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Abstract. The EL family of description logics facilitates efficient
polynomial-time reasoning and has been standardized as the profile
OWL 2EL of the Web Ontology Language. EL can represent and reason
not only with symbolic knowledge but also with concrete knowledge
expressed by numbers, strings, and other concrete datatypes. Such con-
crete domains must be convex to avoid introducing disjunctions “through
the backdoor.” However, existing concrete domains provide only limited
utility. In order to overcome this issue, we introduce a novel form of
concrete domains based on semi-lattices. They are convex by design
and can thus be integrated into Horn-DLs such as EL. Moreover, they
allow for FBoxes to express dependencies between concrete features. We
describe four instantiations concerned with real intervals, 2D-polygons,
regular languages, and graphs.

1 Introduction

Concrete domains can be integrated in description logics (DLs) in order to re-
fer to concrete knowledge expressed by numbers, strings, and other concrete
datatypes [7]. They have mainly been investigated with DLs that are not Horn,
such as ALC and its extensions, regarding decidability and complexity [14, 18,
20, 49, 50, 51], reasoning procedures [26, 27, 50, 51, 52, 58], an algebraic char-
acterization [12, 59], and their expressive power [3, 6].

For computationally tractable description logics, other conditions on the con-
crete domains than above must be imposed. Suitable for the EL family are p-
admissible concrete domains [4]: through them it is not possible to introduce
disjunction into the logical domain so that the DL part retains its Horn char-
acter and, moreover, they guarantee that reasoning involving both the logical
and the concrete domain remains tractable. Concrete domains have also been
integrated with DL-Lite [2].

Existing p-admissible concrete domains for EL provide only limited utility.
Using the concrete domain DQ,diff [4], we could express with the concept inclu-
sions (sys ≥ 140) ⊑ Hypertension and (dia ≥ 90) ⊑ Hypertension that a systolic
blood pressure of 140 or higher indicates hypertension, as does a diastolic blood
pressure of at least 90. Since the opposite relations ≤ are not available to ensure
convexity, neither non-elevated blood pressure (dia. < 120 and sys. < 70) nor
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elevated blood pressure (dia. between 120 and 140, and sys. between 70 and 90)
are expressible. Mixed inequalities <, ≤, >, and ≥ may be used under certain
limitations which of them may occur in left-hand sides and, respectively, in right-
hand sides of concept inclusions [53]. While this retains convexity of the concrete
domain, reasoning is then rather impaired since the usual completion procedure
is only complete for consistency and classification, but not for subsumption.

An algebraic characterization of p-admissible concrete domains has put forth
a further concrete domain DQ,lin, which supports linear combinations of numeri-
cal features [11, 13]. For instance, the concept inclusion ⊤⊑ (sys−dia−pp = 0),
where − is the difference operation in real arithmetic, expresses that the pulse
pressure is the difference between the systolic and the diastolic blood pressure. In
the medical domain, the combined expressivity of DQ,diff and DQ,lin would be use-
ful since then with the concept inclusion ICUPatient⊓ (pp>50)⊑NeedsAttention
it could be expressed that intensive-care patients with a pulse pressure exceeding
50 need attention— but this combination is not convex anymore [1].

We introduce a novel form of concrete domains based on semi-lattices. A
semi-lattice (L,≤,∧) consists of a set L, a partial order ≤, and a binary meet
operation ∧. The elements of L are taken as concrete values, and ≤ is understood
as an “information order,” i.e. p ≤ q means that p is more specific than q, like a
subsumption order between concepts. The meet operation ∧ is used to combine
two values p and q to their meet value p∧q, which is the most general value that
is more specific than both p and q. For instance, real intervals form a semi-lattice
with subset inclusion ⊆ as partial order and intersection ∩ as meet operation.
With that, the statement NonElevatedBP≡ (sys⊆ [0, 120))⊓ (dia⊆ [0, 70)) defines
non-elevated blood pressure, where [0, 120) and [0, 70) are real intervals.

Our new hierarchical concrete domains are convex by design, simply because
a general value of a feature (such as sys ⊆ [0, 120)) does not imply the dis-
junction of all more specific feature values (such as sys ⊆ [0, 0], sys ⊆ [1, 1], . . . ,
sys⊆ [119, 119]). Atomic feature values are supported nonetheless when these are
available as atoms in the semi-lattice. For instance, a specific numerical value p is
represented by the singleton interval [p, p] (which equals the one-element set {p}).

