
Using Trémaux Trees to Compute Small Conjunctive
Queries that Separate Positive and Negative Examples
Francesco Kriegel

1,2

1Institute of Theoretical Computer Science, Technische Universität Dresden, Dresden, Germany
2Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Dresden and Leipzig, Germany

Abstract
We investigate the problem of computing small conjunctive queries that separate positive from negative

examples in ontology-enriched systems. This work builds upon prior research on the query-by-example

paradigm, which focused on the existence of separating queries. Here, we go beyond mere existence and

study how to construct separating queries that are both correct and compact. Specifically, we define a

new recursive notion of homomorphism based on Trémaux trees (normal spanning trees), show that it

allows us to extract small separating conjunctive queries from the chase (universal model), and provide

an algorithm for this query construction process. Our results offer both theoretical insights and practical

tools for making ontology-based query-by-example more usable for end-users.

1. Introduction

The query-by-example (QBE) paradigm has recently emerged as a promising approach for

making ontology-enriched systems (OES) more accessible to non-expert users. By allowing users

to provide sets of positive and negative examples instead of formal queries, QBE bridges the gap

between intuitive data exploration and formal query languages like description-logic concepts

[1–3], conjunctive queries (CQs) or unions of conjunctive queries (UCQs) [4–8], and first-order

formulas [9]. This paper specifically follows earlier work [4], in which foundational results

were established regarding the existence of queries that correctly separate the positive examples

from the negative ones w.r.t. ontologies formulated in rather expressive description logics (DLs)

such as Horn-𝒜ℒ𝒞 and Horn-𝒜ℒ𝒞ℐ . However, deciding the existence of a separating query is

only the first step. In practical applications, the ultimate goal is to compute a concrete query

that explains the given examples. More importantly, such queries should ideally be as small
and as understandable as possible. A large or overly complex query may defeat the purpose of

QBE as a tool for intuitive data access and explanation.

In this paper, we investigate the computational construction of small separating CQs in OES.

Our focus lies not on particular DLs to formulate the ontology but rather on existential rules

in general, however we restrict attention to unary and binary predicates. The core technical

contribution of this work is a novel use of Trémaux trees (also known as: normal spanning trees)

DL 2025: 38th International Workshop on Description Logics, September 3–6, 2025, Opole, Poland
$ francesco.kriegel@tu-dresden.de (Francesco Kriegel)

� https://tu-dresden.de/inf/lat/francesco-kriegel (Francesco Kriegel)

� 0000-0003-0219-0330 (Francesco Kriegel)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:francesco.kriegel@tu-dresden.de
https://tu-dresden.de/inf/lat/francesco-kriegel
https://orcid.org/0000-0003-0219-0330
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

to guide the search for separating queries. By leveraging the tree structure, we define a recursive

notion of homomorphisms — called Trémaux homomorphisms — and show that existence of

a Trémaux homomorphism coincides with existence of a usual homomorphism. These new

homomorphisms allow us to develop a new algorithmic approach to extracting small separating

queries from the chase of a knowledge base — a canonical representation of its entailments. Our

approach not only advances the theoretical understanding of query computation in OES but also

opens up new directions for developing more intuitive and compact interfaces for QBE tools.

2. Preliminaries

Signature. Consider a countable set C of constants and a countable set R of relations such that

each relation 𝑅 in R has an arity ar(𝑅) ∈ N. These two sets must be disjoint and together they

constitute the signature. In Description Logic, constants are usually referred to as individuals,
unary relations are called (atomic) concepts, and binary relations are roles. Further assume a

countably infinite set V of variables disjoint with the signature. A term is either a constant or a

variable.
1

Syntax. An atom is of the form (𝑡1, . . . , 𝑡𝑛) : 𝑅 where each 𝑡𝑖 is a term and 𝑅 is an 𝑛-ary

relation. A substitution is a partial mapping 𝜎 : V ↦→ C∪V. If 𝛼 is an atom, then 𝛼𝜎 denotes the

term obtained by simultaneously replacing all occurrences of each variable 𝑥 by 𝜎(𝑥) if defined.
2

Given sets 𝒜 and ℬ of atoms, a match of 𝒜 in ℬ is a substitution 𝜎 such that 𝒜𝜎 ⊆ ℬ, where

𝒜𝜎 := { 𝛼𝜎 | 𝛼 ∈ 𝒜 }. We write 𝒜 =| ℬ if there is such a match. Then =| is a preorder (i.e.

reflexive and transitive) on the set of all sets of atoms. From each match 𝜎 of 𝒜 in ℬ, we obtain

a so-called homomorphism from 𝒜 to ℬ as the mapping ℎ : C∪V → C∪V where ℎ(𝑡) := 𝜎(𝑡)
if the latter is defined and ℎ(𝑡) := 𝑡 otherwise; there are no further homomorphisms. Given a

set 𝒜 of atoms, Var(𝒜) is the set of all variables in 𝒜 and Terms(𝒜) consists of all terms in 𝒜.

Semantics. An interpretation ℐ is a set of atoms, and a database 𝒟 is a finite set of atoms.
3

A tuple-generating dependency (TGD) or existential rule is of the form ℬ ⇒ ℋ where the body
ℬ and the head ℋ are finite sets of atoms. Var(ℬ) ∩ Var(ℋ) is called the frontier of ℬ ⇒ ℋ.

An interpretation ℐ is a model of a database 𝒟 if 𝒟 =| ℐ . A TGD ℬ ⇒ ℋ is satisfied in an

interpretation ℐ if every match of ℬ in ℐ can be extended to a match of ℋ in ℐ (i.e. for each

match 𝜎 of ℬ in ℐ , there is a match 𝜏 of ℋ in ℐ such that, for each variable 𝑥 ∈ Var(ℬ), if

𝜎(𝑥) is defined, then 𝜎(𝑥) = 𝜏(𝑥), else 𝜏(𝑥) is also undefined). A knowledge base (KB) is a pair

(𝒟,𝒪) consisting of a database 𝒟 and a finite set 𝒪 of TGDs (called ontology). An interpretation

ℐ is a model of (𝒟,𝒪) if it is a model of 𝒟 and satisfies all TGDs in 𝒪.

1

This coincides with the elements of the term algebra of type C over V since constants have the same semantics as

nullary function symbols.

2

Each substitution has a unique extension to a homomorphism ℎ from the term algebra to itself, which here sends

each constant to itself, i.e. we obtain the mapping ℎ : C ∪V → C ∪V where ℎ(𝑥) = 𝜎(𝑥) for each variable 𝑥
and ℎ(𝑐) = 𝑐 for each constant 𝑐. With that, ((𝑡1, . . . , 𝑡𝑛) :𝑅)𝜎 = (ℎ(𝑡1), . . . , ℎ(𝑡𝑛)) :𝑅.

