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Abstract. In the area of belief change, contraction operations are used
to modify a given belief set or belief base such that certain unwanted
consequences no longer follow. In previous work we have introduced a
framework for constructing contraction operations that generalizes the
well-known partial meet contraction approach, called partial product
contractions (PPCs). The main idea was to replace the remainders em-
ployed by partial meet contractions with optimal repairs, which were
first considered in ontology engineering. We were able to characterize
PPCs with variants of well-known rationality postulates, and provided
a large number of concrete instances of the general framework. In the
present work, we start to investigate whether the rather weak conditions
imposed by our framework are sufficient to generalize further classical
results from belief change to this setting. To this purpose, we consider
Gardenfors’s supplementary postulates for belief contractions. We are
able to show that, under two reasonable additional conditions, PPCs
induced by maximizingly and transitively relational selection functions
indeed satisfy these postulates, similarly to the classical case.

1 Introduction

Getting rid of knowledge that has undesired consequences has been investigated
in the area of belief change under the name of contraction [IJ13] and in ontology
engineering under the name of repair [I728/8)29]. In their seminal paper [I],
Alchourrén, Gérdenfors, and Makinson introduce partial meet contractions and
characterize them using certain rationality postulates, i.e., properties for which
they argue that a reasonable contraction operation should satisfy them. Basi-
cally, this approach works on belief sets, i.e., deductively closed sets of formulas,
considers all maximal subsets of a given belief set that do not contain the un-
desired consequence, called remainders, selects a subset of the set of remainders
using a selection function, and then returns the meet (i.e., intersection) of the se-
lected remainders as contraction. From a practical point of view, a disadvantage
of working on belief sets is that the belief set returned by such a contraction
operation may not be representable as the deductive closure of a finite belief
base, even if the original belief set was finitely representable. To overcome this
problem, Nebel [23] and Hansson [I3] apply the partial meet approach directly to
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belief bases, i.e., remainders are now maximal subset of the base that do not im-
ply the undesired consequence, and the contraction is again the intersection of a
non-empty collection of these remainders. In ontology engineering, such remain-
ders are called optimal classical repairs [8]. Both partial meet base contractions
and optimal classical repairs have have been criticized for the fact that they
are syntax-dependent and may remove too many consequences [I58127122/2]. In
the context of knowledge bases (KBs) expressed using certain Description Logics
(DLs), optimal repairs yield a syntax-independent repair approach that does not
lose consequences unnecessarily [SI6J7IT914]

The original motivation for the new contraction approach presented in [9]
was to leverage these advances on the side of ontology engineering to obtain a
contraction approach that combines the advantages of belief set and belief base
contractions without sharing their disadvantages. The main idea underlying this
approach was to use, in the partial meet contraction approach, optimal repairs
as remainders. However, instead of introducing this new approach in the specific
instance of certain DL KBs, we consider in [9] a very general setup, where knowl-
edge bases are not necessarily sets of formulas, the meet operation is replaced by
an abstract product operation on KBs, and the repair goal may be different from
non-entailment of an undesired consequence (such as forgetting [2002TUTOITR] of
certain parts of the signature). We were able to characterize the partial prod-
uct contractions (PPCs) obtained this way using certain well-known rationality
postulates and to describe a large variety of different instances of the general
framework (see [9] and Section [2| for more details).

In the present work, we start to investigate whether the rather weak con-
ditions imposed by our framework are sufficient to show that further classical
results from belief change can be generalized to this setting. To this purpose, we
consider Gardenfors’s supplementary postulates for belief contractions (conjunc-
tive overlap and conjunctive inclusion), which were already investigated in the
original AGM paper [I], but also considered in other settings (e.g., [ISIT6ITTI26]).
Although the supplementary postulates are typically studied in connection to be-
lief sets, Ribeiro [24] presented a first characterization for belief bases. Basically,
these postulates characterize a restriction of partial meet contractions where the
selection functions are defined using a certain transitive relation on remainders.
Under two additional assumptions (conditions and ) we are able to show
that Gardenfors’s supplementary postulates indeed hold for partial product con-
tractions if we require the transitive relation defining the selection function to
be also mazimizing, a condition that has been introduced before [I4J16]. We also
give DL-based examples that show that the additional conditions are necessary.