In addition, we introduce FBoxes consisting of feature inclusions that de-
scribe dependencies between features as well as aggregations of features. For
instance, through the feature inclusion pp ⊆ sys − dia, where − is the difference
operation in real interval arithmetic, we can obtain an interval value of the pulse
pressure given intervals of the systolic and the diastolic blood pressure. With
the concept inclusion ICUPatient ⊓ (pp ⊆ (50,∞))⊑ NeedsAttention we can now
express that intensive-care patients having a pulse pressure above 50 need atten-
tion and, unlike in the combination of DQ,diff and DQ,lin, computationally reason
with that in polynomial time.

We provide four instantiations of hierarchical concrete domains based on real
intervals, 2D-polygons, regular languages, and graphs. The former two are not
only convex, but indeed p-admissible, i.e. equipping a DL from the EL family
with them facilitates polynomial-time reasoning. In particular, we can employ
linear programming for reasoning in the interval domain when the FBox is affine.
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The regular-language domain is also convex (again, by design) but requires ex-
ponential time for reasoning. However, this only affects the concrete-domain
reasoning itself so that reasoning in the logical EL part still runs in polynomial
time. This holds similarly for the graph domain.

Of practical relevance is that our hierarchical concrete domains can be seam-
lessly integrated into the completion procedure and the ELK reasoner [4, 5, 40,
42]. We demonstrate this for the case where nominals must be used safely, i.e.
nominals must not occur in conjunctions and right-hand sides of concept inclu-
sions must not be single nominals. We conjecture that full support for nominals
can be achieved in the same way as without concrete domains [41].

Proofs and more technical details can be found in the extended version [46].

2 Preliminaries

We work with the description logic EL++[D] (OWL 2 EL) where D is a P-
admissible concrete domain (as defined below). Consider a set C of atomic con-
cepts, a set R of roles, a set I of individuals, a set F of features, and a set P
of predicates where each P ∈ P has an arity ar(P ) ∈ N. There are two special
concepts ⊥ and ⊤ with fixed meaning. A constraint has the form ∃f1, . . . , fk.P
where P is a k-ary predicate and f1, . . . , fk are features. Compound concepts are
built by

C ::= ⊥ | ⊤ | {i} | A | ∃f1, . . . , fk.P | C ⊓ C | ∃r.C

where A ranges over all atomic concepts, r over all roles, i over all individuals,
and ∃f1, . . . , fk.P over all constraints. A knowledge base (KB) is a finite set of
concept inclusions (CIs) C ⊑ D concerning concepts C and D, role inclusions
(RIs) R ⊑ s involving role chains generated by R ::= ε | R1, R1 ::= r | R1 ◦ R1

and roles s, and range inclusions Ran(r) ⊑ C referring to roles r and concepts
C — but every EL++[D] KB must satisfy an additional condition as explained
in Section 4.

As syntactic sugar, we have concept assertions {i} ⊑ C (also written i : C),
role assertions {i}⊑∃r.{j} (also written (i, j) : r), domain inclusions ∃r.⊤⊑C
(also written Dom(r)⊑C), and role exclusions ∃r1. . . . ∃rn.⊤⊑⊥ (also written
r1 ◦ · · · ◦ rn ⊑ ⊥). Statements C ⊑ ⊥ are also called concept exclusions, and
C ≡D is a concept equivalence that stands for the two CIs C ⊑D and D ⊑ C.
Each KB K can be subdivided into an ABox A consisting of all concept and
role assertions, an RBox R consisting of all role inclusions and exclusions, and
a TBox T consisting of the remaining statements. The TBox together with the
RBox is also called an ontology O.

The semantics are defined through the fixed concrete domain D and all inter-
pretations I. The concrete domain D := (Dom(D), ·D) consists of a set Dom(D)
of values and an interpretation function ·D that sends each predicate P ∈ P to
a relation over Dom(D) with arity ar(P ), i.e. PD ⊆ Dom(D)ar(P ).

If the predicate P in a constraint ∃f1, . . . , fk.P is defined through a math-
ematical expression or a logical formula with k free variables, then we may
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represent the constraint also through this expression/formula but with the
free variables replaced by the features f1, . . . , fk. For instance, the constraint
sys − dia − pp = 0 from the introduction represents ∃sys, dia, pp.P(1,−1,−1),0
where (P(1,−1,−1),0)

D := { (x, y, z) | x− y − z = 0 }.
An interpretation I := (Dom(I), ·I) consists of a non-empty set Dom(I),

called domain, and an interpretation function ·I that maps each atomic concept
A ∈ C to a subset AI of Dom(I), each role r ∈ R to a binary relation rI over
Dom(I), each individual i ∈ I to an element iI of Dom(I), and each feature
f ∈ F to a partial function fI from Dom(I) to Dom(D). The interpretation
function ·I is extended to compound concepts as follows: ⊥I := ∅, ⊤I := Dom(I),
{i}I := {iI}, (∃f1, . . . , fk.P )I := { x | x ∈ Dom(fI1 ) ∩ · · · ∩ Dom(fIk ) and
(fI1 (x), . . . , f

