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Abstract
An abductive difference between two quantified ABoxes consists of the knowledge that needs to be

added to the first to make the second entailed. We describe a generic construction of such differences

and show that all minimal abductive differences can be computed in exponential time. Moreover, we

present first results when ontologies are taken into account.

Abduction in logic aims at explaining observations by computing the missing parts that need to

be added to the knowledge base in order to make the observation entailed [1]. This problem

has received considerable attention, specifically for concept abduction [2, 3], ABox abduction

[4–10], TBox abduction [11, 12], general purpose methods [13–17], and other aspects [18, 19].

We consider the problem of abduction with quantified ABoxes (qABoxes), which are ABoxes

with existentially quantified variables. These variables stand for “anonymous individuals” that

do not have specific names and are only described by their properties and relations to other

individuals. More specifically, we assume a knowledge base consisting of a qABox and an

ontology, and further an observation in form of another qABox — the goal is to compute an

explanation, which is a qABox that needs to be added to the knowledge base to make the

observation entailed. Of particular interest are those explanations that contain only a minimal

amount of additional knowledge, which we call minimal.

For example, the qABox ∃∅.{tom : Cat, jerry :Mouse} has no variables and expresses that

Tom is a cat and Jerry is a mouse. Further consider as observation the qABox ∃{𝑥}.{tom : Cat,
(tom, 𝑥) : chases, 𝑥 : Mouse}, which has one variable 𝑥 and expresses that Tom is a cat that

chases a mouse. Without an ontology, there are two minimal explanations. Since it is already

known in the first qABox that Tom is a cat, this part of the observation must not be included in

any minimal explanation. Moreover, it could be that Tom is specifically chasing Jerry, which is

already known to be a mouse — the according minimal explanation is ∃∅.{(tom, jerry) : chases}.

The other minimal explanation is ∃{𝑥}.{(tom, 𝑥) : chases, 𝑥 :Mouse}. When we additionally

take the ℰℒ ontology {Cat ⊑ ∃chases.Mouse} into account, which expresses that every cat

chases some mouse, then the only minimal explanation is the empty qABox.

Without ontology, there might be exponentially many minimal explanations and, by means of

a generic construction, we show that all minimal explanations can be computed in exponential

time. With an ontology, there might exist infinitely many minimal explanations, even in ℰℒ.
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1. Preliminaries

The Description Logic ℰℒ. We recall the DL ℰℒ, on which all other DLs in the ℰℒ family

are based. In order to structurally describe the domain of interest, we fix a signature consisting

of individuals, atomic concepts, and roles. Concepts are built by 𝐶 ::= ⊤ | 𝐴 | 𝐶 ⊓ 𝐶 | ∃𝑟.𝐶
where 𝐴 ranges over all atomic concepts and 𝑟 over all roles. We call ⊤ the top concept, 𝐶 ⊓𝐷
the conjunction of 𝐶 and 𝐷, and ∃𝑟.𝐶 the existential requirement on 𝑟 with intent 𝐶 . An

ontology 𝒪 is a finite set of concept inclusions (CIs) 𝐶⊑𝐷 involving concepts 𝐶,𝐷. An assertion
box (ABox) 𝒜 is a finite set of concept assertions (CAs) 𝑎 : 𝐶 and role assertions (RAs) (𝑎, 𝑏) : 𝑟
involving individuals 𝑎, 𝑏, concepts 𝐶 , and roles 𝑟. A knowledge base (KB) consists of an ABox

and an ontology.

ℰℒ has a model-based semantics. An interpretation ℐ consists of a non-empty set Dom(ℐ),
called domain, and an interpretation function ·ℐ that sends every individual 𝑎 to an element 𝑎ℐ of

the domain, every atomic concept 𝐴 to a subset 𝐴ℐ
of the domain, and every role 𝑟 to a binary

relation 𝑟ℐ on the domain. The interpretation function is extended to all concepts as follows:

⊤ℐ := Dom(ℐ), (𝐶 ⊓𝐷)ℐ := 𝐶ℐ ∩𝐷ℐ
, and (∃𝑟.𝐶)ℐ := {𝑥 | there is 𝑦 such that (𝑥, 𝑦) ∈ 𝑟ℐ

and 𝑦 ∈ 𝐶ℐ }. An interpretation ℐ satisfies (or is a model of) a CI 𝐶 ⊑𝐷 if 𝐶ℐ ⊆ 𝐷ℐ
, a CA

𝑎 : 𝐶 if 𝑎ℐ ∈ 𝐶ℐ
, and a RA (𝑎, 𝑏) : 𝑟 if (𝑎ℐ , 𝑏ℐ) ∈ 𝑟ℐ . Furthermore, ℐ is a model of an ontology

𝒪 if ℐ satisfies all CIs in 𝒪, a model of an ABox 𝒜 if ℐ satisfies all CAs and RAs in 𝒜, and a

model of a KB 𝒜 ∪𝒪 if ℐ is a model of 𝒜 and 𝒪.

If 𝛼 and 𝛽 are any of the syntatic objects defined above, then we say that 𝛼 entails 𝛽, written

𝛼 |= 𝛽, if every model of 𝛼 is a model of 𝛽. We often write 𝒜 |=𝒪 𝛽 instead of 𝒜 ∪ 𝒪 |= 𝛽,

and then we say that 𝒜 entails 𝛽 w.r.t. 𝒪. Furthermore, we say that a concept 𝐶 is subsumed
by a concept 𝐷 w.r.t. an ontology 𝒪, written 𝐶 ⊑𝒪 𝐷, if 𝒪 |= 𝐶 ⊑𝐷. We further say that 𝛼
and 𝛽 are equivalent, written 𝛼 ≡ 𝛽, if they entail each other. Entailment, equivalence, and

subsumption in ℰℒ can be decided in polynomial time [20].

Quantified ABoxes. A quantified ABox (qABox) ∃𝑋.𝒜 consists of a finite set 𝑋 of variables
and an ABox 𝒜, called matrix, in which variables may be used in place of individuals. Since the

variables are existentially quantified, they are “anonymous individuals” whose names are not

exposed. Each variable in 𝑋 and each individual (in the signature, but not necessarily occurring

in the matrix) is an object of ∃𝑋.𝒜, and Obj(∃𝑋.𝒜) is the set of all objects of ∃𝑋.𝒜. A KB can

now also consist of a qABox and an ontology. A qABox is in normal form if only atomic concepts

are used in the assertions. Each qABox can be transformed into normal form by representing

complex concepts by the use of variables — e.g. ∃∅.{𝑎 : (𝐴⊓∃𝑟.𝐵), 𝑏 :⊤} has the normal form

∃{𝑥}.{𝑎:𝐴, (𝑎, 𝑥):𝑟, 𝑥:𝐵}. The union of two qABoxes is ∃𝑋.𝒜∪∃𝑌.ℬ := ∃(𝑋∪𝑌 ).(𝒜∪ℬ)
where w.l.o.g. 𝑋 ∩ 𝑌 = ∅ (otherwise variables need to be renamed). Over signatures consisting

of constants, unary predicates, and binary predicates only, relational structures with constants,

databases with nulls, primitive-positive (pp) formulas in first-order logic, conjunctive queries

(CQs), and qABoxes are syntatic variants of each other, i.e. semantically the same, but used for

different purposes or in different fields of research.

