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Building and maintaining ontologies is a laborious task, especially for large domains, where

knowledge engineers and domain experts work together to transfer their knowledge into an

explicit representation. In Description Logic, the ABox of an ontology is usually filled with

observed symbolic data but constructing the TBox is a more complex endeavor. Assistance

by automated or interactive methods is often valuable. To this end, we reconsider the Formal-

Concept-Analysis-based approach to completely axiomatizing ℰℒ⊥
concept inclusions 𝐶 ⊑𝐷

from graph data [3, 4] and

1. thoroughly revise and simplify its technical description including proofs,

2. equip it with support for already known concept inclusions satisfied in the data (thus

enabling it for ontology completion),

3. analyze its computational complexity,

4. explain how further types of TBox statements supported by ℰℒ++
that are not just

syntactic sugar can be completely axiomatized, viz. role inclusions 𝑟1 ∘ · · · ∘ 𝑟𝑛 ⊑ 𝑠 and

range restrictions ⊤⊑ ∀𝑟.𝐶 ,

5. describe how it can be implemented efficiently,

6. introduce variations that dispense with the computation of disjointness statements

𝐶1 ⊓ · · · ⊓ 𝐶𝑛 ⊑ ⊥ or extremely large concept inclusions without practical relevance,

thereby rendering the approach applicable in practice, albeit some completeness is lost,

7. and evaluate the implementation on real-world datasets.

Formal Concept Analysis (FCA) [5] is a mathematical theory that represents data as formal

contexts in which objects are described by their attributes. These attributes are similar to

atomic statements in propositional logic and unary predicates in first-order logic. The canonical

implication base is a complete set of implications, i.e. it entails all implications satisfied in

the data [6, 7], and no complete set with fewer implications exists [8, 9]. In other words, the

implication base axiomatizes data in form of a formal context by means of implications.
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We employ the description logic ℰℒ++
[10], but we ignore nominals to avoid overfitting in

the axiomatization method and concrete domains (datatypes for strings, numbers, etc.) as no

ℰℒ++
reasoner currently supports them. The Web Ontology Language includes ℰℒ++

as the

profile OWL 2 EL. By exploiting the similarity between concept inclusions and FCA implications,

a complete TBox of concept inclusions can be axiomatized from observed data, i.e. which entails

all concept inclusions satisfied in the data. More specifically, as input we expect graph data in

form of an interpretation ℐ , which includes knowledge graphs, graph databases, and RDF data:

the concept names are the node labels and the role names are the edge labels. Preprocessing

of a knowledge graph might be necessary, e.g. to correctly treat the metadata as well as to

materialize the modelling conventions [11]. Further given may be an already existing TBox 𝒯
consisting of concept inclusions satisfied in ℐ and relative to which ℐ is to be axiomatized, or

rather, of which we compute a completion w.r.t. ℐ . The axiomatization result is called a concept

inclusion base or a completion in the following sense.

[1, Definition 4]. A TBox is complete for ℐ if it entails all concept inclusions satisfied in ℐ .

A concept inclusion base of ℐ relative to 𝒯 is a TBox ℬ of which ℐ is a model and such that

ℬ ∪ 𝒯 is complete for ℐ . We may also call ℬ a completion of 𝒯 w.r.t. ℐ as we obtain a complete

TBox by adding all concept inclusions in ℬ to 𝒯 .

A canonical completion of 𝒯 w.r.t. ℐ can be computed in exponential time [1, Theorem 10]

(see below). This complexity result is tight since there are finite interpretations without any

polynomial-size base.
1

Moreover, if all concept inclusions in 𝒯 come in a particular normal

form, then no base with fewer concept inclusions exists. In order to efficiently treat cycles in

the input (both contained in ℐ or induced by 𝒯 ), the concept inclusions are formulated in an

extension of ℰℒ⊥
that allows for non-tree-shaped concept descriptions. To obtain a usual ℰℒ++

TBox, the canonical concept inclusion base afterwards needs to be rewritten using variables.

In order to compute the canonical completion, the given interpretation ℐ is transformed

into a formal context Kℐ . Its finite attribute set M is specifically designed such that there is a

concept inclusion base involving only conjunctions over M, i.e. which consists of inclusionsd
C⊑

d
D for subsets C,D ⊆ M [1, Lemma 9]. This setting is perfectly suited for FCA since

all necessary computations happen in the top-level conjunctions and there is no need to look

inside the concept descriptions provided by M (which FCA could not do anyway). In particular,

we first use an efficient FCA algorithm [13, 14] to compute the canonical base Can(Kℐ), which

consists of FCA implications C→D (i.e.

⋀︀
C→

⋀︀
D in logical notation), and we then rewrite

these implications into inclusions

d
C⊑

d
D to obtain a minimal concept inclusion base of ℐ .

Moreover, the formal context Kℐ is axiomatized relative to the implication set ℒℐ,𝒯 . On

the one hand, ℒℐ,𝒯 contains the implication {𝐸} → {𝐹} for each two concept descriptions

𝐸,𝐹 ∈ M with 𝐸 ⊑∅ 𝐹 , viz. to avoid the axiomatization of tautological concept inclusions.

On the other hand, the given TBox 𝒯 is taken into account by transforming all its inclusions

into implications over M and adding these to ℒℐ,𝒯 .

[1, Theorem 10]. For each finite interpretation ℐ and each ℰℒ⊥
si TBox 𝒯 of which ℐ is a model,

the TBox Can(ℐ, 𝒯 ) :=
d
Can(Kℐ ,ℒℐ,𝒯 ) is a concept inclusion base of ℐ relative to 𝒯 . It

1

Since each formal context can be seen as an interpretation without role names, this is an immediate corollary to a

result in FCA: there is a sequence of formal contexts with 3·𝑛 objects and 2·𝑛+1 attributes for which the number

of implications in their canonical implication bases is exponential in 𝑛 [12].



is called canonical concept inclusion base and can be computed in time that is exponential in

Dom(ℐ) and polynomial in 𝒯 . If all concept inclusions in 𝒯 have the form 𝐶 ⊑𝐷[ℐℐ]
, then it

contains the fewest inclusions among all concept inclusion bases of ℐ relative to 𝒯 . Furthermore,

there are finite interpretations that have no polynomial-size concept inclusion base.

In addition to concept inclusions, ℰℒ++
further supports role inclusions and range restrictions.

The latter can easily be read off from the input: for each role name 𝑟, we first compute the most

specific concept description 𝐶 that has all 𝑟-successors in ℐ as instances and we then add the

range restriction ⊤⊑ ∀𝑟.𝐶 to the TBox.

All role inclusions can be completely axiomatized by viewing ℐ as a finite automaton. Specifi-

cally for objects 𝑥, 𝑦 in ℐ we denote by A𝑥,𝑦 the automaton with initial state 𝑥 and final state 𝑦.

Now a role inclusion 𝑟1 ∘ · · · ∘ 𝑟𝑛 ⊑ 𝑠 is not satisfied in ℐ iff. there are objects 𝑥, 𝑦 in ℐ with

(𝑥, 𝑦) ∈ (𝑟1 ∘ · · ·∘𝑟𝑛)ℐ but (𝑥, 𝑦) ̸∈ 𝑠ℐ . By definition, (𝑥, 𝑦) ∈ (𝑟1 ∘ · · ·∘𝑟𝑛)ℐ iff. the automaton

A𝑥,𝑦 accepts the word 𝑟1 · · · 𝑟𝑛. So, the complement automaton of the union automaton of

all A𝑥,𝑦 with (𝑥, 𝑦) ̸∈ 𝑠ℐ accepts the word 𝑟1 · · · 𝑟𝑛 iff. the role inclusion 𝑟1 ∘ · · · ∘ 𝑟𝑛 ⊑ 𝑠 is

satisfied in ℐ . Like for the concept inclusions, we use variables to formulate the axiomatized

role inclusions: 𝑝 ∘ 𝑟 ⊑ 𝑞 for each transition (𝑝, 𝑟, 𝑞), and 𝜀⊑ 𝑖 for each initial state, and 𝑓 ⊑ 𝑠
for each final state. It is decidable whether there are equivalent role inclusions without variables

[15], but this seems unnecessary since most reasoners transform role inclusions into finite

automata anyway. All in all, we obtain the following main result.

[1, Theorem 13]. For each finite interpretation ℐ , a complete TBox of ℰℒ⊥
concept inclusions,

range restrictions, and role inclusions satisfied in ℐ can be computed in exponential time. There

are finite interpretations for which such a TBox cannot be of polynomial size.