3

Other authors disallow variables in databases, but we find them reasonable in order to account for objects that do

not have or need a unique identifier to be shared with other knowledge bases.

Chase. In the setting considered here, each KB (𝒟,𝒪) has a model (i.e. is consistent). Such

a model can be constructed by means of the chase: it initializes an interpretation ℐ with the

database 𝒟 and then, simply put, it successively extends ℐ whenever there is a TGD in 𝒪 such

that there is match of its body in ℐ that cannot be extended to a match of the head in ℐ . The

limit of this construction is also called chase, viz. the chase of (𝒟,𝒪), symbol: chase(𝒟,𝒪). The

chase does not terminate for every KB, meaning that chase(𝒟,𝒪) might be countably infinite,

and different variants of the chase exist [10]. Chase termination is undecidable [11] but can be

guaranteed by restrictions [12].

Conjunctive Queries. An 𝑛-ary conjunctive query (CQ) is of the form (𝑥1, . . . , 𝑥𝑛) : 𝒬
where each 𝑥𝑖 is a variable, called answer variable, and 𝒬 is a finite set of atoms. A mapping

𝜎 : {𝑥1, . . . , 𝑥𝑛} → C is an answer to this CQ w.r.t. an interpretation ℐ if 𝒬𝜎 =| ℐ (i.e. if 𝜎 can

be extended to a match from 𝒬 to ℐ), and is a certain answer to this CQ w.r.t. a KB (𝒟,𝒪) if it

is an answer to the CQ w.r.t. every model of (𝒟,𝒪). Query Answering is the problem consisting

of all tuples of (string encodings of) a KB, a CQ, and a mapping such that the mapping is a

certain answer to the CQ w.r.t. the KB. In general, query answering is undecidable [13, 14].

Query answering can be done by means of the chase: the certain answers w.r.t. (𝒟,𝒪) coincide

with the answers w.r.t. chase(𝒟,𝒪). This is because the chase is universal in the sense that it

matches every model of the KB.

Query Containment. Given CQs (𝑥1, . . . , 𝑥𝑛) : 𝒬1 and (𝑥1, . . . , 𝑥𝑛) : 𝒬2 with the same

answer variables, we say that the first is contained in the second if, for every interpretation

ℐ , each answer to the first CQ in ℐ is also an answer to the second CQ in ℐ . This is the case

iff. there is match 𝜎 of 𝒬2 in 𝒬1 that preserves the answer variables, i.e. where 𝜎(𝑥𝑖) = 𝑥𝑖 for

each 𝑖 [15]. Query containment is NP-complete [15].

Unions of Conjunctive Queries. A union of conjunctive queries (UCQ) is of the form

(𝑥1, . . . , 𝑥𝑛) :𝒬1 ⊔𝒬2 ⊔ · · · ⊔𝒬𝑚 where each (𝑥1, . . . , 𝑥𝑛) :𝒬𝑖 is a CQ and all these CQs have

the same arity and the same answer variables. Answers to this UCQ w.r.t. ℐ are all answers

to any CQ (𝑥1, . . . , 𝑥𝑛) :𝒬𝑖 w.r.t. ℐ , and similarly for the certain answers w.r.t. (𝒟,𝒪). Given

UCQs (𝑥1, . . . , 𝑥𝑛) :𝒫1 ⊔ · · · ⊔𝒫ℓ and (𝑥1, . . . , 𝑥𝑛) :𝒬1 ⊔ · · · ⊔𝒬𝑚 with the same answer vari-

ables, the first is contained in the second iff., for each index 𝑖 ∈ {1, . . . , ℓ}, there is some index

𝑗 ∈ {1, . . . ,𝑚} such that the CQ (𝑥1, . . . , 𝑥𝑛) :𝒫𝑖 is contained in the CQ (𝑥1, . . . , 𝑥𝑛) :𝒬𝑗 [16].

Translation to First-order Logic. Databases, CQs, and TGDs can be syntactically

translated into first-order logic by replacing each finite set 𝒜 of atoms by its conjunc-

tion

⋀︀
𝒜 and adding quantifiers for the variables. In particular, a database 𝒟 trans-

lates to ∃𝑥1.∃𝑥2. . . . ∃𝑥𝑛.
⋀︀
𝒟 for an arbitrary enumeration Var(𝒟) = {𝑥1, 𝑥2, . . . , 𝑥𝑛},

a CQ (𝑥1, . . . , 𝑥𝑛) : 𝒬 translates to ∃𝑦1.∃𝑦2. . . . ∃𝑦𝑚.
⋀︀
𝒬 for an arbitrary enumera-

tion Var(𝒬) ∖ {𝑥1, 𝑥2, . . . , 𝑥𝑛} = {𝑦1, 𝑦2, . . . , 𝑦𝑚}, and a TGD ℬ ⇒ ℋ translates to

∀𝑥1.∀𝑥2. . . . ∀𝑥𝑛.(
⋀︀
ℬ → ∃𝑦1.∃𝑦2. . . . ∃𝑦𝑚.

⋀︀
ℋ) for arbitrary enumerations Var(ℬ) =

{𝑥1, 𝑥2, . . . , 𝑥𝑛} and Var(ℋ)∖Var(ℬ) = {𝑦1, 𝑦2, . . . , 𝑦𝑚}. Assuming The Axiom of Choice, the

Löwenheim-Skolem Theorem implies that this translation preserves the semantics — it suffices

to consider countable structures in order to interpret first-order theories over at most countable

signatures. Since we can rewrite between countable structures (first-order interpretations) and

the above defined interpretations in the obvious way, every first-order model yields a model in

the above sense and vice versa.

Products. Given finitely many sets 𝒜1, . . . ,𝒜𝑛 of atoms, their product 𝒜1× · · ·×𝒜𝑛 is a set

consisting of the atoms (𝑓(𝑡11, . . . , 𝑡
𝑛
1), . . . , 𝑓(𝑡

1
𝑘, . . . , 𝑡

𝑛
𝑘)) :𝑅 for all atoms (𝑡11, . . . , 𝑡

1
𝑘) :𝑅 ∈ 𝒜1,

. . . , (𝑡𝑛1 , . . . , 𝑡
𝑛
𝑘) : 𝑅 ∈ 𝒜𝑛, where 𝑓 : (C ∪V)𝑛 → C ∪V is an arbitrary bijection such that

𝑓(𝑐, . . . , 𝑐) = 𝑐 for each constant 𝑐 and otherwise 𝑓(𝑢1, . . . , 𝑢𝑛) is a variable (i.e. if the 𝑢𝑖
are not all the same constant). Since V is countably infinite, such bijections always exist.