I
k (x)) ∈ PD }, (C⊓D)I := CI ∩DI , and (∃r.C)I := {x | there is y

s.t. (x, y) ∈ rI and y ∈ CI }. Role chains are interpreted by εI := { (x, x) | x ∈
Dom(I) } and (R ◦ S)I := { (x, z) | there is y s.t. (x, y) ∈ RI and (y, z) ∈ SI },
and role ranges are interpreted as Ran(r)I := { y | there is x s.t. (x, y) ∈ rI }.

I satisfies a concept/role/range inclusion X ⊑ Y , written I |= X ⊑ Y , if
XI ⊆ Y I . If I satisfies all inclusions in a KB K, then I is a model of K, written
I |= K. If K has a model, then it is consistent, and otherwise inconsistent. K
entails an inclusion X ⊑ Y if X ⊑ Y is satisfied by all models of K, written
K |= X ⊑ Y or X ⊑K Y , and we then say that X is subsumed by Y w.r.t. K.
Furthermore, K entails a KB L if K entails all inclusions in L, written K |= L.

A constraint inclusion is of the form
d
Γ ⊑

⊔
∆ where Γ and ∆ are finite

sets of constraints. I satisfies
d
Γ ⊑

⊔
∆, written I |=

d
Γ ⊑

⊔
∆, if

⋂
{ αI |

α ∈ Γ } ⊆
⋃
{ βI | β ∈ ∆ }. Moreover,

d
Γ ⊑

⊔
∆ is valid, written D |=d

Γ ⊑
⊔
∆, if it is satisfied in all interpretations. It is easy to see that validity

is independent of the concepts, roles, and individuals and that it suffices to
consider only one domain element. To this end, a valuation is a partial function
v from F to Dom(D), and it satisfies ∃f1, . . . , fk.P if (v(f1), . . . , v(fk)) ∈ PD.
Now,

d
Γ ⊑

⊔
∆ is valid iff., for each valuation v, if v satisfies all α ∈ Γ , then v

satisfies some β ∈ ∆.
We say that D is P-admissible if satisfiability of constraint conjunctions as

well as validity of constraint inclusions are decidable in polynomial time and,
moreover, D is convex, i.e. for each valid constraint inclusion

d
Γ ⊑

⊔
∆, there is

a constraint β ∈ ∆ such that
d
Γ ⊑β is valid. We can use multiple P-admissible

concrete domains by forming their disjoint union, which is P-admissible too.

3 Hierarchical Concrete Domains

A semi-lattice L := (L,≤,∧) consists of a set L, a partial order ≤ on L, and a
binary meet operation ∧ on L, i.e. the following hold for all p, q, p1, p2, p3 ∈ L:

(SL1) p ≤ p for each p ∈ L (reflexive)
(SL2) if p ≤ q and q ≤ p, then p = q (anti-symmetric)
(SL3) if p1 ≤ p2 and p2 ≤ p3, then p1 ≤ p3 (transitive)
(SL4) p1 ∧ p2 ≤ p1 and p1 ∧ p2 ≤ p2
(SL5) if q ≤ p1 and q ≤ p2, then q ≤ p1 ∧ p2.
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The strict part < is defined by p < q if p ≤ q but q ̸≤ p, and we then say that p is
more specific than q. Thus p ≤ q iff. p < q or p = q, in which case we say that p is
more specific than or equal to q. And p∧ q is the meet of p and q. It follows from
the above conditions that ∧ is associative, commutative, and idempotent. The
finitary meet operation

∧
is obtained from the binary one by setting

∧
{p} := p,∧

{p, q} := p ∧ q, and
∧
{p1, . . . , pn} := p1 ∧

∧
{p2, . . . , pn} whenever n ≥ 3.

We say that L is computable if L and ≤ are decidable and ∧ is computable.
If all this is possible in polynomial time, then L is polynomial-time computable.
L is bounded if it has a greatest element ⊤, i.e. p ≤ ⊤ for every p ∈ L. Then we
can also define a nullary meet as

∧
∅ := ⊤. In order to express impossible com-

binations of values, it might be convenient to add an artificial smallest element
⊥ to the semi-lattice, i.e. ⊥ ≤ p for each p ∈ L. We then use ⊥ to represent
contradictory or ill-defined values. More specifically, p∧ q = ⊥ if it is impossible
to combine the values p and q.