2 The general framework and ££ concepts as instance

We briefly introduce the general framework and illustrate it using the instance
of EL concepts since this instance (in different variants) will also be employed
in the (counter)examples in the rest of the paper (see [9] for more details).
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Partial product contractions We assume that we are given a set of knowledge
bases (KBs) and a reflexive and transitive entailment relation between knowledge
bases. We write KBs as K, possibly primed (K’) or with an index (K;), and
entailment as |, i.e., K = K’ means that K entails K', or equivalently that K’
is entailed by K. We call two KBs K, K’ equivalent (write K = K') if they entail
each other. We say that IC strictly entails K' (K |Es K') if K |E K, but K’ = K.

We make no assumptions on the inner structure of knowledge bases, but we
assume that we have operations sum (@) and product (®) available that are akin
to conjunction and disjunction. For each finite, non-empty set of KBs &:

— ®R E K for all £ € R and @R is the least KB satisfying this property, i.e.,
if K is a KB satisfying K’ = K for all £ € &, then K' = ¢8&;

— K | ®R for all £ € & and ®R is the greatest KB satisfying this property,
ie., if K’ is a KB satisfying K | K’ for all £ € &, then @8 E K.

The goal of the contraction operation to be defined is to “repair” a certain de-
fect of the given knowledge base, but this defect is not restricted to entailment
of some unwanted consequence. Formally, we assume that we have additional
syntactic entities called repair requests: given a KB K, a repair request o de-
termines a set of KBs Rep(K,a) such that £ | K’ holds for every element
K’ € Rep(K,a), and K’ € Rep(K,a) and K' = K” imply K” € Rep(K, ). We
call the elements of Rep(K, ) repairs of K for a. Two repair requests « and o’
are equivalent w.r.t. K (a = o) if Rep(K, a) = Rep(K, o).

Note that this notion of repairs generalizes the classical no-entailment con-
dition for contractions, where a repair request « is also a KB and contractions
are required (by the success postulate) not to entail c. In this restricted setting,
the set of repairs is defined as Rep(K,a) = {K' | K = K £ a}.

Finally, we assume the optimal repair property, which says that, for every
pair K, a consisting of a KB and a repair request (called a repair problem), there
exists a finite set of KBs Orep(K, o) satisfying

— Orep(K, ) C Rep(K,«) (repair property),

— every element ' of Orep(K, ) is optimal, i.e., there is no K” € Rep(K, «)
such that K" =5 K’ (optimality),

— Orep(K, o) covers all repairs, i.e., for every K" € Rep(K, «) there is K’ €
Orep(K, a) such that K' = K" (coverage).

Note that Orep(KC, «) is unique up to equivalence and that coverage of Orep(K, a)
implies that this set is empty iff Rep(KC,a) = . As mentioned before, optimal
repairs will play the role of remainders, and thus this equivalence says that there
are remainders iff the repair goal can be achieved.

Given a set of KBs K, a set of repair requests « inducing repair sets Rep(K, «),
and a reflexive and transitive binary relation = between KBs, we call = partial
product contraction (PPC) enabling if all the properties introduced above are
satisfied.

Let K be a KB and Orep(K, «) for each repair request a the corresponding
set of optimal repairs, which covers all repairs of IC for a.. A selection function ~y
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for IC takes such sets of optimal repairs as input and must satisfy the following
properties, for each repair request a:

— If Orep(K, «) # 0, then () # v(Orep(K, a)) C Orep(K, o).

— If Orep(K, @) = 0, then v(Orep(K, a)) = {K}.

— If Orep(K,a) and Orep(K,a’) are equal up to equivalence, then so are
7(Orep(K, a)) and ~(Orep(K, a')).

Each selection function vy induces a PPC' operation ctr., as follows:
ctry (IC, ) := @v(Orep(K, a)).

It was shown in [J] that, among all operations receiving as input a KB and a
repair request and returning as output a KB, the PPC operations are exactly
those operations that satisfy the postulates logical inclusion, success, failure,
vacuity, preservation, and relevance.

EL concepts as KBs &L concepts are built inductively, starting with concept
names A from a set N¢ of such names, and using the concept constructors T (top
concept), CMD (conjunction), and Ir.C' (existential restriction), where C, D are
EL concepts and r belongs to a set N of role names. A general concept inclusion
(GCI) of L is of the form C T D for EL concepts C, D, and an EL£ TBox is a
finite set of such GCIs. Given an EL concept C, its signature Sig(C') consists of
the concept and role names occurring in C.

