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Concrete Domains. Concrete domains can be integrated in description logics (DLs) in order

to refer to concrete knowledge expressed by numbers, strings, and other concrete datatypes [3].

They have mainly been investigated with DLs that are not Horn, such as 𝒜ℒ𝒞 and its extensions,

regarding decidability and complexity [4–9], reasoning procedures [6, 9–13], an algebraic

characterization [14, 15], and their expressive power [16, 17].

For computationally tractable description logics, other conditions on the concrete domains

than above must be imposed. Suitable for the ℰℒ family are p-admissible concrete domains [18]:

they are convex (i.e. every finite disjunction of constraints and negated constraints is already

equivalent to one disjunct) and they guarantee that reasoning in the concrete domain is tractable.

Due to convexity, it is impossible to introduce disjunction into the ontological domain so that

the DL part retains its Horn character. ℰℒ underpins the profile OWL 2 EL of the Web Ontology

Language [19], and we here use “ℰℒ” and “OWL 2 EL” as synonyms despite some minor technical

differences. Concrete domains have also been integrated with DL-Lite [20].

State of the Art in OWL2EL. Existing p-admissible concrete domains for ℰℒ provide only

limited utility. Using the concrete domain 𝒟Q,diff [18], we could express with the concept inclu-

sions (sys=140)⊑Hypertension, (sys>140)⊑Hypertension, (dia=90)⊑Hypertension, and

(dia>90)⊑Hypertension that a systolic blood pressure of 140 or higher indicates hypertension,

as does a diastolic blood pressure of at least 90, and for example specific values of a patient

Bob can be expressed by a concept assertion bob : (sys = 114) ⊓ (dia = 69). However, neither

non-elevated blood pressure (dia. below 120 and sys. below 70) nor elevated blood pressure

(dia. between 120 and 140, and sys. between 70 and 90) are expressible since the other relations

≥,≤, < are unavailable in order to avoid introducing disjunctions “through the backdoor.”

Otherwise the TBox {⊤⊑ (𝑓 > 0), (𝑓 =3)⊑𝐶, (𝑓 > 3)⊑𝐶, (𝑓 < 3)⊑𝐴, 𝐶 ⊓𝐴⊑⊥} could
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enforce that the atomic concept 𝐴 is the complement of the concept 𝐶 , enabling emulation of

the expressivity of 𝒜ℒ𝒞 (which has exponential-time reasoning complexity).

Mixed inequalities ≥, >, ≤, < may be used under certain limitations which of them may

occur in left-hand sides and, respectively, in right-hand sides of concept inclusions [21]. While

this ensures convexity, reasoning is rather impaired since the usual completion procedure is

only complete for consistency and classification, but not for subsumption.

An algebraic characterization of p-admissible concrete domains has put forth a further

concrete domain 𝒟Q,lin, which supports linear combinations of numerical features [22, 23].

For instance, the concept inclusion ⊤ ⊑ (sys − dia − pp = 0), where − is the difference

operation in real arithmetic, expresses that the pulse pressure is the difference between the

systolic and the diastolic blood pressure. In the medical domain, the combined expressivity

of 𝒟Q,diff and 𝒟Q,lin would be useful since then with the concept inclusion ICUPatient ⊓
(pp > 50) ⊑ NeedsAttention it could be expressed that intensive-care patients with a pulse

pressure exceeding 50 need attention — but this combination is not convex anymore [24]. For

instance, the TBox {⊤ ⊑ (𝑓 + 𝑔 = 0), (𝑓 = 0)⊑ 𝐶, (𝑓 > 0)⊑ 𝐶, (𝑔 > 0)⊑𝐴, 𝐶 ⊓𝐴⊑⊥}
declares 𝐴 as the complement of 𝐶 . Apart from these p-admissible concrete domains involving

numbers, there is another involving strings [18] but it is also too restricted to be of practical use.

Novel Contributions. We introduce a novel form of concrete domains based on semi-lattices.

A semi-lattice L := (𝐿,≤,∧) consists of a set 𝐿, a partial order ≤, and a binary meet operation ∧.

The elements of 𝐿 are taken as concrete values, and ≤ is understood as an “information order,”

i.e. 𝑝 ≤ 𝑞 means that 𝑝 is equal to or more specific than 𝑞, like a subsumption order between

concepts. The meet operation ∧ is used to combine two values 𝑝 and 𝑞 to their meet value 𝑝∧ 𝑞,

which is the most general value that is equal to or more specific than both 𝑝 and 𝑞.