A technical limitation is that completeness does not go together with the syntactic restriction

on the interplay of role inclusions and range restrictions in an ℰℒ++
TBox 𝒯 that ensures

tractable reasoning [10]: for each role inclusion 𝑟1 ∘ · · · ∘ 𝑟𝑛 ⊑ 𝑠 in 𝒯 where 𝑛 ≥ 1, if 𝒯 does

not entail the range restriction ⊤⊑ ∀𝑟𝑛.𝐶 , then 𝒯 neither entails ⊤⊑ ∀𝑠.𝐶 (i.e. new concept

memberships for objects in the range of 𝑠 are forbidden). This restriction might not be satisfied

by a TBox that is complete for both role inclusions and range restrictions [2, Example XXIII].

To ensure that the TBox is within ℰℒ++
, we could weaken the range restrictions: for each role

name 𝑠, we obtain a suitable range restriction ⊤⊑∀𝑠.𝐶 by computing the most specific concept

description 𝐶 that has all 𝑠-successors in ℐ as instances (as above) but also all 𝑟-successors for

each role name 𝑟 leading to a final state (since these represent role inclusions · · · ∘ 𝑟 ⊑ 𝑠).

Alternatively, we could remove all role inclusions that contribute to a violation of the syntactic

restriction (by simply computing a language difference in the above automaton representation)

and leave the range restrictions unchanged. To sum up, only two of the following goals can be

achieved: the base satisfies the syntactic restriction, the base is complete for all range restrictions,

the base is complete for all role inclusions.

Regarding efficient implementation, it is important to reduce the input interpretation by

grouping together all objects that cannot be distinguished by any concept description. Thereby

the interpretation can be made significantly smaller and all subsequent steps need less time.

However, in first experiments several computations did not finish due to extremely large concept

descriptions used in the concept inclusion base to ensure completeness. We conjecture that



such huge parts in the concept inclusion base do not have practical relevance or suffer from

overfitting, and thus we added parameters (conjunction size limit and role depth bound) to

dispense with the computation of these irrelevant huge parts but also to control the loss of

completeness. Experiments further revealed that often more than half of the computation

time is required for generating disjointness statements 𝐶1 ⊓ · · · ⊓ 𝐶𝑛 ⊑ ⊥. We explain how

intermediate computation steps can be stopped early in order to avoid computing them.

We implemented the method in the programming language Scala and we evaluated the

prototype with the plethora of ontologies from real-world applications used in the ORE 2015

Reasoner Competition. This collection is split into OWL 2 EL and OWL 2 DL ontologies. The

former are all expressible in ℰℒ++
. For the latter, we syntactically transform as many axioms

as possible into ℰℒ++
and remove the others. The goal then was to compute, for each such

ontology, the completion of the TBox 𝒯 w.r.t. the interpretation ℐ obtained by viewing the

respective ABox under closed-world assumption. To ensure that ℐ is a model of 𝒯 , we saturate

ℐ by means of the inclusions in 𝒯 if necessary. Altogether we obtained 614 test datasets with up

to 747,998 objects, of which 446 (72.64 %) are acyclic. The average number of triples per object

varies from slightly over 0 up to 25.39. Computation of concept inclusion bases finished for all

reduced datasets with no more than 100 objects. For reduced datasets with up to 1,000 objects,

the first errors due to insufficient computing resources occurred without restrictions. Between

1,000 and 10,000 objects, computations failed without restrictions, but otherwise succeeded in

the majority of cases. Reduced datasets with more than 10,000 objects could only sometimes

be axiomatized with very restricted settings, given 8 hours time and 80 GB memory on a

twelve-year-old computer server. However, we did not implement the rewriting of the concept

inclusion base into ℰℒ++
, nor the axiomatization of role inclusions and range restrictions.

That the theoretical approach itself can be extended to more expressive description logics has

already been proven [16, 17], but it is unclear whether such an extended approach can still be

efficiently implemented and used in practice. From the perspective of the underlying article [1],

this seems possible for description logics characterized by simulations, e.g. ℰℒℐ or Horn-𝒜ℒ𝒞.

An interesting question for future research would be whether one can give any kind of

completeness guarantee if a conjunction size limit is used, as already done for the role depth

bound [18]. A smaller task would be to investigate how role inclusions and range restrictions

can be integrated into the background knowledge after they have been computed but prior to

axiomatizing the concept inclusions, preferably yielding an overall minimal base.

