not return the expected answer, although the patient or, in the

∗ Corresponding Author. Email: oliver.fernandez@tu-dresden.de
∗∗ Email: patrizi@diag.uniroma1.it
∗∗∗ Email: perelli@di.uniroma1.it
∗∗∗∗ Email: anni-yasmin.turhan@tu-dresden.de

general case, the observed system is in a critical state that requires
adaptation. The problem is to find a version of the TKB that admits
to detect “near misses”.

There are mainly two approaches developed to address the prob-
lem of errors or inaccuracies in DL knowledge bases. In case of
inconsistent TKBs, ontology repairs restore consistent versions by
deleting statements from the ABoxes [9, 6]. In case that informa-
tion is missing in the ABoxes for the query to return answers,
ABox abduction, i.e., adding new statements to the ABoxes has been
investigated—mostly in the atemporal setting [10, 14, 18].

In this paper, we investigate the new task of TKB Alignment, i.e.,
to modify the sequence of ABoxes by deletions or additions of state-
ments so as to yield answers for the TCQ. Surprisingly, this problem
has not been addressed in the literature yet. The goal of this paper is
to develop an approach to solve instances of this new problem.

The well-known problem of Trace Alignment realizes a very sim-
ilar task to TKB alignment: for a finite trace of observations and a
property specification expressed in Linear Temporal Logic (LTL), a
minimal modification of the trace is produced that satisfies the spec-
ification. This task has been extensively studied by the Business Pro-
cess (BP) and AI communities, leading to effective solutions and im-
plemented tools; see, e.g., [11, 13, 12]. In all these settings, the obser-
vations recorded in a trace are propositional, i.e., each time point of
the trace represents one of finitely many possible observables, mod-
eled as propositions.

In this paper, we address the problem of TKB Alignment as a
Trace Alignment problem in a much richer setting, where observ-
ables are described by DL concepts and roles, and properties are
specified by a temporalized query using DL atoms. Furthermore, the
open world semantics of DLs is adopted, since entailment is consid-
ered instead of satisfaction as in classical propositional trace align-
ment.

We investigate the following setting for TKB alignment: a TCQ
using (future) LTL operators and a TKB written in the DL ALC, to-
gether with a cost measure for edit operations on the ABox sequence.
Solving TKB alignment is then to compute an ABox sequence which,
together with the TBox, entails the Boolean TCQ, while guarantee-
ing cost-optimality of the modification. Intuitively, the cost-optimal
version of the TKB states which minimal changes of the TKB would
result in answers to the TCQ.

The technique we develop builds on an approach for deciding tem-
poral query entailment over TKBs by [4] and one for solving LTL

Trace Alignment for finite traces by [11], and extends them non-
trivially. Our technique extends the former approach from verifica-
tion to synthesis and the latter from the propositional to the DL set-

ting, from propositional traces to TKBs, and from finite to infinite
traces. This ultimately results in an effective solution approach which
can assess the deviation of irregular observations wrt standard ones
and define corrective actions to recover a standard observation.

The detailed proofs for all results can be found in [15].

2 Preliminaries

In this section we recap basic notions on description logics, LTL, and
trace alignment.

2.1 Description Logic Knowledge Bases

Description Logics (DLs) are a family of formal languages for rep-
resenting knowledge and reasoning about it. In this work, we focus
on the DL ALC ([23]).

We fix three countably infinite sets of names: NC for concepts,
NR for roles and NI for individuals. Concepts in ALC are defined
inductively as follows:

C := A | ¬C | C t C | ∃r.C | >,

where A ∈ NC, r ∈ NR, > is the top-concept and ⊥ the bottom-
concept. We use the following standard abbreviations: C u D for
¬(¬C t ¬D), ∀r.C for ¬(∃r.¬C), and ⊥ for ¬>.

DL concepts are interpreted over (first-order, FO) interpretations.
An interpretation I = (∆I , ·I) consists of a domain ∆I and a func-
tion ·I mapping each concept name A to a set AI ⊆ ∆I , each role
name r to a binary relation rI ⊆ ∆I×∆I , and each individual name
a to an element aI ∈ ∆I . Based on this, the semantics of (complex)
concepts is defined as follows: (¬C)I = ∆I \ CI , (C t D)I =
CI ∪DI , (∃r.C)I = {d ∈ ∆I | ∃e.((d, e) ∈ rI ∧ e ∈ CI)}, and
>I = ∆I .

General concept inclusions (GCIs) are statements of the form
C v D, expressing inclusion relationships between concepts. A
TBox (denoted T) is a finite set of GCIs. A model of a TBox T is an
interpretation I that satisfies all GCIs in T , i.e., for all C v D ∈ T ,
it holds that CI ⊆ DI . A TBox is satisfiable if it has a model.

Statements A(a) and r(a, b) are called, respectively, concept as-
sertion and role assertion, where a, b ∈ NI, A ∈ NC and r ∈ NR.
An interpretation I satisfiesA(a) if aI ∈ AI , and satisfies r(a, b) if
(aI , bI) ∈ rI . An ABox A is a finite set of (concept or role) asser-
tions. An interpretation I is a model of an ABox A, if I satisfies all
assertions in A.

A DL knowledge base (KB) is a pair K = (T ,A), with T a TBox
and A an ABox. An interpretation I is a model of K = (T ,A),
written I |= K, if I is a model of T and A. A KB is consistent if it
has a model.

2.2 Conjunctive Queries

Prominent reasoning problems investigated in the last decade con-
cern conjunctive queries. We briefly recap related definitions and re-
sults.

Definition 1 (Conjunctive query) Let NV be a set of variables. A
conjunctive query (CQ) is an expression of the form φ = ∃ȳ.ψ,
where ȳ is a tuple of variables from NV and ψ is a finite conjunc-
tion of atoms of the form: A(z), for A ∈ NC and z ∈ NV ∪ NI, or
r(z, z′), for r ∈ NR and z, z′ ∈ NV ∪ NI.

By CQ we denote the set of all CQs (over NC, NR, NI, NV). We write
A(z) ∈ φ to state that atom A(z) occurs in φ, and likewise for
r(z, z′). In this work, we combine CQs using Boolean connectives.

Definition 2 (Boolean combination of CQs) A formula φ is a
Boolean combination of CQs iff:

φ := φ′ | ¬φ | φ ∨ φ, where φ′ ∈ CQ.

As standard, φ1 ∧ φ2 abbreviates ¬(¬φ1 ∨ ¬φ2). Given a Boolean
combination of CQs φ, we denote by Var(φ), FVar(φ), and Ind(φ)
the set of variables, free variables and individual names occurring
in φ, respectively. A query with no free variables is called Boolean,
whereas a query with Ind(φ) = ∅ is called pure. BCQ denotes the set
of Boolean CQs (BCQs), B(CQ) the set of Boolean combinations of
CQs, and B(BCQ) the set of Boolean combinations of BCQs.