In technical considerations we use this function 𝑓 only implicitly and rather assume that all

atoms in the product are of the form ((𝑡11, . . . , 𝑡
𝑛
1), . . . , (𝑡

1
𝑘, . . . , 𝑡

𝑛
𝑘)) :𝑅, where constants 𝑐 and

according tuples (𝑐, . . . , 𝑐) are treated as synonyms.

Undirected Graphs. An undirected graph (with loops) is a pair (𝑉,𝐸) consisting of a set 𝑉
of vertices and a set 𝐸 of edges such that 𝐸 consists of subsets of 𝑉 with one or two elements.

Edges with one element are called loops. A walk from a vertex 𝑣 to a vertex 𝑤 is a sequence

𝑣0, 𝑣1, . . . , 𝑣𝑛 of vertices such that 𝑣0 = 𝑣, 𝑣𝑛 = 𝑤, and {𝑣𝑖−1, 𝑣𝑖} ∈ 𝐸 for each 𝑖 ∈ {1, . . . , 𝑛};

its length is 𝑛. It is a path if all vertices are pairwise distinct, and it is empty if 𝑛 = 0. We

say that a vertex 𝑣 is reachable from another vertex 𝑤 if there is a walk from 𝑣 to 𝑤. A graph

(𝑉,𝐸) is connected if each vertex is reachable from each other vertex. The distance between

vertices 𝑣 and 𝑤 is the smallest length of a path from 𝑣 to 𝑤, or ∞ if no such path exists. A

cycle is a non-empty walk that starts and ends with the same vertex and otherwise consists of

pairwise distinct vertices, and we call a graph (𝑉,𝐸) acyclic if it does not contain any cycles.

A connected, acyclic undirected graph is usually called an undirected tree. In each undirected

tree, there is a unique shortest path from each vertex to each other vertex. Furthermore, each

undirected tree (𝑉,𝐸) with a distinguished vertex 𝑣0, called the root, admits a partial order ≤
on 𝑉 , namely where 𝑣 ≤ 𝑤 if the (unique) shortest path from 𝑣0 to 𝑣 can be extended to the

(unique) shortest path from 𝑣0 to 𝑤.

Further Notions. Consider a set 𝒜 of atoms. Given a set 𝑈 of terms, the subset of 𝒜
generated by 𝑈 is the smallest subset ℬ of 𝒜 containing all atoms from 𝒜 that involve some

term contained in 𝑈 or occuring in some atom in ℬ. The induced graph of 𝒜 is the undirected

graph 𝐺𝒜 := (𝑉,𝐸) where 𝑉 consists of all terms and 𝐸 consists of all edges {𝑡, 𝑢} such that 𝑡
and 𝑢 occur together in some atom involving a predicate with arity ≥ 2 (where 𝑡 and 𝑢 might

be equal). The distance in 𝒜 between two terms is the distance between them in 𝐺𝒜. We call 𝒜
connected if the induced graph 𝐺𝒜 is connected. Similarly, a CQ (𝑥1, . . . , 𝑥𝑛) :𝒬 is connected if

𝒬 is connected.

3. Learning Conjunctive Queries from Examples

The query-by-example (QBE) paradigm considers a KB (𝒟,𝒪) and sets 𝑃 and 𝑁 of positive

and, respectively, negative examples. These examples are mappings from a fixed set of answer

variables 𝑥1, . . . , 𝑥𝑛 to the set of constants. A solution is a (U)CQ that separates the positive

from the negative examples in the sense that all mappings in 𝑃 are certain answers w.r.t. the KB

but none of the negative ones. QBE is useful in situations where users do not have the ability to

formulate queries themselves — they can then rather use such a solution query.

As solutions we will only consider constant-free (U)CQs, i.e. where no constants occur in the

atoms. To this end, we ignore the semantics of constants and rather treat them as if they were

variables. Formally, we use constant-ignoring homomorphisms from 𝒜 to ℬ, which are defined

like homomorphisms but without the requirement to leave constants unchanged (i.e. ℎ(𝑐) = 𝑐
is not required for each constant 𝑐).

Definition 1. Consider a KB (𝒟,𝒪), variables 𝑥1, . . . , 𝑥𝑛, and finite sets 𝑃 and 𝑁 of mappings

𝜎 : {𝑥1, . . . , 𝑥𝑛} → C. A (U)CQ with answer variables 𝑥1, . . . , 𝑥𝑛 separates 𝑃 and 𝑁 if all

mappings in 𝑃 are certain answers to it w.r.t. (𝒟,𝒪) but no mapping in 𝑁 is a certain answer.

By slightly adapting the proof of Theorem 1 in [4] and further utilizing Lemma 4 in [4] we

immediately obtain a proof for the following statement.
4

Theorem 2. Assume a KB (𝒟,𝒪), variables 𝑥1, . . . , 𝑥𝑛, and finite sets 𝑃 and 𝑁 of mappings
𝜎 : {𝑥1, . . . , 𝑥𝑛} → C, where 𝑃 = {𝜎1, . . . , 𝜎𝑝}. Consider the mapping 𝜎𝑃 : {𝑥1, . . . , 𝑥𝑛} →
C∪V where 𝜎𝑃 (𝑥𝑖) := (𝜎1(𝑥𝑖), . . . , 𝜎𝑝(𝑥𝑖)). There is a constant-free CQ that separates 𝑃 and 𝑁
iff. the following two conditions hold:

1. For each variable 𝑥𝑖 ∈ {𝑥1, . . . , 𝑥𝑛}, the term 𝜎𝑃 (𝑥𝑖) occurs in some atom of
×𝑝

𝑖=1 chase(𝒟,𝒪) (the 𝑝-fold product of the chase).

2. For each 𝜏 ∈ 𝑁 , there is no constant-ignoring homomorphism from×𝑝
𝑖=1 chase(𝒟,𝒪) to

chase(𝒟,𝒪) that sends 𝜎𝑃 (𝑥𝑖) to 𝜏(𝑥𝑖) for each variable 𝑥𝑖 ∈ {𝑥1, . . . , 𝑥𝑛}.

Condition 2 is equivalent to each of the following conditions, where 𝒫 is the subset of
×𝑝

𝑖=1 chase(𝒟,𝒪) generated by the terms 𝜎𝑃 (𝑥1), . . . , 𝜎𝑃 (𝑥𝑛):

2’. For each 𝜏 ∈ 𝑁 , there is no constant-ignoring homomorphism from 𝒫 to chase(𝒟,𝒪) that
sends 𝜎𝑃 (𝑥𝑖) to 𝜏(𝑥𝑖) for each variable 𝑥𝑖 ∈ {𝑥1, . . . , 𝑥𝑛}.

