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Abstract
The unification type of an equational theory is defined using a preorder on substitutions, called the
instantiation preorder, whose scope is either restricted to the variables occurring in the unification
problem, or unrestricted such that all variables are considered. It has been known for more than
three decades that the unification type of an equational theory may vary, depending on which
instantiation preorder is used. More precisely, it was shown in 1991 that the theory ACUI of an
associative, commutative, and idempotent binary function symbol with a unit is unitary w.r.t. the
restricted instantiation preorder, but not unitary w.r.t. the unrestricted one. In 2016 this result
was strengthened by showing that the unrestricted type of this theory also cannot be finitary. Here,
we considerably improve on this result by proving that ACUI is infinitary w.r.t. the unrestricted
instantiation preorder, thus precluding type zero. We also show that, w.r.t. this preorder, the
unification type of ACU (where idempotency is removed from the axioms) and of AC (where
additionally the unit is removed) is infinitary, though it is respectively unitary and finitary in the
restricted case. In the other direction, we prove (using the example of unification in the description
logic EL) that the unification type may actually improve from type zero to infinitary when switching
from the restricted instantiation preorder to the unrestricted one. In addition, we establish some
general results on the relationship between the two instantiation preorders.
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1 Introduction

Syntactic unification of terms was independently introduced by Robinson [47] and Knuth
and Bendix [38] as a tool for computing resolvents in resolution-based theorem proving and
critical pairs in the completion of term rewriting systems. Both showed the important result
that any solvable unification problem has a most general unifier (mgu), i.e., a unifier that
has all other unifiers as instances. In these papers, a substitution θ is defined to be an
instance of a substitution σ if there is a substitution λ such that λσ = θ, i.e., λ(σ(x)) = θ(x)
holds for all variables x in the countably infinite set of variables V available for building
terms. In this paper, we call the preorder on substitutions obtained this way the unrestricted
instantiation preorder and write it as σ ≤V

∅ θ, where the index ∅ indicates that terms are
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8:2 Unification Types and Instantiation Preorders

to be made syntactically equal. In addition to many papers on how to compute the mgu
efficiently (e.g., [43, 42, 25]), properties of the preorder on substitutions defined this way
have, for instance, been investigated in [28, 41].

In his seminal paper [45], Plotkin proposed to build certain equational theories (such
as associativity or commutativity) into the unification algorithm rather than treating their
axiomatization within the general theorem proving process. Similar proposals were also
made in the setting of Knuth-Bendix completion in term rewriting [44, 37]. As already
pointed out by Plotkin, in the equational setting most general unifiers need not exist and
their rôle is instead taken on by minimal complete sets of unifiers, i.e., sets of unifiers such
that every unifier is an instance of a unifier in this set, and no distinct elements in the set
are comparable w.r.t. the instantiation preorder.1 As instantiation preorder he uses what we
call the restricted instantiation preorder, i.e., σ ≤X

E θ where E is the theory modulo which
unification is considered and X is the set of variables occurring in the unification problem.
This preorder requires the existence of a substitution λ such that λ(σ(x)) ≈E θ(x) holds for
all variables x ∈ X. He explains the use of equality modulo E (≈E) in this definition, but
does not comment on the restriction to the variables of the unification problem. Plotkin also
gives an example of an equational theory (associativity A) where minimal complete sets of
unifiers may become infinite, and conjectures that there may exist theories for which such
sets do not exist.

Siekmann proposed to characterize equational theories according to the cardinality and
existence of minimal complete sets of unifiers into the types unitary, finitary, infinitary,
and zero. However, in the first overview paper on results in this direction [46], he uses
the unrestricted instantiation preorder, and the same is true for his work on unification
modulo commutativity [50]. In later overview papers [51, 52, 53] he describes the unrestricted
instantiation preorder in the introduction, but employs the restricted one in the formal
definition of unification types, again without explanation. Due to potential applications of
equational unification in resolution-based theorem proving and term rewriting, unification
properties (among them the unification type) of frequently encountered equational axioms
such as associativity, commutative, idempotency, distributivity and their combinations were
extensively studied in the automated deduction community in the 1980s and 1990s (see
[36, 18, 19] for overviews). More recently, unification in certain logics such as modal and
description logics has drawn considerable interest [31, 13, 8], where the goal is to make
a formula valid or two formulas equivalent by applying a substitution. In particular, the
unification types of various modal logics have been determined (see, e.g., [35, 34, 26, 22, 1,
21, 27]). In both areas, the authors usually employ the restricted instantiation preorder.

In the present paper, we investigate the impact that using the unrestricted rather than
the restricted instantiation preorder has on the unification type. Until now, there were only
two partial results in this direction. Already in [4] it was shown that the theory ACUI of an
associative, commutative, and idempotent binary function symbol f with a unit 0, which
is unitary w.r.t. the restricted instantiation preorder [7] for elementary2 unification, is not
unitary w.r.t. the unrestricted one, and thus must be finitary, infinitary or of type zero.
In [10], this result was strengthened by demonstrating that also type finitary is not possible.
In the present paper, we prove that the unification type of ACUI is actually infinitary w.r.t.
the unrestricted instantiation preorder. We show the same result for the theory AC of an

1 Plotkin actually calls these sets “maximally general set of unifiers” and requires two additional technical
conditions.

2 This means that unification problems may only contain terms built using variables, 0, and f .
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associative and commutative binary function symbol and for ACU, which extends AC with
a unit. Note that ACU is unitary and AC is finitary for elementary unification w.r.t. the
restricted instantiation preorder [56] (see also Section 10.3 in [16]). Quite surprisingly, we are
also able to show that the unification type of the description logic EL actually improves from
type zero [13] to infinitary when switching from the restricted instantiation preorder to the
unrestricted one. In addition to these results for specific theories/logics, we establish some
general results on the relationship between the two instantiation preorders, which among
other things imply that for associativity A and for commutativity C the unification type does
not depend on which of the two instantiation preorders is employed.

2 Basic definitions and general results

Given a signature Σ consisting of a finite set of function symbols (with associated arities)
and a countably infinite set of variables V , the set T (Σ, V ) of terms over Σ with variables
in V is defined in the usual way [16]. An equational theory E is given by a finite set of
identities s ≈ t between terms, which are (implicitly) assumed to be universally quantified.
Such a set of identities E induces the congruence relation ≈E on terms, which can either be
defined syntactically through rewriting or semantically through first-order interpretations of
Σ, with ≈ as identity relation [16].

A substitution σ is a mapping from V to T (Σ, V ) that has a finite domain Dom(σ) :=
{x ∈ V | σ(x) ̸= x}. It can be homomorphically extended to a mapping from T (Σ, V ) to
T (Σ, V ) by defining σ(f(t1, . . . , tn)) := f(σ(t1), . . . , σ(tn)). The variable range VRan(σ) of
σ consists of the set of variables occurring in the terms σ(x) for x ∈ Dom(σ). Substitutions
can be compared using the instantiation preorder: given an equational theory E, a set of
variables X ⊆ V , and two substitutions σ, τ , we say that σ is more general than τ (or τ is
an instance of σ) w.r.t. E and X (written σ ≤X

E τ) if there is a substitution λ such that
λσ ≈X

E τ , i.e., λ(σ(x)) ≈E τ(x) holds for all x ∈ X. In case X = V we also write λσ ≈E τ in
place of λσ ≈V

E τ . It is easy to see that ≤X
E is indeed a preorder, i.e., reflexive and transitive,

but in general not antisymmetric. We write ∼X
E for the equivalence relation induced by ≤X

E ,
i.e., σ ∼X

E τ iff σ ≤X
E τ and τ ≤X

E σ. We say that σ is strictly more general than τ (or τ is a
strict instance of σ) w.r.t. E and X (written σ <X

E τ) if σ ≤X
E τ and σ ̸∼X

E τ .
An E-unification problem is a finite set of equations of the form Γ = {s1 ≈?

E t1, . . . , sn ≈?
E

tn} such that s1, t1, . . . , sn, tn are terms in T (Σ, V ). An E-unifier of Γ is a substitution
σ that solves all the equations in Γ, i.e., satisfies σ(si) ≈E σ(ti) for all i, 1 ≤ i ≤ n. The
unification problem Γ is solvable if it has an E-unifier. The set of all E-unifiers of Γ is
denoted as UE(Γ). For elementary E-unification it is assumed that Σ (and thus also Γ)
contains only function symbols occurring in E. For E-unification with constants Σ and Γ
may contain additional constant symbols, and for general E-unification Σ and Γ may contain
additional function symbols of arbitrary arity.

Unification types for non-empty sets of identities E are usually defined w.r.t. the restricted
instantiation preorder, which is ≤X

E where X is the finite set Var(Γ) of all variables occurring
in the given unification problem Γ, but some authors also use the unrestricted instantiation
preorder ≤V

E . In this section, we will additionally consider settings where X is between these
two extremes. Note that Var(Γ) ⊆ X is required for the set of E-unifiers to be closed under
instantiation.

▶ Lemma 1. If Γ is an E-unification problem and X ⊆ V a set of variables satisfying
Var(Γ) ⊆ X, then σ ∈ UE(Γ) implies θ ∈ UE(Γ) for all substitutions θ such that σ ≤X

E θ.

FSCD 2025
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Given an E-unification problem Γ and some set of variables X with Var(Γ) ⊆ X ⊆ V , we
say that a set S of substitutions is a complete set of E-unifiers of Γ w.r.t. ≤X

E if it consists of
E-unifiers of Γ, and every E-unifier of Γ is an instance of an element of the complete set, i.e.,
for every θ ∈ UE(Γ) there exists σ ∈ S such that σ ≤X

E θ. Such a set is called minimal if it
does not contain two distinct elements that are comparable w.r.t. ≤X

E . It is easy to see that
minimal complete sets of E-unifiers of a given unification problem Γ are unique up to the
equivalence relation ∼X

E induced by the preorder ≤X
E (see, e.g., Corollary 3.13 in [19] and

Theorem 3 below), and thus all have the same cardinality.