The semantics of BCQs is defined in terms of a satisfaction rela-
tion between interpretations and BCQs.

Definition 3 (Semantics of BCQs) An interpretation I is a model
of (or satisfies) a BCQ φ, written I |= φ, iff there exists a mapping
h : Var(φ) ∪ Ind(φ)→ ∆I , called a match, s.t.:

• h(a) = aI for all a ∈ Ind(φ);
• h(z) ∈ AI for all A(z) ∈ φ; and
• (h(z), h(z′)) ∈ rI for all r(z, z′) ∈ φ.

These notions straightforwardly extend to B(BCQ).

Definition 4 (Semantics of Boolean combinations of BCQs) An
interpretation I is a model of (or satisfies) a query φ ∈ B(BCQ),
written I |= φ, iff:

• φ ∈ BCQ and I |= φ; or
• φ = ¬φ1 and I 6|= φ1; or
• φ = φ1 ∨ φ2 and I |= φ1 or I |= φ2.

A query φ ∈ B(BCQ) is satisfiable wrt a KB K, if I |= φ for
some model I of K. A knowledge base K entails a query φ (written
K |= φ), if I |= φ for all models I of K.

In case of non-Boolean queries, one is interested in computing
the certain answers. More precisely, given a KB K = (T ,A)
and φ ∈ B(CQ) with free variables x̄ = (x1, . . . , xk), a tuple
ā = (a1, . . . , ak) of individuals in NI is a certain answer of φ wrt
K if K |= φ[ā], where φ[ā] is the Boolean query obtained from φ
by replacing each occurrence of xi by ai (1 ≤ i ≤ k). We denote
by certK(φ) the set of certain answers of φ wrt K. If φ is a Boolean
query and K |= φ, then certK(φ) = {()}.

The entailment problem for BCQs wrt ALC knowledge bases is
ExpTime-complete ([20, 21]). It was shown in [4] for B(BCQ) that
satisfiability of a conjunction of CQ-literals (i.e. either a Boolean CQ
or a negated Boolean CQ) wrtALC knowledge bases is an ExpTime-
complete problem. An easy consequence of this (and of B(BCQ) be-
ing closed under negation) is that satisfiability and entailment of ar-
bitrary Boolean combinations of BCQs w.r.t. ALC knowledge bases
are also ExpTime-complete problems.

2.3 Propositional Linear Temporal Logic

The kind of properties we focus on in this paper concerns the evolu-
tion of a knowledge base over time. To express relevant properties,
we need a temporal logic. We review the basics on propositional Lin-
ear Temporal Logic (LTL), which will be later lifted to CQs and used
on to address TKB Alignment.

The language of Linear Temporal Logic (LTL) formulas ϕ is de-
fined over a finite set of propositions PROP, as follows:

ϕ := p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ, with p ∈ PROP.

The set props(ϕ) denotes the finite set of propositions occurring inϕ.
LTL formulas are interpreted over infinite words, also called (propo-
sitional) traces, w = w0w1 · · · ∈ (2PROP)

ω .

Definition 5 (LTL semantics) Given a formula ϕ ∈ LTL, a trace
w = w0w1 · · · , and an index i, we inductively define when w, i sat-
isfy ϕ, denoted w, i |= ϕ, as follows:

• w, i |= p, if p ∈ wi;
• w, i |= ¬ϕ, if w, i 6|= ϕ;
• w, i |= ϕ1 ∨ ϕ2, if w, i |= ϕ1 or w, i |= ϕ2;
• w, i |= Xϕ, if w, i+ 1 |= ϕ;
• w, i |= ϕ1 Uϕ2 if there exists j ≥ i s.t. w, j |= ϕ2 and w, k |=
ϕ1, for k = i, . . . , j − 1.

We say that w satisfies ϕ ∈ LTL, written w |= ϕ, iff w, 0 |= ϕ.

We denote the set of traces satisfying ϕ as L(ϕ) = {w ∈ (2PROP)
ω |

w |= ϕ}. It is well-known that for every ϕ ∈ LTL there exists a
deterministic parity automaton Pϕ accepting exactly L(ϕ).

A deterministic parity automaton (DPA) is a tuple P =
(Al,Q, δ, q0, col), where: Al is the finite input alphabet, Q is the fi-
nite set of states, δ : Q×Al→ Q is the transition function, q0 ∈ Q is
the initial state, and col : Q → Col is a coloring function, mapping
the states of P into a finite set of colors Col ⊂ N0. DPAs are similar
to deterministic finite-state automata (DFA), but accept infinite traces
and thus have a different accepting condition.

For a DPA P , a finite run from state q ∈ Q is a sequence ρ =

q
w0→ q1

w1→ · · ·
wn−1→ qn s.t. δ(q, w0) = q1 and δ(qi, wi) = qi+1, for

0 < i < n. We define infinite runs analogously, for n = ∞. Unless
stated otherwise, runs are always infinite and start in the initial state
q0 of P .

Given a run ρ of P , let infQ(ρ, P) be the set of states occurring
infinitely many times in ρ. Obviously, infQ(ρ, P) 6= ∅ iff ρ is infinite.
Let inf(ρ, P) = {col(q) ∈ Col | q ∈ infQ(ρ, P)} be the set of
colors “visited” infinitely many times by ρ. A run ρ from a state
q ∈ Q is accepting iff min{inf(ρ, P)} is even. When this is the
case, q ∈ Q is an accepting state. By Acc(P), we denote the set of
all accepting states of P and call Acc(P) the accepting set of P .

Lemma 1 ([17]) The accepting set Acc(P) of a DPA P =
(Al,Q, δ, q0, col) can be computed in time (|Q| + |δ|) log |Col|,
where |δ| = |{(q, q′) ∈ Q×Q s.t. q′ = δ(a, q), for some a}|.

For a DPA P = (Al,Q, δ, q0, col) and a trace w = w0w1 · · · , the
(unique) run induced by w is the run ρ = q0

w0→ q1
w1→ · · · . A trace

w is accepted by P iff the run ρ induced by w is accepting. By L(P)
we denote the language of P , i.e., the set of all traces accepted by P .

Theorem 1 ([25, 22]) For every ϕ ∈ LTL there exists a DPA Pϕ =
(2PROP, Q, δ, q0, col) s.t. L(Pϕ) = L(ϕ). Pϕ can be computed in
doubly exponential time and has doubly exponential size wrt ϕ.