Consider an interpretation ℐ and a qABox ∃𝑋.𝒜. A variable assignment 𝒵 sends each variable

𝑥 in 𝑋 to an element 𝑥𝒵 of the domain of ℐ . The extended interpretation ℐ[𝒵] coincides with

ℐ but its interpretation function ·ℐ[𝒵]
additionally maps every variable according to 𝒵 . We say



that ℐ is a model of ∃𝑋.𝒜 if there is a variable assignment 𝒵 such that ℐ[𝒵] is a model of 𝒜.

Entailment between two qABoxes is an NP-complete problem, but whether a qABox entails

an ABox can be decided in polynomial time. Without an ontology, ∃𝑌.ℬ |= ∃𝑋.𝒜 iff. there is

a homomorphism from ∃𝑋.𝒜 to ∃𝑌.ℬ, which is a function ℎ that sends each individual 𝑎 to

itself and each variable in 𝑋 to an object of ∃𝑌.ℬ such that applying ℎ within any assertion in

𝒜 yields an assertion in ℬ. More formally, a homomorphism from ∃𝑋.𝒜 to ∃𝑌.ℬ is a mapping

ℎ : Obj(∃𝑋.𝒜) → Obj(∃𝑌.ℬ) that fulfills the following conditions:

(H1) ℎ(𝑎) = 𝑎 for each individual 𝑎,

(H2) if 𝑢 :𝐴 ∈ 𝒜, then ℎ(𝑢) :𝐴 ∈ ℬ,

(H3) if (𝑢, 𝑣) : 𝑟 ∈ 𝒜, then (ℎ(𝑢), ℎ(𝑣)) : 𝑟 ∈ ℬ.

With an ontology 𝒪, entailment can be decided by first saturating ∃𝑌.ℬ by means of 𝒪 (i.e.

compute the chase or the universal model) and then checking for a homomorphism from ∃𝑋.𝒜
to the saturation [21, 22].

2. Explaining Observations by Abductive Differences

We start with a general definition of abductive differences for qABoxes.

Definition 1. Consider an observation in form of a qABox ∃𝑋.𝒜 and further consider a KB

consisting of a qABox ∃𝑌.ℬ and an ontology 𝒪. An abductive difference (or explanation) of

∃𝑋.𝒜 w.r.t. ∃𝑌.ℬ and 𝒪 is a qABox ∃𝑍.𝒞 such that ∃𝑌.ℬ ∪ ∃𝑍.𝒞 |=𝒪 ∃𝑋.𝒜. Moreover,

∃𝑍.𝒞 is minimal if there is no other abductive difference ∃𝑍 ′.𝒞′
with ∃𝑍.𝒞 |=𝒪 ∃𝑍 ′.𝒞′

but

∃𝑍 ′.𝒞′ ̸|=𝒪 ∃𝑍.𝒞.

In the above definition the ontology 𝒪 can be any finite set of first-order formulas without free

variables (i.e. first-order sentences). If the given KB consisting of ∃𝑌.ℬ and 𝒪 is inconsistent

(i.e. has no model and thus entails everything), then the empty qABox is the only minimal

explanation. Non-trivial minimal explanations can only be obtained when the observation does

not already follow from the KB, in which case the KB must be consistent. Obviously, ∃𝑋.𝒜 is

always an abductive difference but in general not a minimal one since parts of ∃𝑋.𝒜 might

already occur in ∃𝑌.ℬ, as the following example shows.

Example 2. Two minimal explanations of the observation ∃{𝑥}.{tom : Cat, (tom, 𝑥) : chases,
𝑥 :Mouse} w.r.t. the KB ∃∅.{tom : Cat, jerry :Mouse} are ∃{𝑥}.{(tom, 𝑥) : chases, 𝑥 :Mouse}
and ∃∅.{(tom, jerry) : chases}.

The next example illustrates that, without an ontology, there can be at least exponentially

many minimal explanations. A matching upper bound will be proven in Section 3, viz. that, up

to equivalence, the set of all minimal explanations can be computed in exponential time.

Example 3. For each number 𝑛 ≥ 1, consider the observation ∃{𝑥1, . . . , 𝑥𝑛}.{𝑥1 : 𝐶1, . . . ,
𝑥𝑛 :𝐶𝑛, (𝑥1, 𝑥2) :𝑟, (𝑥2, 𝑥3) :𝑟, . . . , (𝑥𝑛−1, 𝑥𝑛) :𝑟} and the KB ∃∅.{(𝑎, 𝑎) :𝑟, (𝑏, 𝑏) :𝑟, (𝑎, 𝑏) :𝑟,
(𝑏, 𝑎) : 𝑟}. Then, in order to obtain a minimal explanation, we can choose between 𝑎 : 𝐶𝑖 and

𝑏 :𝐶𝑖 for each 𝑖 ∈ {1, . . . , 𝑛}, i.e. every qABox ∃∅.{𝑧1 :𝐶1, . . . , 𝑧𝑛 :𝐶𝑛} with 𝑧𝑖 ∈ {𝑎, 𝑏} is a

minimal explanation. Thus there are at least 2𝑛 minimal explanations. (There might be further

minimal explanations not considered here.)



The third example below shows that an ontology can enforce infinitely many non-equivalent

minimal explanations.

Example 4. The observation {alice :Human} has infinitely many minimal explanations w.r.t. the

KB consisting of the ℰℒABox {bob:Human} and the ℰℒ ontology {∃hasParent.Human⊑Human}.

For each number 𝑛 > 0, the qABox ∃{𝑥1, . . . , 𝑥𝑛}.{(alice, 𝑥1) : hasParent, (𝑥1, 𝑥2) : hasParent,
· · · , (𝑥𝑛−1, 𝑥𝑛) : hasParent, (𝑥𝑛, bob) : hasParent} is a minimal abductive difference. Also the

observation itself is a minimal explanation. At the same time this example shows that, in general,

the size of minimal abductive differences is not bounded.