Furthermore, the computation can be speed-up with even faster FCA algorithms for enu-

merating closures. The employed FCA algorithm [13, 14] is currently the fastest algorithm

for computing the canonical implication base, but it is unfortunately only single-threaded.

Developing a multi-threaded variant is thus another future goal. It might already help to change

its depth-first behaviour. Apart from that one could use a faster programming language (like

C++), more computation time, a faster computer server, or optimize the prototype.

A concept inclusion 𝐶 ⊑𝐷 is confident if the ratio |(𝐶 ⊓𝐷)ℐ |/|𝐶ℐ | exceeds a pre-defined

limit but need not be 100%. A confident inclusion base extends the canonical inclusion base

[19], and the prototype could be easily upgraded as it already computes the necessary pieces.

We have not considered keys supported by the OWL 2 EL profile. Learning of keys from RDF

data using FCA has been addressed [20–22]. To apply this approach to description logic and

OWL it must be extended towards concept descriptions in place of concept names (RDF classes).



Acknowledgments

This work has been supported by Deutsche Forschungsgemeinschaft (DFG) in Projects 430150274

(Repairing Description Logic Ontologies) and 389792660 (TRR 248: Foundations of Perspicuous

Software Systems), and has further been supported by the Saxon State Ministry for Science,

Culture, and Tourism (SMWK) by funding the Center for Scalable Data Analytics and Artificial

Intelligence (ScaDS.AI).

References

[1] Francesco Kriegel. Efficient Axiomatization of OWL 2 EL Ontologies from Data by means

of Formal Concept Analysis. In: Proc. of AAAI. 2024. doi: 10.1609/aaai.v38i9.28930.

[2] Francesco Kriegel. Efficient Axiomatization of OWL 2 EL Ontologies from Data by means of
Formal Concept Analysis (Extended Version). LTCS-Report 23-01. Technische Universität

Dresden, 2023. doi: 10.25368/2023.214. See also the addendum: 10.5281/zenodo.10908141.

[3] Franz Baader, Felix Distel. A Finite Basis for the Set of ℰℒ-Implications Holding in a

Finite Model. In: Proc. of ICFCA. 2008, pp. 46–61. doi: 10.1007/978-3-540-78137-0_4.

[4] Franz Baader, Felix Distel. Exploring Finite Models in the Description Logic ℰℒ
gfp

. In:

Proc. of ICFCA. 2009, pp. 146–161. doi: 10.1007/978-3-642-01815-2_12.

[5] Bernhard Ganter, Rudolf Wille. Formal Concept Analysis – Mathematical Foundations.
1999. doi: 10.1007/978-3-642-59830-2.

[6] Jean-Luc Guigues, Vincent Duquenne. Famille minimale d’implications informatives

résultant d’un tableau de données binaires. In: Mathématiques et Sciences Humaines 95

(1986), pp. 5–18. url: http://www.numdam.org/item/MSH_1986__95__5_0.pdf.

[7] Gerd Stumme. Attribute Exploration with Background Implications and Exceptions. In:

1996, pp. 457–469. doi: 10.1007/978-3-642-80098-6_39.

[8] Marcel Wild. A Theory of Finite Closure Spaces Based on Implications. In: Advances in
Mathematics 108.1 (1994), pp. 118–139. doi: 10.1006/aima.1994.1069.

[9] Felix Distel. Learning description logic knowledge bases from data using methods from
formal concept analysis. Doctoral thesis. Technische Universität Dresden, 2011. url:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-70199.

[10] Franz Baader, Sebastian Brandt, Carsten Lutz. Pushing the ℰℒ Envelope Further. In: Proc.
of OWLED. 2008. url: http://ceur-ws.org/Vol-496/owled2008dc_paper_3.pdf.

[11] Markus Krötzsch. Too Much Information: Can AI Cope with Modern Knowledge Graphs?

In: Proc. of ICFCA. 2019, pp. 17–31. doi: 10.1007/978-3-030-21462-3_2.