2”. There is a depth 𝑑 ∈ N such that, for each 𝜏 ∈ 𝑁 , there is no constant-ignoring ho-
momorphism from 𝒫↾𝑑 to chase(𝒟,𝒪) that sends 𝜎𝑃 (𝑥𝑖) to 𝜏(𝑥𝑖) for each variable
𝑥𝑖 ∈ {𝑥1, . . . , 𝑥𝑛}, where 𝒫↾𝑑 is the subset of 𝒫 that consists only of the atoms involving
terms with a distance of at most 𝑑 to some term 𝜎𝑃 (𝑥𝑖).

Specifically, it follows that there is a constant-free CQ separating 𝑃 and 𝑁 iff. there is a

connected such CQ. Both above conditions can be decided if the chase terminates — in this case

we obtain a CQ that separates 𝑃 and 𝑁 and is most specific w.r.t. query containment as the query

(𝑥1, . . . , 𝑥𝑛) :𝒬, where the atom set 𝒬 is the product×𝑝
𝑖=1 chase(𝒟,𝒪) specifically constructed

with a bijection 𝑓 such that all values of 𝑓 are variables (since we want a constant-free CQ) and

𝑓(𝜎𝑃 (𝑥𝑖)) = 𝑥𝑖 for each answer variable 𝑥𝑖.

4

Actually, Lemma 4 is implicitly used in the proof of Theorem 1, i.e. within [4] Lemma 4 should have been proven

before Theorem 1.

Existence of a constant-free separator CQ is undecidable w.r.t. ℰℒℐ KBs [1]. If the KB is

expressible in Horn-𝒜ℒ𝒞, then non-existence of a constant-free separator CQ is complete for

non-deterministic exponential time [4]. Furthermore if a CQ exists, then in Condition 2” there is

a depth 𝑑 that is exponential in the size of the KB — thus there is a connected separating CQ of

double exponential size [4]. However, a most specific CQ need not exist w.r.t. Horn-𝒜ℒ𝒞 KBs. As

a counterexample consider the database {𝑎 :𝐴, 𝑏 :𝐵, 𝑐 :𝐶}, the ontology {{𝑥 :𝐴} ⇒ {(𝑥, 𝑦) :𝑟,
𝑦 : 𝐴}, {𝑥 : 𝐵} ⇒ {(𝑥, 𝑦) : 𝑟, 𝑦 : 𝐵}}, where the first TGD is 𝐴 ⊑ ∃𝑟.𝐴 in DL notation,

positive examples {𝑥1 ↦→ 𝑎, 𝑥1 ↦→ 𝑏}, and negative examples {𝑥1 ↦→ 𝑐}. The above conditions

are obviously fulfilled, i.e. there exists a separating CQ. However, a most specific CQ would

need to contain an infinite 𝑟-chain issuing from the answer variable 𝑥1, which is impossible.

For the cases where a CQ separator does not exist, there could still be a UCQ separator. Of

course, such a UCQ exists iff., for each positive example 𝜎 ∈ 𝑃 , there is a CQ separating {𝜎}
and 𝑁 , say (𝑥1, . . . , 𝑥𝑛) :𝒬𝜎 — a UCQ separating 𝑃 and 𝑁 is then (𝑥1, . . . , 𝑥𝑛) :

⨆︀
𝜎∈𝑃 𝒬𝜎 . For

this reason, existence of a constant-free separator UCQ w.r.t. Horn-𝒜ℒ𝒞 KBs is complete for

(deterministic) exponential time [4]. However, due to the excessive usage of disjunction, such

an UCQ solution could suffer from over-fitting. Therefore, the number of disjuncts of such a

UCQ solution should be minimized.

Determining the minimal number of disjuncts is already NP-hard since we can reduce the

minimum-set-cover problem [17] as follows. Consider a set 𝑃 = {𝑐1, . . . , 𝑐𝑛} and subsets

𝑆1, . . . , 𝑆𝑚 ⊆ 𝑃 such that 𝑆1 ∪ · · · ∪ 𝑆𝑚 = 𝑃 . A minimum set cover is a size-minimal subset

𝐼 ⊆ {1, . . . ,𝑚} such that

⋃︀
𝑖∈𝐼 𝑆𝑖 = 𝑃 . For the reduction, we treat the 𝑐𝑖 as constants and the

𝑆𝑗 as unary relations, and consider a further constant 𝑑, the database 𝒟 := { 𝑐𝑖 : 𝑆𝑗 | 𝑐𝑖 ∈ 𝑆𝑗 },

positive examples 𝑃 , and negative examples 𝑁 := {𝑑} (where we assume a single answer

variable 𝑥1 and do not distinguish between the element 𝑐𝑖 and the mapping 𝑥1 ↦→ 𝑐𝑖, and

likewise for 𝑑). Then for each subset 𝑃 ′ ⊆ 𝑃 , there is a CQ separating 𝑃 ′
and 𝑁 iff. 𝑃 ′ ⊆ 𝑆𝑗

for some 𝑗. Thus a separating UCQ with the fewest disjuncts yields a minimum set cover.

In practice, one might do it the greedy way: determine a first maximal subset 𝑃1 of 𝑃 such

that a CQ separating 𝑃1 and 𝑁 exists, next find a maximal subset 𝑃2 of 𝑃 ∖ 𝑃1 that can be

separated from 𝑁 by a CQ, and likewise continue inductively with the remaining positive

examples until none is left over.

When we are only interested in a subset S of the set R of relations to be used in the

separator (U)CQs, then Theorem 2 holds accordingly when the 𝑝-fold product×𝑝
𝑖=1 chase(𝒟,𝒪)

is replaced by its subset consisting of all atoms with a relation in S.

4. Trémaux Trees

A Trémaux tree of an undirected graph is a spanning tree such that every edge of the graph

connects an ancestor–descendant pair in the tree. Trémaux trees are named after Charles Pierre

Trémaux, a 19th-century French author who used a form of depth-first search as a strategy

for solving mazes. In computer science they are also called depth-first trees [18], whereas in

graph theory they are rather called normal spanning trees [19]. Trémaux trees exist for all

finite graphs and can be computed in polynomial time [20] as well as by a randomized NC

algorithm [21].

Definition 3. Let (𝑉,𝐸) be a connected undirected graph with loops. Further let 𝑣0 ∈ 𝑉 be a

vertex. A Trémaux tree of (𝑉,𝐸) with root 𝑣0 is a subset 𝐹 of 𝐸 such that

1. (𝑉, 𝐹) is an undirected tree, and

2. 𝑣 ≤ 𝑤 or 𝑤 ≤ 𝑣 for each edge {𝑣, 𝑤} ∈ 𝐸, where ≤ is the induced partial order of (𝑉, 𝐹)
for root 𝑣0.