2.4 Entailment of Temporal Conjunctive Queries

TKB Alignment is closely related to checking temporal query entail-
ment (TQE), studied in [4]. We briefly recall the main definitions and
results from that work, possibly adapted to our setting.

Definition 6 (Temporal Knowledge Base (TKB)) A temporal
knowledge base (TKB) is a pair Γ = (T ,Λ), where T is a TBox and
Λ = A0 · · · A` is a finite sequence of ABoxes.

A FO trace is an infinite sequence I = I0I1 · · · of interpretations
Ii = (∆, .Ii) over a fixed domain ∆.

Definition 7 (Model of a TKB) Given a TKB Γ = (T ,A0 · · · A`),
a FO trace I = I0I1 · · · is a model of Γ, iff: Ii |= Ai, for 0 ≤ i ≤
`; and Ii |= T for all i ≥ 0. If these conditions hold, I satisfies Γ,
written I |= Γ.

Next, we introduce the language TCQ of (simple) temporal con-
junctive queries (TCQ), which essentially lifts propositions in LTL

to BCQs. TCQ formulas are obtained as in LTL, by replacing PROP

with a finite set PBCQ ⊂ BCQ:

ϕ := φ | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ, with φ ∈ PBCQ.

TCQ formulas are evaluated over FO traces.

Definition 8 (TCQ Semantics) Given a formula ϕ ∈ TCQ, an infi-
nite FO trace I = I0I1 · · · , and an index i, we inductively define
when I satisfies ϕ from i, denoted I, i |= ϕ, as follows:

• I, i |= φ, if Ii |= φ, for φ ∈ PBCQ;
• I, i |= ¬ϕ if I, i 6|= ϕ;
• I, i |= ϕ1 ∨ ϕ2, if I, i |= ϕ1 or I, i |= ϕ2;
• I, i |= Xϕ, if I, i+ 1 |= ϕ;
• I, i |= ϕ1 Uϕ2 if there exists j ≥ i s.t. I, j |= ϕ2 and I, k |= ϕ1,

for k = i, . . . , j − 1.

We say that I satisfies ϕ, written I |= ϕ, if I, 0 |= ϕ.

The semantics of temporal operators for TCQs is analogous to that
of LTL (see Def. 5); however, for TCQs the base case accounts for
the satisfaction of BCQs by the FO interpretations occurring in the
trace.

We observe that the variant of TCQs we use here differs from that
introduced in [4], in that we disallow past operators ([16]). However,
such restriction comes without loss of generality. This is because the
two semantic variations have essentially the same expressive power,
as future operators have the ability to mimic the past ones ([26, 19]).

The notion of temporal conjunctive query entailment used here is
the same as that in [4], once past operators are disallowed in TCQs.

Definition 9 (TCQ Entailment) Given a TKB Γ and a TCQ ϕ ∈
TCQ. The TKB Γ entails ϕ, written Γ |= ϕ, iff I |= ϕ, for every
model I of Γ.

Checking TCQ entailment (TQE) is the problem of deciding whether
Γ |= ϕ.

3 The TKB Alignment Problem
We generalize the verification problem of TQE to a synthesis ver-
sion, consisting in minimally modifying the sequence Λ of a TKB
Γ = (T ,Λ), to obtain a TKB Γ′ = (T ,Λ′), s.t. Γ′ |= ϕ. Ob-
serve that if Γ |= ϕ, the problem amounts to checking TQE. To de-
fine the problem, we formalize next the notions of ABox- and TKB-
modification, and minimality.

To modify the ABoxes occurring in a TKB, we consider two kinds
of ABox operations, namely insertion and removal of a (concept or
role) assertion α, respectively denoted as ins(α) and rem(α). The

result of applying such operations to an ABoxA is given by the func-
tion mod: (i) mod(ins(α),A) = A∪ {α}; (ii) mod(rem(α),A) =
A \ {α}. An ABox-modification is a (possibly empty) sequence µ =
m0 · · ·mn of ABox operationsmi. By εwe denote the empty ABox-
modification. The semantics of applying an ABox-modification µ
to an ABox A is obtained by inductively extending mod to se-
quences of operations: (i) mod(ε,A) = A; (ii) mod(m ·µ,A) =
mod(µ,mod(m,A)), where · is the concatenation operator.

We assume every operation m has a strictly positive cost c(m) ∈
R+. The cost of an ABox-modification µ = m1 · · ·mn is defined as
c(µ) :=

∑n
i=1 c(mi), with c(ε) = 0.

In addition to modifying its ABoxes, a TKB can be modified by
adding or removing ABoxes. Let Atm = {(fix, µ), (add, µ), del |
µ is an ABox-modification} be the set of atomic TKB-modifications.
Intuitively, (fix, µ) stands for the modification of an ABox through
the application of µ, (add, µ) for the addition of the empty ABox
followed by the application of µ, and del for ABox deletion.

A TKB-modification is a finite sequence η of atomic TKB-
modifications, with ε denoting the empty TKB-modification. Notice
that, by a slight abuse of notation, we use ε to denote both the empty
ABox-modification and the empty TKB-modification; the intended
meaning is clear from the context.

The result of applying a TKB-modification η to a sequence Λ =
A0 · · · A` is the sequence mod(η,Λ), inductively defined as follows,
where Λε denotes the empty sequence of ABoxes, A∅ the empty
ABox, and A|Λ = AA0 · · · A`:

• mod(ε,Λ) = Λ;
• mod((fix, µ),Λε) = Λε;
• mod((fix, µ) · η,A|Λ) = mod(µ,A)|mod(η,Λ);
• mod((add, µ) · η,Λ) = mod(µ,A∅)|mod(η,Λ);
• mod(del · η,Λε)) = mod(η,Λε);
• mod(del · η,A|Λ) = mod(η,Λ).

For a given TKB Γ = (T ,Λ) and a TKB-modification η, we define
mod(η,Γ) = (T ,mod(η,Λ)). The cost function naturally extends
to TKB-modifications and ABox sequences:

• c(ε,Λ) = 0;
• c((fix, µ) · η,Λε) = c(η,Λε);
• c((fix, µ) · η,A|Λ) = c(µ) + c(η,Λ);
• c((add, µ) · η,Λ) = 1 + c(µ) + c(η,Λ);
• c(del · η,Λε) = c(η,Λε);
• c(del · η,A|Λ) =

(∑
α∈A c(rem(α))

)
+ 1 + c(η,Λ).

The cost of (add, µ) is that of adding the empty ABox (taken as
1) and applying µ to it; similarly, the cost of del is that of empty-
ing the ABox, by removing all of its assertions, and removing the
resulting empty ABox (i.e., 1). For a TKB Γ = (T ,Λ) and a TKB-
modification η, we let c(η,Γ) = c(η,Λ).