3. The Case without Ontology

We first consider the case without ontology and show how the set of all minimal explanations

can be computed in exponential time, up to equivalence. This case is relevant when no ontology

is used in the application, but also serves as a foundation for the general case (see Lemma 12 for

details). Recall from Example 2 that the computation of minimal explanations must take into

account the parts of the observation that are already entailed by the KB. These parts can be

pinpointed by means of so-called partial homomorphisms.

In order to understand partial homomorphisms, consider an observation ∃𝑋.𝒜, a KB ∃𝑌.ℬ,

and an explanation ∃𝑍.𝒞. By Definition 1 the observation is entailed by the union of the KB

and the explanation, and so there is a homomorphism ℎ from ∃𝑋.𝒜 to ∃𝑌.ℬ ∪ ∃𝑍.𝒞. When

we now restrict ℎ to all objects that are mapped to objects of the KB, i.e. we consider the partial

function 𝑝 : Obj(∃𝑋.𝒜) ↦→ Obj(∃𝑌.ℬ) where 𝑝(𝑢) := ℎ(𝑢) if ℎ(𝑢) ∈ Obj(∃𝑌.ℬ) and 𝑝(𝑢) is

undefined otherwise, then this restriction 𝑝 pinpoints the part of the observation that is already

known in the KB. Since to construct the union of the KB and the explanation their variable sets

𝑌 and 𝑍 are made disjoint, assertions in 𝒜 involving objects mapped to variables in 𝑌 must be

present in ℬ (since these variables occur only in ℬ), but those assertions in 𝒜 involving objects

mapped to individuals can be in ℬ or 𝒞 (since individuals can occur in ℬ as well as 𝒞). Thus,

the partial homomorphism 𝑝 is only required to preserve assertions in 𝒜 involving an object

that 𝑝 sends into 𝑌 , see the precise definition below.

Definition 5. A partial homomorphism from a qABox ∃𝑋.𝒜 to another qABox ∃𝑌.ℬ is a

partial function 𝑝 : Obj(∃𝑋.𝒜) ↦→ Obj(∃𝑌.ℬ) that satisfies the following:

(PH1) 𝑝(𝑎) = 𝑎 for each individual 𝑎,

(PH2) if 𝑢 :𝐴 ∈ 𝒜 such that 𝑢 ∈ Dom(𝑝) and 𝑝(𝑢) ∈ 𝑌 ,
1

then 𝑝(𝑢) :𝐴 ∈ ℬ,
2

(PH3) if (𝑢, 𝑣):𝑟 ∈ 𝒜 s.t. 𝑢 ∈ Dom(𝑝) and 𝑝(𝑢) ∈ 𝑌 , then 𝑣 ∈ Dom(𝑝) and (𝑝(𝑢), 𝑝(𝑣)):𝑟 ∈ ℬ,

(PH4) if (𝑢, 𝑣):𝑟 ∈ 𝒜 s.t. 𝑣 ∈ Dom(𝑝) and 𝑝(𝑣) ∈ 𝑌 , then 𝑢 ∈ Dom(𝑝) and (𝑝(𝑢), 𝑝(𝑣)):𝑟 ∈ ℬ.

We say that 𝑝 is trivial if Dom(𝑝) ∩𝑋 = ∅.

On the other hand, the remaining part of the observation, which is mapped by the homo-

morphism ℎ to the explanation, is the unknown part. This means that we can take the partial

1

Note that then 𝑢 ∈ 𝑋 .

2

We denote the domain of 𝑝 by Dom(𝑝), which is the set of all elements for which 𝑝 is defined.



homomorphism and extend it to a homomorphism to the union of the KB and the explanation.

Motivated by this, we will next develop a canonical construction of explanations. To this end,

we exploit the partial homomorphism 𝑝 to define a so-called 𝑝-difference ∃𝑋.𝒜 ∖𝑝 ∃𝑌.ℬ (see

Definition 6), which is specifically defined so that 𝑝 can be extended to a homomorphism from

the observation to the union of the KB and this 𝑝-difference. It then follows that this 𝑝-difference

is an explanation as well (see Lemma 7). This construction is canonical in the sense that the

𝑝-difference is entailed by the initially considered explanation (see Lemma 8).

Definition 6. Let 𝑝 be a partial homomorphism from ∃𝑋.𝒜 to ∃𝑌.ℬ, where w.l.o.g. 𝑋∩𝑌 = ∅.

The 𝑝-difference ∃𝑋.𝒜 ∖𝑝 ∃𝑌.ℬ is the qABox with variable set 𝑋 ∖ Dom(𝑝) and matrix

{ 𝑝(𝑢) :𝐴 | 𝑢 :𝐴 ∈ 𝒜, 𝑢 ∈ Dom(𝑝), and 𝑝(𝑢) :𝐴 ̸∈ ℬ }3

∪ { (𝑝(𝑢), 𝑝(𝑣)) : 𝑟 | (𝑢, 𝑣) : 𝑟 ∈ 𝒜, 𝑢, 𝑣 ∈ Dom(𝑝), and (𝑝(𝑢), 𝑝(𝑣)) : 𝑟 ̸∈ ℬ },

where the partial function 𝑝 : Obj(∃𝑋.𝒜) ↦→ Obj(∃𝑋.𝒜) is defined by

• 𝑝(𝑥) := 𝑥 for each 𝑥 ∈ 𝑋 ∖ Dom(𝑝),
• 𝑝(𝑢) := 𝑝(𝑢) for each 𝑢 ∈ Dom(𝑝) such that 𝑝(𝑢) an individual,

• 𝑝(𝑢) is undefined for each 𝑢 ∈ Dom(𝑝) such that 𝑝(𝑢) is a variable (in 𝑌 ).

The 𝑝-union ∃𝑌.ℬ ∪𝑝 ∃𝑋.𝒜 is ∃𝑌.ℬ ∪ (∃𝑋.𝒜 ∖𝑝 ∃𝑌.ℬ).

Simply put, the 𝑝-difference consists of those assertions in the observation that are not already

present in the KB. To account for objects 𝑢mapped to individuals by the partial homomorphism 𝑝,

each occurrence of such an object 𝑢 must be replaced by the respective individual 𝑝(𝑢), but the

remaining variables occurring in these assertions need not be renamed — this is achieved by

means of the mapping 𝑝. In particular, we have 𝑢 ∈ Dom(𝑝) iff. 𝑢 ̸∈ Dom(𝑝) or 𝑝(𝑢) ̸∈ 𝑌 , the

union of Dom(𝑝) and Dom(𝑝) equals Obj(∃𝑋.𝒜), and the intersection of Dom(𝑝) and Dom(𝑝)
consists of all objects 𝑢 such that 𝑝(𝑢) is an individual, but for these 𝑝 and 𝑝 coincide. We will

furthermore see in Lemma 7 below that extending 𝑝 by 𝑝 yields a homomorphism from the

observation to the union of the KB and the 𝑝-difference.