Although the following result is already known, we want to provide an own proof.
5

Proposition 4. For each finite connected undirected graph with loops and with a distinguished
vertex, a Trémaux tree can be computed in polynomial time.

Proof. Assume that (𝑉,𝐸) is a connected undirected graph with loops and let 𝑣0 be a distin-

guished vertex from 𝑉 . In the following, we will devise a recursive procedure that produces

a Trémaux tree. Firstly, initialize an undirected graph (𝑉, 𝐹) where 𝐹 := 𝐸. During the run

of the procedure, we maintain a set 𝑈 of unprocessed vertices that we initialize as 𝑈 := 𝑉 .

The invariant during the construction is that, for each processed vertex 𝑣 ∈ 𝑉 ∖ 𝑈 , there is a

unique shortest path from 𝑣0 to 𝑣 within (𝑉, 𝐹). The computation starts by calling the following

recursive procedure on the distinguished vertex 𝑣0.

Process(𝑣): Mark 𝑣 as processed by removing 𝑣 from 𝑈 . The unprocessed neighborhood of 𝑣 is

the set𝑁𝑈 (𝑣) := {𝑤 | 𝑤 ∈ 𝑈 and {𝑣, 𝑤} ∈ 𝐸 }. Define the undirected graph (𝑉 ′, 𝐸′) by

𝑉 ′ := {𝑣} ∪𝑁𝑈 (𝑣),

𝐸′ := { {𝑣, 𝑤} | 𝑤 ∈ 𝑁𝑈 (𝑣) } ∪ { {𝑤1, 𝑤2} | 𝑤1, 𝑤2 ∈ 𝑁𝑈 (𝑣) and 𝑤1 ∼ 𝑤2 },

where 𝑤1 ∼ 𝑤2 if 𝑤1 is reachable from 𝑤2 in the subgraph (𝑉,𝐸)↾𝑈 := (𝑈, { 𝑒 |
𝑒 ∈ 𝐸 and 𝑒 ⊆ 𝑈 }). Note that ∼ is an equivalence relation on 𝑁𝑈 (𝑣), i.e. it is reflexive,

symmetric, and transitive. Thus, the subgraph of (𝑉 ′, 𝐸′) obtained by removing 𝑣 is

a disjoint union of complete graphs,
6

and all vertices of each such complete graph are

connected with 𝑣 by an edge. A schematic presentation of the graph (𝑉 ′, 𝐸′) is given in

Figure 1. For each complete graph, select one vertex 𝑤, delete from 𝐹 all edges from 𝑣 into

that complete graph except {𝑣, 𝑤}, and then proceed recursively by calling Process(𝑤).
Note that, if 𝑣0, 𝑣1, . . . , 𝑣 is the unique shortest path from 𝑣0 to 𝑣 within (𝑉, 𝐹), then

𝑣0, 𝑣1, . . . , 𝑣, 𝑤 is the unique shortest path from 𝑣0 to 𝑤 within (𝑉, 𝐹), i.e. the invariant

is satisfied.

After termination, the invariant is still satisfied and so it follows that the resulting graph

(𝑉, 𝐹) is an undirected tree. It remains to show that 𝑣 ≤ 𝑤 or 𝑤 ≤ 𝑣 for each edge {𝑣, 𝑤} ∈ 𝐸,

where ≤ is the partial order on 𝑉 that is induced by (𝑉, 𝐹) for root 𝑣0. For this purpose, consider

an edge {𝑣, 𝑤} ∈ 𝐸.

• If {𝑣, 𝑤} has not been deleted, i.e. is contained in 𝐹 , then either the unique shortest path

from 𝑣0 to 𝑣 can be extended to the unique shortest path from 𝑣0 to 𝑤 or vice versa. It

follows that either 𝑣 ≤ 𝑤 or 𝑤 ≤ 𝑣.

5

In fact, the author only later recognized that Trémaux trees have already been well investigated.

6

A complete graph is a graph in which all vertices are connected by an edge.

𝑣
...

𝑁𝑈 (𝑣)

Figure 1: A schematic presentation of the graph (𝑉 ′, 𝐸′)

• Otherwise, the edge {𝑣, 𝑤} has been deleted from𝐹 , i.e. during the call either of Process(𝑣)
or of Process(𝑤). We only treat the first case, the other is analogous. During the call of

𝑣 𝑤′

𝑤

Figure 2: After the call of Process(𝑣)

Process(𝑣), a vertex 𝑤′
in the complete graph containing 𝑤 was selected and all edges

from 𝑣 into this complete graph except {𝑣, 𝑤′} were deleted, see Figure 2. Due to the

invariant it follows that, after termination, the unique shortest path from 𝑣0 to 𝑤 must

go through 𝑣 and thus 𝑣 ≤ 𝑤 must be satisfied.

We conclude that, after termination, the resulting graph (𝑉, 𝐹) is a Trémaux tree of (𝑉,𝐸) with

root 𝑣0.

Since each vertex is processed only once, there are only linearly many calls to the procedure

Process(·). It is well-known that graph reachability can be decided in polynomial time and thus

the intermediate graph (𝑉 ′, 𝐸′) during each call to Process(·) can be constructed in polynomial

time. We conclude that the initial call of Process(𝑣0) terminates in polynomial time.

In the remainder of this article we assume that the signature consists only of constants, unary

relations, and binary relations.

Definition 5. Let 𝒟 be a database and 𝑡 a term in 𝒟. A Trémaux order of 𝒟 with root 𝑡 is the

partial order≤ onTerms(𝒟) induced by some Trémaux tree of the induced graph𝐺𝒟 with root 𝑡.

According to Proposition 4, Trémaux orders can be computed in polynomial time.

Let 𝒟 be a database and 𝑡0 a term occurring in 𝒟. Further assume that ≤ is a Trémaux order

of 𝒟 with root 𝑡0 and denote by ≺ the neighborhood relation of ≤, i.e. 𝑡 ≺ 𝑢 if 𝑡 < 𝑢 and there

is no 𝑣 such that 𝑡 < 𝑣 < 𝑢. Note that, if 𝑡 ≺ 𝑢, then the edge {𝑡, 𝑢} must be present, i.e. there

is a role 𝑟 such that 𝒟 contains at least one of the atoms (𝑡, 𝑢) : 𝑟 or (𝑢, 𝑡) : 𝑟. We will also write

(𝑡, 𝑢) : 𝑟− for the latter, where 𝑟− denotes the inverse of 𝑟, i.e. we do not distinguish between

the atoms (𝑢, 𝑡) : 𝑟 and (𝑡, 𝑢) : 𝑟−. For each 𝑡 ≺ 𝑢, we choose some atom (𝑡, 𝑢) :𝑅 in 𝒟, where

𝑅 is a role 𝑟 or an inverse 𝑟−, and then set 𝑅𝑡,𝑢 := 𝑅. To indicate that 𝑡 ≺ 𝑢 and 𝑅𝑡,𝑢 = 𝑅, we

occasionally write 𝑡 ≺𝑅 𝑢.