We can now introduce the TKB-alignment problem.

Definition 10 (TKB Alignment) Given a TKB Γ and a TCQ ϕ, the
TKB-alignment problem consists in finding a minimal-cost TKB-
modification η∗ (if any) s.t. mod(η∗,Γ) |= ϕ.

Observe that, for every TKB-modification η and TKB Γ, it holds
that mod(η,Γ) = mod(η·(fix, ε),Γ) and c(η,Γ) = c(η·(fix, ε),Γ).
That is, appending a sequence of (fix, ε) to η does not affect the
result or the cost of modifying Γ. Thus, we can always extend η to
guarantee that the combined number of occurrences of deletions del
and fixes (fix, µ) in η equals at least the number of ABoxes in Λ. For
technical convenience, from now on, we assume this is the case for
every η.

3.1 Solving TKB Alignment

Our solution approach consists in reducing TKB Alignment to
Shortest Path. To this end, we construct a graph, called Minimal-
instantiation Graph, with each edge labelled by an atomic TKB-
modification and its corresponding cost, s.t. every shortest path from
a suitably defined initial node to one node from a (suitably defined)
target set, represents an optimal solution to the original TKB Align-
ment instance. The construction of such a graph is based on several
intermediate structures. In the following, for each of such structures
and related notions, we first report their formal definitions and then
give intuitive explanations for these.

Consider a TKB Γ = (T ,Λ) and a TCQ ϕ. We start with the
construction of a DPA intended to accept the set of models of ϕ. To
this end, we adopt an approach similar to that of [4], which uses the
propositional abstraction of ϕ. If we view every BCQ φ ∈ PBCQ as a
proposition φ̂, then ϕ can be viewed as an LTL formula. This is called
the propositional abstraction of ϕ, denoted ϕ̂. Obviously, props(ϕ̂)
is the set of all propositions φ̂ occurring in ϕ̂, each corresponding to
exactly one BCQ φ ∈ PBCQ.

Since ϕ̂ ∈ LTL, we can now use the Büchi automaton (BA) con-
struction of [25], to obtain a BA that recognizes L(ϕ̂) and then
use the BA-to-DPA construction of [22] to obtain the DPA Pϕ̂ =
(2props(ϕ̂), Q, q0, δ, col) of ϕ̂. The importance of Pϕ̂ lies in the fact
that, although it reads input words Ψ = Φ0Φ1 · · · ∈ (2props(ϕ̂))

ω
and

not FO traces I = I0I1 · · · , it fully characterizes L(ϕ), as discussed
below.

For Φ ∈ 2props(ϕ̂), let χ(Φ) =
∧
φ̂∈Φ φ∧

∧
φ̂∈props(ϕ̂)\Φ ¬φ. Since

the conjuncts in χ(Φ) are possibly negated BCQs from PBCQ, and
not propositional abstractions, χ(Φ) ∈ B(BCQ). If χ(Φ) is con-
sistent, i.e., admits at least one model, Φ is called a type. When
I |= χ(Φ), we call Φ the type of I. This notion naturally extends
to traces by defining the trace type of a FO trace I = I0I1 · · · as the
word Ψ = Φ0Φ1 · · · ∈ (2props(ϕ̂))

ω
s.t. Φi is the type of Ii, for all

i ≥ 0. We have the following result.

Lemma 2 Every FO interpretation has a unique type and every type
admits an FO interpretation. Moreover, every FO trace has a unique
trace type and every trace type admits an FO trace.

The following result relates L(Pϕ̂) and L(ϕ).

Theorem 2 Consider a TCQ ϕ. For every FO trace I of type Ψ, it
holds that I ∈ L(ϕ) iff Ψ ∈ L(Pϕ̂).

Since Pϕ̂ is independent of the TKB Γ, it cannot be used to
search for the desired minimal-cost modification. For this, we can
use a deterministic finite-state automaton (DFA)D, called the repair-
template DFA for Γ and ϕ. The definition of D requires an auxiliary
DPA, called the T -reduct of Pϕ̂, to define the final states of D.

Definition 11 (T -reduct of Pϕ̂) Given a TBox T and a TCQ ϕ, let
Pϕ̂ = (2props(ϕ̂), Q, δ, q0, col). The T -reduct of Pϕ̂ is the DPA P Tϕ̂ =

(2props(ϕ̂), QT , δT , q0, col
T) s.t.:

• QT = Q ∪ {q∗}, with q∗ /∈ Q;
• δT (q,Φ) = q′, iff either:

– χ(Φ) is satisfiable wrt T and δ(q,Φ) = q′; or

– χ(Φ) is not satisfiable wrt T and q′ = q∗; or

– q = q′ = q∗;

• colT (q∗) = 1 and colT (q) = col(q) + 1, for all q ∈ Q.

Lemma 3 The T -reduct of Pϕ̂ can be computed in doubly exponen-
tial time and has doubly exponential size wrt ϕ.

Intuitively, the T -reduct of Pϕ̂ accepts a trace type Ψ iff there
exists a FO trace I of type Ψ that does not satisfy ϕ and is compliant
with the TBox T , i.e. it contains only interpretations satisfying T .
Let Acc(P Tϕ̂) be the acceptance set of P Tϕ̂ . We have the following.

Lemma 4 Consider a finite sequence Ψ′ = Φ0 · · ·Φk−1 of types

and the finite run ρ = q0
Φ0→ · · ·

Φk−1→ qk induced in Pϕ̂. Then,
qk /∈ Acc(P Tϕ̂) iff for every type Ψ = Φ0 · · ·Φk−1ΦkΦk+1 · · · ,
having Ψ′ as a prefix, and for all traces I = I0I1 · · · of type Ψ, if,
for all i ≥ k, it holds that Ii |= T , then I |= ϕ.

Recall that we are looking for a TKB Γ′ = (T ,Λ′), obtained as
a modification of Γ = (T ,Λ), s.t. Γ′ |= ϕ, i.e., all models I of Γ′

(Def. 7) are s.t. I |= ϕ (Def. 9). Lemma 4 implies that every model
I of Γ′ must belong to some trace type ΨI whose induced run in Pϕ̂
touches some qk /∈ Acc(P Tϕ̂), for k = `′+ 1. Based on this, we next
define the repair-template DFA.

Definition 12 (Repair-template DFA) Given a TKB
Γ = (T ,Λ) with Λ = A0 · · · A` and a TCQ ϕ, let
P Tϕ̂ = (2props(ϕ̂), QT , δT , q0, col

T) be the T -reduct of
Pϕ̂ = (2props(ϕ̂), Q, δ, q0, col).