[12] Sergei O. Kuznetsov. On the Intractability of Computing the Duquenne-Guigues Base. In:

J. Univers. Comput. Sci. 10.8 (2004), pp. 927–933. doi: 10.3217/JUCS-010-08-0927.

[13] Radek Janoštík, Jan Konečný, Petr Krajča. LinCbO: Fast algorithm for computation of the

Duquenne-Guigues basis. In: Inf. Sci. 572 (2021), pp. 223–240. doi: 10.1016/j.ins.2021.04.104.

https://doi.org/10.1609/aaai.v38i9.28930
https://doi.org/10.25368/2023.214
https://zenodo.org/doi/10.5281/zenodo.10908141
https://doi.org/10.1007/978-3-540-78137-0_4
https://doi.org/10.1007/978-3-642-01815-2_12
https://doi.org/10.1007/978-3-642-59830-2
http://www.numdam.org/item/MSH_1986__95__5_0.pdf
https://doi.org/10.1007/978-3-642-80098-6_39
https://doi.org/10.1006/aima.1994.1069
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-70199
http://ceur-ws.org/Vol-496/owled2008dc_paper_3.pdf
https://doi.org/10.1007/978-3-030-21462-3_2
https://doi.org/10.3217/JUCS-010-08-0927
https://doi.org/10.1016/j.ins.2021.04.104


[14] Radek Janoštík, Jan Konečný, Petr Krajča. Pruning techniques in LinCbO for the compu-

tation of the Duquenne-Guigues basis. In: Inf. Sci. 616 (2022), pp. 182–203. doi: 10.1016/j.

ins.2022.10.057.

[15] Walter Bucher, Johann Hagauer. It is Decidable Whether a Regular Language is Pure

Context-Free. In: Theor. Comput. Sci. 26 (1983), pp. 233–241. doi: 10.1016/0304-3975(83)

90088-9.

[16] Francesco Kriegel. Acquisition of Terminological Knowledge from Social Networks in

Description Logic. In: Formal Concept Analysis of Social Networks. 2017, pp. 97–142. doi:

10.1007/978-3-319-64167-6_5.

[17] Francesco Kriegel. Joining Implications in Formal Contexts and Inductive Learning in a

Horn Description Logic. In: Proc. of ICFCA. 2019, pp. 110–129. doi: 10.1007/978-3-030-

21462-3_9.

[18] Daniel Borchmann, Felix Distel, Francesco Kriegel. Axiomatisation of general concept

inclusions from finite interpretations. In: J. Appl. Non Class. Logics 26.1 (2016), pp. 1–46.

doi: 10.1080/11663081.2016.1168230.

[19] Daniel Borchmann. Towards an Error-Tolerant Construction of ℰℒ⊥
-Ontologies from

Data Using Formal Concept Analysis. In: Proc. of ICFCA. 2013, pp. 60–75. doi: 10.1007/978-

3-642-38317-5_4.

[20] Manuel Atencia, Jérôme David, Jérôme Euzenat, Amedeo Napoli, Jérémy Vizzini. Link

key candidate extraction with relational concept analysis. In: Discret. Appl. Math. 273

(2020), pp. 2–20. doi: 10.1016/j.dam.2019.02.012.

[21] Nacira Abbas, Alexandre Bazin, Jérôme David, Amedeo Napoli. Non-Redundant Link

Keys in RDF Data: Preliminary Steps. In: Proc. of FCA4AI. 2021, pp. 125–130. url: https:

//ceur-ws.org/Vol-2972/paper12.pdf.

[22] Nacira Abbas, Alexandre Bazin, Jérôme David, Amedeo Napoli. A Study of the Discovery

and Redundancy of Link Keys Between Two RDF Datasets Based on Partition Pattern

Structures. In: Proc. of CLA. 2022, pp. 175–189. url: https://ceur-ws.org/Vol-3308/Paper14.

pdf.

https://doi.org/10.1016/j.ins.2022.10.057
https://doi.org/10.1016/j.ins.2022.10.057
https://doi.org/10.1016/0304-3975(83)90088-9
https://doi.org/10.1016/0304-3975(83)90088-9
https://doi.org/10.1007/978-3-319-64167-6_5
https://doi.org/10.1007/978-3-030-21462-3_9
https://doi.org/10.1007/978-3-030-21462-3_9
https://doi.org/10.1080/11663081.2016.1168230
https://doi.org/10.1007/978-3-642-38317-5_4
https://doi.org/10.1007/978-3-642-38317-5_4
https://doi.org/10.1016/j.dam.2019.02.012
https://ceur-ws.org/Vol-2972/paper12.pdf
https://ceur-ws.org/Vol-2972/paper12.pdf
https://ceur-ws.org/Vol-3308/Paper14.pdf
https://ceur-ws.org/Vol-3308/Paper14.pdf