Example 6. Consider the database 𝒟 := {(𝑥, 𝑦) : 𝑟, (𝑥, 𝑦) : 𝑠, (𝑦, 𝑧) : 𝑟, (𝑦, 𝑧) : 𝑠, (𝑧, 𝑥) : 𝑟,
(𝑧, 𝑥) : 𝑠} and let 𝑥 be the root term. The induced graph 𝐺𝒟 := (𝑉,𝐸) has vertex set 𝑉 :=
{𝑥, 𝑦, 𝑧} and edge set 𝐸 := {{𝑥, 𝑦}, {𝑦, 𝑧}, {𝑧, 𝑥}}. A Trémaux tree of 𝐺𝒟 with root 𝑥 is (𝑉, 𝐹)
with edge set 𝐹 := {{𝑥, 𝑦}, {𝑦, 𝑧}}. The induced partial order ≤, which is a Trémaux order of

𝒟 with root 𝑥, has the neighborhood relation ≺ where 𝑥 ≺ 𝑦 ≺ 𝑧. We choose 𝑅𝑥,𝑦 := 𝑟 and

𝑅𝑦,𝑧 := 𝑟. The below figure shows the Trémaux order ≤, where solid lines represent edges in

the Trémaux tree and dashed lines represent the remaining edges.

𝑥 𝑦 𝑧
𝑟 𝑟

𝑠− 𝑠−

𝑟
𝑠

5. Constructing Small Separating Queries

Consider a KB (𝒟,𝒪) defined over a signature that consists only of constants, unary relations,

and binary relations. Further consider a single answer variable 𝑥1 and finite sets 𝑃 and 𝑁 of

mappings 𝜎 : {𝑥1} → C, which are the positive and negative examples, such that there is a

constant-free CQ that separates 𝑃 and 𝑁 . Our goal now is to construct a small separating CQ.

By assumption, the two conditions in Theorem 2 must be satisfied. Condition 1 ensures that

we can find a term in the 𝑝-fold product of the chase that “describes” all commonalities of the

positive examples, viz. in our setting the tuple 𝜎𝑃 (𝑥1) consisting of all 𝜎(𝑥1) where 𝜎 ranges

over 𝑃 . Condition 2 ensures that these commonalities are not all fulfilled by any negative

example. Together both conditions ensure the existence of a separating CQ.

Specifically by Condition 2” there is a depth 𝑑 such that it suffices to consider all terms

with a distance ≤ 𝑑 to 𝜎𝑃 (𝑥1), and already this finite
7

subset 𝒫↾𝑑 of the 𝑝-fold product of

7

Since there are only finitely many TGDs, the chase is finitely branching.

chase(𝒟,𝒪) does not admit, for any negative example 𝜏 , a constant-ignoring homomorphism

to chase(𝒟,𝒪) that maps 𝜎𝑃 (𝑥1) to 𝜏(𝑥1). We then obtain a separating CQ 𝑥1 :𝒫↾𝑑 when 𝒫↾𝑑
is taken from the product×𝑝

𝑖=1 chase(𝒟,𝒪) specifically constructed with a bijection 𝑓 such

that 𝑓(𝜎𝑃 (𝑥1)) = 𝑥1 and all values of 𝑓 are variables. However, this CQ can be quite large.

Now we exploit the particular structure of a Trémaux order in order to recursively define

Trémaux homomorphisms, and then we show that existence of a constant-ignoring homomor-

phism is equivalent to existence of such a Trémaux homomorphism. Afterwards, we show how

a small subset 𝒬 of 𝒫↾𝑑 can be extracted for which 𝑥1 :𝒬 is already a CQ separating 𝑃 and 𝑁 .

Definition 7. Let 𝒟 be a connected database, 𝑡 a term in 𝒟, and ℬ a set of atoms. Further let ≤
be a Trémaux order of 𝒟. A Trémaux homomorphism from 𝒟 to ℬ up to 𝑡 is a partial mapping

ℓ : Terms(𝒟) ↦→ Terms(ℬ) that fulfills the following conditions:

1. ℓ(𝑢) is defined for each 𝑢 ≤ 𝑡.

2. ℓ(𝑢) :𝐴 ∈ ℬ for each 𝑢 :𝐴 ∈ 𝒟 where 𝐴 is a unary relation and 𝑢 ≤ 𝑡.

3. (ℓ(𝑢1), ℓ(𝑢2)) : 𝑅 ∈ ℬ for each (𝑢1, 𝑢2) : 𝑅 ∈ 𝒟 where 𝑅 is a binary relation (or its

inverse), 𝑢1 ≤ 𝑡, and 𝑢2 ≤ 𝑡.

4. ℓ can be extended to a Trémaux homomorphism from 𝒟 to ℬ up to each 𝑣 where 𝑡 ≺ 𝑣.

Formally: for each 𝑣 where 𝑡 ≺𝑅 𝑣, there is some 𝑤 such that (ℓ(𝑡), 𝑤) :𝑅 ∈ ℬ and the

extended partial mapping ℓ∪{𝑣 ↦→ 𝑤} is a Trémaux homomorphism from 𝒟 to ℬ up to 𝑣.

Proposition 8. Let 𝒟 be a connected database, ℬ a set of atoms, 𝑡 a term in 𝒟, and 𝑢 a term in ℬ.
Further let ≤ be a Trémaux order of 𝒟 with root 𝑡. The following statements are equivalent.

1. There is a constant-ignoring homomorphism from 𝒟 to ℬ that maps 𝑡 to 𝑢

2. {𝑡 ↦→ 𝑢} is a Trémaux homomorphism from 𝒟 to ℬ up to 𝑡.

Proof. Regarding the only-if direction, let ℎ be a homomorphism from 𝒟 to ℬ such that ℎ(𝑡) = 𝑢.

Therefore ℎ already satisfies Conditions 2 and 3 in Definition 7 for every term in 𝒟 (not only

for those ≤ 𝑡). Condition 4 follows by induction w.r.t. ≤ since, if 𝑡′ ≺𝑅 𝑢′, then (𝑡′, 𝑢′) :𝑅 ∈ 𝒟
and thus (ℎ(𝑡′), ℎ(𝑢′)) :𝑅 ∈ ℬ.

In the converse direction, we obtain a homomorphism in the limit. More specifically, we can

lazily build it by Condition 4, i.e. we traverse through 𝒟 along ≺ starting from 𝑡 and construct

the union of all partial mappings ℓ ∪ {𝑡′ ↦→ 𝑢′}. This yields a well-defined mapping since, on

the one hand, assignments of terms that are smaller w.r.t. ≤ are never overwritten and, on the

other hand, all terms 𝑢′ next to a term 𝑡′ (i.e. where 𝑡′ ≺ 𝑢′) can be processed independently of

each other due to Condition 2 in Definition 3. Since all terms are reachable from 𝑡, this limit

mapping is defined for all terms in 𝒟.

One point worthy of remark is that, since all terms next to a term can be processed indepen-

dently, we can easily implement a parallel procedure for deciding homomorphism existence

when the signature is at most binary.
8

8

The author does not know whether this has already been exploited in query answering systems.

Finally, we come back to our goal of constructing a small separating CQ. Proposition 8 yields

that, for each 𝜏 ∈ 𝑁 , the partial mapping {𝜎𝑃 (𝑥1) ↦→ 𝜏(𝑥1)} is no Trémaux homomorphism

from 𝒫↾𝑛 to chase(𝒟,𝒪) up to 𝜎𝑃 (𝑥1), and thus Conditions 2 or 3 in Definition 7 must already

be violated by the root 𝜎𝑃 (𝑥1) or, by following the recursion in Condition 4, one of them must

be violated by a term ≥ 𝜎𝑃 (𝑥1). We use this observation to collect a small but sufficiently large

subset of 𝒫↾𝑑 that already witnesses the non-existence of homomorphisms for all negative

examples, and afterwards transform this subset into a CQ.

We initialize the subset 𝒬 of 𝒫↾𝑑 as the empty set. Furthermore, we maintain a mapping 𝐿
that assigns to each term in 𝒫↾𝑑 a set of partial mappings, where we initialize 𝐿(𝜎𝑃 (𝑥1)) :=
{ {𝜎𝑃 (𝑥1) ↦→ 𝜏(𝑥1)} | 𝜏 ∈ 𝑁 } and 𝐿(𝑡) := ∅ for each term 𝑡 ̸= 𝜎𝑃 (𝑥1). The invariant is that

each set 𝐿(𝑡) will always contain only such mappings ℓ where ℓ(𝑢) is defined for each 𝑢 ≤ 𝑡
and that are no Trémaux homomorphisms from 𝒫↾𝑑 to chase(𝒟,𝒪) up to 𝑡. We start with

processing 𝜎𝑃 (𝑥1), i.e. we call Process(𝜎𝑃 (𝑥1)).

Process(𝑡): For each ℓ ∈ 𝐿(𝑡), do the following.

1. Choose one of the following two instructions and try to execute it. If it cannot be

executed, try the other.

a) Try to choose a unary atom 𝑡 :𝐴 in 𝒫↾𝑑 where ℓ(𝑡) :𝐴 is not in chase(𝒟,𝒪),
and add the atom 𝑡 :𝐴 to 𝒬.

b) Try to choose a binary atom (𝑡, 𝑢) : 𝑅 in 𝒫↾𝑑 such that 𝑢 ≤ 𝑡 and where

(ℓ(𝑡), ℓ(𝑢)) :𝑅 is not in chase(𝒟,𝒪), and add the atom (𝑡, 𝑢) :𝑅 to 𝒬.

2. If none of the two above instructions can be executed, then choose a term 𝑣 where

𝑡 ≺𝑅 𝑣 such that, for each term𝑤 where (ℓ(𝑡), 𝑤):𝑅 is in chase(𝒟,𝒪), the extension

ℓ∪ {𝑣 ↦→ 𝑤} is no Trémaux homomorphism from 𝒫↾𝑑 to chase(𝒟,𝒪) up to 𝑣. Due

to the invariant and Condition 4 in Definition 7, such a term 𝑣 must exist. Then,

add the atom (𝑡, 𝑣) :𝑅 to 𝒬 and further add ℓ∪ {𝑣 ↦→ 𝑤} to 𝐿(𝑣) for each 𝑤 where

(ℓ(𝑡), 𝑤) :𝑅 is in chase(𝒟,𝒪).

Afterwards, call Process(𝑣) for each 𝑣 where 𝑡 ≺ 𝑣 and 𝐿(𝑣) ̸= ∅.

Termination of the initial call Process(𝜎𝑃 (𝑥1)) is guaranteed since 𝒫↾𝑛 is finite and chase(𝒟,𝒪)
is finitely branching. Further note that in Instruction 1 it suffices to consider the atoms at 𝑡
since those with terms < 𝑡 have already been tried earlier. In the end, 𝑥1 :𝒬 is CQ separating

𝑃 and 𝑁 .

It is easy to see that the above procedure yields a minimal separating CQ (i.e. with a smallest

number of atoms) when there is only one negative example. The author claims that with a

suitable strategy the procedure can also yield minimal CQs for multiple negative examples,

but existing results on verifying extremal separating CQs already imply high computational

complexity even without TGDs [6]. Within the framework of PAC-learning, computation of

size-minimal separating queries expressible by ℰℒ concepts has already been considered [2].

Future Prospects. In order to expand on this result, it would be interesting to lift the current

restriction to only one answer variable of separating CQs and, furthermore, to investigate how

higher-arity relations in the signature can be handled.

Acknowledgments

This work has been supported by Deutsche Forschungsgemeinschaft (DFG) in Project 389792660

(TRR 248: Foundations of Perspicuous Software Systems) and in Project 558917076 (Construction

and Repair of Description-logic Knowledge Bases) as well as by the Saxon State Ministry for

Science, Culture, and Tourism (SMWK) by funding the Center for Scalable Data Analytics and

Artificial Intelligence (ScaDS.AI).

References

[1] Maurice Funk, Jean Christoph Jung, Carsten Lutz, Hadrien Pulcini, Frank Wolter. Learning

Description Logic Concepts: When can Positive and Negative Examples be Separated? In:

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence,
IJCAI 2019, Macao, China, August 10-16, 2019. 2019, pp. 1682–1688. doi: 10.24963/ijcai.

2019/233.

[2] Balder ten Cate, Maurice Funk, Jean Christoph Jung, Carsten Lutz. SAT-Based PAC

Learning of Description Logic Concepts. In: Proceedings of the Thirty-Second International
Joint Conference on Artificial Intelligence, IJCAI 2023, 19th-25th August 2023, Macao, SAR,
China. 2023, pp. 3347–3355. doi: 10.24963/IJCAI.2023/373.

[3] Jean Christoph Jung, Carsten Lutz, Hadrien Pulcini, Frank Wolter. Separating Data

Examples by Description Logic Concepts with Restricted Signatures. In: Proceedings of
the 18th International Conference on Principles of Knowledge Representation and Reasoning,
KR 2021, Online event, November 3-12, 2021. 2021, pp. 390–399. doi: 10.24963/KR.2021/37.

[4] Víctor Gutiérrez-Basulto, Jean Christoph Jung, Leif Sabellek. Reverse Engineering Queries

in Ontology-Enriched Systems: The Case of Expressive Horn Description Logic Ontologies.

In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence,
IJCAI 2018, July 13-19, 2018, Stockholm, Sweden. 2018, pp. 1847–1853. doi: 10.24963/ijcai.

2018/255.

[5] Balder ten Cate, Victor Dalmau. Conjunctive Queries: Unique Characterizations and Exact

Learnability. In: ACM Trans. Database Syst. 47.4 (2022), 14:1–14:41. doi: 10.1145/3559756.

[6] Balder ten Cate, Victor Dalmau, Maurice Funk, Carsten Lutz. Extremal Fitting Problems for

Conjunctive Queries. In: Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems, PODS 2023, Seattle, WA, USA, June 18-23, 2023. 2023,

pp. 89–98. doi: 10.1145/3584372.3588655.

[7] Balder ten Cate, Maurice Funk, Jean Christoph Jung, Carsten Lutz. On the non-efficient

PAC learnability of conjunctive queries. In: Inf. Process. Lett. 183 (2024), p. 106431. doi:

10.1016/J.IPL.2023.106431.

[8] Balder ten Cate, Maurice Funk, Jean Christoph Jung, Carsten Lutz. Fitting Algorithms for

Conjunctive Queries. In: SIGMOD Rec. 52.4 (2023), pp. 6–18. doi: 10.1145/3641832.3641834.

https://doi.org/10.24963/ijcai.2019/233
https://doi.org/10.24963/ijcai.2019/233
https://doi.org/10.24963/IJCAI.2023/373
https://doi.org/10.24963/KR.2021/37
https://doi.org/10.24963/ijcai.2018/255
https://doi.org/10.24963/ijcai.2018/255
https://doi.org/10.1145/3559756
https://doi.org/10.1145/3584372.3588655
https://doi.org/10.1016/J.IPL.2023.106431
https://doi.org/10.1145/3641832.3641834

[9] Jean Christoph Jung, Carsten Lutz, Hadrien Pulcini, Frank Wolter. Logical separability

of labeled data examples under ontologies. In: Artif. Intell. 313 (2022), p. 103785. doi:

10.1016/J.ARTINT.2022.103785.

[10] Markus Krötzsch, Maximilian Marx, Sebastian Rudolph. The Power of the Terminating

Chase (Invited Talk). In: 22nd International Conference on Database Theory, ICDT 2019,
March 26-28, 2019, Lisbon, Portugal. 2019, 3:1–3:17. doi: 10.4230/LIPICS.ICDT.2019.3.

[11] Alin Deutsch, Alan Nash, Jeffrey B. Remmel. The chase revisited. In: Proceedings of the
Twenty-Seventh ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, PODS 2008, June 9-11, 2008, Vancouver, BC, Canada. 2008, pp. 149–158. doi:

10.1145/1376916.1376938.

[12] Bernardo Cuenca Grau, Ian Horrocks, Markus Krötzsch, Clemens Kupke, Despoina Magka,

Boris Motik, Zhe Wang. Acyclicity Notions for Existential Rules and Their Application

to Query Answering in Ontologies. In: J. Artif. Intell. Res. 47 (2013), pp. 741–808. doi:

10.1613/jair.3949.

[13] Catriel Beeri, Moshe Y. Vardi. The Implication Problem for Data Dependencies. In: Au-
tomata, Languages and Programming, 8th Colloquium, Acre (Akko), Israel, July 13-17, 1981,
Proceedings. 1981, pp. 73–85. doi: 10.1007/3-540-10843-2_7.

[14] Ashok K. Chandra, Harry R. Lewis, Johann A. Makowsky. Embedded Implicational

Dependencies and their Inference Problem. In: Proceedings of the 13th Annual ACM
Symposium on Theory of Computing, May 11-13, 1981, Milwaukee, Wisconsin, USA. 1981,

pp. 342–354. doi: 10.1145/800076.802488.

[15] Ashok K. Chandra, Philip M. Merlin. Optimal Implementation of Conjunctive Queries in

Relational Data Bases. In: Proceedings of the 9th Annual ACM Symposium on Theory of
Computing, May 4-6, 1977, Boulder, Colorado, USA. 1977, pp. 77–90. doi: 10.1145/800105.

803397.

[16] Yehoshua Sagiv, Mihalis Yannakakis. Equivalences Among Relational Expressions with

the Union and Difference Operators. In: J. ACM 27.4 (1980), pp. 633–655. doi: 10.1145/

322217.322221.

[17] Richard M. Karp. Reducibility Among Combinatorial Problems. In: Proceedings of a
symposium on the Complexity of Computer Computations, held March 20-22, 1972, at the
IBM Thomas J. Watson Research Center, Yorktown Heights, New York, USA. 1972, pp. 85–103.

doi: 10.1007/978-1-4684-2001-2_9.

[18] Shimon Even, Guy Even. Graph Algorithms. 2012. doi: 10.1017/CBO9781139015165.

[19] Reinhard Diestel. Graph Theory. 2025. doi: 10.1007/978-3-662-70107-2.

[20] John H. Reif. Depth-First Search is Inherently Sequential. In: Inf. Process. Lett. 20.5 (1985),

pp. 229–234. doi: 10.1016/0020-0190(85)90024-9.

[21] Alok Aggarwal, Richard J. Anderson. A random NC algorithm for depth first search. In:

Comb. 8.1 (1988), pp. 1–12. doi: 10.1007/BF02122548.

https://doi.org/10.1016/J.ARTINT.2022.103785
https://doi.org/10.4230/LIPICS.ICDT.2019.3
https://doi.org/10.1145/1376916.1376938
https://doi.org/10.1613/jair.3949
https://doi.org/10.1007/3-540-10843-2_7
https://doi.org/10.1145/800076.802488
https://doi.org/10.1145/800105.803397
https://doi.org/10.1145/800105.803397
https://doi.org/10.1145/322217.322221
https://doi.org/10.1145/322217.322221
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1017/CBO9781139015165
https://doi.org/10.1007/978-3-662-70107-2
https://doi.org/10.1016/0020-0190(85)90024-9
https://doi.org/10.1007/BF02122548

	1 Introduction
	2 Preliminaries
	3 Learning Conjunctive Queries from Examples
	4 Trémaux Trees
	5 Constructing Small Separating Queries