The repair-template DFA (RT-DFA) for Γ and ϕ is the DFA D =
(Al, S, s0, γ, F) s.t.:

• Al = ({fix, add} × 22props(ϕ̂)

) ∪ {del} is the alphabet;
• S = 2Q × {0, . . . , `+ 1} is the set of states;
• s0 = ({q0}, 0) is the initial state;
• γ : S × Al → S is the transition function s.t. γ((Z, i), X) =

(Z′, i′) iff either:

1. X = del, Z = Z′, and i′ = min{i+ 1, `+ 1}; or

2. all of the following hold:

(a) X = (σ,Υ), with σ ∈ {fix, add};
(b) q′ ∈ Z′ iff δ(q,Φ) = q′, for q ∈ Z and Φ ∈ Υ;
(c) there exists an ABox A consistent with T s.t.: (T ,A) |=∨

Φ∈Υ χ(Φ) ∧
∧

Φ 6∈Υ ¬χ(Φ);

(d) i′ =

{
min{i+ 1, `+ 1}, if σ = fix

i, if σ = add

• F = {(Z, ` + 1) ∈ S | Z ∩ Acc(P Tϕ̂) = ∅} is the set of final
states.

Lemma 5 The RT-DFA for a TKB Γ and a TCQ ϕ can be computed
in triply exponential time and has triply exponential size wrt ϕ.

Observe that the right-hand side expression of the entailment (|=)
in Item 2c above is a Boolean combination of BCQs. The purpose of
the RT-DFA is to capture the solution space of TKB Alignment for
(T ,Λ) and ϕ, in the following sense: (i) from every accepted word
w, some TKB modification η can be derived s.t. mod(η,Γ) |= ϕ, and
(ii) every TKB modification η s.t. mod(η,Γ) |= ϕ can be derived
from some accepted word w. This is formalized next, by the notion
of TKB-modification abstraction and the subsequent result.

Definition 13 (TKB-modification abstraction) Consider a TKB
Γ = (T ,Λ), with Λ = A0 · · · A`, a TCQ ϕ, and let D =
(Al, S, s0, γ, F) be the RT-DFA for Γ and ϕ. A word w =

w0 · · ·wm ∈ Al∗, inducing a finite run ρ = s0
w0→ · · · wm→ sm+1

in D, is an abstraction of (or abstracts) a TKB-modification η =
η0 · · · ηm iff, for j = 0, . . . ,m:

• wj = del and ηj = del; or
• wj = (fix,Υ) and, for sj = (Z, i), ηj = (fix, µ), with

(T ,mod(µ,Ai)) |=
∨

Φ∈Υ χ(Φ) ∧
∧

Φ 6∈Υ ¬χ(Φ); or
• wj = (add,Υ) and ηj = (add, µ), with (T ,mod(µ,A∅)) |=∨

Φ∈Υ χ(Φ) ∧
∧

Φ6∈Υ ¬χ(Φ).

When this holds, η is an instantiation of (or instantiates) w.

Theorem 3 Consider a TKB Γ = (T ,Λ), with Λ = A0 · · · A`, a
TCQ ϕ, and let D = (Al, S, s0, γ, F) be the RT-DFA for Γ and ϕ.
Then:

1. for every word w ∈ Al∗, there exists an instantiation η s.t. w ∈
L(D) iff mod(η,Γ) |= ϕ;

2. for every word w ∈ Al∗ and every instantiation η of w, it holds
that w ∈ L(D) iff mod(η,Γ) |= ϕ;

3. for every TKB-modification η there exists a unique abstractionwη
s.t. wη ∈ L(D) iff mod(η,Γ) |= ϕ.

Thm. 3 states that the language of D characterizes the set of so-
lutions for the TKB-alignment of Γ against the specification ϕ; in
particular, Item 2 ensures that every instantiation of some TKB-
modification abstraction w ∈ L(D) is a solution to TKB Alignment.
Then, every optimal solution η∗ is s.t.:

η∗ = argminη{c(η,Γ) | η instantiates some w ∈ L(D)}.

Based on this, we can reduce the problem of finding η∗ to that of
finding a minimal path in a suitably weighted graph.

Definition 14 (Minimal-instantiation Graph) Consider a
TKB Γ = (T ,Λ), with Λ = A0 · · · A`, a TCQ ϕ, and
let D = (Al, S, s0, γ, F) be the RT-DFA for Γ and ϕ. The
minimal-instantiation graph for Γ and ϕ is the weighted graph
G = (N,E,w), where:

1. N = S is the finite set of nodes;
2. E ⊆ N × Atm×N , is the finite set of edges, labelled by atomic

TKB-modifications;
3. w : E → R+ is the edge weight function;
4. it holds that e = ((Z, i), η, (Z′, i′)) ∈ E and w(e) = c iff, for

some X , (Z′, i′) = γ((Z, i), X), and:

- if X = del then η = del and c = c(del,Ai);

- if X = (fix,Υ) then η =
argmin(fix,µ)

{
c((fix, µ),Ai) | (T ,mod(µ,Ai)) |=∨

Φ∈Υ χ(Φ) ∧
∧

Φ 6∈Υ ¬χ(Φ)
}

and c = c(η,Ai);

- if X = (add,Υ) then η =
argmin(add,µ)

{
c((add, µ),Λε) |

(T ,mod(µ,A∅)) |=
∨

Φ∈Υ χ(Φ) ∧
∧

Φ 6∈Υ ¬χ(Φ)
}

and c =
c(η,A∅).

Lemma 6 The Minimal-instantiation Graph for a TKB Γ and a TCQ
ϕ can be computed in triply exponential time and has triply exponen-
tial size wrt ϕ.

The minimal-instantiation graph G is a graph whose edges are la-
belled with atomic TKB-modifications and weighted with the corre-
sponding cost. Through its labels, every finite path s0

η0→ · · ·
ηm−1→

sm of G defines an instantiation η = η0 · · · ηm of some (not neces-
sarily accepted) input wordw = w0 · · ·wm ofD. Also the viceversa
holds, i.e., every input word w of D is an abstraction of the TKB-
modification η defined by some path of G.

Observe that, by Item 4 of Def. 14, η includes only minimal-
cost atomic TKB-modifications ηi, thus it is a minimal-cost TKB-
modification among all those that instantiate the same w. Moreover,
recall that, by Theorem 3, every solution to TKB Alignment is as-
sociated to an abstraction w ∈ L(D). Thus, since every such w has
a minimal-cost instantiation in some path of G, we can search for
the minimal-cost solution by exploring the paths of G. Indeed, it is
enough to search for the minimal-cost paths of G which correspond
to the words w accepted by D; since the nodes of G correspond to
the states of D, this corresponds to searching for a minimal-path of
G starting in s0 and ending in some node that is an accepting state
for D.

Theorem 4 Consider a TKB Γ = (T ,Λ), with Λ = A0 · · · A`, a
TCQ ϕ, and let D = (Al, S, s0, γ, F) be the RT-DFA for Γ and ϕ.
A TKB-modification η = η0 · · · ηm is an optimal solution of TKB
Alignment for Γ and ϕ iff there exists a minimum-cost path π =

n0
η0→ · · ·

ηm−1→ nm in G, s.t. n0 = s0 and nm ∈ F .

Thus, with the minimal-instantiation graph G at hand, the search
can be easily performed using, e.g., Dijkstra’s algorithm. Observe
however that, in order to obtain effective solvability of TKB Align-
ment, it remains to show that G is actually computable. In particular,
it remains to explain how to obtain the labels and the weights of G.

By Def. 14 (Item 4), computing the labels and the weights of G
requires to solve, for every edge, one local minimization problem of
the form argmin(σ,µ){c((σ, µ),Λ)}, subject to a constraint of the
form (T ,mod(µ,A)) |= φ, with φ ∈ B(BCQ). This is the KB-
alignment problem, which we formally define and solve in Section 4.
We report here that the problem can be solved in doubly exponential
time. This, together with the complexity results reported above, leads
to the following.

Theorem 5 TKB Alignment is solvable in triply exponential time.

As mentioned above, one might consider the semantics on TCQs
given in [4] and instantiate TKB alignment with it. Such variation on
the semantics has minimal impact on the solution technique, which
can be adapted to that setting with minimal changes. Details are omit-
ted, due to space constraints.

4 The KB-Alignment Problem
In this section, we define the knowledge base alignment problem (KB
Alignment), and show how to solve it for the query language B(BCQ)
and knowledge bases written in the DL ALC.

Definition 15 (KB Alignment) Given a KB K = (T ,A) and a
query φ ∈ B(BCQ), the problem of KB Alignment consists in finding
an ABox-modification µ such that for A′ = mod(µ,A):

1. (T ,A′) is consistent;
2. (T ,A′) |= φ; and
3. c(µ) ≤ c(µ′) for all ABox-modifications µ′ satisfying Condi-

tions 1 and 2.

An ABox-modification µ satisfying Condition 1 and 2 is a solution
to KB Alignment for (K, φ); if it also satisfies 3, it is an optimal
solution.

To solve an instance of KB Alignment, it is sufficient to consider
ABox-modifications with operations defined using concept and role
names from the input KB and query, i.e., using names from their
signature. A signature is a finite subset of NC ∪ NR. We use sig(X)
to denote the set of concept and role names occurring inX , whereX
can be a KB or a query.

Lemma 7 Let K be a KB and φ ∈ B(BCQ). If KB Alignment has a
solution for (K, φ), then it has an optimal solution µ where all ABox-
operations ins(α) and rem(α) in µ are such that α is an assertion
defined over sig(K) ∪ sig(φ).

An algorithm that solves KB Alignment for ALC KBs and queries
in B(BCQ) is introduced next.

4.1 Solving KB-Alignment

Algorithm 1 describes our method to solve KB Alignment. The ap-
proach is to (1) compute an upper bound on the cost of optimal
solutions (if any exists), (2) iterate over all ABox-modifications of
decreasing cost starting from the upper bound, and finally output a
modification that satisfies Condition 1 to 3 from Definition 15, i.e.,
which is optimal.

In order to obtain the upper bound on the ABox-modification the
algorithm first computes for the input TBox T and query φ, an ABox
A′ such that (T ,A′) is consistent and (T ,A′) |= φ. Then, a modifi-
cation µ∗ from the input ABoxA intoA′ is obtained. Such a modifi-
cation always exists: given two ABoxesA andA′, a trivial modifica-
tion fromA intoA′ is defined as a sequence µ = m1 · · ·mk · · ·mn,
where m1 · · ·mk consists of the removal of all assertions in A and
mk+1 · · ·mn consists of the insertion of all assertions present inA′.

The algorithm computes one trivial modification, which, by Defi-
nition 15, is a (possibly non-optimal) solution, thus c(µ∗) realizes the
first step of the approach as it is an upper bound on the cost of opti-
mal solutions. Then, the for-loop enumerates all ABox-modifications
with cost smaller than c(µ∗), that satisfy Condition 1 and 2 of Defi-
nition 15, and it returns one ABox modification of minimal cost.

By using Lemma 7, it is not hard to show that the output of Algo-
rithm 1 is always an optimal solution.

Lemma 8 If Algorithm 1 returns µ∗ on inputK and φ, then µ∗ is an
optimal solution to KB Alignment for (K, φ). If Algorithm 1 returns
“no solution”, then KB Alignment has no solution for (K, φ).

Hence, to see that Algorithm 1 solves the KB-alignment problem, it
remains to show that it terminates, i.e., all its steps can effectively be
computed. The following arguments show this for most of the steps:

• SinceA andA′ are finite sets, a trivial modification µ∗ can easily
be computed from the ABox A′.

• Consistency of ALC KBs is a decidable problem ([5]), as well as
entailment of B(BCQ)-queries in ALC (see Sec. 2.2), hence the
conditions at line 5 can be effectively verified for each µ ∈M .

• The set M contains only ABox-modifications defined over the fi-
nite signature sig(K) ∪ sig(φ). Hence, given n > 0, M contains
finitely many µ with n ABox-operations, and each such µ has cost
of at least c · n, where c is the minimal cost of an ABox operation
defined over sig(K) ∪ sig(φ). This implies that M is a finite set
and contains only modifications with no more than c(µ∗)/c oper-
ations. Thus, M can be visited in finite time.

Algorithm 1 KB Alignment.
Input: An ALC KB K = (T ,A) and a query φ ∈ B(BCQ).
Output: An optimal solution of KB Alignment for (K, φ), if a solu-
tion exists; or “no solution”, otherwise.

1: Compute an ABox A′ s.t. (T ,A′) is consistent, (T ,A′) |= φ
and sig(A′) ⊆ sig(K) ∪ sig(φ). If no such ABox exists, return
“no solution”;

2: Define a trivial modification µ∗ from A into A′;
3: LetM be the set of ABox-modifications µ defined over sig(K)∪

sig(φ) s.t. c(µ) < c(µ∗);
4: for all µ ∈M do
5: if (µ satisfies conditions 1 and 2 in Definition 15) and

(c(µ) < c(µ∗)) then
6: µ∗ := µ;
7: return µ∗;

It remains to specify how to compute the initial ABoxA′ (or to deter-
mine that it does not exist). This requires a more involved argument
presented in the following.