Example 1. A semi-lattice representing grades could have the values Attended,
Passed, Failed, 1, 2, 3, 4, 5, 6, 1.0, 1.3, 1.7, 2.0, and so on. Its partial order ≤
is defined by Passed ≤ Attended, Failed ≤ Attended, 1 ≤ Passed, 2 ≤ Passed,
3 ≤ Passed, 4 ≤ Passed, 5 ≤ Failed, 6 ≤ Failed, 1.0 ≤ 1, 1.3 ≤ 1, 1.7 ≤ 2, 2.0 ≤ 2,
etc. Here we need to add a smallest element ⊥ since e.g. the meet of grades 1.0
and 5.0 cannot be reasonably defined.

For every KB K expressed in a decidable DL, the set of all concepts ordered
by subsumption ⊑K and with conjunction ⊓ as meet operation is a computable,
bounded semi-lattice. For each set M , (℘(M),⊆,∩,M) and (℘(M),⊇,∪, ∅) are
bounded semi-lattices (where ℘(M) is the powerset of M). They are only com-
putable if restricted to finite or finitely representable subsets of M . In the follow-
ing subsections we will introduce four application-relevant semi-lattices based on
intervals, polygons, regular languages, and graphs.

Definition 2. Given a bounded semi-lattice L := (L,≤,∧,⊤), the hierarchical
concrete domain DL has values in Dom(DL) := L and supports only constraints
of the form ∃f.P≤p, written as f ≤ p, involving a feature f and a value p. The
semantics are (P≤p)

DL := { q | q ∈ L and q ≤ p } and thus (f ≤ p)I = { x |
fI(x) ≤ p }. Recall: this means that f ’s value is p or more specific, not smaller.
We assume that ⊤ stands for an undefined value and thus all valuations are
total, i.e. v(f) = ⊤ means that f has no value under v. In order to represent
a most general value, L contains a second-largest element □, i.e. □ < ⊤ and
p ≤ □ for each p ∈ L \ {⊤}. Since ⊥ represents contradictory, ill-defined values,
no valuation v assigns ⊥ to any feature f , i.e. v(f) ̸= ⊥.

Definition 3. A feature inclusion (FI) f ≤ H(g1, . . . , gn) consists of features
f, g1, . . . , gn and a computable n-ary operation H : Ln → L that is monotonic in
the sense that H(p1, . . . , pn) ≤ H(q1, . . . , qn) whenever p1 ≤ q1, . . . , and pn ≤ qn
(i.e. applying H to more specific values yields more specific values). A valuation v
satisfies this FI if v(f) ≤ H(v(g1), . . . , v(gn)), denoted as v |= f≤H(g1, . . . , gn).
An FBox F is a finite set of FIs, and a valuation v satisfies F , written v |= F , if
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v satisfies every FI in F . We call F acylic if the graph (F, { (f, g1), . . . , (f, gn) |
f ≤H(g1, . . . , gn) ∈ F }) is, and cyclic otherwise.

The following example illustrates that FIs are “directed specifications” in
the sense that values of the right-hand side features g1, . . . , gn yield, through
the operation H, an upper bound for the value of the left-hand side feature f .
However, this does not work in the other direction unless specified by other FIs.

Example 4. We use three features with interval values over the non-negative
integers: sys for the systolic and dia for the diastolic blood pressure, and pp for
the pulse pressure, which is the difference between the systolic and the diastolic
pressure. The FI pp ⊆ sys − dia allows us to infer a value for pp when values for
both sys and dia are given. The monotonic operator H in the right-hand side
is H([p1, q1], [p2, q2]) := [p1, q1] − [p2, q2], and the latter value is the difference
in interval arithmetic (= [p1 − q2, q1 − p2] but with negative subtraction results
replaced by 0). According to the semantics, an interval value of the feature pp
must be a subset of sys − dia, i.e. if the latter two features are defined for an
object x in a model I of the FI, then also ppI(x) is defined and is equal to or
more specific than H(sysI(x), diaI(x)).

For instance, under the above FI the constraint inclusion (sys⊆ [110, 120])⊓
(dia ⊆ [60, 70]) ⊑ (pp ⊆ [40, 60]) is valid since H([110, 120], [60, 70]) = [40, 60] ⊆
[40, 60]. Without syntactic sugar, the first constraint is ∃sys.P⊆[110,120] involving
the predicate P⊆[110,120] := { [p, q], (p, q), [p, q), (p, q] | 110 ≤ p ