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Abstract
One of the advantages of formalizing domain knowledge in
OWL ontologies is that one can use reasoning systems to infer
implicit information automatically. However, it is not always
straightforward to understand why certain entailments are in-
ferred, and others are not. The popular ontology editor PRO-
TÉGÉ offers two explanation services to deal with this issue:
justifications for OWL 2 DL ontologies, and proofs generated
by the reasoner ELK for lightweight OWL 2 EL ontologies.
Since justifications are often insufficient for explaining infer-
ences, there is thus only little tool support for more compre-
hensive explanations in expressive ontology languages, and
there is no tool support at all to explain why something was
not derived. In this paper, we present EVEE, a Java library and
a collection of plug-ins for PROTÉGÉ that offers advanced ex-
planation services for both inferred and missing entailments.
EVEE explains inferred entailments using proofs in descrip-
tion logics up to ALCH. Missing entailments can be ex-
plained using counterexamples and abduction. We evaluated
the effectiveness and the interface design of our plug-ins with
description logic experts, ontology engineers, and students in
two user studies. In these experiments, we were able to not
only validate the tool but also gather feedback and insights to
improve the existing designs.

1 Introduction
Description logics (DLs) (Baader et al. 2017a) have gained
popularity through the standardization of the Web Ontol-
ogy Language OWL1, the development of an OWL Java API
(Horridge and Bechhofer 2011), editing tools such as PRO-
TÉGÉ (Musen 2015), and various reasoning systems. A cen-
tral application of ontologies is to use reasoning systems to
derive implicit subsumption relationships from these ontolo-
gies. However, due to the complexity of modern ontologies
and the expressivity of description logics, it is not always
straight-forward to understand why certain relationships can
be derived and others cannot. To help with this, we devel-
oped EVEE (EVincing Expressive Entailments), a collection
of tools that in its current version 0.3 offers services to ex-
plain both logical entailments and missing entailments from
OWL ontologies.

Research on explaining logical entailments in DLs
first considered proofs that provide detailed inference steps

1https://www.w3.org/TR/owl2-overview/

through which a consequence can be obtained (McGuinness
1996; Borgida, Franconi, and Horrocks 2000). Later litera-
ture focussed on justifications, minimal sets of ontology ax-
ioms that are sufficient for the entailment, as explanations
(Kalyanpur et al. 2007; Schlobach and Cornet 2003; Baader,
Peñaloza, and Suntisrivaraporn 2007; Horridge 2011). How-
ever, if justifications become very large or the ontology is
formulated in an expressive DL, providing intermediate in-
ference steps between a justification and its consequence
may be required for understanding (Horridge, Parsia, and
Sattler 2009; Horridge, Parsia, and Sattler 2010). One way
to produce proofs is by directly using the inference rules un-
derlying a consequence-based reasoner like ELK (Kazakov,
Krötzsch, and Simancik 2014), which however only sup-
ports EL+

⊥. There is already a plugin for the ontology ed-
itor PROTÉGÉ that allows to access proofs generated using
ELK (Kazakov, Klinov, and Stupnikov 2017), but nothing
for other proof generation methods, and therefore also noth-
ing for DLs beyond EL+

⊥.
Proofs based on inference rules sometimes appear tedious

and can only be generated if a set of inference rules exists
and is implemented. In the literature, we can also find en-
tirely different approaches: proofs generated through heuris-
tic search for possible intermediate inferences (Horridge,
Parsia, and Sattler 2010), concept interpolation (Schlobach
2004) and forgetting (Alrabbaa et al. 2020a), which is a
technique for reducing the vocabulary of an ontology. In-
dependently of the proof generation method, proofs can be
optimized w.r.t. various measures, e.g. proof size or depth
(Alrabbaa et al. 2020a; Alrabbaa et al. 2020b; Alrabbaa et
al. 2021). For example, from a set of instantiated inference
rules, e.g. computed by ELK, one can extract a proof of min-
imal depth in polynomial time (Alrabbaa et al. 2021).

There is no conclusive answer on which proof generation
method and which measure is the best: One finding from a
series of quantitative user studies on preferred proof presen-
tations was that—despite similar performance across various
proof representations—participants show distinct subjective
preferences (Alrabbaa et al. 2022b). Consequently, EVEE
can generate different types of proofs to explain logical en-
tailments: detailed ones based on ELK and the reasoning
calculus of the forgetting tool LETHE (Koopmann 2020) (the
latter one also supporting the more expressive DL ALCH),

https://www.w3.org/TR/owl2-overview/


Explanation DL Assert.
ELK-based proofs [3.1] EL+

⊥ +
Elimination proofs [3.2] ALCH +
LETHE-based proofs [3.3] ALCH +
Small counterexamples [4.1] EL⊥ −
Canonical counterexamples [4.1] EL −
Connection-minimal abduction [4.2] EL −
Complete signature-based abduction [4.2] ALC +

Table 1: Summary of all entailment (at the top) and missing entail-
ment (at the bottom) explanation services offered by EVEE, their
corresponding supported description logics, and whether they also
support explaining class and object property assertions in addition
to subclass relationships.

as well as more abstract proofs that are based on forgetting.
The latter so-called elimination proofs can support different
DLs, depending on the forgetting tool that is used internally
in a black-box fashion. Our library currently uses FAME
(Zhao and Schmidt 2018) and LETHE, which leads to proof
methods supporting DLs up to the expressivity of ALCH.
Different to the existing PROTÉGÉ proof plug-in (Kazakov,
Klinov, and Stupnikov 2017), we can optimize ELK-based
proofs w.r.t. to different proof measures.

While reasoning can sometimes reveal unexpected entail-
ments that need explaining, very often the problem is not
what is entailed, but what is not entailed. In order to explain
missing entailments, and offer suggestions on how to repair
them, there are basically two approaches: counterexamples
and abduction. A counterexample is a model of the ontol-
ogy that does not satisfy the entailment. We provide differ-
ent methods for counterexamples: a tableau-based method
that optimizes the size of the model, and methods that also
focus on the part of the model that is relevant for the miss-
ing entailment, and may contrast a counterexample with a
positive example (Alrabbaa and Hieke 2022). In abduction,
the missing entailment is explained by means of hypotheses,
which are sets of axioms that can be added to the ontology in
order to entail the missing consequence (Elsenbroich, Kutz,
and Sattler 2006). There is a vast literature on abduction in
DLs. We mainly focussed on recent methods that target the
explanation of missing entailments, for which we rely on ex-
ternal abduction tools: CAPI,2 which computes hypotheses
that satisfy a criterion called connection-minimality (Haifani
et al. 2022), and which itself relies on the first-order the-
orem prover SPASS;3 and LETHE-abduction, which imple-
ments complete signature-based abduction (Koopmann et
al. 2020). Users can explore the space of hypotheses by re-
stricting the set of entities that can be used, and use them
in combination with the proof-based explanation methods to
explain how a hypothesis would make the missing entail-
ment possible. Table 1 summarizes all the explanation types
offered in EVEE.

2https://lat.inf.tu-dresden.de/~koopmann/CAPI
3https://www.mpi-inf.mpg.de/departments/

automation-of-logic/software/spass-workbench/
classic-spass-theorem-prover

Our tools target PROTÉGÉ, which is the most used freely
available ontology editor, to improve the ontology engineer-
ing experience with more advanced explanation techniques.
EVEE features a Java library EVEE-LIBS, which forms the
basis for a collection of PROTÉGÉ plug-ins under the um-
brella name EVEE-PROTEGE. In the following, we use the
name EVEE to collectively refer to both components. How-
ever, the focus of this paper is on the PROTÉGÉ plug-ins.

Since our tools were for the first time integrated into Pro-
tégé, we evaluated the effectiveness and the interface design
of EVEE in two qualitative user studies. The aim of the
studies was to get a first impression on whether these types
of explanation services are helpful, and what improvements
might be needed. In contrast to the quantitative research
in (Alrabbaa et al. 2022b), qualitative studies with Pro-
tégé users were sufficient for this exploration. The received
feedback was mostly positive: the study participants con-
firmed that EVEE meets the intended requirements. More-
over, we collected opinions and suggestions for further im-
provements.

The source code and installation instructions for EVEE are
available at https://github.com/de-tu-dresden-inf-lat/evee.
The resources used for the user studies are available on Zen-
odo (Alrabbaa et al. 2024).

2 Preliminaries
We recall the basics of OWL and DLs, based on the Manch-
ester syntax used in PROTÉGÉ and our plug-ins; for more
details, see (Baader et al. 2017a; Hitzler et al. 2012). OWL
ontologies are built from classes such as Pizza, representing
the class of all pizzas, object properties, such as hasTopping,
expressing relations between pizzas and their toppings, and
individuals, such as Italy, representing the (unique) country
Italy. Classes, object properties and individuals are collec-
tively called entities. A signature (or vocabulary) is a finite
set of entities. Different DLs offer different constructors by
which more complex expressions can be built from entities.
For example, the lightweight description logic EL supports
the class constructors and and some. Using these, one can
build class expressions like Pizza and hasTopping some Broc-
coli, describing all pizzas that have broccoli as topping. In
addition, the special class owl:Thing refers to everything in
the domain.

Axioms represent knowledge about classes, for example
the equivalence axiom

MeatyPizza EquivalentTo Pizza and hasTopping some Meat

defines the class of meaty pizzas, and the subclass axiom

AmericanPizza SubClassOf Pizza

declares American pizzas to be a more specific subclass of
pizzas. In addition, the class assertion Italy Type Country
states that Italy belongs to the class of countries, whereas the
object property assertion Italy hasNeighbor France expresses
that Italy and France share a land border. Each such axiom
corresponds to a sentence in first-order logic (Baader et al.
2017a), so that we can speak of logical entailment between
sets of axioms. In the context of our paper, an ontology O

https://lat.inf.tu-dresden.de/~koopmann/CAPI
https://www.mpi-inf.mpg.de/departments/automation-of-logic/software/spass-workbench/classic-spass-theorem-prover
https://www.mpi-inf.mpg.de/departments/automation-of-logic/software/spass-workbench/classic-spass-theorem-prover
https://www.mpi-inf.mpg.de/departments/automation-of-logic/software/spass-workbench/classic-spass-theorem-prover
https://github.com/de-tu-dresden-inf-lat/evee


is just a set of such axioms, and we are interested in logical
entailments O |= α of axioms α from ontologies O. For
example, adding the axiom

AmericanPizza SubClassOf hasTopping some Meat

(American pizzas contain meat) to the previous ones yields
an ontology that entails the axiom