The hierarchical concrete domain 𝒟L has values in Dom(𝒟L) := 𝐿 and supports only

constraints of the form 𝑓 ≤ 𝑝 involving a feature 𝑓 and a value 𝑝. Like atomic concepts,

these constraints 𝑓 ≤ 𝑝 can be used within compound concepts, i.e. the concepts’ syntax is

𝐶 ::= ⊥ | ⊤ | {𝑖} | 𝐴 | 𝑓 ≤ 𝑝 | 𝐶 ⊓𝐶 | ∃𝑟.𝐶 . Their semantics is (𝑓 ≤ 𝑝)ℐ = {𝑥 | 𝑓ℐ(𝑥) ≤ 𝑝 }
where 𝑓ℐ

is a partial function from the domain of ℐ to the concrete values. Recall: this means

that 𝑓 ’s value is 𝑝 or more specific, not smaller like in the aforementioned examples. For instance,

real intervals form a semi-lattice with subset inclusion ⊆ as partial order and intersection ∩ as

meet operation. With that, the statement NonElevatedBP ≡ (sys ⊆ [0, 120)) ⊓ (dia ⊆ [0, 70))
defines non-elevated blood pressure, where [0, 120) and [0, 70) are real intervals.

In addition, we introduce FBoxes consisting of feature inclusions that describe dependencies

between features as well as aggregations of features. A feature inclusion 𝑓 ≤ 𝐻(𝑔1, . . . , 𝑔𝑛)
consists of features 𝑓, 𝑔1, . . . , 𝑔𝑛 and a computable 𝑛-ary operation 𝐻 : 𝐿𝑛 → 𝐿 that is mono-
tonic in the sense that 𝐻(𝑝1, . . . , 𝑝𝑛) ≤ 𝐻(𝑞1, . . . , 𝑞𝑛) whenever 𝑝1 ≤ 𝑞1, . . . , and 𝑝𝑛 ≤ 𝑞𝑛
(i.e. applying 𝐻 to equal or more specific values yields equal or more specific values). For

instance, through the feature inclusion pp ⊆ sys − dia we can obtain an interval value of the

pulse pressure given intervals of the systolic and the diastolic blood pressure. The operator 𝐻
is the difference operation − in real interval arithmetic, which, when applied to intervals 𝑃,𝑄,

yields the set of all numbers 𝑝 − 𝑞 where 𝑝 ∈ 𝑃 and 𝑞 ∈ 𝑄. It is monotonic w.r.t. subset

inclusion ⊆ since, simply put, more numbers in 𝑃 or 𝑄 yield more numbers in 𝑃 − 𝑄. For
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Figure 1: Three graphs representing chemical compounds

instance, we have 𝐻([𝑝1, 𝑞1], [𝑝2, 𝑞2]) := [𝑝1 − 𝑞2, 𝑞1 − 𝑝2] and similarly for the other interval

types. With the concept inclusion ICUPatient⊓ (pp⊆ (50,∞))⊑NeedsAttention we can now

express that intensive-care patients having a pulse pressure above 50 need attention and, unlike

in the combination of 𝒟Q,diff and 𝒟Q,lin, computationally reason with that in polynomial time.

Our new hierarchical concrete domains are convex by design. This is because models can

assign to features any elements of the semi-lattice, and thus a general value of a feature does

not imply the disjunction of all more specific feature values. For example with real intervals, a

model of the constraint sys⊆ [110, 120) can assign the interval [110, 120) to the feature sys, and

thus this constraint does not imply the disjunction of, say, sys⊆ [110, 115) and sys⊆ [115, 120).
In a nutshell, the semi-lattice semantics effectively expels disjunction. Atomic feature values

are supported nonetheless when these are available as atoms in the semi-lattice (e.g. singleton

intervals [𝑝, 𝑝] represent specific numerical values 𝑝). In general, 𝒟L is convex w.r.t. every FBox

if the underlying semi-lattice L is complete (i.e. every subset 𝑃 ⊆ 𝐿 has a meet

⋀︀
𝑃 ∈ 𝐿).

Furthermore, for each semi-lattice L that is computable (i.e. 𝐿 and ≤ are decidable and ∧ is

computable) and bounded (i.e. it has a greatest element ⊤ such that 𝑝 ≤ ⊤ for every 𝑝 ∈ 𝐿),

𝒟L is convex and decidable w.r.t. an FBox ℱ if L is well-founded or ℱ is acyclic.

New Concrete Domains. Besides real intervals already mentioned above, we provide further

hierarchical concrete domains based on 2D-polygons, regular languages, and graphs.

With a finite automaton A such that 𝐿(A) = Σ* ∘ {description logic} ∘ Σ*
, the concept

inclusion ScientificArticle⊓ (hasTitle⪯A)⊑DLPaper expresses that all scientific articles with

a title containing “description logic” as substring are DL papers.

Structural formulas of molecules can be represented as labeled graphs. Each node is labeled

with the atom it represents, and the edges are labeled with the binding type (e.g. single bond,

double bond, etc.). The partial order ≤ is defined by 𝒢 ≤ ℋ if there is a homomorphism from ℋ
to 𝒢, and the meet of two graphs is their disjoint union. Figure 1 shows three exemplary graphs.