4.1.1 Computing the initial ABox A′

The computation of the initial ABox A′ in our algorithm is closely
related to the query emptiness problem in ontology-mediated query
answering. This problem was introduced and investigated in [2] for
various DLs (includingALC) and the query language CQ. We define
this problem here for the more general query language B(CQ). It uses
the notion of Σ-ABoxes, which refers to ABoxes that use only names
from a signature Σ.

Definition 16 (B(CQ)-query Emptiness) Let T be a TBox, Σ a sig-
nature and φ ∈ B(CQ). The query φ is called empty for Σ given
T if for all Σ-ABoxes A such that (T ,A) is consistent, we have
cert(T ,A)(φ) = ∅.
B(CQ)-query Emptiness is the problem of deciding, given a TBox
T , a signature Σ, and φ ∈ B(CQ), whether φ is empty for Σ wrt T .

In [2], it is shown that to decide CQ-query Emptiness in ALC,
it suffices to consider a single Σ-ABox AT ,Σ. This ABox is of ex-
ponential size and can be computed (from a given satisfiable TBox
T and a signature Σ) in exponential time, in the size of T and the
cardinality of Σ. Moreover, it satisfies the following properties:

• the KB (T ,AT ,Σ) is consistent, and
• given a pure CQ φ, φ is empty for Σ wrt T iff
cert(T ,AT ,Σ)(φ) = ∅.

The arguments used to prove the second property can be easily ex-
tended to pure B(CQ)-queries, as the following result shows.

Lemma 9 Let T be a satisfiable ALC TBox, Σ a signature and
φ ∈ B(CQ) a pure query. Then, φ is empty for Σ wrt T iff
cert(T ,AT ,Σ)(φ) = ∅.

For non-pure queries, query emptiness can be reduced to the case
of pure queries. This can be done as follows. Let T be anALC TBox,
Σ a signature, and φ ∈ B(CQ) a non-pure query with Ind(φ) =
{a1, . . . , am}. We select m fresh concept names A1, . . . , Am, i.e.,
concept names neither occurring in T , φ nor Σ. Then, we define an
ALC TBox Tp, a signature Σp and a query φp ∈ B(CQ), as follows:

• Tp = T ∪ Td, where Td = {Ai uAj v ⊥ | 1 ≤ i < j ≤ m},

• φp = φx ∧ φd, where φx is obtained from φ by replacing each
a ∈ Ind(φ) by a fresh free variable xa, whereas φd is the CQ
φd = A1(xa1) ∧ . . . ∧Am(xam), and

• Σp = Σ ∪ {A1, . . . , Am}.

The following lemma shows that testing whether φ is empty for Σ
wrt T reduces to checking emptiness of φp for Σp wrt Tp. Since
φp is a pure query, this yields a reduction from query emptiness of
non-pure queries to the case of pure queries.

Lemma 10 Let T be an ALC TBox, Σ a signature, and φ a query
in B(CQ). The following holds:

1. φ is empty for Σ wrt T iff φp is empty for Σp wrt Tp.
2. If there is a Σp-ABox Ap that witnesses non-emptiness of φp for

Σp wrt Tp, then, given t ∈ cert(Tp,Ap)(φp), Ap can be trans-
formed in polynomial time (in the size ofAp and t) into a Σ-ABox
A witnessing non-emptiness of φ for Σ wrt T .

Hence, if the input query φ of Algorithm 1 is pure, by Lemma 9
the search space for the ABoxA′ can simply be restricted to {AT ,Σ}
where Σ = sig(K) ∪ sig(φ). Otherwise, Lemma 10 tells us how to
obtain A′ (if it exists). Namely, the algorithm first constructs Tp, φp
and Σp from T , φ and Σ. It then checks whether φp is non-empty for
Σp wrt Tp, by usingATp,Σp . If the latter is true, thenA′ is selected as
the ABox obtained from applying toATp,Σp the transformation from
the second statement in Lemma 10. Overall, this provides a way to
compute A′ whenever it exists.

Hence, Algorithm 1 always terminates. This, together with
Lemma 8, yields solvability of KB Alignment. A closer look at Al-
gorithm 1 reveals that it runs in double exponential time in the size
of the input KB and query. Thus, we obtain the following result.

Theorem 6 KB Alignment is solvable forALC and B(BCQ) in dou-
ble exponential time.

5 Discussion and Future Work
TKB Alignment is a new variant of the alignment problem that ad-
mits richer state and property descriptions by DL knowledge bases.
Our setting uses TKBs written in ALC, CQs with LTL operators,
and a cost function for the edit operations. We have shown that TKB
Alignment wrt temporal CQs is effectively solvable, by developing
computation methods for both TKB and KB Alignment.

The TKB-alignment problem is closely related to abduction and to
computing repairs of KBs, as these tasks also change a KB to either
gain a desired consequence or remove an unwanted one. However,
although being active research topics, neither of the two has yet been
intensively investigated for the temporalized setting and entailment
of TCQs. Furthermore, TKB Alignment requires a cost-optimal so-
lution, which is not a common setting covered in research dedicated
to abduction or repairs.

Interestingly, the task of TKB Alignment can also be used for com-
puting relaxed answers of temporal CQs in the following way. Given
a tuple of individuals ā which is not a certain answer of a given TCQ
φ, solve TKB Alignment for the Boolean TCQ obtained from φ′ by
assigning ā to the answer variables of φ. The costs computed during
TKB Alignment for φ′ are then a measure of the “distance” to a cer-
tain answer of the query. Relaxed answers are then those tuples of
individuals with costs below a given threshold.

Our initial investigation on TKB Alignment uses a unitary cost
measure for the edit operations mostly to ease presentation, as our
approach can handle other cost measures easily. In this work, we did
not regard rigid symbols, which are left for future work.

Acknowledgements

The work of Giuseppe Perelli was partially funded by MUR un-
der the PRIN programme, grant B87G22000450001 (PINPOINT),
and by the PNRR MUR project PE0000013-FAIR. The work of
Fabio Patrizi was partially funded by MUR under the PNRR MUR
project PE0000013-FAIR, the ERC Advanced Grant WhiteMech
(No. 834228), and the Sapienza Project MARLeN. The work of
Oliver Fernández Gil and Anni-Yasmin Turhan was partially funded
by the AI competence center ScaDS.AI Dresden/Leipzig.

References

[1] Alessandro Artale, Roman Kontchakov, Alisa Kovtunova,
Vladislav Ryzhikov, Frank Wolter, and Michael Za-
kharyaschev, ‘First-order rewritability of ontology-mediated
queries in linear temporal logic’, Artif. Intell., 299, 103536,
(2021).

[2] Franz Baader, Meghyn Bienvenu, Carsten Lutz, and Frank
Wolter, ‘Query and predicate emptiness in ontology-based data
access’, J. Artif. Intell. Res., 56, 1–59, (2016).