Obviously, the size of the 𝑝-difference is bounded by the size of the observation since every

assertion in the former is obtained from an assertion in the latter. It follows that each 𝑝-difference

has polynomial size. In the case where 𝑝 is trivial, we have ∃𝑋.𝒜 ∖𝑝 ∃𝑌.ℬ = ∃𝑋.(𝒜 ∖ ℬ) and

thus ∃𝑌.ℬ ∪𝑝 ∃𝑋.𝒜 = ∃𝑌.ℬ ∪ ∃𝑋.𝒜, i.e. the set-theoretic union coincides with the 𝑝-union.

Lemma 7. For each partial homomorphism 𝑝 from ∃𝑋.𝒜 to ∃𝑌.ℬ, the 𝑝-difference ∃𝑋.𝒜∖𝑝∃𝑌.ℬ
is an abductive difference of ∃𝑋.𝒜 w.r.t. ∃𝑌.ℬ.

Proof. We need to verify that the 𝑝-union entails ∃𝑋.𝒜. To this end, we extend 𝑝 to a (non-

partial) homomorphism from ∃𝑋.𝒜 to ∃𝑌.ℬ∪𝑝 ∃𝑋.𝒜. Since Dom(𝑝)∪Dom(𝑝) = Obj(∃𝑋.𝒜)
and 𝑝(𝑢) = 𝑝(𝑢) for each 𝑢 ∈ Dom(𝑝)∩Dom(𝑝), the union 𝑝∪𝑝 is a function from Obj(∃𝑋.𝒜)
to Obj(∃𝑌.ℬ ∪𝑝 ∃𝑋.𝒜). It remains to show that 𝑝 ∪ 𝑝 is a homomorphism.

(H1) For each individual 𝑎, we have 𝑝(𝑎) = 𝑎 by (PH1). Moreover, Definition 6 yields 𝑝(𝑎) =
𝑝(𝑎) and thus (𝑝 ∪ 𝑝)(𝑎) = 𝑎.

3

If 𝑝(𝑢) is no individual, then 𝑝(𝑢) :𝐴 cannot be in ℬ anyway since 𝑋 and 𝑌 are disjoint.



(H2) Let 𝑢 :𝐴 ∈ 𝒜.

• If 𝑢 ∈ Dom(𝑝) and 𝑝(𝑢) ∈ 𝑌 , then 𝑝(𝑢) : 𝐴 ∈ ℬ by (PH2) and thus the matrix of

∃𝑌.ℬ ∪𝑝 ∃𝑋.𝒜 contains (𝑝 ∪ 𝑝)(𝑢) :𝐴.

• If 𝑢 ∈ Dom(𝑝) and 𝑝(𝑢) ̸∈ 𝑌 , then 𝑝(𝑢) is an individual and thus equals 𝑝(𝑢).
According to the definition of the 𝑝-difference, 𝑝(𝑢) :𝐴 is either in ℬ or in the matrix of

the 𝑝-difference, and thus contained in the matrix of the 𝑝-union.

• If 𝑢 ̸∈ Dom(𝑝), then 𝑢 cannot be an individual and thus 𝑢 ∈ 𝑋 . It follows that

𝑢 ∈ Dom(𝑝) and 𝑝(𝑢) = 𝑢. The definition of the 𝑝-difference ensures that the matrix of

the 𝑝-union contains 𝑝(𝑢) :𝐴.

(H3) Similar for (𝑢, 𝑣) : 𝑟 ∈ 𝒜.

• If 𝑢 ∈ Dom(𝑝) and 𝑝(𝑢) ∈ 𝑌 , then 𝑣 ∈ Dom(𝑝) and (𝑝(𝑢), 𝑝(𝑣)) : 𝑟 ∈ ℬ by (PH3)

and thus the matrix of ∃𝑌.ℬ ∪𝑝 ∃𝑋.𝒜 contains ((𝑝 ∪ 𝑝)(𝑢), (𝑝 ∪ 𝑝)(𝑣)) : 𝑟.

• Analogously for 𝑣 ∈ Dom(𝑝) and 𝑝(𝑣) ∈ 𝑌 by (PH4).

• If 𝑢, 𝑣 ∈ Dom(𝑝) and 𝑝(𝑢), 𝑝(𝑣) ̸∈ 𝑌 , then 𝑝(𝑢) and 𝑝(𝑣) are individuals and thus

equal to 𝑝(𝑢) and, respectively, 𝑝(𝑣). According to the definition of the 𝑝-difference,

(𝑝(𝑢), 𝑝(𝑣)) : 𝑟 is either in ℬ or in the matrix of the 𝑝-difference, and thus contained in

the matrix of the 𝑝-union.

• If 𝑢, 𝑣 ̸∈ Dom(𝑝), then 𝑢, 𝑣 cannot be individuals and thus 𝑢, 𝑣 ∈ 𝑋 . It follows that

𝑢, 𝑣 ∈ Dom(𝑝) where 𝑝(𝑢) = 𝑢 and 𝑝(𝑣) = 𝑣. The definition of the 𝑝-difference ensures

that the matrix of the 𝑝-union contains (𝑝(𝑢), 𝑝(𝑣)) : 𝑟.

• Assume 𝑢 ∈ Dom(𝑝) and 𝑝(𝑢) ̸∈ 𝑌 , i.e. 𝑝(𝑢) is an individual. Further let 𝑣 ̸∈ Dom(𝑝),
i.e. 𝑣 cannot be an individual and thus 𝑣 ∈ 𝑋 . It follows that 𝑢, 𝑣 ∈ Dom(𝑝) where

𝑝(𝑢) = 𝑝(𝑢) and 𝑝(𝑣) = 𝑣. Since 𝑣 ∈ 𝑋 and 𝑋 ∩ 𝑌 = ∅, the matrix ℬ cannot contain

(𝑝(𝑢), 𝑝(𝑣)) : 𝑟 and so this assertion is contained in the matrix of the 𝑝-difference, and

therefore also in the matrix of the 𝑝-union.

• The remaining case with 𝑢 ̸∈ Dom(𝑝), 𝑣 ∈ Dom(𝑝), and 𝑝(𝑣) ̸∈ 𝑌 is analogous.