▶ Definition 2. Let Γ be a solvable E-unification problem and X a set of variables such that
Var(Γ) ⊆ X ⊆ V . Then the unification type of Γ w.r.t. ≤X

E is
unitary if Γ has a minimal complete set of E-unifiers of cardinality one w.r.t. ≤X

E , whose
single element is then called most general E-unifier (mgu),
finitary if Γ has a finite minimal complete set of E-unifiers of cardinality greater than
one w.r.t. ≤X

E ,
infinitary if Γ has an infinite minimal complete set of E-unifiers w.r.t. ≤X

E ,
zero if Γ does not have a minimal complete set of E-unifiers w.r.t. ≤X

E , i.e., every
complete set is redundant in the sense that it must contain two distinct elements that are
comparable w.r.t. ≤X

E .

Minimal complete sets of unifiers can alternatively be characterized using the following
order-theoretic point of view [3, 19]. Let Γ be an E-unification problem and X ⊆ V a set
of variables satisfying Var(Γ) ⊆ X. We denote the ∼X

E -equivalence class of a unifier σ as
[σ]XE and the set of all equivalence classes of unifiers as [UE(Γ)]XE . The partial order ⪯X

E on
[UE(Γ)]XE induced by the instantiation preorder ≤X

E on unifiers is defined as [σ]XE ⪯X
E [τ ]XE if

σ ≤X
E τ . We say that S ⊆ [UE(Γ)]XE is complete w.r.t. ⪯X

E if every element of [UE(Γ)]XE is
above (w.r.t. ⪯X

E ) some element of S.

▶ Theorem 3 ([19]). Let M be the set of ⪯X
E -minimal elements of [UE(Γ)]XE . If S is a minimal

complete set of E-unifiers of Γ w.r.t. ≤X
E , then M = {[σ]XE | σ ∈ S}. Conversely, if M is

complete in [UE(Γ)]XE , then any set of substitutions obtained by picking one representative
for each element of M is a minimal complete set of E-unifiers of Γ.

Consequently, unification type zero corresponds to the case where the set M of minimal
elements is not complete, whereas the other types are determined by the cardinality of the
set M in case it is complete. Theorem 3.1 in [3] establishes conditions that are necessary,
sufficient, or both for proving unification type zero.3 Here, we present one of these sufficient
conditions since we will use it in Section 3 to show that the unification type of the description
logic EL is zero w.r.t. the restricted instantiation preorder. It was also employed in the first
paper showing unification type zero for an equational theory [29, 30].

▶ Lemma 4 ([3]). If there exists a strictly decreasing chain σ1 >X
E σ2 >X

E σ3 >X
E · · · such

that the set S = {σ1, σ2, σ3, . . .} is a complete set of E-unifiers of Γ w.r.t. ≤X
E , then Γ has

type zero w.r.t. ≤X
E .

3 Note that, in [3], the instantiation preorder is written the other way round, i.e., more general substitutions
are larger.
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Proof. Suppose there exists a chain σ1 >X
E σ2 >X

E σ3 >X
E · · · satisfying the conditions stated

in the lemma. This chain satisfies the following properties:
1. It has no lower bound in UE(Γ), i.e., there is no E-unifier τ of Γ such that σi ≥X

E τ

for all i ≥ 1. To see why this is true, suppose such a unifier τ does exist. Since S is
complete, there is j ≥ 1 such that τ ≥X

E σj >X
E σj+1 ≥X

E τ . Transitivity of ≥X
E yields

that σj+1 ≥X
E σj , but this contradicts σj >X

E σj+1.
2. For all i ≥ 1, if there is τ ∈ UE(Γ) such that σi ≥X

E τ , then there exists τ ′ ∈ UE(Γ) such
that τ ≥X

E τ ′ and σi+1 ≥X
E τ ′. To show this, assume that σi ≥X

E τ . The completeness of
S yields j ≥ 1 such that σi ≥X

E τ ≥X
E σj . This implies that σi ≥X

E σj because ≥X
E is a

transitive relation. Hence, since the chain is strictly decreasing, it follows that i ≤ j, and
thus σi+1 ≥X

E σj+1 and τ ≥X
E σj+1. Consequently, we can set τ ′ := σj+1.

Now, let M be the set of ⪯X
E -minimal elements of [UE(Γ)]XE . To prove that Γ has type zero,

it suffices to show that M is not complete. Assume to the contrary that M is complete.
Then there exists [τ ]XE ∈ M such that [τ ]XE ⪯X

E [σ1]XE , and thus σ1 ≥X
E τ . Since our chain

does not have a lower bound, there must be an i ≥ 1 such that σi ≥X
E τ and σi+1 ̸≥X

E τ .
Using the second property shown for our chain, there exists a unifier τ ′ such that τ ≥X

E τ ′

and σi+1 ≥X
E τ ′. Minimality of [τ ]XE implies that τ ∼X

E τ ′, and thus σi+1 ≥X
E τ ′ ≥X

E τ , which
yields a contradiction. Thus, we have shown that M cannot be complete, which implies that
Γ has type zero. ◀

As usual, we order unification types w.r.t. how bad they are (larger is worse) by setting

zero > infinitary > finitary > unitary.

The unification type w.r.t. ≤X
E of an equational theory E is the worst type of any solvable

E-unification problem w.r.t. ≤X
E . The unrestricted unification type of Γ (E) is the one w.r.t.

≤V
E and the restricted unification type of Γ (E) is the one w.r.t. ≤X

E for X = Var(Γ).
The results on the unification type of equational theories in the literature are usually

shown for the restricted case. As we will demonstrate in this paper, it may indeed make a
considerable difference for the unification type which instantiation preorder is employed in
its definition. This is however not the case in the following situation.

▶ Lemma 5. Let E be an equational theory, Γ an E-unification problem, X0 := Var(Γ),
and X ⊆ V a set of variables such that X0 ⊆ X and V \ X is infinite. If Γ has a minimal
complete set of E-unifiers w.r.t. ≤X

E , then it has a minimal complete set of E-unifiers w.r.t.
≤X0

E of the same cardinality, and vice versa.

Proof. Let S be a minimal complete set of E-unifiers of Γ w.r.t. ≤X
E . For every unifier θ in

S we can rename the variables in VRan(θ) such that they do not belong to X by applying an
appropriate permutation π that maps the variables of VRan(θ) bijectively to a set of variables
Y with |Y | = | VRan(θ)| and Y ∩ (X ∪ VRan(θ)) = ∅. Such a finite set Y of variables exists
since VRan(θ) is finite and V \ X is infinite. For a given bijection p : VRan(θ) → Y , we
can define π as follows: π(z) := p(z) for all z ∈ VRan(θ), π(y) := p−1(y) for all y ∈ Y , and
π(x) = x for all other variables. Note that π is a substitution since its domain is VRan(θ)∪Y ,
which is finite. To show that π really is a permutation, i.e., a bijective mapping from V

to V , it is sufficient to show that it is an injective mapping from V to V (see Lemma 2.6
in [28]). This is an immediate consequence of the facts that p and p−1 are bijections and Y

and VRan(θ) are disjoint.
The substitution πθ is equivalent to θ w.r.t. the equivalence relation ∼V

∅ induced by ≤V
∅ ,

and thus also w.r.t. ∼X
E . In fact, π−1πθ = θ. If we restrict the domain of this substitution to

X, then the resulting substitution πθ|X is still equivalent to θ w.r.t. ∼X
E and also satisfies

FSCD 2025
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VRan(πθ|X) ∩ X = ∅. To see the latter, consider a variable x ∈ Dom(πθ|X). First assume
that x ∈ Dom(θ) ∩ X. Then all the variables in θ(x) belong to VRan(θ), and thus all
the variables in πθ|X(x) belong to Y , which is disjoint with X. If x ∈ X \ Dom(θ), then
πθ|X(x) = π(x) ̸= x. Since Dom(π) = VRan(θ) ∪ Y and Y is disjoint with X, this implies
x ∈ VRan(θ), and thus π(x) ∈ Y .

Let S ′ be the set of substitutions obtained from S by applying this renaming and domain
restriction process to every element of S. Due to the ∼X

E -equivalence of the elements of S
with their modified variants in S ′ and the fact that X contains all the variables occurring
in Γ, it is easy to see that S ′ is also a minimal complete set of E-unifiers of Γ w.r.t. ≤X

E .
In a second step, we restrict the domains of the elements of S ′ to X0. Given an element
θ of S ′, we define θ|X0 to be the substitution that coincides with θ on X0 and maps each
variable x ̸∈ X0 to x. Since θ is an E-unifier of Γ and this unification problem contains only
variables from X0, the substitution θ|X0 is clearly also an E-unifier of Γ. We claim that
θ|X0 ≤X

E θ. To prove this, we define the substitution λ by setting λ(x) := θ(x) if x ∈ X \ X0
and λ(x) := x for all other variables. We now show that λθ|X0 ≈X

E θ. If x ∈ X0 ∩ Dom(θ),
then λ(θ|X0(x)) = λ(θ(x)) = θ(x). The first identity holds by the definition of θ|X0 and the
second since the variables occurring in θ(x) are elements of VRan(θ), and thus do not belong
to X. If x ∈ X0 \ Dom(θ), then λ(θ|X0(x)) = λ(x) = x = θ(x). Finally, if x ∈ X \ X0, then
λ(θ|X0(x)) = λ(x) = θ(x). Again, the first identity holds by the definition of θ|X0 and the
second by the definition of λ. Summing up, we have shown that the following holds for every
element θ of S ′: θ|X0 is an E-unifier of Γ and θ|X0 ≤X