AmericanPizza SubClassOf MeatyPizza

(American pizzas are meaty pizzas).
There are other DLs relevant for this paper. The DL EL⊥

is obtained by adding the empty class owl:Nothing to EL,
which allows formulating disjointness axioms like

Pizza and Country SubClassOf owl:Nothing

(abbreviated as Pizza DisjointWith Country). The more com-
plex DL ALC extends EL⊥ by the constructors or, not, and
only, using which we can express

Pizza and hasTopping only (not Meat)

(pizzas with only non-meat toppings) and

Pizza and hasTopping only (Mozzarella or Tomato)

(pizzas where all toppings are either mozzarella or tomato
sauce). ALCH denotes the extension of ALC by subprop-
erty axioms like

hasTopping SubPropertyOf hasIngredient

(every topping of a pizza is also an ingredient of it). Fi-
nally, EL+

⊥ extends EL⊥ by more complex object property
inclusions (including transitivity), and EL++ extends EL+

⊥
by nominals and so-called concrete domains, and is the basis
for the efficient OWL 2 EL profile.

3 Explaining Entailments
Without additional plugins, PROTÉGÉ only includes a sin-
gle explanation service for entailments: consequences dis-
covered by the reasoner have a “?”-labeled button next to
them that opens an explanation window. The built-in service
provides explanations in the form of justifications, which
are subset-minimal sets of axioms that are sufficient to pro-
duce the entailment (Schlobach and Cornet 2003), and, intu-
itively, are “responsible” for the entailment. Kazakov, Kli-
nov, and Stupnikov (2017) developed an alternative expla-
nation service that can show proofs generated by the rea-
soner ELK. With the EVEE plug-ins installed, the user can
choose between different additional proof services. Each of
them provides a detailed explanation in the form of a proof
tree (see Figure 1), which is a tree where nodes are labeled
with axioms, the root is the entailment to be explained, and
the leafs are either axioms from the ontology or tautologies.
Each inner node is labeled with an axiom that is a logical
consequence of the labels of its child nodes, and is thus the
result of a logical inference step. The way these inferences
work depends on the chosen proof method offered by EVEE:

4https://protege.stanford.edu/ontologies/pizza/pizza.owl

1. optimized ELK-based proofs,
2. elimination proofs, and
3. LETHE-based detailed proofs.
These methods differ in the amount of detail in the resulting
proofs, as well as in the DLs they support. Figure 1 shows
the proofs generated by those three methods.

3.1 ELK-Based Proofs
ELK-based proofs have a high level of detail, can be gener-
ated very quickly, and support all inferences that can be per-
formed by the popular ELK reasoner (Kazakov, Krötzsch,
and Simancik 2014). This means that ELK-based proofs
support most of the OWL EL profile. Internally, ELK uses
a set of inference rules that can also be used to generate
proofs. The Java library of ELK makes it possible to access
all inferences steps that can be used for deriving a specific
entailment (Kazakov and Klinov 2014). This functionality
is also used in ELK’s own PROTÉGÉ proof service (Kaza-
kov, Klinov, and Stupnikov 2017). The main difference to
our implementation is that we only show one proof at a time,
while the other plug-in shows all possible inferences that can
lead to the entailment within a single tree structure. We can
extract a single proof according to one of the following opti-
mization criteria: minimal size (number of axioms), depth of
the proof tree, or weighted size (total length of all axioms);
for details, see (Alrabbaa et al. 2021).

3.2 Elimination Proofs
Elimination proofs were originally introduced in (Alrabbaa
et al. 2020a) under the name forgetting-based proofs, with
the motivation of supporting DLs for which no implemented
proof method exists yet. Elimination proofs are computa-
tionally more expensive, support the more expressive DL
ALCH, and offer the lowest level of detail, thus giving a
more high-level explanation.

As the name suggests, every inference in an elimination
proof eliminates one or several entities from previously de-
rived axioms. In particular, inference steps have the form

α1 . . . αn eliminate X ,
β

where {α1, . . . , αn} |= β, and the entities in X occur in
the premises, but not in the conclusion. At least one entity
is eliminated in each step, but several entities can be elimi-
nated at the same time if this does not make the proof more
complex, e.g. by increasing the number of premises of the
inference step.

To compute elimination proofs, we make use of the for-
getting tools LETHE (Koopmann 2020) and FAME (Zhao
and Schmidt 2018). Which tool is used affects the shape of
the axioms that are used in the proofs. EVEE offers four dif-
ferent variants of elimination proofs: a fast heuristic method,
and slower optimized proofs (of minimal size, weighted size,
or number of elimination steps).

3.3 LETHE-based Detailed Proofs
These proofs offer a level of detail comparable to that of
ELK-based proofs, while supporting axioms in the more ex-

https://protege.stanford.edu/ontologies/pizza/pizza.owl


Figure 1: Completely unfolded ELK-based proof, LETHE-based elimination proof and LETHE-based detailed proof, generated for the pizza
ontology4 and the entailment IceCream EquivalentTo owl:Nothing.

pressive DL ALCH. They can be used in case an elimi-
nation proof offers too little detail to understand the entail-
ment. The forgetting tool LETHE used for elimination proofs
internally uses a set of inference rules. We can thus trace
the inference steps used by LETHE, similarly as in ELK.
LETHE uses a simplified calculus with only few inference
rules (Koopmann and Schmidt 2013), which operate on a
normalized version of the ontology. Before we can use the
traced inference steps in a proof, we have to denormalize
them, which may introduce further inference steps. Details
on this can be found in (Alrabbaa et al. 2022a).