Lemma 8. Every abductive difference entails a 𝑝-difference.

Proof. Consider an abductive difference ∃𝑍.𝒞, i.e. ∃𝑌.ℬ ∪ ∃𝑍.𝒞 |= ∃𝑋.𝒜 and so there is a

homomorphism ℎ from ∃𝑋.𝒜 to ∃𝑌.ℬ∪∃𝑍.𝒞. W.l.o.g. let the variable sets 𝑋,𝑌, 𝑍 be pairwise

disjoint. First, we obtain a partial homomorphism 𝑝 by restricting ℎ to all objects of ∃𝑋.𝒜
mapped to some object of ∃𝑌.ℬ, i.e. we verify that the partial function 𝑝 with 𝑝(𝑢) := ℎ(𝑢)
whenever ℎ(𝑢) ∈ Obj(∃𝑌.ℬ) is a partial homomorphism.

(PH1) Since each individual 𝑎 is an object of ∃𝑌.ℬ, we have 𝑝(𝑎) = ℎ(𝑎) = 𝑎.

(PH2) Let 𝑢 : 𝐴 ∈ 𝒜 with 𝑢 ∈ Dom(𝑝) and 𝑝(𝑢) ∈ 𝑌 . Since 𝑝(𝑢) = ℎ(𝑢), ℎ(𝑢) : 𝐴 ∈ ℬ ∪ 𝒞,

and 𝑌 ∩ 𝑍 = ∅, we infer that 𝑝(𝑢) :𝐴 ∈ ℬ.

(PH3) Assume (𝑢, 𝑣) : 𝑟 ∈ 𝒜 with 𝑢 ∈ Dom(𝑝) and 𝑝(𝑢) ∈ 𝑌 . For 𝑝(𝑢) = ℎ(𝑢), (ℎ(𝑢), ℎ(𝑣)) :
𝑟 ∈ ℬ∪𝒞, and 𝑌 ∩𝑍 = ∅, it follows that ℎ(𝑣) is an object of ∃𝑌.ℬ and (𝑝(𝑢), ℎ(𝑣)):𝑟 ∈ ℬ.

Thus 𝑣 ∈ Dom(𝑝) where 𝑝(𝑣) = ℎ(𝑣), and (𝑝(𝑢), 𝑝(𝑣)) : 𝑟 ∈ ℬ.



(PH4) Consider (𝑢, 𝑣) : 𝑟 ∈ 𝒜 with 𝑣 ∈ Dom(𝑝) and 𝑝(𝑣) ∈ 𝑌 . Similarly as in the previous

case we infer that ℎ(𝑢) is an object of ∃𝑌.ℬ and (ℎ(𝑢), 𝑝(𝑣)) : 𝑟 ∈ ℬ, and further that

𝑢 ∈ Dom(𝑝) where 𝑝(𝑢) = ℎ(𝑢), hence (𝑝(𝑢), 𝑝(𝑣)) : 𝑟 ∈ ℬ.

Next, we show that there is a homomorphism from the 𝑝-difference to ∃𝑍.𝒞. We already know

that ℎ is a homomorphism from ∃𝑋.𝒜 to ∃𝑌.ℬ ∪ ∃𝑍.𝒞, and further that the 𝑝-difference is

obtained from a sub-qABox of ∃𝑋.𝒜 by replacing, for every object 𝑢 with 𝑝(𝑢) an individual,

each occurrence of 𝑢 by 𝑝(𝑢).
This replacement is formally done by the mapping 𝑝, i.e. the objects in the 𝑝-difference have the

form 𝑝(𝑢) as per Definition 6. We infer that ℎ(𝑝(𝑥)) = ℎ(𝑥) for each variable 𝑥 ∈ 𝑋 ∖ Dom(𝑝)
and ℎ(𝑝(𝑢)) = ℎ(𝑝(𝑢)) = 𝑝(𝑢) = ℎ(𝑢) for each 𝑢 ∈ Dom(𝑝) with 𝑝(𝑢) an individual. Thus,

if an assertion 𝑝(𝑢) :𝐴 is in the 𝑝-difference, then 𝑢 :𝐴 is in 𝒜, and thus ℎ(𝑢) :𝐴 is in ℬ ∪ 𝒞,

and similarly for the other assertions (𝑝(𝑢), 𝑝(𝑣)) : 𝑟. It follows that the restriction of ℎ to the

objects of the 𝑝-difference is a homomorphism from the 𝑝-difference to ∃𝑌.ℬ ∪ ∃𝑍.𝒞.

It remains to show that this restriction of ℎ is already a homomorphism to ∃𝑍.𝒞. For each

variable 𝑥 ∈ 𝑋 ∖ Dom(𝑝), we have ℎ(𝑝(𝑥)) = ℎ(𝑥) (see above) and ℎ(𝑥) ̸∈ Obj(∃𝑌.ℬ) (by

definition of 𝑝), and thus ℎ(𝑥) must be a variable of ∃𝑍.𝒞, i.e. ℎ(𝑥) ∈ 𝑍 . Moreover, for each

object 𝑢 ∈ Dom(𝑝) with 𝑝(𝑢) an individual, we have ℎ(𝑝(𝑢)) = ℎ(𝑝(𝑢)) = 𝑝(𝑢) = 𝑝(𝑢).

(H2) Thus, every assertion 𝑝(𝑢) :𝐴 in the 𝑝-difference is mapped by ℎ to the assertion 𝑝(𝑢) :𝐴,

which must be contained in 𝒞 since ℎ(𝑝(𝑢)) ∈ 𝑍 if 𝑢 ∈ 𝑋 ∖ Dom(𝑝), and otherwise

Definition 6 ensures that this assertion is not in ℬ.

(H3) Each assertion (𝑝(𝑢), 𝑝(𝑣)) : 𝑟 in the 𝑝-difference is treated similarly. If 𝑢 or 𝑣 is in

𝑋 ∖ Dom(𝑝), then ℎ(𝑝(𝑢)) ∈ 𝑍 or, respectively, ℎ(𝑝(𝑣)) ∈ 𝑍 , and thus ℎ must map this

assertion to one in 𝒞. Otherwise, Definition 6 ensures that ℎ does not map this assertion

to one in ℬ, hence ℎ must map it to one in 𝒞.

(H1) Every individual 𝑎 is an object of the 𝑝-difference and we have ℎ(𝑎) = 𝑎 by (H1). Thus

also the considered restriction of ℎ sends 𝑎 to itself.

The important corollary to the previous lemma is that the set of all 𝑝-differences contains all

minimal explanations, up to equivalence.