E θ. Since S ′ is a minimal complete
set of E-unifiers of Γ w.r.t. ≤X

E , its elements are minimal w.r.t. ≤X
E , which yields θ|X0 ∼X

E θ.
Consequently, we know that the set S ′|X0 := {θ|X0 | θ ∈ S ′} is also a minimal complete set
of E-unifiers of Γ w.r.t. ≤X

E .
We claim that the same is true w.r.t. the smaller set of variables X0, i.e., that S ′|X0

is also minimal and complete w.r.t. ≤X0
E . Completeness trivially follows from the fact

that ≤X
E ⊆ ≤X0

E . To prove minimality, assume that θ and τ are two distinct elements of
S ′|X0 . Then these two substitutions are not comparable w.r.t. ≤X

E . Assume that they are
comparable w.r.t. ≤X0

E , i.e., there is a substitution λ such that λ(θ(x)) ≈E τ(x) holds for
all x ∈ X0. By our construction of S ′|X0 , we know that Dom(θ) ⊆ X0, Dom(τ) ⊆ X0, and
VRan(θ) ∩ X = ∅. If x is a variable in X \ X0, then λ(θ(x)) = λ(x) and τ(x) = x. Thus,
if we modify λ to λ′ such that λ′(x) = x holds for all x ∈ X \ X0, then λ′(θ(x)) = τ(x)
holds for all x ∈ X \ X0. This modification has no effect on the variables x ∈ X0. In fact,
let x be such a variable. If x ∈ Dom(θ), then θ(x) does not contain any variable from X,
and thus λ′(θ(x)) = λ(θ(x)) ≈E τ(x) holds. If x /∈ Dom(θ), then θ(x) = x, and thus again
λ′(θ(x)) = λ′(x) = λ(x) = λ(θ(x)) ≈E τ(x) since λ′ coincides with λ on the variables in X0.
Summing up, we have shown that the assumption θ ≤X0

E τ implies θ ≤X
E τ , which contradicts

the fact that S ′|X0 is minimal w.r.t. ≤X
E . Consequently, S ′|X0 is a minimal complete set

w.r.t. ≤X0
E , and this set has the same cardinality as the minimal complete set S of E-unifiers

of Γ w.r.t. ≤X
E we have started with.

Conversely, let S be a minimal complete set of E-unifiers of Γ w.r.t. ≤X0
E . By applying

the same construction as in the proof of the other direction, we can assume without loss of
generality that every unifier θ ∈ S satisfies Dom(θ) ⊆ X0 and VRan(θ) ∩ X = ∅. In fact, by
applying this construction to a minimal complete set S ′ of E-unifiers of Γ w.r.t. ≤X0

E , we
obtain a new set S where every element θ′ of the original set S ′ is replaced with an element θ

that satisfies the above conditions and is ∼X
E -equivalent to θ′, and thus also ∼X0

E -equivalent.
Consequently, this new set S is also a minimal complete set of E-unifiers of Γ w.r.t. ≤X0

E .
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We claim that S is also minimal and complete w.r.t. the larger set of variables X.
Minimality trivially follows from the fact that ≤X

E ⊆ ≤X0
E . To prove completeness, assumed

that τ is an E-unifier of Γ. Completeness of S w.r.t. ≤X0
E yields an element θ of S such

that θ ≤X0
E τ , i.e., there is a substitution λ such that λθ(x) ≈E τ(x) holds for all x ∈ X0.

Let x be a variable in X \ X0. Then λθ(x) = λ(x). Thus, if we modify λ to λ′ such that
λ′(x) = τ(x) holds for all x ∈ X \ X0, then λ′(θ(x)) = τ(x) holds for all x ∈ X \ X0. The
claim that this modification has no effect for the variables x ∈ X0 can be shown as in the
proof of minimality of S ′|X0 w.r.t. ≤X0

E above. This proves that λ′θ(x) ≈E τ(x) holds for all
x ∈ X, and thus S is also complete w.r.t. ≤X

E . ◀

The following theorem is an immediate consequence of this lemma.

▶ Theorem 6. Let E be an equational theory, Γ an E-unification problem, and X ⊆ V a set
of variables such that Var(Γ) ⊆ X and V \ X is infinite. Then the restricted unification type
of Γ coincides with the unification type of Γ w.r.t. ≤X

E .

Note that the condition of the theorem is in particular satisfied if X is a finite superset of
Var(Γ). However, it is clearly not satisfied for X = V , which corresponds to the unrestricted
instantiation preorder setting. We will see below that in this case the unification type can
indeed depend on whether the restricted or the unrestricted instantiation preorder is used.
However, there is a special case where this cannot happen.

▶ Theorem 7. Let E be an equational theory, Γ an E-unification problem, and S a set
of E-unifiers of Γ such that VRan(σ) ∪ Dom(σ) ⊆ Var(Γ) holds for all σ ∈ S. Then S
is a minimal complete set of E-unifiers of Γ w.r.t. ≤V

E iff it is a minimal complete set of
E-unifiers of Γ w.r.t. ≤Var(Γ)

E .

Proof. Let S be a minimal complete set of E-unifiers of Γ w.r.t. ≤V
E . Since ≤V

E ⊆ ≤Var(Γ)
E ,

this set is also complete w.r.t. ≤Var(Γ)
E . To show minimality w.r.t. ≤Var(Γ)

E , assume to the
contrary that σ, θ are two distinct elements of S such that σ ≤Var(Γ)

E θ, i.e., there is a
substitution λ such that λσ(x) ≈E θ(x) holds for all x ∈ Var(Γ). We modify λ to λ′ by
setting λ′(x) = x for all variables x ∈ V \ Var(Γ). For x ∈ Var(Γ), we know that σ(x)
contains only variables from VRan(σ) ⊆ Var(Γ) if x ∈ Dom(σ) or σ(x) = x ∈ Var(Γ). Since
λ and λ′ coincide on Var(Γ), this yields λ′σ(x) = λσ(x) ≈E θ(x). For x ∈ V \ Var(Γ),
this variable does not belong to any of the sets Dom(σ), Dom(θ), and Dom(λ′), and thus
λ′σ(x) = λ′(x) = x = θ(x). Summing up, we have shown that σ ≤V

E θ, which contradicts our
assumption that S is minimal w.r.t. ≤V

E .
Conversely, assume that S is a minimal complete set of E-unifiers of Γ w.r.t. ≤Var(Γ)

E .
Since ≤V

E ⊆ ≤Var(Γ)
E , minimality also holds w.r.t. ≤V

E . To show completeness w.r.t. ≤V
E ,

assume that θ is an E-unifier of Γ. Completeness of S w.r.t. ≤Var(Γ)
E yields a substitution

σ ∈ S such that σ ≤Var(Γ)
E θ. Similarly to the first part of the proof, we can show that

this also implies σ ≤V
E θ. The difference is that now θ is an arbitrary unifier, and thus

VRan(θ) ∪ Dom(θ) ⊆ Var(Γ) need not hold. Let λ be such that λσ(x) ≈E θ(x) holds for
all x ∈ Var(Γ). We modify λ to λ′ by setting λ′(x) = θ(x) for all variables x ∈ V \ Var(Γ).
For x ∈ Var(Γ), we obtain λ′σ(x) = λσ(x) ≈E θ(x) as in the first part of the proof. For
x ∈ V \Var(Γ), this variable does not belong to Dom(σ), and thus λ′σ(x) = λ′(x) = θ(x). ◀

Examples of equational theories where the conditions of this theorem are always satisfied
are the empty theory (unitary), the theory C axiomatizing commutativity of a binary function
symbol (finitary), and the theory A axiomatizing associativity of a binary function symbol
(infinitary). This is an easy consequence of the known algorithms [42, 50, 45] computing (or
enumerating, in the case of A) minimal complete sets of unifiers for these theories.
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The following result is an easy consequence of the fact that ≤V
E ⊆ ≤Var(Γ)

E .

▶ Theorem 8. Let E be an equational theory. If E has unrestricted unification type unitary
(finitary), then it has restricted unification type unitary (finitary or unitary).

Proof. A given finite minimal complete set S of E-unifiers of Γ w.r.t. ≤V
E is also complete

w.r.t. ≤Var(Γ)
E . If it is not minimal (which can only happen in the finitary case), then one

can make it minimal by removing redundant element (i.e., elements θ such that S contains
an element σ <

Var(Γ)
E θ) without destroying completeness. ◀

3 The unification type of EL

Unification was introduced in description logics as a tool for detecting redundancies in large
knowledge bases [14]. The description logic EL [6] has drawn considerable attention since
its standard reasoning problems can be solved in polynomial time while the logic is still
expressive enough for formalizing bio-medical ontologies [11]. In [12, 13] it was shown that,
in the setting of unification with constants, EL has unification type zero w.r.t. the restricted
instantiation preorder. In the following, we will analyze the example used in [13] to prove
this result in more detail, and explain why it does not work for the unrestricted instantiation
preorder. Then we show that the unification type of EL in the unrestricted setting is actually
infinitary, not just for this example, but in general.

But first, we briefly introduce EL and recall why unification in EL can be seen as unification
modulo an equational theory (see [6, 13, 15] for more detailed descriptions). Given sets of
concept names (unary predicates) and role names (binary predicates), EL concept descriptions
(or simply concepts) are built from concept names using the concept constructors top concept
(⊤), conjunction (C ⊓ D), and existential restriction (∃r.C). In the model-theoretic semantics
of EL, a given interpretation I assigns sets CI to concept descriptions C according to the
semantics of the constructors. To be more precise, an interpretation I = (∆I , ·I) consists
of a non-empty interpretation domain and an extension function that assigns subsets of
this domain to concept names and binary relations on the domain to role names. This
interpretation function is extended to concept descriptions as follows:

⊤I := ∆I , (C ⊓ D)I := CI ∩ DI , (∃r.C)I := {d ∈ ∆I | ∃e ∈ CI such that (d, e) ∈ rI}.

The concept description C is subsumed by the concept description D (written C ⊑ D) if
CI ⊆ DI holds for all interpretations I, and C and D are equivalent (written C ≡ D) if
they subsume each other.

In [13], the notion of a reduced EL concept is employed to derive characterizations of
equivalence and subsumption of EL concepts. Here, we recall this notion and the characteriz-
ations since they are used later on to explain why EL has unification type zero w.r.t. the
restricted instantiation preorder. Küsters [39] introduces the following rules for reducing EL
concept descriptions:

C ⊓ ⊤ → C for all EL concept descriptions C,

A ⊓ A → A for all concept names A,

∃r.C ⊓ ∃r.D → ∃r.C for all EL concept descriptions C, D with C ⊑ D.

A reduced form of a given EL concept description C is then obtained from C by applying
these rules exhaustively modulo associativity and commutativity of ⊓. The following theorem
is stated in [13] as an easy consequence of Corollary 6.3.1 on page 181 of [39].
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▶ Theorem 9 (Theorem 3.1 of [13]). Let C, D be EL concept descriptions, and Ĉ, D̂ reduced
forms of C, D, respectively. Then C ≡ D iff Ĉ is identical to D̂ up to associativity and
commutativity of ⊓.

This theorem is used in [13] to derive a recursive characterization of subsumption in EL.

▶ Corollary 10 (Corollary 3.2 of [13]). Let C = A1 ⊓ . . . ⊓ Ak ⊓ ∃r1.C1 ⊓ . . . ⊓ ∃rm.Cm and
D = B1 ⊓ . . . ⊓ Bℓ ⊓ ∃s1.D1 ⊓ . . . ⊓ ∃sn.Dn, where A1, . . . , Ak, B1, . . . , Bℓ are concept names.
Then C ⊑ D iff {B1, . . . , Bℓ} ⊆ {A1, . . . , Ak} and for every j, 1 ≤ j ≤ n, there exists an
i, 1 ≤ i ≤ m, such that ri = sj and Ci ⊑ Dj.

From this corollary, the following lemma is then derived in [13].

▶ Lemma 11 (Lemma 3.3 of [13]). If C, D are reduced EL concept descriptions such that
∃r.D ⊑ C, then C is either ⊤, or of the form C = ∃r.C1 ⊓ . . . ⊓ ∃r.Cn where n ≥ 1;
C1, . . . , Cn are reduced and pairwise incomparable w.r.t. subsumption; and D ⊑ C1, . . . , D ⊑
Cn. Conversely, if C, D are EL concept descriptions such that C = ∃r.C1 ⊓ . . . ⊓ ∃r.Cn and
D ⊑ C1, . . . , D ⊑ Cn, then ∃r.D ⊑ C.

Equivalence of EL concept descriptions can be axiomatized by the equational theory
bSLmO of bounded semilattices with monotone operators [54, 15, 55]. For this purpose, we
view the conjunction operator ⊓ as a binary function symbol, ⊤ as a constant symbol, and
∃r. for a role name r as a unary function symbol. The theory bSLmO over this signature
then consists of the identities stating that ⊓ is associative, commutative, and idempotent,
has ⊤ as unit, and existential restrictions as monotone operators:

x ⊓ y ≈ y ⊓ x, (x ⊓ y) ⊓ z ≈ x ⊓ (y ⊓ z), x ⊓ x ≈ x, x ⊓ ⊤ ≈ x, ∃r.x ⊓ ∃r.(x ⊓ y) ≈ ∃r.(x ⊓ y).

For unification in EL we partition the set of concept names into concept variables and
concept constants. Substitutions can then replace concept variables in EL concept descriptions
with EL concept descriptions. Unifiers are supposed to solve equations between concept
descriptions with variables by making them equivalent. This corresponds to unification
with constants modulo the equational theory bSLmO. In the following, we use ≈EL (rather
than ≈bSLmO) to denote equivalence between EL concept descriptions and also employ the
subscript EL when writing the respective instantiation preorders.

▶ Example 12. Consider the EL-unification problem Γ := {x ⊓ ∃r.y ≈?
EL ∃r.y}. Then, for

every n ≥ 0, the substitution

σn := {x 7→ ∃r.z1 ⊓ . . . ⊓ ∃r.zn, y 7→ z1 ⊓ . . . ⊓ zn ⊓ z}

for distinct variables x, y, z1, . . . , zn, z is an EL-unifier of Γ, where the empty conjunction is
⊤, i.e., σ0 = {x 7→ ⊤, y 7→ z}. We will show below that, w.r.t. the restricted instantiation
preorder, the set {σn | n ≥ 0} is a complete set of EL-unifiers that constitutes a strictly
decreasing chain σ0 >

{x,y}
EL σ1 >

{x,y}
EL σ2 >

{x,y}
EL · · · of more and more general unifiers.

According to Lemma 4 this implies that Γ has unification type zero, and thus EL has
unification type zero.

▶ Lemma 13. Let Γ and σn for n ≥ 0 be defined as in Example 12. Then the set {σn | n ≥ 0}
is a complete set of EL-unifiers of Γ w.r.t. ≤{x,y}

EL .
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Proof. Let σ be an EL-unifier of Γ and C := σ(y) and D := σ(x). Then ∃r.C ⊑ D.
In addition, we can assume without loss of generality that C and D are reduced. The
characterization of subsumption in EL (see Corollary 10) yields D = ∃r.D1 ⊓ . . . ⊓ ∃r.Dn for
n ≥ 0 EL concept descriptions D1, . . . , Dn satisfying C ⊑ D1, . . . , C ⊑ Dn (see Lemma 11).
Thus, if we define λ := {z1 7→ D1, . . . , zn 7→ Dn, z 7→ C}, then λσn ≈{x,y}

EL σ, which shows
σn ≤{x,y}

EL σ. ◀

▶ Lemma 14. If σn for n ≥ 0 are defined as in Example 12, then σ0 >
{x,y}
EL σ1 >

{x,y}
EL

σ2 >
{x,y}
EL · · · .

Proof. First note that σn+1 ≤{x,y}
EL σn since λσn+1 ≈{x,y}

EL σn for λ := {zn+1 7→ ⊤}. Second,
assume that σn ≤{x,y}

EL σn+1, i.e., there is a substitution τ such that τσn ≈{x,y}
EL σn+1. Then

∃r.τ(z1) ⊓ . . . ⊓ ∃r.τ(zn) ≈EL ∃r.z1 ⊓ . . . ⊓ ∃r.zn+1. Consequently, by Theorem 9, the reduced
forms of these two concept descriptions would need to be equal up to associativity and
commutativity of ⊓. However, the reduced form of the concept description on the left-hand
side has at most n existential restrictions, whereas the reduced form of the concept description
on the right-hand side has n + 1 existential restrictions, which yields a contradiction. Thus,
we have shown σn+1 <

{x,y}
EL σn. ◀

The following theorem is now an immediate consequence of Lemma 4.

▶ Theorem 15. The restricted unification type of EL is zero.

With respect to the unrestricted instantiation preorder, the instance relationship between
the substitutions σn and σn+1 no longer holds. More generally, we can show the following
result.

▶ Lemma 16. If σn for n ≥ 0 are defined as in Example 12, then σn ̸≤V
EL σm for all distinct

n, m ≥ 0.

Proof. Let n < m. Then we know from Lemma 14 that σn ̸≤{x,y}
EL σm, which implies

σn ̸≤V
EL σm since ≤V

EL ⊆ ≤{x,y}
EL .

Assume that n > m and that there is a substitution λ such that λσn ≈EL σm. Then
λσn(x) ≈EL σm(x), and since σm(x) does not contain zn, but σn(x) does, λ must replace zn

by a concept description not containing zn, and thus in particular λ(zn) ̸≈EL zn. But then
λσn(zn) = λ(zn) ̸≈EL zn and σm(zn) = zn yield a contradiction to λσn ≈EL σm. ◀

Thus, w.r.t. the unrestricted instantiation preorder, the set {σn | n ≥ 0} consists of
unifiers that are incomparable. However, this set is also no longer complete.

▶ Lemma 17. Let Γ and σn for n ≥ 0 be defined as in Example 12. The EL-unifier
σ := {x 7→ ∃r.A, y 7→ A} of Γ is not an instance of any of the substitutions σn for n ≥ 0 if
we use the unrestricted instantiation preorder.

Proof. First, note that σ0 ≤V
EL σ is not possible since σ0(x) = ⊤, and thus λσ0(x) = ⊤

holds for all substitutions λ, whereas σ(x) = ∃r.A. If n ≥ 1 and λσn ≈EL σ, then λ must
replace all variables zi occurring in σn(x) with A, and thus λσn(zi) = λ(zi) ≈EL A. However,
σ(zi) = zi, which yields a contradiction to λσn ≈EL σ. ◀

Summing up, we have seen that the EL-unification problem Γ of Example 12 has unification
type zero for the restricted instantiation preorder, but the proof that we have used to show
this result does not work if we employ the unrestricted instantiation preorder instead.
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In the following, we prove the general result that the unrestricted unification type of
EL is not zero. Note that, by Theorem 8, this type cannot be unitary or finitary, and thus
must be infinitary. The main idea underlying our proof of this result is to show that, up
to the equivalence relation ∼V

EL, every substitution has only finitely many more general
substitutions w.r.t. ≤V

EL. The most challenging technical result needed to prove this is the
following lemma.

▶ Lemma 18. Let σ, θ be substitutions such that σ ≤V
EL θ. Then there is a substitution σ′

such that σ ∼V
EL σ′ and Dom(σ′) ⊆ Dom(θ).