The semantics of EL is defined in a model-theoretic way, using the notion of
an interpretation T, which is a pair Z = (AZ,-7), where the domain A7 is a non-
empty set and the interpretation function - maps each concept name A € N¢
to AT C AT and each role name » € Ng to a binary relation 77 C AT x AZ.
The interpretation of an ££ concept is defined inductively as follows: TZ := AT,
(Cn D) =CTN D% and (3r.C)T := {d € AT | 3e € AT such that (d,e) €
7T and e € CT}. A model T of the E£ TBox T is an interpretation that satisfies
all its GClIs, i.e., CT C D7 holds for all C T D € T. Given EL concepts C, D
and an £L TBox T, we say that C is subsumed by D w.r.t. T (C C7 D) if
CT C D7 in all models Z of 7. The EL concepts C, D are equivalent w.r.t. T
(written C =7 D)itC C7 D and D C7 C. The EC TBox T is cycle-restricted
if there is no £L concept C' and m > 1 (not necessarily distinct) role names
T1,...,Tm such that C C7 3rq.---3r,,.C.

For a given cycle-restricted ££ TBox T, the following instance of the general
framework was introduced in [209]: KBs are £L concepts, entailment is sub-
sumption (i.e., C' = D iff C C7 D), and repair requests are EL concepts with
associated repair sets Rep, (C,D) := {C" | ¢ &7 ¢’,C’" Z7 D}. As shown
in [9], the entailment relation C7 is PPC enabling for this repair setting. In fact,
the sum is conjunction of concepts, and the product is the least common sub-
sumer (lcs) w.r.t. the TBox 7, which exists according to [30] since the TBox is
cycle-restricted. Cycle-restrictedness also ensures that the optimal repair prop-
erty is satisfied. In [2], this was shown using results for optimal ABox repairs
from [6]. A more generic argument, which can also be used for repair goals other
than non-entailment follows from the following lemma (see Proposition 3 in [3]).
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Lemma 1 ([3]). If T is a cycle-restricted EL TBox and C' an EL concept, then
Subs” (C) :={C" | C CT C'} is finite up to equivalence.

Since repairs of C are subsumers of C, the set of repairs is finite up to equiva-
lence, and the optimal repairs are the ones that are the minimal elements w.r.t.
subsumption of this finite set.

EL concept contraction was considered in [25] for the empty TBox and in [2]
for cycle-restricted TBoxes. For the sake of simplicity, we use (variants of) £L£
concept contraction in our examples, but note that it is a special case of the
practically more relevant ABox contractions considered as an instance of the
general framework in [9].

3 The supplementary postulates

As mentioned above, in [9] it was shown that, for PPC enabling entailments,
a contraction operation can be obtained by the partial product contraction ap-
proach iff it satisfies the rationality postulates logical inclusion, success, failure,
vacuity, preservation, and relevance. We now investigate under what additional
conditions Gérdenfors’s supplementary postulates conjunctive overlap and con-
Junctive inclusion for belief contractions [I2JI] also hold. In the setting consid-
ered in [I2JI], KBs are set of formulas from a logic with conjunction, repair
requests are formulas, and the repair goal is non-entailment of the repair re-
quest. The supplementary postulates put contraction w.r.t. a A 3 in relation to
contraction w.r.t. @ and contraction w.r.t. 3.

To generalize this setting to our framework, we first assume that repair re-
quests are KBs and that the repair goal is non-entailment of the repair request.
If we then use sum as stand-in for conjunction, we obtain the following identity,
due to the fact that a KB entails a sum iff it entails all of it summands (see
Lemma 3 in [9]):

Rep(K,a @ B) ={K' | K K'AK' [ a® B}
— (K| K=K A K aVK K B)} = Rep(K, a) URep(K, ).

In our general framework, where repair requests need not be KBs and the repair
goals may be different from non-entailment, we now make the additional as-
sumption that there is an operation H on repair requests such that the following
identity holds:

Rep(K, a B 8) = Rep(K, o) URep(K, ). (1)

Since union of sets is associative, commutative, and idempotent, the operation
B also satisfies these properties, up to equivalence =y of repair requests.

The following is an example of a repair setting where repair requests are not
KBs, but nevertheless holds.

Ezample 1. We consider forgetting for ££ concepts (for simplicity in the case
T = 0), where repair requests are finite sets of concept and role names, and
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repairs are defined as follows:
Repgo, (Cya) = {C" | C C° ¢’ and a € Sig(C")} ]

Since it is well-known that, for EC concepts, C’ C? C” implies Sig(C”) D Sig(C"),
such repair sets are closed under entailment. Since the empty TBox is cycle-
restricted, the entailment relation C? is known to have product (least common
subsumer) and sum (conjunction). The optimal repair property is an easy con-
sequence of Lemma

If we define a H 8 := a U S, then holds: for all concepts C’ satisfying
C % ¢ we have C' € Repy,, (C,a B B) iff « U B € Sig(C") iff a Z Sig(C’) or
B Z Slg(c/) iff C" € Repfor(cﬂ Oé) U Repfor(c7 ﬂ)

In general, however, (1)) need not hold.