Proposition 9. Every minimal abductive difference of ∃𝑋.𝒜 w.r.t. ∃𝑌.ℬ is equivalent to a
𝑝-difference ∃𝑋.𝒜 ∖𝑝 ∃𝑌.ℬ for some partial homomorphism 𝑝 from ∃𝑋.𝒜 to ∃𝑌.ℬ.

Proof. Let ∃𝑍.𝒞 be a minimal abductive difference. By Lemma 8 there is a partial homomorphism

𝑝 such that its 𝑝-difference is entailed by ∃𝑍.𝒞. Moreover, the 𝑝-difference is also an abductive

difference by Lemma 7. Since ∃𝑍.𝒞 is minimal, it follows that, in the opposite direction, also

∃𝑍.𝒞 is entailed by the 𝑝-difference. Thus, ∃𝑍.𝒞 is equivalent to the 𝑝-difference.

We can finally formulate our main result regarding the computation of minimal explanations.

Example 3 yields that the below complexity result cannot be improved in general.

Theorem 10. Consider an observation ∃𝑋.𝒜 and a KB ∃𝑌.ℬ. Up to equivalence, each minimal
explanation has polynomial size and the set of all minimal explanations can be computed in
exponential time.



Proof. By Proposition 9 every minimal explanation is equivalent to a 𝑝-difference, and each

𝑝-difference has polynomial size, which yields the first claim. Further recall from Lemma 7 that

every 𝑝-difference is an explanation. Thus, it suffices to compute all minimal 𝑝-differences to

obtain, up to equivalence, all minimal explanations. A procedure that computes them all works

as follows.

1. Enumerate all partial functions from Obj(∃𝑋.𝒜) to Obj(∃𝑌.ℬ), which are exponentially

many and each of them has polynomial size.

2. Retain only the partial homomorphisms. To this end, check whether each partial function

satisfies Definition 5, which can be done in polynomial time for a single function.

3. Compute all 𝑝-differences from the partial homomorphisms as per Definition 6, which

needs polynomial time for one 𝑝-difference.

4. Retain only the minimal 𝑝-differences. For this purpose, consider all pairs of 𝑝-differences,

determine which entails which, and remove the one that entails but is not entailed by the

other. Since every 𝑝-difference has polynomial size and qABox entailment is NP-complete,

identifying all minimal explanation terminates in exponential time.

3.1. Computing Partial Homomorphisms with Query Answering Systems

We have seen in Theorem 10 that we obtain all minimal explanations from the exponentially

many partial homomorphisms. Instead of enumerating all partial homomorphisms in the

naïve manner as in the proof of that theorem, we can rather reuse existing algorithms and

implementations for enumerating (non-partial) homomorphisms, viz. by employing off-the-shelf

query answering systems.

To this end, we extend the given KB ∃𝑌.ℬ to a qABox ∃𝑌 *.ℬ*
such that there is a corre-

spondence between the partial homomorphisms from the observation ∃𝑋.𝒜 to the KB ∃𝑌.ℬ
and the (ordinary) homomorphisms from ∃𝑋.𝒜 to ∃𝑌 *.ℬ*

. We achieve this by adding further

assertions to which all parts of the observation can be mapped that are not mapped by the partial

homomorphisms since they are missing from the KB. More specifically, we add all possible

concept and role assertions involving individuals, and we further add a fresh variable * that

is asserted to “everything” in the sense that we add all possible concept and role assertions

involving this new variable * and possibly any individual (see this precise definition below).

Then, we identify the observation ∃𝑋.𝒜 with the conjunctive query to be answered (but we

treat all variables in 𝑋 as answer variables, i.e. we drop the existential quantification) and further

we identify ∃𝑌 *.ℬ*
with the database over which the query is to be evaluated. Therefore each

certain answer represents a homomorphism from ∃𝑋.𝒜 to ∃𝑌 *.ℬ*
and vice versa.

Lemma 11. Consider qABoxes ∃𝑋.𝒜 and ∃𝑌.ℬ, and define ∃𝑌 *.ℬ* by 𝑌 * := 𝑌 ∪ {*} and

ℬ* := ℬ ∪ { 𝑎 :𝐴 | 𝑎 is an individual and 𝐴 is a atomic concept }
∪ { (𝑎, 𝑏) : 𝑟 | 𝑎, 𝑏 are individuals and 𝑟 is a role }
∪ { (𝑎, *) : 𝑟, (*, 𝑎) : 𝑟 | 𝑎 is an individual and 𝑟 is a role }
∪ { * :𝐴 | 𝐴 is a atomic concept }
∪ { (*, *) : 𝑟 | 𝑟 is a role }.



1. If 𝑝 is a partial homomorphism from ∃𝑋.𝒜 to ∃𝑌.ℬ, then ℎ with ℎ(𝑢) := 𝑝(𝑢) for each
𝑢 ∈ Dom(𝑝) and ℎ(𝑢) := * otherwise is a homomorphism from ∃𝑋.𝒜 to ∃𝑌 *.ℬ*.

2. If ℎ is a homomorphism from ∃𝑋.𝒜 to ∃𝑌 *.ℬ*, then 𝑝 with 𝑝(𝑢) := ℎ(𝑢) for each 𝑢 with
ℎ(𝑢) ̸= * and 𝑝(𝑢) undefined otherwise is a partial homomorphism from ∃𝑋.𝒜 to ∃𝑌.ℬ.

Proof. Let 𝑝 : ∃𝑋.𝒜 ↦→ ∃𝑌.ℬ be a partial homomorphism. We verify that ℎ as defined above

is a homomorphism.

(H1) Since 𝑝(𝑎) = 𝑎 for each individual 𝑎, we also have ℎ(𝑎) = 𝑎.

(H2) Consider an assertion 𝑢 :𝐴 in 𝒜. We distinguish two cases.

• Assume 𝑢 ∈ Dom(𝑝), and thus ℎ(𝑢) = 𝑝(𝑢). If ℎ(𝑢) is a variable (in 𝑌 ), then (PH2)

ensures that ℎ(𝑢) :𝐴 is in ℬ, and thus also in ℬ*
. Otherwise, ℎ(𝑢) is an individual, and

so ℬ*
contains ℎ(𝑢) :𝐴 by definition.

• In the remaining case we have ℎ(𝑢) = *, and ℬ*
contains ℎ(𝑢) :𝐴 by definition.

(H3) Let (𝑢, 𝑣) : 𝑟 be an assertion in 𝒜.