[3] Franz Baader, Stefan Borgwardt, Patrick Koopmann, Veronika
Thost, and Anni-Yasmin Turhan, ‘Semantic technologies
for situation awareness’, Künstliche Intell., 34(4), 543–550,
(2020).

[4] Franz Baader, Stefan Borgwardt, and Marcel Lippmann, ‘Tem-
poral query entailment in the description logic SHQ’, J. Web
Semant., 33, 71–93, (2015).

[5] The Description Logic Handbook: Theory, Implementation,
and Applications, eds., Franz Baader, Diego Calvanese, Deb-
orah L. McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, Cambridge University Press, 2003.

[6] Meghyn Bienvenu, ‘A short survey on inconsistency han-
dling in ontology-mediated query answering’, Künstliche In-
tell., 34(4), 443–451, (2020).

[7] Meghyn Bienvenu and Magdalena Ortiz, ‘Ontology-mediated
query answering with data-tractable description logics’, in Rea-
soning Web. Web Logic Rules - 11th International Summer
School, volume 9203 of Lecture Notes in Computer Science,
pp. 218–307. Springer, (2015).

[8] Stefan Borgwardt, Marcel Lippmann, and Veronika Thost,
‘Temporalizing rewritable query languages over knowledge
bases’, Journal of Web Semantics, 33, 50–70, (2015).

[9] Camille Bourgaux, Patrick Koopmann, and Anni-Yasmin
Turhan, ‘Ontology-mediated query answering over temporal
and inconsistent data’, Semantic Web, 10(3), 475–521, (2019).

[10] Diego Calvanese, Magdalena Ortiz, Mantas Simkus, and Gior-
gio Stefanoni, ‘The complexity of conjunctive query abduction
in DL-Lite’, in Proceedings of the 24th International Workshop
on Description Logics (DL 2011), volume 745 of CEUR Work-
shop Proceedings. CEUR-WS.org, (2011).

[11] Giuseppe De Giacomo, Fabrizio Maria Maggi, Andrea Mar-
rella, and Fabio Patrizi, ‘On the disruptive effectiveness of au-
tomated planning for LTLf -based trace alignment’, in AAAI,
pp. 3555–3561, (2017).

[12] Massimiliano de Leoni, Fabrizio Maria Maggi, and Wil van
der Aalst, ‘An alignment-based framework to check the confor-
mance of declarative process models and to preprocess event-
log data’, Inf. Syst., 47, 258–277, (2015).

[13] Massimiliano de Leoni, Fabrizio Maria Maggi, and Wil M. P.

van der Aalst, ‘Aligning event logs and declarative process
models for conformance checking’, in BPM, (2012).

[14] Warren Del-Pinto and Renate A. Schmidt, ‘ABox abduction via
forgetting in ALC’, in The Thirty-Third AAAI Conference on
Artificial Intelligence, AAAI 2019, The Thirty-First Innovative
Applications of Artificial Intelligence Conference, IAAI 2019,
pp. 2768–2775. AAAI Press, (2019).

[15] Oliver Fernandez-Gil, Fabio Patrizi, Giuseppe Perelli, and
Anni-Yasmin Turhan. Optimal alignment of temporal knowl-
edge bases. CoRR abs/2307.15439, 2023.

[16] Dov M. Gabbay, ‘The declarative past and imperative future:
Executable temporal logic for interactive systems’, in Tempo-
ral Logic in Specification, Altrincham, UK, Proceedings, vol-
ume 398 of Lecture Notes in Computer Science, pp. 409–448.
Springer, (1987).

[17] Valerie King, Orna Kupferman, and Moshe Y. Vardi, ‘On the
complexity of parity word automata’, in Proc. of FOSSACS,
eds., Furio Honsell and Marino Miculan, volume 2030 of Lec-
ture Notes in Computer Science, pp. 276–286. Springer, (2001).

[18] Patrick Koopmann, Warren Del-Pinto, Sophie Tourret, and Re-
nate Schmidt, ‘Signature-based abduction for expressive de-
scription logics’, in Proceedings of the 17th International Con-
ference on Principles of Knowledge Representation and Rea-
soning (KR 2020), (2020).

[19] Orna Kupferman, Nir Piterman, and Moshe Y. Vardi, ‘Ex-
tended temporal logic revisited’, in CONCUR 2001 - Concur-
rency Theory, 12th International Conference, Aalborg, Den-
mark, Proceedings, eds., Kim Guldstrand Larsen and Mogens
Nielsen, volume 2154 of Lecture Notes in Computer Science,
pp. 519–535. Springer, (2001).

[20] Carsten Lutz, ‘The complexity of conjunctive query answering
in expressive description logics’, in Automated Reasoning, 4th
International Joint Conference, IJCAR 2008, Proceedings, vol-
ume 5195 of Lecture Notes in Computer Science, pp. 179–193.
Springer, (2008).

[21] Magdalena Ortiz, Mantas Simkus, and Thomas Eiter, ‘Worst-
case optimal conjunctive query answering for an expressive de-
scription logic without inverses’, in Proceedings of the Twenty-
Third AAAI Conference on Artificial Intelligence, AAAI 2008,
pp. 504–510. AAAI Press, (2008).

[22] Nir Piterman, ‘From nondeterministic Büchi and Streett au-
tomata to deterministic parity automata’, Log. Methods Com-
put. Sci., 3(3), (2007).

[23] Manfred Schmidt-Schauß and Gert Smolka, ‘Attributive con-
cept descriptions with complements’, Artif. Intell., 48(1), 1–26,
(1991).

[24] Ahmet Soylu, Martin Giese, Rudolf Schlatte, Ernesto Jiménez-
Ruiz, Evgeny Kharlamov, Özgür L. Özçep, Christian Neuen-
stadt, and Sebastian Brandt, ‘Querying industrial stream-
temporal data: An ontology-based visual approach’, J. Ambient
Intell. Smart Environ., 9(1), 77–95, (2017).

[25] Moshe Y. Vardi, ‘An automata-theoretic approach to linear tem-
poral logic’, in Logics for Concurrency - Structure versus Au-
tomata (8th Banff Higher Order Workshop, Banff, Canada, Pro-
ceedings), volume 1043 of Lecture Notes in Computer Science,
pp. 238–266. Springer, (1995).

[26] Thomas Wilke, ‘Classifying discrete temporal properties’,
in STACS 99, 16th Annual Symposium on Theoretical As-
pects of Computer Science, Trier, Germany, Proceedings, eds.,
Christoph Meinel and Sophie Tison, volume 1563 of Lecture
Notes in Computer Science, pp. 32–46. Springer, (1999).