Proof. First note that we can assume without loss of generality that VRan(σ) ∩ Dom(θ) =
∅. Otherwise, we can apply a permutation to σ that renames the variables in VRan(σ)
appropriately, which yields a substitution that is ∼V

EL-equivalent to σ and satisfies the
required disjointness condition (see the proof of Lemma 5 for how such a permutation can be
obtained).

Since σ ≤V
EL θ, we know that there is a substitution λ such that λσ ≈EL θ. Consider the

set X of all variables x such that x ∈ Dom(σ) \ Dom(θ). Then λσ(x) ≈EL θ(x) = x holds for
all x ∈ X . Consequently, the top-level conjunction of σ(x) cannot contain concept constants
(i.e., constants) or existential restrictions (i.e., terms starting with a function application).
This means that σ(x) is a conjunction of variables:

σ(x) = zx
1 ⊓ . . . ⊓ zx

nx
,

where we assume (without loss of generality) that all the variables zx
i for a fixed x are

pairwise distinct. To obtain λσ(x) ≈EL x, the substitution λ must thus assign (modulo ≈EL)
x or ⊤ to the variables zx

i for all i, 1 ≤ i ≤ nx, and x to at least one of these variables. Let
us assume without loss of generality that λ assigns x to zx

1 for all x ∈ X . This implies that
zx

1 ̸= zy
1 for different elements x, y of X .

Since VRan(σ) ∩ Dom(θ) = ∅, we know that zx
i ̸∈ Dom(θ) for all x ∈ X and 1 ≤ i ≤ nx.

We claim that zx
i ∈ Dom(σ) also holds, and thus zx

i ∈ X . Otherwise, λσ(zx
i ) = λ(zx

i ) ∈ {x, ⊤}.
However, λσ(zx

i ) ≈EL θ(zx
i ) = zx

i . This yields a contradiction unless zx
i = x. But then we

also have zx
i ∈ Dom(σ) since x ∈ Dom(σ). We have thus shown that all the variables zx

i for
x ∈ X also belong to X = Dom(σ) \ Dom(θ). Since zx

1 ̸= zy
1 for different elements x, y of X ,

this implies that the z-variables with index 1 already “use up” all of X , and thus nx = 1
holds for all x ∈ X .

Consequently, σ is a W -renaming for W = Dom(σ) \ Dom(θ), where according to
Definition 2.11 in [28] a substitution τ is a W -renaming if τ(x) is a variable for all x ∈ W and
τ is injective on W . Since σ is the identity on V \ Dom(σ) and elements of Dom(σ) \ Dom(θ)
are mapped to Dom(σ) \ Dom(θ) by σ, the substitution σ is also a W -renaming for W =
V \ Dom(θ). By Lemma 2.12 in [28], there is a permutation π that coincides with σ on
W = V \ Dom(θ). Let σ′ := π−1σ. Then σ′ ∼V

∅ σ, and thus also σ′ ∼V
EL σ. In addition, for

all x ̸∈ Dom(θ) we have σ′(x) = π−1σ(x) = x, which yields x ̸∈ Dom(σ′). This shows that
Dom(σ′) ⊆ Dom(θ). ◀

This lemma together with the next result shows that, up to equivalence, we can bound the
variables occurring in more general substitutions by the substitutions they have as instance.

▶ Lemma 19. Let σ, θ be substitutions such that σ ≤V
EL θ and Dom(σ) ⊆ Dom(θ). Then

VRan(σ) ⊆ Dom(θ) ∪ VRan(θ).
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Proof. Let λ be such that λσ ≈EL θ. Assume that z ∈ VRan(σ), but z /∈ Dom(θ)∪VRan(θ).
Then z ̸∈ Dom(σ), and thus λ(z) = λσ(z) ≈EL θ(z) = z. However, since z ∈ VRan(σ), there
is a variable x ∈ Dom(σ) such that σ(x) contains z. Then x ∈ Dom(θ), and thus all variables
occurring in θ(x) belong to VRan(θ). Since λσ(x) ≈EL θ(x), this means that z ∈ VRan(θ),
which contradicts our assumptions on z. ◀

The following lemma bounds the role depth (i.e., the maximal nesting of existential
restrictions) as well as the concept constants and role names occurring in more general
substitutions. Formally, the role depth rd(C) of an EL concept description C is defined
inductively as follows:

rd(A) := rd(⊤) := 0 for all concept names A,
rd(C ⊓ D) := max{rd(C), rd(D)} and rd(∃r.C) := 1 + rd(C).

▶ Lemma 20. Let σ, θ be substitutions such that σ ≤V
EL θ. Then the following holds for all

x ∈ V : the role depth of σ(x) is bounded by the role depth of θ(x), and the concept constants
and role names occurring in σ(x) also occur in θ(x).

Proof. This is an easy consequence of the fact that ≈EL preserves the role depth as well as
the set of concept constants and role names occurring in a concept description, and applying
a substitution to a concept description can only increase the role depth and add concept
constants or role names, but not decrease the role depth or remove concept or role names. ◀

As a consequence of the sequence of lemmas we have just shown we know that, for a given
substitution θ, the set of more general substitutions is finite up to the equivalence relation
∼V

EL. In fact, Lemmas 18 and 19 show that one can restrict the attention to substitutions σ

satisfying Dom(σ) ∪ VRan(σ) ⊆ Dom(θ) ∪ VRan(θ). In addition, for all x ∈ Dom(σ), the
concept descriptions σ(x) are built using role names and concept constants occurring in θ(x)
as well as variables from Dom(θ) ∪ VRan(θ), and have a role depth that is bounded by the
one of θ(x). It is well-known [13] that there are up to equivalence ≈EL only finitely many
EL-concept descriptions satisfying these properties.

▶ Lemma 21. For a given substitution θ, the set {σ | σ ≤V
EL θ} is finite up to ∼V

EL-equivalence.

As an immediate consequence we obtain that the set of substitutions more general than
θ contains elements that are minimal w.r.t. ≤V

EL. This obviously shows that the unrestricted
unification type of EL cannot be zero. Since the restricted unification type is zero, the
unrestricted type cannot be unitary or finitary by Theorem 8.

▶ Theorem 22. The unrestricted unification type of EL is infinitary.

4 The unrestricted unification types of ACUI, ACU, and AC

We consider a signature consisting of a binary function symbol f and a constant symbol 0.
The theory ACU consists of identities stating that f is associative and commutative and that
0 is a unit for f . The theory ACUI additionally states that f is idempotent. The theory AC
is obtained from ACU by removing the unit 0 from the signature and the identity involving
it from the axiomatization. For elementary unification (where unification problems may only
contain f , 0, and variables), ACU and ACUI are unitary w.r.t. the restricted instantiation
preorder, whereas AC is finitary [19]. In the following, we show that all three theories are
infinitary w.r.t. the unrestricted instantiation preorder. These results extend the one from [10]
in two directions. First, [10] considers only ACUI, whereas here we also investigate ACU and
AC. Second, [10] provides only the lower bound “at least infinitary” for ACUI, whereas here
we determine the exact unification type (infinitary) for the three theories.
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We start with proving that the unrestricted unification type of AC, ACU, and ACUI is at
least infinitary. In contrast to EL, where we were able to use Theorem 8 to deduce that it is
not unitary or finitary w.r.t. the unrestricted instantiation preorder from the fact that it is
of type zero for the restricted instantiation preorder, we must prove this directly for ACUI,
ACU, and AC. Actually, following [10], we show a more general result that holds for regular
theories satisfying certain additional restrictions.

Recall that a set of identities E is regular if Var(s) = Var(t) holds for all identities s ≈ t

in E. Regularity of the defining set of identities of an equational theory implies regularity of
the whole theory, i.e., if E is a regular set of identities, then Var(s) = Var(t) holds for all
terms s, t satisfying s ≈E t [58]. The identities of AC, ACU, and ACUI are regular, and thus
the following result from [10] applies to them.

▶ Lemma 23 ([10]). Let E be a regular theory and Γ = {s ≈?
E t} an E-unification problem

s.t. Var(s) ∩ Var(t) = ∅. Then the set CE(Γ) consisting of all E-unifiers σ of Γ satisfying

∀y ∈ VRan(σ).∃x, x′ ∈ V s.t. x ̸= x′ and y ∈ Var(σ(x)) ∩ Var(σ(x′))

is complete w.r.t. ≤V
E .

Together with Theorem 3, this lemma yields the following result.

▶ Lemma 24. Let E be a regular theory and Γ = {s ≈?
E t} an E-unification problem s.t.

Var(s) ∩ Var(t) = ∅. If Γ has a minimal complete set of E-unifiers w.r.t. ≤V
E , then it has

one that is contained in CE(Γ).

Proof. Since Γ has a minimal complete set of E-unifiers, the set M of minimal elements
of [UE(Γ)]VE is complete. For CE(Γ) to be complete, it must contain for every equivalence
class in M at least one representative. Thus, by selecting for each class in M one of its
representatives in CE(Γ), we obtain a minimal complete set that is contained in CE(Γ). ◀

We are now ready to formulate the “additional restrictions” mentioned above.

▶ Definition 25. Given a regular equational theory E, we say that the E-unification problem
Γ is NUOF if the following conditions are satisfied:

Γ = {s ≈?
E t} for terms s, t satisfying Var(s) ∩ Var(t) = ∅,

there is a ≤V
E-minimal unifier σ of Γ that uses fresh variables, i.e., VRan(σ) \ X ̸= ∅

where X = Var(s) ∪ Var(t), and
this unifier σ belongs to the set CE(Γ) defined in the formulation of Lemma 23.