Ezample 2. Consider EL concepts as KBs, subsumption w.r.t. the empty TBox
as entailment, and finite sets of concept and role names as repair requests, and
define Rep(C,a) = {C’" | C C? ¢ and Sig(C’) C a}. Closure under entailment
holds for the same reason as in the previous example.

We show that the repair sets defined here cannot satisfy (1)) for any operation
B on repair requests. In fact, to satisfy the inclusion from right to left of
the sum operation on repair requests must satisfy o« U C o B 8. But then
one can easily generate an example where the other inclusion is not satisfied:
AN B € Rep(AN B,{A} B{B}), but it belongs neither to Rep(A M B, {A}) nor
to Rep(AM B, {B}).

In the following, we assume that the entailment relation is PPC enabling
w.r.t. the repair sets at hand, and that contractions are built using the PPC
approach. In addition, we assume that the identity holds. The following
lemma is an easy consequence of this identity.

Lemma 2. Up to equivalence, the following inclusion holds: Orep(K,a B ) C
Orep(K, ) U Orep(K, 3).

Proof. Assume that K" € Orep(K, aHf). Then K" € Rep(K, o) URep(K, 8) and
there is no K’ € Rep(K, o) URep(K, ) such that K’ =, K”. If K" € Rep(K, ),
then K is an optimal repair of K for « since there is no K’ € Rep(K, «) such that
K' =5 K. Consequently, coverage of Orep(K, o) implies that K" is equivalent to
an element of Orep(KC, o). If K’ € Rep(K, 3), then the fact that K" is equivalent
to an element of Orep(K, 8) can by shown in the same way O

The proof of this lemma actually shows the following stronger result.

Lemma 3. Up to equivalence, the following holds: Orep(K, aEBS)NRep(K, a) C
Orep(K, @) and Orep(K, o B §) NRep(K, 8) C Orep(K, B).

3 In [9], we used the condition o N Sig(C’) = ), which corresponds to a package repair
setting, whereas the condition introduced here corresponds to a choice repair setting.
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The inclusion in the other direction in Lemma [2] does not hold in general,
even if we use non-entailment as repair goal.

Example 3. As entailment we consider subsumption C7 between EL concepts
w.r.t. the following £L TBox T := {3r.A C P,3r.B C P}, and repairs are defined
by non-entailment of the repair request, which is an EL concept, i.e. Rep(C, a) :=
{C"|CCT C'AC" LT a}. Since the TBox T is cycle-restricted, the entailment
relation |= := C7 is known to be PPC-enabling w.r.t. this definition of repair
sets [9]. As operation B on repair requests, we use @, which here is conjunction.

Let C := 3r. (AN B), a := P, and 8 := Ir.A M Ir.B. Then, we obtain the
following optimal repair sets (up to equivalence):

Orep(C,a) = {3r. T}, Orep(C,B) = {3r.A, Ir.B},
Orep(C, B ) = Orep(C,aN p) = {Ir. A, Ir.B}.

Thus, the union of Orep(C, «) and Orep(C, §) contains Ir. T, whereas 3r. T does
not belong to Orep(C, «H B) since it is not optimal in the presence of the other
two existential restrictions.

3.1 Conjunctive overlap

The supplementary postulate conjunctive overlap can be formulated in our gen-
eral setting as follows:

— ctr(K,aBP) = ctr(K, a) @ ctr(K, 8) (conjunctive overlap)

In the classical setting of [I], KBs are deductively closed sets of formulas (and
thus entailment is the superset relation and product is intersection), repair re-
quests are formulas, and H is conjunction. Thus, conjunctive overlap is formu-
lated as follows: ctr(IC, e A 8) D ctr(KC, ) N ctr (K, ).