3.4 Using Signatures of Known Entities
The user also has the possibility to select a signature of
known entities, consisting of classes, object properties and
individuals. The idea is that these describe a vocabulary with
which the user is familiar, so that entailments that are in this
signature do not need further explanation. If such a signa-
ture is selected, axioms that are expressed using only known
entities will not get a sub-proof, that is, they become leafs
of the proof tree. This is particularly useful in combination
with an optimization criterion for the proofs, since the op-
timization of proofs takes the known entities into account:
a proof is optimal w.r.t. all proofs in which sub-proofs for
axioms using only known entities have been removed.

4 Explaining Missing Entailments
EVEE can also provide explanations in case an expected en-
tailment α is missing, i.e. when O ̸|= α. To understand why
this is the case, or even to repair the ontology to make it en-
tail α, we provide several approaches that can be grouped
into two categories, counterexamples and abduction.

4.1 Counterexamples
In general, a counterexample is a model of O that does not
satisfy the missing entailment α. So far, we only support

Figure 2: A counterexample generated for SpicyAmerican SubClass-
Of SpicyPizza in a modified version of the Pizza ontology.

the case where α is a subclass axiom C SubClassOf D, which
means that the counterexample must contain an element that
belongs to C, but does not belong to D. Such a model can
be presented as a labeled directed graph, where the nodes
are domain elements labeled by classes and the edges are
labeled by object properties (see Figure 2). EVEE provides
two kinds of counterexamples: small counterexamples and
canonical counterexamples.

Small counterexamples are computed using a tableaux al-
gorithm that generates models for EL⊥ ontologies (Alrab-
baa et al. 2023). Starting from an assertion a* Type C for
a fresh individual a*, we apply tableau expansion rules to
generate a model of the whole ontology that satisfies C. For
example, if C EquivalentTo r some B, then new assertions
a* r b and b Type B will be added, where b is either an ex-



isting or a new individual. In this process, individuals are
reused whenever possible to keep the model small. More-
over, the algorithm ensures that a* does not become an in-
stance of D, since the goal is to obtain a counterexample for
C SubClassOf D.

Canonical counterexamples instead focus on relevant
fragments of models, using the methods described in (Alrab-
baa and Hieke 2022). They consider EL ontologies and
use the reasoner ELK (Kazakov, Krötzsch, and Simancik
2014). The main idea is to use the so-called canonical model
of O (Baader et al. 2017b), which is already a counterex-
ample, since it does not satisfy any GCIs that are not en-
tailed by the ontology. However, since the whole canoni-
cal model of the ontology would be very large, we only in-
clude the parts of the model that are relevant to the missing
entailment C SubClassOf D. For example, we only include
elements that are connected to the element representing C.
Using canonical models, we can also compute contrastive
counterexamples, which include another individual satisfy-
ing D that serves as a point of comparison to the individual
satisfying C.

Since our counterexamples focus on non-entailed sub-
class axioms, they ignore all assertions in O. However, it
should be possible to extend these methods to support asser-
tions as well.

4.2 Abduction
Counterexamples always reflect only one model at a time,
and do not always make it obvious how to fix the missing
entailment. For this reason, we also offer abduction as ex-
planation service.

Given a non-entailment O ̸|= α, abduction computes a
set of hypotheses H, which are sets of axioms such that
O ∪ H |= α. Without further restrictions, {α} itself is al-
ready a hypothesis, which is why useful abduction requires
additional constraints on the solution space. Complete
signature-based abduction (Koopmann et al. 2020) supports
the DL ALC and relies on a user-given vocabulary. It is
the only service that also supports assertions and combina-
tions of axioms as missing entailment, and computes a set of
alternative hypotheses that only use names from the vocabu-
lary, such that any other such hypothesis can be obtained by
strengthening or combining these hypotheses. This set can
in some cases be infinite. In contrast, connection-minimal
abduction computes hypotheses satisfying a minimality cri-
terion called connection-minimality (Haifani et al. 2022),
with the aim of focusing on those hypotheses that have
a more direct connection to the observation. Connection-
minimal abduction only supports explaining subclass ax-
ioms over EL ontologies and hypotheses are always without
object property restrictions.

5 The PROTÉGÉ Plug-ins
While EVEE can be used as a Java library, the easiest way
to use our proof generators and missing entailment explana-
tions is via plug-ins for PROTÉGÉ, a popular editor for OWL
ontologies (Musen 2015). The user can put all plug-ins, or
only a selection based on their preferences, into the plugins

folder of PROTÉGÉ to install them. Our modular architec-
ture makes it easy to develop new plug-ins for other expla-
nation methods based on proofs, abduction or counterexam-
ples. Details on how to do this can be found in (Alrabbaa et
al. 2023; Alrabbaa et al. 2022a).

If an explanation service does not support the full ex-
pressivity of the currently active ontology, it first filters out
all unsupported axioms before computing the explanation,
which means that explanations may be incomplete in such
cases. EVEE will show a message whenever axioms are ig-
nored because of this. EVEE also adds several settings in
the PROTÉGÉ preferences under the Explanations tab, e.g.
for selecting different explanation services or switching be-
tween different variants of the user interface.