Intuitively, NUOF stands for “not unitary or finitary,” but we still need to show that
this name is justified. Given a NUOF E-unification problem Γ, let x0 ∈ VRan(σ) \ X and
consider the following construction of substitutions:

σz := στx0,z where z ∈ V and τx0,z := {x0 7→ z, z 7→ x0}.

One can show that, under certain conditions on z, such substitutions σz are ≤V
E -minimal

unifiers that are incomparable to each other w.r.t. ≤V
E . By Theorem 3, this implies that

Γ cannot have a finite minimal complete set of unifiers w.r.t. ≤V
E since there are infinitely

many variables z satisfying these conditions.

▶ Lemma 26 ([10]). Let E be a regular equational theory E, Γ a NUOF E-unification
problem, and X and σz for z ∈ V be defined as above.

For each z ∈ V \ X, σz is a minimal E-unifier of Γ w.r.t. ≤V
E .

For any two distinct variables z, z′ ∈ V \(Dom(σ)∪VRan(σ)), σz and σz′ are incomparable
w.r.t. ≤V

E .
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Since V \ (X ∪ Dom(σ) ∪ VRan(σ)) is infinite, this lemma together with Theorem 3
implies that Γ cannot have a finite minimal complete set w.r.t. ≤V

E .

▶ Theorem 27. If E is a regular equational theory and Γ a NUOF E-unification problem,
then Γ does not have a finite minimal complete set of E-unifiers w.r.t. the unrestricted
instantiation preorder ≤V

E .

We are now ready to apply this result to ACUI.

▶ Corollary 28 ([10]). The unrestricted unification type of ACUI for elementary unification
is at least infinitary.

Proof. Since ACUI is regular, it is sufficient to show that there is an ACUI-unification problem
Γ that is NUOF. According to Corollary 3.6 in [7], any most general unifier (w.r.t. restricted
instantiation) of the ACUI-unification problem Γ = {f(x, f(y, z)) ≈?

ACUI f(u, v)} must use a
fresh variable. Let θ be such an mgu.

If Γ does not have a minimal complete set of ACUI-unifiers w.r.t. unrestricted instantiation,
then we are done. Thus, assume that Γ has a minimal complete set S w.r.t. unrestricted
instantiation. By Lemma 24, we can assume without loss of generality that S ⊆ CE(Γ), and
by Theorem 3 we know that the elements of S are ≤V

ACUI-minimal. Since θ is an ACUI-unifier
of Γ, there is a σ ∈ S such that σ ≤V

ACUI θ. Since ≤V
ACUI ⊆ ≤Var(Γ)

ACUI , this implies that σ is
also an mgu of Γ w.r.t. the restricted instantiation preorder, and thus it introduces a fresh
variable.

Consequently, we have shown that Γ is NUOF, and thus Theorem 27 is applicable, which
proves the corollary. ◀

It remains to show that type zero is not possible for ACUI. This is actually an easy
consequence of the results for EL we have shown in the previous section. In fact, for
elementary unification in ACUI, we consider a term set that is a subset of the one for EL if we
use the conjunction operator of EL as f and the top concept of EL as unit 0. On such terms
(which we will call ACUI-terms in the following), the equational theories ≈EL and ≈ACUI
coincide. If we consider substitutions σ, θ using only ACUI-terms, then σ ≤V

ACUI θ clearly
implies σ ≤V

EL θ. To show the other direction, assume that λσ ≈EL θ, but there is a variable
z such that λ(z) is not an ACUI term, i.e., contains a concept constant or an existential
restriction. If z ̸∈ Dom(σ) or z ∈ VRan(σ), then this leads to a contradiction. Otherwise,
we can modify λ to λ′ by setting λ′(z) = z and still have λ′σ ≈EL θ. This shows that we can
assume without loss of generality that λ uses only ACUI-terms, which completes the proof
that σ ≤V

EL θ implies σ ≤V
ACUI θ. Thus, Lemma 21 entails that the set {σ | σ ≤V

ACUI θ} is
finite up to ∼V

EL-equivalence, and thus also up to ∼V
ACUI-equivalence.

▶ Theorem 29. The unrestricted unification type of ACUI for elementary unification is
infinitary.

Theorem 27 also applies to elementary unification in ACU. It is well-known (see, e.g.,
Section 10.3 in [16]) that a given elementary ACU-unification problem Γ can be translated
into a system of homogeneous linear diophantine equations. W.r.t. the restricted instantiation
preorder, the mgu of the problem Γ can then be obtained from the minimal generating set of
the solutions of this system, also called its Hilbert base, where the number of variables used
in the range of this mgu corresponds to the cardinality of the Hilbert base of the system.
As pointed out in Example 2 of [40], the cardinality of the Hilbert base for equations of the
form ny = x1 + 2x2 + . . . nxn grows at least exponentially in n, and thus there are clearly
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instances where the mgu of the corresponding ACU-unification problem needs more than n+1
variables. Given this, one can now proceed as in the case of ACUI to show that Theorem 27
applies.

▶ Corollary 30. The unrestricted unification type of ACU for elementary unification is at
least infinitary.

Proving that type infinitary is also the upper bound in these cases turns out to be more
involved than for ACUI. In fact, our proof of the finiteness result used for EL and then
adapted to ACUI depends on idempotency, and thus does not apply to ACU. Instead, we
show that a set of the form {σ | σ ≤V

ACU θ} for a given unifier θ cannot contain an infinite
decreasing chain w.r.t. >V

ACU, and thus θ must be above a minimal unifier. Our proof of this
result in Section A uses the fact that analogues of Lemmas 18 and 19 also hold for ACU, but
requires quite some additional effort to prove the non-existence of infinite decreasing chains.

▶ Theorem 31. The unrestricted unification type of ACU for elementary unification is
infinitary.

The theory AC, which is obtained from ACU by removing the unit 0 from the signature and
the identity containing it from the axiomatization, is finitary w.r.t. the restricted instantiation
preorder. Proving that the unrestricted unification type of AC is infinitary turns out to be
easier than for ACU.

Showing that the unrestricted unification type of AC cannot be unitary or finitary is very
similar to our proofs for ACUI and ACU. In contrast to ACU, the theory AC is finitary rather
than unitary in the restricted setting. A minimal complete set of unifiers is obtained by
taking appropriate subsets of the Hilbert base and turning them into unifiers that have a
variable in the range for each element of the subset (see, e.g., [16, 32]). Since the full Hilbert
base is an appropriate subset, the minimal complete set of AC-unifiers for the unification
problem Γn corresponding to the linear diophantine equation ny = x1 + 2x2 + . . . nxn for
a large enough natural number n must contain a unifier θ that introduces a fresh variable.
As in the case of ACUI we can now show that, under the assumption that Γ has a minimal
complete set S of AC-unifiers w.r.t. the unrestricted instantiation preorder, this set S contains
a ≤V

AC-minimal AC-unifier σ satisfying σ ≤V
AC θ, and thus also σ ≤Var(Γn)

AC θ. Since θ contains
a variable in the range for each element of the Hilbert base and elements of the Hilbert base
cannot be generated by a sum of other vectors, this implies that σ must also contain at least
as many variables in its range as θ. Consequently, we have shown that Γn is NUOF, and
thus Theorem 27 is applicable.

▶ Corollary 32. The unrestricted unification type of AC for elementary unification is at least
infinitary.

To prove that the unrestricted unification type of AC cannot be zero, we employ the same
approach as for unification in EL. First note that Lemmas 18 and 19 also hold if we replace
EL with AC. The main difference is that the crucial argument in the proof of Lemma 18
becomes simpler. There, we consider a setting where λσ(x) ≈EL θ(x) = x holds for all
variables x ∈ X , and conclude that then σ(x) = zx

1 ⊓ . . . ⊓ zx
nx

for some variables zx
1 , . . . , zx

nx
.

Thus is trivially the case for AC if we replace ≈EL with ≈AC and the binary conjunction
operator ⊓ of EL with the AC function symbol f . Then it is proved (by a somewhat involved
counting argument) that nx = 1 for all x ∈ X and zx

1 ≠ zy
1 for distinct elements x, y ∈ X . For

AC, this is again trivially the case since there is no idempotency and the unit 0 (corresponding
to ⊤ in EL) is not available. The rest of the proof of Lemma 18 and the proof of Lemma 19
then work as in the case of EL. Lemma 20 can be replaced by the following result.
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▶ Lemma 33. Let σ, θ be substitutions such that σ ≤V
AC θ. Then the following holds for all

x ∈ V : if σ(x) and θ(x) respectively contain m and n occurrences of (not necessarily distinct)
variables, then m ≤ n.

Proof. Since we consider elementary unification in AC, all terms are built using the AC
symbol f and variables. If λσ(x) ≈AC θ(x), then every occurrence of a variable in σ(x)
is replaced by a term containing one or more variables. Consequently, λσ(x) is a term
containing occurrences of at least as many variables as σ(x). Since the theory cannot change
the number of variable occurrences, but only rearrange parentheses and reorder variables,
the same is true for θ(x). ◀

Together with the AC analogues of Lemmas 18 and 19, this lemma yields an AC analogue
of Lemma 21, and thus the following theorem.

▶ Theorem 34. The unrestricted unification type of AC for elementary unification is infinit-
ary.

Note that, due to the availability of the unit 0, an ACU-analogue of Lemma 33 does not
hold. This is why we need the more involved argument in Section A.