As in this classical case, to ensure that conjunctive overlap is satisfied, we
must make additional assumptions on the selection function (see, e.g., [16]). We
say that the selection function -y is transitively relational if there is a transitive
relation < on Con(K) := {K’ | K = K’} such that equivalent KBs are in this
relation and

v(Orep(K, o)) = {K"” € Orep(K,a) | K' QK" for all K’ € Orep(K,a)},

whenever Orep(K,a) # ). Note that the conditions imposed on selection func-
tions in [9] require that non-emptiness of the optimal repair set implies that
~(Orep(K, @)) is non-empty as well. This is an additional condition that a tran-
sitive relation must satisfy to be able to induce a selection function. Invariance
under equivalence is taken care of by our requirement that equivalent KBs are
in the relation <. For the sake of simplicity, we subsume this property under
transitivity, i.e., whenever we say in the following that < is transitive, this also
means that equivalent KBs are in the relation <.

In addition, we assume that < is weakly maximizing, i.e., K' | K" implies
K' > K”. In the literature [I6], the stronger property of being mazimizing has
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been considered in this context. However, for showing the postulate conjunctive
overlap, the weak version turns out to be sufficient. The relation < is mazimizing

if £ s K” implies K' > K" (i.e., K' > K", but K" EK).

Lemma 4. Let < be a transitive relation on KBs such that equivalent KBs are
in this relation. If < is maximizing, then it is also weakly maximizing.

Proof. Assume that K' | K", If K’ = K”, then K’ > K" due to the assumption
that equivalent KBs are in the relation <. Otherwise, X' s K", and thus
maximizing yields K’ t> K", which implies K’ > K. O

We call a selection function (weakly) mazimizingly and transitively relational
if it is transitively relational w.r.t. a (weakly) maximizing relation <. Due to
the properties of the product, the postulate conjunctive overlap is an easy con-
sequence of the following lemma.

Lemma 5. Let v by a weakly maximizingly and transitively relational selection
function. Then, up to equivalence and under the assumption that Rep(K,a) #
0 # Rep(K, B), the following inclusion holds:

7(Orep(K, a B 3)) € v(Orep(K, o)) U y(Orep(K, 5)).

Proof. Note that non-emptiness of the repair sets implies that all optimal repair
sets under consideration are also non-empty. Assume that X" € v(Orep(K, o B
B)). Then (up to equivalence) K” € Orep(K, a)) U Orep(K, 8) and £ < K" holds
for all element £ of Orep(K,« B 3). Assume without loss of generality that
K" € Orep(K, a). To prove that K" € «(Orep(K, @)), we consider an arbitrary
element K’ of Orep(K, ) and show that X' < K”. If K’ is also an element of
Orep(K, a« B ), then we have K’ < K”. Otherwise, K’ € Rep(K, «) implies that
K’ € Rep(K,a B ), and thus there is £ € Orep(K,a B ) such that £ = K.
But then £ < K" and the weakly maximizing property yields £ > K’. Thus,
transitivity of < implies K’ < K”. a

Theorem 1. Assume that |= is PPC enabling and that the identity holds. If
the selection function v is weakly mazimizingly and transitively relational, then
the PPC' operation ctr, satisfies the postulate conjunctive overlap.

Proof. Note that the coverage property of optimal repairs implies that Rep(K, o) =
0 iff Orep(K,a) = 0. Thus, if Orep(K,a B 3) = 0, then Orep(K,a) = 0 =
Orep(KC, ). In this case, ctr, (K, B ) = K = ctry (K, a) = ctr, (K, ), and thus
conjunctive overlap clearly holds.

If all three sets of optimal repairs are non-empty, then conjunctive overlap is
an immediate consequence of Lemma

Now assume that Orep(KC, o« H 3) # 0 # Orep(K, «) and Orep(K, 3) = 0. In
this case, Rep(K,a B 8) = Rep(K, ), and thus Orep(X,a B 8) = Orep(K, )
up to equivalence, which implies that ctr, (K, a B 5) = ctr, (K, ). In addition,
Orep(K, B) = 0 implies that ctr, (K, 3) = K. Since K |= ctr, (K, o), we thus have
ctry (IC, ) ® ctr (K, ) = ctr, (K, o), which shows that conjunctive overlap also
holds in this case. The symmetric case where Orep(K, ) = @ can be treated
analogously. O



Gardenfors’s Supplementary Postulates for Partial Product Contractions

In a setting where KBs are £L concepts and entailment is subsumption, we
can define transitive and weakly maximizing relations < as follows.

Ezxample 4. Let T be a cycle-restricted ££ TBox. Given a KB C together with
concepts Dy, ..., D, such that C C7 D; for i = 1,...,n, we define (for all C’
with C C7 C”) the number x(C") := |{D; | C' C7 D; for i = 1,...,n}|, which
counts how many of the concepts D; are still subsumers of C’. These numbers
yield the following relation <: C” < C" iff k(C") < k(C").