5.1 Proof Services
To explain reasoning results in PROTÉGÉ, one can click on
the “?”-button next to an entailment. The standard expla-
nation consists of a list of justifications for the axiom, but
this has been extended to support proofs via the protege-
proof-explanation5 plug-in, which relies on the proof utility
library6 (PULi) (Kazakov, Klinov, and Stupnikov 2017).

Our proof generators are available in several PROTÉGÉ
plug-ins that utilize this existing functionality. This means
that, to explain an entailment shown in PROTÉGÉ, users can
simply click on the “?” next to it. They can then select one of
the proof methods, and navigate the computed proof starting
from the entailment, as shown in Figure 1.

In some cases, the elimination and LETHE-based detailed
proof methods can take some time to complete. This is in
particular the case for optimized elimination proofs, which
are disabled by default for this reason. If proof generation
takes too long, users can abort the process by clicking the
“Cancel”-button or by closing the progress window. Some
of the proof services will then show the best proof found so
far, provided they already found one. If this is the case, a
warning message appears to inform the user that the proof
may be sub-optimal.

The proof plug-ins also add a menu entry Proofs → Man-
age vocabulary through which one can specify the vocabu-
lary of known entities, as well as save and load different vo-
cabularies. In the generated proofs, axioms that are only us-
ing the known entities do not get sub-proofs, which is taken
into account when computing optimal proofs.

5.2 Missing Entailments
If an entailment is missing, users cannot just click on a “?”
somewhere—they have to specify what is missing. For this,
our plug-ins provide a new tab available via Window → Tabs
→ Missing Entailment Explanation.

In this tab, one can choose one of the installed miss-
ing entailment explanation services and enter the missing
entailment using a text field with PROTÉGÉ auto-complete
functionality. Only OWL logical axioms are allowed, e.g.
subclass-, equivalence-, and disjointness axioms and asser-
tions. The missing entailment can also be saved to or loaded

5https://github.com/liveontologies/protege-proof-explanation
6https://github.com/liveontologies/puli
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from an OWL ontology file. The computation can then be
started using the Generate explanation button.

In the Vocabulary sub-tab, users can restrict the vocabu-
lary used by the explanations, which can be seen in Figure 3.
Here, the Permitted vocabulary is shown at the top, and the
Forbidden vocabulary is at the bottom. The arrow buttons
can be used to add or remove names to and from the permit-
ted vocabulary, which can also be saved to and loaded from
an external file. By default, the whole ontology vocabulary
is permitted, but this can be changed in the plug-in prefer-
ences. If the entered missing entailment and vocabulary are
not supported by the chosen explanation service, the Gener-
ate explanation button will be disabled and an explanatory
message will be shown.

While the explanation is generated, a progress window is
used to indicate the computation status and show additional
information. The computation can be canceled by closing
the window or clicking the Cancel button.

As a running example to illustrate the different explana-
tion services, we consider a modified, incomplete version of
the Pizza ontology (Alrabbaa et al. 2024). This version is
missing some axioms to make it entail SpicyAmerican Sub-
ClassOf SpicyPizza. It will turn out that other axioms are
missing in this ontology as well, and the plug-ins will help
the user in adding those missing parts.

Counterexamples We visualize counterexamples using
GRAPHSTREAM,7 a Java library for modeling, analyzing
and visualizing graphs (see Figure 2). Its functionality al-
lows not only to visualize models, but also to dynamically
make changes to models when the ontology changes. In
the generated graphs, domain elements are depicted as cir-
cles and object property connections as arrows. To facili-
tate exploring large counterexamples, the graphical view al-
lows zooming and dragging of individual nodes or the whole
graph. Additionally, we highlight elements that are of par-
ticular importance for understanding the generated model.
For instance, each counterexample contains a root element,
marked in black, which satisfies the class on the left-hand
side of the missing subclass axiom.

For readability, only some of the classes satisfied by each
domain element are shown; the number of classes can be
adapted using the Number of displayed classes slider on the
right panel of the counterexample view. To make the graph-
ical representation of a counterexample more informative,
we display classes in order from more specific to less spe-
cific, i.e. we would show the class MeatyPizza before the
class DomainThing. When the user selects an element, the
Classes of selected element list in the right panel displays all
classes satisfied by the selected element.

The visualized model can also reveal missing disjointness
axioms in the ontology. In Figure 2, the circled element is
both a MozzarellaTopping and a TomatoTopping. The reason
is a missing disjointness between CheeseTopping and Veg-
etableTopping. The right panel allows the user to add new
disjointness axioms as needed and visualize the result. For
this, the user can select the corresponding classes and press
Add disjointnesses. A disjointness axiom with the selected

7https://graphstream-project.org

names is then added to the Disjointnesses list, as shown in
the figure. By pressing the Recompute example button, the
user sees an updated model with the new disjointness ap-
plied. If the user is not satisfied with the changes to the
model resulting from the new axioms, they could delete
them using the Remove disjointnesses button. Finally, ax-
ioms from the Disjointnesses list can be added to the active
ontology with a click of the Add all to ontology button.

Abduction For our running example, Figure 3 shows an
explanation based on complete signature-based abduction.
This tells us that, to entail SpicyAmerican SubClassOf Spicy-
Pizza, we could for example add the axiom SpicyAmerican
SubClassOf hasTopping some ChilliTopping to the ontology.