5 Conclusion

In this paper, we have investigated the effect that the employed instantiation preorder has on
the unification type of an equational theory. As a rule of thumb, one can extract from this
investigation that nothing changes if unifiers in a minimal complete set w.r.t. the restricted
instantiation preorder do not need fresh variables (Theorem 7), whereas the unification type
switches from unitary or finitary to at least infinitary otherwise (Theorem 27), though the
latter result was only shown for regular theories. We have employed Theorem 27 to prove that
the unification type of the frequently used theories ACUI, ACU, and AC is at least infinitary
w.r.t. the unrestricted instantiation preorder (Corollaries 28, 30, and 32), and were also able
to show the matching upper bound, i.e., that these three theories are indeed infinitary rather
than of type zero (Theorems 29, 31, and 34). We have clarified that the reason for such
changes is not that the unrestricted instantiation preorder considers infinitely many variables,
but that it does not leave infinitely many variables unobserved (Theorem 6). In particular,
this shows that nothing changes compared to the restricted setting if one compares unifiers
on finite supersets of the set of variables occurring in the unification problem instead. Rather
surprisingly, we have found an example (unification in the description logic EL) where the
unification type improves from type zero to infinitary when going from the restricted to the
unrestricted instantiation preorder (Theorem 22).

While the contributions of this work are primarily foundational, one can nevertheless
ask whether the obtained results also have a practical impact. The answer to the question
which instantiation preorder should be used in practice mainly depends on the application
that employs unification, i.e., which variables are relevant in the overall procedure and
for which of them need the instantiation relation between the unifiers hold. In case the
restricted unification type is unitary/finitary, the restricted instantiation preorder should
be used unless the application enforces comparison on all variables. For example, in Knuth-
Bendix completion modulo equational theories [44, 37, 20], where unification is employed to
test confluence by computing critical pairs, the restricted instantiation preorder is clearly
sufficient, and thus should be used for theories that are unitary or finitary w.r.t. it. In case
the restricted unification type is zero and the unrestricted one is infinitary, it may be useful
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to employ unrestricted unification if one can find a unification algorithm that enumerates
a minimal complete set of unifiers w.r.t. the unrestricted preorder. From the restricted
preorder point of view, such an algorithm would enumerate a complete set of unifiers that is
non-minimal, but usually still much smaller than the set of all unifiers. With few exceptions,
where the restricted and the unrestricted types coincide according to our Theorem 7 (e.g.,
the empty theory, commutativity C, or associativity A) there are no unification algorithms
known for the unrestricted case since research on equational unification concentrated on the
restricted case. For the cases where the unrestricted type is better (i.e., infinitary), it is thus
a new challenge to find an algorithm enumerating a minimal complete set of unifiers. Our
proof of type infinitary for EL does not directly yield a practical algorithm.

Regarding future foundational work, it is probably not very interesting to find further
equational theories where the phenomena already exhibited in this paper also occur, unless
one can prove a meta-theorem that exactly characterizes under what conditions these changes
in the unification type happen for a given class of equational theories. A candidate class
for such a meta-result are commutative/monoidal theories [17]: ACUI and ACU belong to
this class and AC is obtained from an element of this class by removing the unit, but the
equational theory corresponding to EL does not belong to it. A description logic of restricted
unification type zero whose equational theory is commutative/monoidal is the DL FL0
[14, 5], but its unrestricted unification type is unknown. On the level of single equational
theories, some interesting questions still remain. Are there actually equational theories of
unification type zero w.r.t. the unrestricted instantiation preorder? If the answer is yes,
which restricted unification types can such theories have? For instance, the theory AI of an
associative and idempotent binary function symbol has restricted unification type zero [2, 48],
but its unrestricted type is still unclear, and thus might be also zero. From the order-theoretic
point of view, which only takes into account that the unrestricted preorder is a subset of the
restricted one, it is also conceivable that there might be theories whose restricted type is
infinitary whereas the unrestricted type is zero. But finding an example of an equational
theory where this happens may be hindered by the fact that only very few natural theories
of restricted unification type infinitary are known. The overview article [19] mentions only
two: associativity (A) and both-sided distributivity (D). Now, A is not a candidate since
our Theorem 7 implies that its unrestricted type is also infinitary. The theory D might be a
candidate, but unification in it is rather complicated, though it is decidable [49].

Regarding related work, let us point out that recently there has also been other work on the
impact that changing the preorder on substitutions has on the unification type [23, 24, 9, 33,
57], but the preorders investigated there differ from the (un)restricted instantiation preorder.
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of the form {σ | σ ≤V
ACU θ} for a given unifier θ cannot contain an infinite decreasing chain

w.r.t. >V
ACU. We do this in two steps:

1. We recall a well-known characterization of the congruence classes of ≈ACU, and then
employ this characterization to show an auxiliary result about ≤V

ACU.
2. Finally, we use this auxiliary result to provide the final argument that shows that type

zero is not possible for ACU.

Let Σ = {f, 0} be the signature introduced in Section 4 to define ACU. Given a term
t ∈ T (Σ, V ), we denote by ct

x the number of occurrences of the variable x in t. The congruence
classes of ≈ACU can be characterized in the following way (Lemma 10.3.1 of [16]).

▶ Lemma 35 ([16]). Let s, t ∈ T (Σ, V ). Then, s ≈ACU t iff ct
x = cs

x for all x ∈ V .

This lemma tells us that, given a finite set Xn = {x1, . . . , xn} ⊆ V , the ≈ACU-equivalence
class of a term t ∈ T (Σ, Xn) can be uniquely represented by the vector v⃗n(t) = (ct

x1
, . . . , ct

xn
).

If t ≈ACU 0, then each component ct
xj

(1 ≤ j ≤ n) of v⃗n(t) has value zero.
Based on this representation, a substitution σ with Dom(σ) ⊆ Xn and VRan(σ) ⊆ Xm

(n, m ≥ 0) can be represented as an n×m matrix with rows v⃗m(σ(x1)), . . . , v⃗m(σ(xn)). Then,
applying a substitution σ to a term t corresponds to multiplying the vector for t with the
matrix for σ, i.e., the representation v⃗m(σ(t)) of σ(t) can be obtained by computing the
following sums (for all j, 1 ≤ j ≤ m):

cσ(t)
xj

=
n∑

k=1
ct

xk
· cσ(xk)

xj
.

For example, if t = f(x1, f(x2, x2)) and σ = {x1 7→ x2, x2 7→ f(x1, x1)}, then v⃗2(t) = (1, 2)
and the matrix representing σ has the rows (0, 1) and (2, 0). The vector representing
σ(t) = f(x2, f(f(x1, x1), f(x1, x1))) is (4, 1). Note that 4 = 1 · 0 + 2 · 2 and 1 = 1 · 1 + 2 · 0.

Based on these representations, we next introduce some notions, and show a property
about ≤V

ACU that will be useful later on. For simplicity, given a substitution σ, we will write
(cσ

i1, . . . , cσ
im) instead of (cσ(xi)

x1 , . . . , c
σ(xi)
xm ) to refer to the vector v⃗m(σ(xi)). In addition, we

denote by Pn the set of pairs {1, . . . , n} × {1, . . . , n}.

▶ Definition 36. Let n ≥ 0 and P ⊆ Pn. Further, let σ1 and σ2 be substitutions whose
domains and variable ranges are contained in Xn. We say that σ1 is greater than σ2 w.r.t.
P (denoted as >P ), if

for all (i, j) ∈ P and k ∈ {1, . . . , n}: cσ1
ij > cσ2

ik .
Further, we say that σ1 and σ2 coincide on P , if

for all (i, j) ∈ P : cσ1
ij = cσ2

ij .

It is not hard to show that >P is a transitive relation.

▶ Lemma 37. Let n ≥ 0 and P ⊆ Pn. The relation >P is transitive.

Proof. Let σ1, σ2 and σ3 be substitutions such that σ1 >P σ2 and σ2 >P σ3. To prove
transitivity of >P , we need to show that σ1 >P σ3.

Let us take any pair (i, j) ∈ P . Since σ1 >P σ2, we have that cσ1
ij > cσ2

ik for all
k ∈ {1, . . . , n}). In particular, this yields cσ1

ij > cσ2
ij . Furthermore, from σ2 >P σ3, we know

that cσ2
ij > cσ3

ik for all k ∈ {1, . . . , n}). Consequently, it follows that cσ1
ij > cσ3

ik for all k ∈
{1, . . . , n}. Thus, since (i, j) ∈ P was arbitrarily chosen, we can conclude that σ1 >P σ3. ◀

We continue by proving the following property about ≤V
ACU.
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▶ Lemma 38. Let n ≥ 0 and P ⊆ Pn. In addition, let σ1, σ2, σ3 be substitutions such that:
Dom(θℓ) ∪ VRan(θℓ) ⊆ Xn for ℓ ∈ {1, 2, 3},
σ1 ≤V

ACU σ2,
σ1 is greater than σ2 w.r.t. P , and
σ1 and σ3 coincide on Pn \ P .

Then, σ3 ≤V
ACU σ2.

Proof. Since σ1 ≤V
ACU σ2, there is a substitution λ such that λσ1 ≈ACU σ2. We can assume

that the domain and variable range of λ satisfy the following properties:
Dom(λ) ⊆ Xn. For otherwise, if there is a variable z such that z ∈ Dom(λ) but
z ̸∈ Xn, then Dom(σ1) ⊆ Xn implies that λσ1(z) ̸= z. However, this would contradict
λσ1 ≈ACU σ2, since Dom(σ2) ⊆ Xn.
VRan(λ) ⊆ Xn. Note that if VRan(λ) contains a variable z not in Xn, then λ(xi)
contains z for some i ∈ {1, . . . , n}. But, since z ̸∈ VRan(σ2), the variable xi cannot be in
VRan(σ1). Thus, we can safely remove the occurrences of z from λ(xi), i.e., λσ1 ≈ACU σ2
remains true.