We claim that the relation < is transitive and weakly maximizing. In fact,
transitivity of < is obvious since the relation < on natural numbers is transitive.
To show the weakly maximizing property, assume that ¢’ C7 C”. Then C” CT
D; implies C' C7 D;, and thus x(C”) > x(C").

To be able to use this relation for defining a selection function =y, we must
check whether Orep(C, «) # () implies that the set

{C" € Orep(C,a) | C' < C" for all C" € Orep(C, )}

is non-empty. This is clearly the case independently of what kind of repair re-
quests are employed. In fact, a non-empty set Orep(C,«a) clearly contains an
element with maximal k-value since this set is finite.

3.2 Conjunctive inclusion

The supplementary postulate conjunctive inclusion can be formulated in our
general setting as follows:

— if ctr(K,a B 8) € Rep(K, a), then ctr(K, o) |= ctr(KC, o B )
(conjunctive inclusion)

In the classical case, repairs are deductively closed sets of formulas not containing
the repair request, and thus conjunctive inclusion can be formulated as follows:
if o & ctr(IC, e A 8), then ctr(K, ) D ctr(K, a A B).

In our general setting, to draw conclusions from the left-hand side of this
implication (which for a PPC contraction states that a product belongs to a
repair set), it might be useful to have the following property connecting products
with repair sets, where 8K is a finite set of KBs that are entailed by K:

@8 € Rep(K,a) iff K' € Rep(K, ) for some K’ € K. (2)

The implication from right to left always holds in our framework since repair
sets are assumed to be closed under entailment. The other directions does not
hold in general, but it holds if the repair goal is non-entailment.

Lemma 6. Let Rep(K, a) be closed under entailment. Then K' € Rep(K, a) for
some K' € R implies @8 € Rep(K, a).

Proof. This is an immediate consequence of the fact that K’ = @8 for all K’ € .
O
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Lemma 7. Let Rep(K,a) = {K' | K E K' AK' £ a} and let 8 be a finite set
of KBs that are entailed by IC. Then @R € Rep(K, «) implies that there is a KB
K’ € & such that K' € Rep(K, ).

Proof. We show the contraposition. If K’ ¢ Rep(K, «) for all K’ € &, then ' = «
for all K’ € & Due to the definition of the product, this implies ® R = «, and
thus @R € Rep(K, ). O

The following examples demonstrate that conjunctive inclusion need not hold
if is not satisfied, both in the weakly maximizing and in the maximizing case.

Ezample 5. We use EL concepts as knowledge bases and subsumption C? w.r.t.
the empty TBox as entailment between knowledge bases. Then, conjunction is
the sum operation @ and the least common subsumer is the product operation
®. As repair requests we also consider £ concepts and the repair goal is non-
subsumption, but now w.r.t. the following TBox 7:

{HT.Al CPNP;,drAs C PLMN Py, 3r. A3 C Pyl ‘Pg}7

i.e., Rep(C,a) := {C"| C C® C" AC" ZT a}. Tt is easy to see that these repair
sets are closed under entailment C? since C? € T7. The optimal repair property
is satisfied since (up to equivalence E(Z)) a given EL concept has only finitely many
subsumers w.r.t. C?. As operation B on repair requests we also use conjunction.
It is easy to see that we are in a PPC enabling setting and that is satisfied.
If we set C :=3r.(A;MA3MNA3), a:= P MNP, MN P, 5:=3r.Ay M 3r.As, then

Orep(C, Oé) = {37‘.141, HT.AQ, 3’[‘.143}, Orep(C, ﬂ) = {37‘(141 M Ag), E’I".(Al M Ag)},
Orep(C,aB ) = {Ir.(A; M A),Ir.(A1 M A3)}.