For this kind of explanation, it can happen that the set of
hypotheses is infinite. Therefore, the user can specify the
number of results shown (10 is the default). When the Gen-
erate explanation button is clicked again, the same number
of results is added to the current list. Using additional but-
tons shown at each hypothesis, the user can easily get an ex-
planation why the hypothesis entails the missing entailment
(using any of the explanation services for entailments), for-
bid the vocabulary of the selected hypothesis (to force the
service to generate a new hypothesis), and add the hypothe-
sis to the ontology (to repair the missing entailment).

To use the connection-minimal abduction, the FOL the-
orem prover SPASS needs to be installed separately. An
adapted version of SPASS is required, which can be installed
following the instructions on the web page of the abduction
tool CAPI.8

6 Evaluation of EVEE Proof Services
We conducted two user studies to evaluate the two types of
explanations provided by EVEE. The first was performed in
2022 and concerns the explanations of entailments, whereas
the second one happened in 2024 and focused on the expla-
nations of missing entailments. Both are qualitative stud-
ies with PROTÉGÉ users conducted as online interviews us-
ing the think-aloud protocol, intended to get first feedback
on the usefulness of these types of explanation plug-ins for
PROTÉGÉ, and what improvements are needed. In both
cases the participants were informed about the purpose and
content of the study and they have given informed consent.

In the first study, since the user interface for presenting
proofs in PROTÉGÉ already existed, our main goal was to
compare the different proof methods, to find out their indi-
vidual strengths and weaknesses.

6.1 Study Setup
Participant selection We interviewed ten researchers from

the TU Dresden, all of whom often work with DLs. The
participants were between 25 and 39 years old with a
mean age of 32 (SD = 4.36). Two of the participants were
female, and eight were male.

8When using this abduction plug-in for the first time, it will ask
for the directory that SPASS was installed to. This directory can
later be changed in the PROTÉGÉ preferences.

https://graphstream-project.org


Figure 3: Abduction results from LETHE for SpicyAmerican SubClassOf SpicyPizza with forbidden symbols SpicyPizza and hasSpiciness.

Environment setup Participants were asked to install PRO-
TÉGÉ and to download EVEE before the interview. The
sessions were held online using ZOOM.

Data collection We used CRYPTPAD9 forms to collect the
answers of the participants.

6.2 Study Procedure
Installation The experimenter guided the participant

through the installation of EVEE.

Training The experimenter showed relevant features of
EVEE to the participant.

Tasks In total there were 5 tasks. Each task specified an
entailment and two proof methods, focusing on differ-
ent aspects of proof composition that we wanted to an-
alyze. Participants were asked to generate two proofs us-
ing these two methods, and compare them regarding their
comprehensibility. Task 1 investigated the proof size of
LETHE-based proofs. Task 2 utilized elimination proofs
that are similar in size, but represent the same class ex-
pressions differently. Task 3 compared elimination- and
consequence-based methods. In the remaining two tasks
participants encountered progressively smaller proofs of
the same entailment.

Closing questions Participants were asked at the end if
there were additional information or features they would
like to have seen.

6.3 Results
Task 1 (SebaceousGland SubClassOf HolocrineGland)10

Participants proved the axiom using the LETHE-based de-
tailed proof method and the LETHE-based elimination

9https://cryptpad.fr/
10From the Skin Physiology Ontology: https://bioportal.

bioontology.org/ontologies/SPO

proof with the heuristic method. Six of the participants
found the elimination proof easier to understand. One
preferred the detailed proof, and three saw no difference
between the two proofs. Most participants who noted no
difference stated that it took them the same amount of ef-
fort to understand both proofs. For the other participants,
the structure of the proofs, the axioms, and the types of ex-
pressions used were the reasons for preferring one proof
over the other.

Task 2 (SebaceousGland SubClassOf HolocrineGland)
Here, participants used the LETHE- and FAME-based
elimination proofs with the heuristic method. Five of the
participants found the FAME-based proof easier to under-
stand. Three preferred the LETHE-based proof, and two
saw no difference between the two proofs. Participants
that preferred the FAME proof pointed out a contradiction
caused by the interplay between the some and only con-
structors. For these participants, inferences like that are
easier to follow. At the same time, the lack of such in-
terplay in the LETHE proof, which used only some, is the
reason why most of the other participants preferred that
proof.

Task 3 (SpicyIceCream SubClassOf owl:Nothing)11

Participants used the ELK proof plug-in (Kazakov, Kli-
nov, and Stupnikov 2017) and the size-optimized FAME-
based elimination proof method. Seven of the partici-
pants found the inference steps of the ELK proof easier
to understand. Two preferred the inference steps of the
elimination proof, and one saw no difference. However,
opinions varied when participants were asked whether a
large proof with simple inferences is easier to understand
than a smaller proof with intricate inferences. Three of
the participants agreed with the statement; three agreed

11From another modified version of the Pizza ontology, see
(Alrabbaa et al. 2024)

https://bioportal.bioontology.org/ontologies/SPO
https://bioportal.bioontology.org/ontologies/SPO


conditionally, provided a certain ratio between the size of
the proof and the complexity of its inferences is not ex-
ceeded. One participant noted that, although they agreed,
they believe that people would eventually become accus-
tomed to the more complex inferences. Conversely, three
of the participants completely disagreed, arguing that a
shorter proof provides a clearer overview.

Task 4 (Analyzing SubClassOf Condition)12

Participants proved the axiom using the ELK proof plug-
in and the size-optimised ELK proof method. All partic-
ipants found the optimised ELK proof to be the easiest
to understand, primarily because it was shorter, and uses
simpler axioms and inference steps.