• Assume 𝑢 ∈ Dom(𝑝), i.e. ℎ(𝑢) = 𝑝(𝑢), and further let ℎ(𝑢) be a variable (in 𝑌 ). Then

(PH3) ensures that (ℎ(𝑢), ℎ(𝑣)) : 𝑟 is in ℬ, and thus also in ℬ*
. Similarly, if 𝑣 ∈ Dom(𝑝)

and ℎ(𝑣) ∈ 𝑌 , then (ℎ(𝑢), ℎ(𝑣)) : 𝑟 ∈ ℬ ⊆ ℬ*
by (PH4).

• Moreover, if 𝑢, 𝑣 ∈ Dom(𝑝) and ℎ(𝑢), ℎ(𝑣) are individuals, then (ℎ(𝑢), ℎ(𝑣)):𝑟 ∈ ℬ*

by definition of ℬ*
.

• Now let 𝑢 ∈ Dom(𝑝), 𝑣 ̸∈ Dom(𝑝), and ℎ(𝑢) an individual. Then ℎ(𝑣) = * and so

the definition of ℬ*
ensures that (ℎ(𝑢), ℎ(𝑣)) : 𝑟 is in ℬ*

. The case where 𝑢 ̸∈ Dom(𝑝),
𝑣 ∈ Dom(𝑝), and ℎ(𝑣) an individual is analogous.

• In the remaining case we have 𝑢, 𝑣 ̸∈ Dom(𝑝) and thus ℎ(𝑢) = * = ℎ(𝑣). Then ℬ*

contains (ℎ(𝑢), ℎ(𝑣)) : 𝑟 by definition.

Regarding the second statement, let ℎ : ∃𝑋.𝒜 → ∃𝑌.ℬ be a homomorphism. We show that 𝑝
as defined above is a partial homomorphism.

(PH1) For each individual 𝑎, we have ℎ(𝑎) = 𝑎, and so 𝑝(𝑎) = ℎ(𝑎), i.e. 𝑝(𝑎) = 𝑎.

(PH2) Let 𝑢 :𝐴 be in 𝒜 where 𝑢 ∈ Dom(𝑝) and 𝑝(𝑢) ∈ 𝑌 . The first assumption yields that ℬ*

contains ℎ(𝑢) : 𝐴, the second yields 𝑝(𝑢) = ℎ(𝑢) ̸= *, and thus the third implies that

𝑝(𝑢) :𝐴 is already in ℬ.

(PH3) Assume 𝒜 contains (𝑢, 𝑣) : 𝑟 where 𝑢 ∈ Dom(𝑝) and 𝑝(𝑢) ∈ 𝑌 . By the first assumption

ℬ*
contains (ℎ(𝑢), ℎ(𝑣)) : 𝑟, the second implies 𝑝(𝑢) = ℎ(𝑢) ̸= *, and so by the third we

conclude that ℬ contains (𝑝(𝑢), ℎ(𝑣)) : 𝑟. Moreover, it follows that ℎ(𝑣) ̸= * and thus

𝑣 ∈ Dom(𝑝) where 𝑝(𝑣) = ℎ(𝑣), i.e. (𝑝(𝑢), 𝑝(𝑣)) : 𝑟 ∈ ℬ.

(PH4) Analogous to the previous case.



4. The Case with ℰℒ Ontologies and ℰℒ ABox Observations

We now turn our attention to the case with an ontology 𝒪. According to Example 4 there can

be infinitely many minimal explanations of an observation, even when 𝒪 is an ℰℒ ontology and

the observation is an ℰℒ ABox. A closer look at this example reveals that all these explanations

are obtained from “premises” of the observation, i.e. from qABoxes entailing the observation

w.r.t. 𝒪. The following lemma shows that this is true in general for all ontologies consisting of

first-order sentences.

Lemma 12. Consider a qABox ∃𝑋.𝒜 as observation and a KB composed of a qABox ∃𝑌.ℬ and
an ontology 𝒪 consisting of first-order sentences. Every minimal abductive difference of ∃𝑋.𝒜
w.r.t. ∃𝑌.ℬ and 𝒪 is equivalent w.r.t. 𝒪 to a 𝑝-difference ∃𝑋 ′.𝒜′ ∖𝑝 ∃𝑌.ℬ for some ∃𝑋 ′.𝒜′ with
∃𝑋 ′.𝒜′ |=𝒪 ∃𝑋.𝒜 and some partial homomorphism 𝑝 from ∃𝑋 ′.𝒜′ to ∃𝑌.ℬ.

Proof. Let ∃𝑍.𝒞 be a minimal abductive difference of ∃𝑋.𝒜 w.r.t. ∃𝑌.ℬ and 𝒪, i.e. ∃𝑌.ℬ ∪
∃𝑍.𝒞 |=𝒪 ∃𝑋.𝒜, and define ∃𝑋 ′.𝒜′ := ∃𝑌.ℬ ∪ ∃𝑍.𝒞. Clearly, we have ∃𝑋 ′.𝒜′ |=𝒪 ∃𝑋.𝒜.

Obviously, ∃𝑌.ℬ ∪ ∃𝑍.𝒞 |= ∃𝑋 ′.𝒜′
and so ∃𝑍.𝒞 is also an abductive difference of ∃𝑋 ′.𝒜′

w.r.t. ∃𝑌.ℬ (and the empty ontology). According to Lemma 8 there is a partial homomorphism

𝑝 from ∃𝑋 ′.𝒜′
to ∃𝑌.ℬ such that the 𝑝-difference ∃𝑋 ′.𝒜′ ∖𝑝 ∃𝑌.ℬ is entailed by ∃𝑍.𝒞. By

Lemma 7, this 𝑝-difference is an abductive difference of ∃𝑋 ′.𝒜′
w.r.t. ∃𝑌.ℬ (and the empty

ontology), and thus also of ∃𝑋.𝒜 w.r.t. ∃𝑌.ℬ and 𝒪. Since ∃𝑍.𝒞 |= ∃𝑋 ′.𝒜′ ∖𝑝 ∃𝑌.ℬ yields

∃𝑍.𝒞 |=𝒪 ∃𝑋 ′.𝒜′ ∖𝑝 ∃𝑌.ℬ and ∃𝑍.𝒞 is minimal, we conclude that ∃𝑍.𝒞 and ∃𝑋 ′.𝒜′ ∖𝑝 ∃𝑌.ℬ
are equivalent w.r.t. 𝒪.