In fact, it is easy to see that the EL concepts C’ satisfying C' C? C’ are (up
to equivalence) conjunctions of concepts of the form C, T, Ir.T, Ir.A; for i €
{1,2,3}, and 3r.(A; M A;) for ¢,j C {1,2,3} with ¢ # j. For such a concept C’
not to entail « = P; M P, M Py w.r.t. T, there must be an ¢ € {1,2,3} such
C’ does not entail P;. Assume prototypically that ¢ = 1 (the other cases are
symmetric). Then C’ entails neither 3r.A; nor Ir.As. The most specific concept
entailed by C and satisfying this is 3r.A3. Regarding non-entailment of 5 by
such a concept C’, this is the case if C’ does not entail Jr.As or it does not
entail 3r.A3. Assume prototypically that 3r.As is not entailed by C’. The most
specific concept entailed by C' and satisfying this is Ir.(A; M Ajz)

If we take as relation < the universal relation on L concepts, then < is
clearly transitive and weakly maximizing. For this relation, the induced selec-
tion function ~ always selects the whole set of optimal repairs. Consequently
ctr(C,a) = les(Ir. Ay, Ir. Az, Ir.Az) = Ir.T and ctr(C,a B §) = les(Ir.(Ar N
Az),3r.(A; M As)) = 3r.A;. Thus, we have ctr(C,a B 8) € Rep(C,a), but
ctr(C, o) = Ir.T Z7 3Ir. Ay, which shows that conjunctive inclusion is not satis-
fied. Note that is not satisfied in this example. In fact, neither Ir.(A4; M As)
nor 3r.(A; M A3z) belongs to Rep(C, «), but their product Ir.A; does.
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In this example, we could not have employed C7 as entailment relation for
comparing repairs. While (up to equivalence w.r.t. 7) the optimal repair sets
would have been the same, the lcs of Ir.(A; M Ay) and Ir.(A; M As) wrt. T
would be P, M P, M P3 M 3dr.A; and thus not a repair for a. A modified version
of Example [5| can be used to show that such a counterexample also exists if a
maximizing (rather than just weakly maximizing) transitive relation is used.

Ezxample 6. In this example, we basically employ the same setup as in the pre-
vious example, but restrict the set of KBs to consist of all existential restric-
tions subsuming C := Ir.(A; M A2 M Az) w.r.t. the empty TBox. Between these
KBs we again use C” as entailment relation. Up to equivalence, the set of KBs
considered here consist of the concepts Ir.MM for M C {A;, Az, A3}, where
M@ = T and otherwise MM is the conjunction of the elements of M. For such
concepts, we have Ir.MM C% 3NN iff M D N, and thus sum corresponds to
set union and product to set intersection, i.e., Ir.NMM @ Ir.MN = Ir.N(M U N)
and Fr.NM @ Ir.AN = Ir.N(M N N).

As repair requests we consider arbitrary EL concepts «, which define repair
sets Rep(C,a) := {C"| C % C'AC" T «a}, where T is the TBox of Example
As in Example[f]it is easy to see that repair sets are closed under entailment and
satisfy the optimal repair property. As operation B on repair requests we again
use conjunction, which ensures that is satisfied. If we set C := Jr.(A; M AN
A3), a:= Py PyMPs, and 8 := 3r.As M 3Ir. Az, then we obtain the same sets of
optimal repairs as in Example [5}

Now, we define a maximizing and transitive relation < on knowledge bases:
Ir.NM < 3NN iff |M| < |N|. This relation is clearly transitive since < on
natural numbers is transitive. If 3~.MN = JrMM, then N O M, and thus
|N| > |M]|. Since |N| = |M| would imply N = M, and thus 3r.1N =? 3r.nM,
we actually have |N| > | M|, which implies 3r.AN > Ir.MM.

For our optimal repair sets, the selection function induced by this relation
< again selects all elements. We can now proceed as in Example [5| to show that
conjunctive inclusion and are not satisfied.

Now, we investigate whether the postulate conjunctive inclusion holds under
the assumption that and are satisfied. We start with a lemma that looks
similar to Lemmap] Its proof is inspired by the proof of condition T in the proof
of Observation 2.76 in [16]. For the case of belief set contraction, this lemma is
crucial for showing conjunctive inclusion. Unfortunately, due to the fact that the
inclusion Orep(K, a)) U Orep(KC, 5) C Orep(K, o B 8) need not hold, we do not
obtain a direct inclusion relation between the sets selected by ~.

Lemma 8. Let v be a weakly mazximizingly and transitively relational selection
function and assume that and @ hold. If Rep(K, ) # 0 # Rep(K,3) and
ctr(K,a B 8) € Rep(K, ), then for every element Z of v(Orep(K,«a)) there
exists an element Z' of v(Orep(KC,« B B)) such that Z' = Z.

Proof. Since holds, ctr(K,a B ) € Rep(K, ) implies that there is an X €
v(Orep(K, a 8 3)) such that X € Rep(K, «). Lemma [3] yields X € Orep(K, a).