Task 5 (Analyzing SubClassOf Condition)
Now, participants proved the same axiom using the size-
optimised ELK proof method and the LETHE-based de-
tailed proof method. Unanimously, they agreed that the
detailed proof is the easier of the two proofs. The reason,
yet again, is that this proof is shorter and simpler.

The diversity of the answers confirms our assumption that
the best method for generating proofs is often subjective.
This justifies the inclusion of many different proof genera-
tion methods in EVEE.

The study took place in April 2022, and, since then,
numerous improvements have been implemented in EVEE.
Participants commented on the presentation and interaction
with proofs in PROTÉGÉ. They asked for the possibility of
expanding the entirety of a proof instead of one inference at
a time, the capability of abbreviating entity names, and the
option to choose between alternative forms of expressions.
Since they are difficult to implement in PROTÉGÉ, these fea-
tures have been addressed in our tool EVONNE (Méndez et
al. 2023), a web-based application that builds upon EVEE
and utilizes graph visualization techniques to explain DL en-
tailments.

7 Evaluation of Missing Entailment Services
We conducted another user study to evaluate our explana-
tions for missing entailments. We used a different study
design since the goals of this study were different. In con-
trast to the existing proof interface, we newly implemented a
tab for missing entailments in PROTÉGÉ and two interfaces
for showing counterexamples and abduction results, so in
the second study we wanted to find out whether the inter-
face itself was intuitive for users of PROTÉGÉ with various
backgrounds. Moreover, explaining missing entailment is a
less common task than explaining entailments, so we also
wanted to evaluate the suitability of the different types of
explanations for this task.

For simplicity, we only included one abduction method
(complete signature-based abduction) and one counterex-
ample method (contrastive counterexamples) in this study.
These methods represent the key aspects of counterexam-
ples and abduction, making them suitable for evaluating the
general usefulness of these modes of explanation. We again

12From the BioTop ontology: https://bioportal.bioontology.org/
ontologies/BT

held individual online interviews, where participants used
EVEE on a virtual machine, performed three tasks, and an-
swered questions related to these tasks. Each task specified
a missing entailment, and the participants were asked to fix
the ontology to obtain the entailment. In the end, partici-
pants could provide feedback about what additional features
they would like to have and whether they found EVEE use-
ful and would recommend it. We ran a pilot study with four
participants before conducting 18 interviews for the main
study.

7.1 Study Setup
Participant selection We selected candidates who have

previously used PROTÉGÉ, but we did not prescribe any
level of proficiency. We advertised the study among the
students of DL-related courses at TU Dresden and Vrije
Universiteit Amsterdam, on several relevant mailing lists
used by researchers and PROTÉGÉ users, on the KR Dis-
cord channel, on LinkedIn, and by direct e-mail to some
selected researchers and ontology engineers. Each partic-
ipant was given an online voucher with a value of 20 C in
the currency of their country of residence.
Participants were between 23 and 74 years old, with a
mean age of 37 (SD = 13.53). Of the 18 participants,
three were female and 15 male. Their experience with
PROTÉGÉ varied: some of the participants are working
with PROTÉGÉ in industry, others use it for research and
teaching, or for their university studies. Four participants
said they use PROTÉGÉ only rarely, and four said they
use it frequently. Fourteen participants regularly use the
reasoning facilities of PROTÉGÉ, and one participant had
never used a reasoner in PROTÉGÉ.

Environment setup We created four identical virtual ma-
chines (VMs) hosted by TU Dresden and installed PRO-
TÉGÉ and EVEE on those. The experimenter connected to
one VM and hosted the session using ZOOM. The partic-
ipant connected to the ZOOM session, and then interacted
with PROTÉGÉ on the VM via ZOOM remote control.

Data collection We used a LimeSurvey13 questionnaire to
collect demographic data, recorded video of the VM
screen and audio of the ZOOM session, and took notes
on essential information during the interview.

Data analysis We transcribed the recorded audio using
Whisper14 on a local server to facilitate the processing
of participants’ answers to our questions. We then used
inductive coding (Rivas 2012): three experts (coders)
agreed on codes, such as “graph presentation is good”,
based on the collected answers, and then independently
assigned each answer to the appropriate codes.

7.2 Study Procedure
Initial survey Before the user study session, we asked par-

ticipants to fill out a short survey with demographic ques-
tions.

13https://www.limesurvey.org
14https://github.com/openai/whisper

https://bioportal.bioontology.org/ontologies/BT
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Initial questions We asked participants about their experi-
ence with PROTÉGÉ such as how they usually use PRO-
TÉGÉ, for which tasks they use PROTÉGÉ, and if they use
reasoners in PROTÉGÉ.

Initial training The experimenter showed relevant features
of PROTÉGÉ to make sure that every participant has the
same basic knowledge, and then let the participant solve
a training task and ask questions.

EVEE training The experimenter demonstrated the rele-
vant features of contrastive counterexamples and com-
plete signature-based abduction. The participant then
solved the training task again using the two explanation
services.

Tasks Since we needed ontologies that contain mistakes
(missing entailments), we manually built three ontologies
about pizzas, animals, and university lectures. Each par-
ticipant was given one ontology and was asked to fix miss-
ing subclass entailments, like Lion SubClassOf Carnivo-
rousAnimal, by extending or adapting the existing axioms
about Lion and related classes. Each participant worked
on the given ontology in three phases (each with differ-
ent missing entailments): (N) using no EVEE plug-ins,
(C) using only the counterexamples, and (A) using only
abduction. The order of the phases was randomized, but
Phase (N) was either the first or the last, and the EVEE
training was given directly before (C) or (A), whichever
came first. After each section, participants were asked
which aspects they found especially easy or hard to do,
and whether they thought that the explanation service was
useful for fixing the ontologies.