We conclude that enumerating a superset of all minimal explanations w.r.t. an ontology can

be “reduced” to enumerating minimal explanations without ontology. More specifically, since

the set of qABoxes is countable, we can enumerate all “premises” of the observation when

entailment w.r.t. the ontology is decidable, and thus the above lemma allows us to enumerate

a superset that contains all minimal explanations. However, using this approach only allows

us to exclude a non-minimal explanation as soon as a strictly entailed explanation has been

enumerated, i.e. non-minimality is semi-decidable. Future research should consider this problem

in more detail, possibly for restricted classes of ontologies only.

For an ℰℒ ontology and an observation in form of an ℰℒ ABox, the minimal explanations

have a special form, as the below lemma shows.

Lemma 13. Given an ℰℒ ABox 𝒜 as observation and a KB consisting of a qABox ∃𝑌.ℬ and an
ℰℒ ontology 𝒪, every minimal abductive difference of 𝒜 w.r.t. ∃𝑌.ℬ and 𝒪 is equivalent w.r.t. 𝒪
to a 𝑝-difference4 𝒜′ ∖𝑝 ∃𝑌.ℬ where 𝑝 is a partial homomorphism from 𝒜′ to ∃𝑌.ℬ and the ABox
𝒜′ consists of

• a CA 𝑎 : 𝐶 ′ with 𝐶 ′ ⊑𝒪 𝐶 for each CA 𝑎 : 𝐶 in 𝒜 with ∃𝑌.ℬ ̸|=𝒪 𝑎 : 𝐶 ,
• and each RA (𝑎, 𝑏) : 𝑟 in 𝒜 that is not in ℬ.

4

Technically, this 𝑝-difference 𝒜′ ∖𝑝 ∃𝑌.ℬ rather is ∃𝑋 ′′.𝒜′′ ∖𝑝 ∃𝑌.ℬ where ∃𝑋 ′′.𝒜′′
is a qABox equivalent to

𝒜′
. Such a qABox always exists as explained in the preliminaries.



Proof. Consider an observation in form of an ℰℒ ABox 𝒜, a KB consisting of a qABox ∃𝑌.ℬ
and an ℰℒ ontology 𝒪, and further let ∃𝑍.𝒞 be a minimal abductive difference of 𝒜 w.r.t. ∃𝑌.ℬ
and 𝒪. We build the ABox 𝒜′

as follows.

• Let 𝑎 : 𝐶 be a CA in 𝒜. By assumption, we have ∃𝑌.ℬ ∪ ∃𝑍.𝒞 |=𝒪 𝑎 : 𝐶 . Lemma 22 in

[23] yields a concept 𝐶 ′
with ∃𝑌.ℬ ∪ ∃𝑍.𝒞 |= 𝑎 :𝐶 ′

and 𝐶 ′ ⊑𝒪 𝐶 . We add 𝑎 : 𝐶 ′
to 𝒜′

,

but only if 𝑎 : 𝐶 is not already entailed by ∃𝑌.ℬ w.r.t. 𝒪 since otherwise it need not be

explained.

• Now let (𝑎, 𝑏) : 𝑟 be a RA in 𝒜. The assumption yields that ∃𝑌.ℬ ∪ ∃𝑍.𝒞 |=𝒪 (𝑎, 𝑏) : 𝑟,

and thus ℬ or 𝒞 contains this RA. In the former case the RA need not be explained, and

in the latter case we add the RA to 𝒜′
.

By construction we have ∃𝑌.ℬ ∪ ∃𝑍.𝒞 |= 𝒜′
, and thus ∃𝑍.𝒞 is an abductive difference of 𝒜′

w.r.t. ∃𝑌.ℬ (and the empty ontology). By identifying 𝒜′
with an equivalent qABox, Lemma 8

yields a partial homomorphism 𝑝 : 𝒜′ ↦→ ∃𝑌.ℬ such that ∃𝑍.𝒞 |= 𝒜′ ∖𝑝 ∃𝑌.ℬ. According to

Lemma 7, 𝒜′ ∖𝑝 ∃𝑌.ℬ is an abductive difference of 𝒜′
w.r.t. ∃𝑌.ℬ (and the empty ontology), and

thus also of 𝒜 w.r.t. ∃𝑌.ℬ and 𝒪. Since ∃𝑍.𝒞 |= 𝒜′ ∖𝑝 ∃𝑌.ℬ implies ∃𝑍.𝒞 |=𝒪 𝒜′ ∖𝑝 ∃𝑌.ℬ
and ∃𝑍.𝒞 is minimal, we conclude that ∃𝑍.𝒞 and 𝒜′ ∖𝑝 ∃𝑌.ℬ are equivalent w.r.t. 𝒪.

Last, we can also employ saturations to construct abductive differences, but not in a complete

manner since in Example 4 there is a minimal explanation that cannot be constructed from the

saturation. In particular, the saturation equals the ABox already, from which we can only obtain

the observation itself as a minimal p-difference.

Lemma 14. For each partial homomorphism 𝑝 from ∃𝑋.𝒜 to the saturation of ∃𝑌.ℬ w.r.t. 𝒪,
the 𝑝-difference is an abductive difference of ∃𝑋.𝒜 w.r.t. ∃𝑌.ℬ and 𝒪.

Proof. We denote the saturation by sat𝒪(∃𝑌.ℬ). By Lemma 7, the 𝑝-difference is an abductive

difference of ∃𝑋.𝒜 w.r.t. sat𝒪(∃𝑌.ℬ), i.e. sat𝒪(∃𝑌.ℬ) ∪ (∃𝑋.𝒜 ∖𝑝 sat𝒪(∃𝑌.ℬ)) |= ∃𝑋.𝒜.

Since ∃𝑌.ℬ |=𝒪 sat𝒪(∃𝑌.ℬ), it follows that ∃𝑌.ℬ ∪ (∃𝑋.𝒜 ∖𝑝 sat𝒪(∃𝑌.ℬ)) |=𝒪 ∃𝑋.𝒜.

5. Outlook

After these first steps regarding abduction with quantified ABoxes, it would be interesting to

investigate in more details how exactly ontologies or restricted classes of ontologies can be

treated when computing minimal explanations. In order to alleviate the problem of infinitely

many minimal explanations, practically motivated metrics should be used to restrict and compare

explanations. In ℰℒ, a further approach to this problem would be using weaker entailment

relations. For instance, instead of comparing quantified ABoxes regarding their models we

could compare them regarding the ℰℒ CAs and RAs they entail (IRQ-entailment [24]). In

Example 4, then only the explanations with 𝑛 ∈ {0, 1} would be be minimal, as would be the

observation itself. Yet another alternative to identifying practically useful explanations would

be to employ some form of user interaction, especially when only one explanation is needed in

the application.

In order to verify their applicability, it would be interesting to implement the presented

results and empirically evaluate them on real-world datasets.
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