11
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Now, assume that Z € v(Orep(K, a)). Then Z € Rep(K, @) C Rep(K, aBpS),
and thus there is Z’ € Orep(K, « H 8) such that Z’ = Z. This implies Z' > Z.

To show that Z’ is selected by ~y, we consider an arbitrary element V of
Orep(K, « B 5) and prove that Z > V. Since X € Orep(K, o), we know that
Z>X. In addition, V € Orep(K,aHB ) and X € v(Orep(K, aHp)) yield X > V.
Putting all inequalities together yields Z/ > Z > X >V, and thus Z' >V by
transitivity. Since V was assumed to be an arbitrary element of Orep(KC, « H ),
this proves Z’ € y(Orep(K, o B 3)). 0

In the proof of this lemma it is sufficient to know that < is weakly maximizing.
If we make the stronger assumption that < is maximizing, then we obtain the
following stronger lemma, which will allow us to prove conjunctive inclusion.

Lemma 9. Assume in addition to the assumptions of the previous lemma that
< is mazximizing. Then for every element Z of v(Orep(K,a)) there exists an
element Z' of v(Orep(K,a B 8)) such that Z' = Z.

Proof. If none of the entailments Z’ |= Z in the previous lemma is strict, then
we are done. We now show that assuming that one of these entailments is strict
leads to a contradiction. Thus, assume that Z is an element of v(Orep(KC, a))
such that there exists an element Z’ of v(Orep(K, o H 3)) satisfying Z’ =5 Z.
Then the maximizing property yields Z’ > Z. Since Z is selected, we also know
that Z> Zj holds for all Zy € Orep(K, ). In addition, Z; > Z’ holds for all Z; €
~(Orep(K, «F3)). Transitivity thus yields Z1 > Z for all Z; € v(Orep(K, aH23))
and all Z; € Orep(K, a).

The assumption ctr(/C,a B ) € Rep(K, o) implies that there is an X €
~v(Orep(K, a B 3)) such that X € Rep(K, a). Coverage yields an element X, €
Orep(K, o) such that Xy = X, and thus Xy > X. However, we have shown in the
previous paragraph that actually & > Xy must hold. a

Theorem 2. Assume that = is PPC enabling and that the identities and (@
hold. If the selection function v is maximizingly and transitively relational, then
the partial product contraction operation ctr, satisfies the postulate conjunctive
inclusion.

Proof. As already pointed out in the proof of Theorem [I} the coverage prop-
erty of optimal repairs implies that Rep(K, @) = 0 iff Orep(K, a) = 0. Thus, if
Orep(K, o) = 0, then Orep(K, o) = ) = Orep(K, 3). In this case, ctr, (K, «H
B) = K = ctr,(K, ), and thus conjunctive overlap clearly holds. If all three sets
of optimal repairs are non-empty, then conjunctive inclusion is an immediate
consequence of Lemma [0

Now assume that Orep(KC, o H 3) # 0 # Orep(K, @) and Orep(K, 3) = 0. In
this case, Rep(K,a« B 8) = Rep(K, «), and thus Orep(K, a B ) and Orep(K, )
are equal up to equivalence. This implies that ctr(K, a) = ctr(K,« B 8) due to
the properties required for selection functions, which shows that conjunctive in-
clusion also holds in this case. Finally, assume Orep(KC, a B 8) # 0 # Orep(K, )
and Orep(K, &) = (). In this case, the precondition ctr(K,« B 3) € Rep(K, a) of
conjunctive inclusion is false. Thus the postulate trivially holds. O
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4 Conclusion

We have seen that, under reasonable additional assumptions, Gardenfors’s sup-
plementary postulates can be shown to hold for the partial product contractions
produced by the general framework of [9]. This clarifies what conditions are re-
ally needed for these postulates to hold. At the moment, it remains open whether
the postulates in [9] together with conjunctive overlap and conjunctive inclusion
characterize the partial product contractions obtained from all maximizingly
and transitively relational selection functions. If one considers the proofs of such
characterization theorems involving the supplementary postulates in the liter-
ature (see, e.g., [16], where quite a number of such theorems are shown), then
one sees that they strongly make use of the “remainder variant” of the equation
Orep(K, B 3) = Orep(K, o) U Orep(K, 8), which holds for the remainders con-
sidered there, but not in our general setting (see Example . Also note that
such proofs usually depend on the fact that KBs are sets of formulas of a logic
in which certain Boolean operators are available. It needs to be seen whether
the proof of an appropriate characterization theorem requires additional condi-
tions on our framework, or whether the development of new proof approaches is
sufficient.
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