Closing questions We asked participants which explana-
tion service was more useful, which features they liked or
not, whether they thought EVEE would be useful for their
regular work with PROTÉGÉ, and which additional fea-
tures they would like to have (see (Alrabbaa et al. 2024)
for the precise question formulations).

7.3 Pilot Study
In the pilot study, every participant saw three different on-
tologies in the three phases. However, the study revealed
that working with different problem domains significantly
increased cognitive load, induced fatigue, and extended
problem-solving time. Moreover, there was a natural prefer-
ence towards simpler ontologies, which resulted in a biased
comparison of the phases. Consequently, we modified the
main study to focus on a single ontology for each participant
and excluded the data of the pilot study from the analysis.

7.4 Results
The intercoder reliability was calculated from the codes of
the three experts. The result is a Fleiss’ kappa of 0.66, which
is considered substantial (Landis and Koch 1977) since it
exceed the threshold of 0.61. The agreement between the
coders is therefore sufficiently high for the results to be in-
terpretable. In order to merge the three codings of partici-
pants’ statements, we considered a statement as given if it
was coded as present by at least two of the coders.

Overall, most of the 18 participants in our sample pre-
ferred using the EVEE services for the ontology repair tasks,
compared to having no explanation support (16 participants
for (A) and 15 for (C)). Ten participants preferred the ab-
duction service over the counterexamples, whereas six said
the opposite. We now report more detailed feedback on the
three phases of the study. Each phase has positive comments
and negative comments, which are analyzed separately.

For Phase (N), six participants had positive comments.
These comments convey that some tasks were so easy that
they could be solved with the existing functionality of PRO-
TÉGÉ. However, 16 participants commented negatively. The
negative comments mainly pertained to the difficulties of
finding all classes that are relevant for the task, of keeping
everything in mind, and of understanding all relevant ax-
ioms.

In Phase (C), 15 participants had positive comments about
the graphical presentation, including that it provides a good
overview of the classes related to the task. Negative com-
ments were mentioned by 17 participants, in particular that
the graph was sometimes too confusing, and that they would
need more time to get used to this kind of explanation.
Moreover, they were concerned that the counterexamples
would get less useful if too many classes are shown at the
same time.

Phase (A) received positive comments from all partici-
pants, and negative comments from 17 of them. The first
main positive comment is that the abduction service allows
solving the task by directly adding a hypothesis to the on-
tology without the need to manually enter it. The second
positive comment is that the step-wise restriction of the vo-
cabulary allows exploring the space of possible hypothesis
to improve the understanding of the problem. The main neg-
ative comment is that the interface for vocabulary selection
was not easy to use. Moreover, it lacks a search function-
ality, such that participants had to find the relevant entities
by scrolling through a long list. Other negative comments
are that participants would need more time to get used to the
abduction service, and perceived it as difficult to find a good
vocabulary and hypothesis.

Fifteen participants suggested additional features for
EVEE, most of them related to improving the vocabulary
input interface and the connection with the core PROTÉGÉ
functionality, e.g. selecting a missing entailment directly
from the PROTÉGÉ Classes tab, or navigating from the ex-
planation views back to the PROTÉGÉ views, potentially in a
split view. For counterexamples, two participants mentioned
that they would like a feature that lets them automatically
add a suitable axiom to the ontology, similar to abduction.
Finally, 10 participants said they would use the EVEE ser-
vices in their own work with PROTÉGÉ, 15 said they would
recommend them to others, and a few commented that the
services would be useful for learning and teaching about
OWL and description logics. The participants that would
not use the services said it is because they are working with
very large databases or knowledge graphs with only few log-
ical axioms, or they would not have specific missing entail-
ments in mind. Some also commented that one cannot use
PROTÉGÉ with large amounts of assertions in practice.



8 Discussion and Conclusion
EVEE offers a collection of methods for generating expla-
nations for (missing) entailments for OWL ontologies that
can be explored in various ways in the ontology editor PRO-
TÉGÉ. We believe that our plug-ins are an important step to-
wards making consequences and missing entailments more
transparent to ontology engineers, researchers, and students.
Our missing entailment component uses the PROTÉGÉ ex-
tension point architecture, which means that other devel-
opers can easily add other abduction and counterexample
methods.

Throughout the development of EVEE, we have con-
ducted qualitative user studies to validate our approaches.
While EVEE is of limited use for practitioners who only
rarely use a reasoner, the general perception was positive.
The responses of the participants suggest that there is no sin-
gle best explanation method, but preferences are subjective.
Thus, our approach of offering many different explanation
methods allows each user to use the ones they are most com-
fortable with. There is still room for improvement, as evi-
denced by the number of feature suggestions. In the future,
we plan to conduct quantitative studies on specifics aspects
of the explanations.

We will continue to develop and improve the user inter-
face of EVEE in the future. This also includes adding sup-
port for more expressive DLs, e.g. proof generation using
consequence-based reasoners such as Sequoia (Bate et al.
2016), or counterexamples for (Horn) DLs beyond EL⊥.
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