Hence, since Dom(σ1) ∪ Dom(σ3) ∪ Dom(λ) ⊆ Xn, we have that Dom(λσ1) ⊆ Xn and
Dom(λσ3) ⊆ Xn. Therefore, to prove that σ3 ≤V

ACU σ2, it suffices to show that

λσ1(xi) ≈ACU λσ3(xi) for all i ∈ {1, . . . , n}. (1)

Let i ∈ {1, . . . , n}. Since VRan(σ1) ∪ VRan(λ) ⊆ Xn, the ≈ACU-equivalence class of λσ1(xi)
can be represented with a vector of the form (cλσ1

i1 , . . . , cλσ1
in ), where each value cλσ1

ij (1 ≤ j ≤ n)
is determined by the following expression:

cλσ1
ij =

n∑
k=1

cσ1
ik · cλ

kj .

As λσ1(xi) ≈ACU σ2(xi), an application of Lemma 35 yields:

cλσ1
ij =

n∑
k=1

cσ1
ik · cλ

kj = cσ2
ij for all j ∈ {1, . . . , n}. (2)

Consider any pair (i, k) ∈ P . Since σ1 >P σ2, this means that cσ1
ik > cσ2

ij for all j ∈ {1, . . . , n}.
Hence, since VRan(λ) ⊆ Xn, it must be that λ(xk) = 0. For otherwise, cλ

kj > 0 for some
j ∈ {1, . . . , n} and the expression in (2) would not be true for such j. Therefore, (2) can be
turned into:

cλσ1
ij =

n∑
k=1

(i,k)∈Pn\P

cσ1
ik · cλ

kj = cσ2
ij for all j ∈ {1, . . . , n}.

Regarding λσ3, we also have VRan(σ3) ∪ VRan(λ) ⊆ Xn. Hence, the ≈ACU-equivalence
class of λσ3(xi) has a representation of the form (cλσ3

i1 , . . . , cλσ3
in ), where (1 ≤ j ≤ n):

cλσ3
ij =

n∑
k=1

(i,k)∈Pn\P

cσ3
ik · cλ

kj .

But then, since σ1 and σ3 coincide on Pn \ P , we have that:

cλσ3
ij =

n∑
k=1

(i,k)∈Pn\P

cσ3
ik · cλ

kj =
n∑

k=1
(i,k)∈Pn\P

cσ1
ik · cλ

kj = cλσ1
ij .
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Hence, we have shown that (cλσ1
i1 , . . . , cλσ1

in ) = (cλσ3
i1 , . . . , cλσ3

in ). Then, an application of
Lemma 35 yields that λσ1(xi) ≈ACU λσ3(xi). Thus, since i was arbitrarily selected, we have
proved the claim in (1). This concludes the proof of the lemma. ◀

We are now ready to move into the final part of our proof. The main idea is to show the
following: if {σ | σ ≤V

ACU θ} for a given substitution θ contains an infinite decreasing chain
w.r.t. >V

ACU, then such a chain contains three substitutions σ1, σ2 and σ3 such that:
σ3 >V

ACU σ2 >V
ACU σ1, and

σ1, σ2 and σ3 satisfy the hypothesis of Lemma 38.
This implies that σ2 ∼V

ACU σ3, which contradicts the existence of such an infinite chain.
In order to apply Lemma 38, we first need to show that there is n ≥ 0 such that the

domain and variable range of each substitution in {σ | σ ≤V
ACU θ} is contained in Xn. This is

a consequence of the analogs of Lemmas 18 and 19 for ACU.

▶ Lemma 39. Let σ, θ be substitutions such that σ ≤V
ACU θ. Then there is a substitution σ′

such that σ ∼V
ACU σ′ and Dom(σ′) ⊆ Dom(θ).

Proof. Let X = Dom(σ) \ Dom(θ). Since σ ≤V
ACU θ, there exists a substitution λ such that

λσ ≈ACU θ. This means that λσ(x) ≈ACU θ(x) = x for all x ∈ X . Hence, an application of
Lemma 35 (and consequences thereof described above) yields that:

cλσ(x)
x =

∑
z∈V

cσ(x)
z · cλ(z)

x = cθ(x)
x = 1.

This implies that σ(x) must contain a single occurrence of some variable zx such that
λ(zx) = x, and that λ(y) = 0 for any other variable y occurring in σ(x). In addition, zx ̸= zy

for different elements x, y of X . Once we have this, the same counting argument employed in
the proof of Lemma 18 can be applied here to conclude that σ(x) = zx for all x ∈ X .

The rest of the proof uses the same arguments as our proof of Lemma 18. ◀

The following lemma states that Lemma 19 also holds if we replace EL with ACU. The
proof is the same as for Lemma 19.

▶ Lemma 40. Let σ, θ be substitutions such that σ ≤V
ACU θ and Dom(σ) ⊆ Dom(θ). Then

VRan(σ) ⊆ Dom(θ) ∪ VRan(θ).

Thus, given a substitution θ and an enumeration x1, . . . , xn of Dom(θ) ∪ VRan(θ),
we can assume (modulo ∼V

ACU) that any substitution in {σ | σ ≤V
ACU θ} is such that

Dom(σ) ∪ VRan(σ) ⊆ Xn. It remains to establish the contradiction mentioned above. We
will do this with the help of the following result.

▶ Lemma 41. Let θ be a substitution, x1, . . . , xn an enumeration of Dom(θ) ∪ VRan(θ),
and P ⊂ Pn. Suppose that {σ | σ ≤V

ACU θ} contains an infinite decreasing chain s = σ1σ2 . . .

w.r.t. >V
ACU such that σℓ+1 >P σℓ for all ℓ ≥ 1. Then, there exists (i, j) ∈ Pn \ P such

that {σ | σ ≤V
ACU θ} contains an infinite decreasing chain τ1τ2 · · · w.r.t. >V

ACU satisfying
τp+1 >P ∪{(i,j)} τp for all p ≥ 1.

Proof. Suppose such an infinite decreasing chain s exists. We claim that there is a pair (i, j)
in Pn \ P such that the sequence of values cσ1

ij , cσ2
ij , . . . is not bounded, i.e.,

for all m ∈ N, there exists ℓ ≥ 1 such that: cσℓ
ij > m. (3)

If that were not the case, then there would be infinitely many substitutions in s that coincide
on Pn \ P . As a consequence, we could select substitutions σℓ1 , σℓ2 and σℓ3 in s such that:
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σℓ3 >V
ACU σℓ2 >V

ACU σℓ1 ,
σℓ1 is greater than σℓ2 w.r.t. P , and
σℓ1 and σℓ3 coincide on Pn \ P .

Hence, an application of Lemma 38 would yield σℓ3 ≤V
ACU σℓ2 , which contradicts σℓ3 >V

ACU σℓ2 .
Based on such a pair (i, j), we define the infinite chain τ1τ2 · · · as follows:

1. τ1 = σ1.
2. By (3), there is p > 1 such that c

σp

ij > cσ1
ik for all k ∈ {1, . . . , n}. We choose τ2 as σp. The

following arguments show that τ1 and τ2 satisfy the properties required of τ1τ2 · · · w.r.t.
P ∪ {(i, j)}:

Since σ1 >V
ACU σp, we have that τ1 >V

ACU τ2.
By selection of p, we know that σp >{(i,j)} σ1. Moreover, since σℓ+1 >P σℓ for all
ℓ ≥ 1, transitivity of >P yields that σp >P σ1. Consequently, we can conclude that τ2
is greater than τ1 w.r.t. P ∪ {(i, j)}.

3. Once we fix σp, (3) also yields q > p such that c
σq

ij > c
σp

ik for all k, 1 ≤ k ≤ n. We select
τ3 as σq. The same arguments yield that τ2 and τ3 are as required.

4. By repeating (ad infinitum) the described selection process, we can extract from s an
appropriate remaining sequence of substitutions τ4τ5 · · · .

The described process ensures that each selected substitution τℓ (ℓ ≥ 1) belongs to {σ |
σ ≤V

ACU θ}. Thus, τ1τ2 · · · is an infinite decreasing chain satisfying the claim of the lemma. ◀

Finally, by using the previous lemma, we can show the main result of this section.

▶ Lemma 42. For a given substitution θ, the set {σ | σ ≤V
ACU θ} does not contain an infinite

decreasing chain w.r.t. >V
ACU.

Proof. Suppose {σ | σ ≤V
ACU θ} contains an infinite decreasing chain s w.r.t. >V

ACU. By
Definition 36, we have η >∅ η′ for all η, η′ ∈ {σ | σ ≤V

ACU θ}. This means that s and P = ∅
satisfy the hypothesis of Lemma 41. Hence, there is (i, j) ∈ Pn such that {σ | σ ≤V

ACU θ}
contains an infinite decreasing chain τ1τ2 · · · satisfying τp+1 >{(i,j)} τp for all p ≥ 1. This
new chain now satisfies the hypothesis of Lemma 41 w.r.t. P = {(i, j)}. Thus, by a sequence
of n2 − 1 further applications of Lemma 41, we conclude that {σ | σ ≤V

ACU θ} contains an
infinite decreasing chain σ1σ2 · · · such that σp+1 >Pn

σp for all p ≥ 1. Finally, it is not hard
to verify that this last chain must contain three substitutions σℓ1 , σℓ2 and σℓ3 such that

σℓ3 >V
ACU σℓ2 >V

ACU σℓ1 ,
σℓ1 is greater than σℓ2 w.r.t. P = Pn, and
σℓ1 and σℓ3 coincide on Pn \ P = ∅.

Hence, the application of Lemma 38 yields that σℓ3 ≤V
ACU σℓ2 , which contradicts the existence

of σ1σ2 · · · since σℓ3 >V
ACU σℓ2 . Thus, we have derived a contradiction from our initial

assumption. This concludes the proof of the lemma. ◀

Lemma 42 shows that the unrestricted unification type of ACU cannot be zero. In fact,
this lemma implies that every unifier θ is above a minimal unifier, and thus the set of minimal
unifiers is complete. By Theorem 3, we can conclude that the unification type cannot be
zero, which completes the proof of Theorem 31.
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