1

Graph (c) represents L-leucine, and we can integrate it into a knowledge base with the statement

L-Leucine ≡ (hasMolecularStructure ≤ 𝒢
L-leucine

). Moreover, the statement AminoAcid ≡
(hasMolecularStructure≤𝒢

carboxylic acid group
)⊓(hasMolecularStructure≤𝒢amino group) expresses

that amino acids are organic compounds that contain both amino and carboxylic acid functional

1

Graphs (a) and (b) are molecule parts whereas Graph (c) is a complete molecule, which cannot be a part of another

molecule. The lower left node in (a) and all outer nodes in (b) can match any element in a larger molecule, be it

partial or complete. In Graph (c) the skeletal formula is shown, where labels are optional for carbon atoms (C) and

the hydrogen atoms (H) attached to them.



groups. If 𝒦 is the knowledge base consisting of the aforementioned statements, then 𝒦 |=
L-Leucine ⊑ AminoAcid since 𝒢

L-leucine
≤ 𝒢

carboxylic acid group
∧ 𝒢amino group.

Reasoning. Reasoning in ℰℒ can be done by means of a rule-based calculus [18, 25–27], and

a hierarchical concrete domain 𝒟L can be seamlessly integrated into this calculus. Compared

to the primal calculus [18, 25], it is only necessary to take the feature inclusions into account

(which can now be contained in knowledge bases). For integration into the improved calculus

[26, 27] we only need to add the following two rules responsible for interaction between concrete

and logical reasoning (where ℱ consists of all feature inclusions in the knowledge base).

R𝒟 :
𝐶 ⊑ (𝑓1 ≤ 𝑝1) · · · 𝐶 ⊑ (𝑓𝑚 ≤ 𝑝𝑚)

𝐶 ⊑ (𝑔 ≤ 𝑞)
: 𝒟L,ℱ |=

𝑚d

𝑖=1
(𝑓𝑖 ≤ 𝑝𝑖)⊑ (𝑔 ≤ 𝑞)

R𝒟,⊥ :
𝐶 ⊑ (𝑓1 ≤ 𝑝1) · · · 𝐶 ⊑ (𝑓𝑚 ≤ 𝑝𝑚)

𝐶 ⊑⊥ :
𝑚d

𝑖=1
(𝑓𝑖 ≤ 𝑝𝑖) unsatisfiable in 𝒟L,ℱ

W.r.t. p-admissible hierarchical concrete domains 𝒟L (e.g. the interval domain, or the convex-

polygon domain), the following reasoning tasks can be done in polynomial time: consistency,

classification, subsumption checking, instance checking, and concept satisfiability. If concrete

reasoning in 𝒟L is not tractable, then ontological reasoning in the pure ℰℒ part of the knowledge

base is not affected and still requires only polynomial time. However, the combined complexities

of the aforementioned reasoning tasks are then dominated by the complexity of concrete

reasoning (e.g. non-deterministic polynomial time with the graph domain, and exponential time

with the regular-language domain or the polygon domain).

Future Prospects. An interesting question for future research is whether non-local feature

inclusions 𝑓 ≤𝐻(𝑅1 ∘ 𝑔1, . . . , 𝑅𝑛 ∘ 𝑔𝑛) would lead to undecidability or could be reasoned with,

where the𝑅𝑖 are role chains. The operator must then be defined for lists of values, like in the non-

local feature inclusion combinedWealth⊆
∑︀

(hasAccount ∘ balance) +
∑︀

(holdsAsset ∘ value)
over the interval domain, which computes the aggregated wealth of a person or company. At

first sight, it seems that the undecidability proof for ℰℒ(𝒟Q2,aff) [22] cannot be adapted to this

setting. (Mind the braces: (𝒟) instead of [𝒟] allows for role chains in front of features.) The

computation of canonical valuations must then take into account the graph structure induced

by the role assertions entailed by the knowledge base.

In general, it is unclear whether a hierarchical concrete domain is convex and decidable

w.r.t. cyclic FBoxes. According to our results for intervals and regular languages, convexity

and decidability can be ensured by approaches to solving systems of equations or inequations

involving elements of the underlying semi-lattice. This is still open for polygons and graphs.

Since hierarchical concrete domains are convex by design, they are also appropriate for other

Horn logics [28] such as ℰℒℐ [18], Horn-𝒜ℒ𝒞 [29], Horn-𝒮ℛ𝒪ℐ𝒬 [30], and existential rules

[31] — extending the chase procedure with support for them would be practically relevant.

Interesting would further be an empirical evaluation, at best with a clear separation of logical

and concrete reasoning — especially when tractable logics are equipped with intractable concrete

domains. More hierarchical concrete domains of practical relevance should be explored.
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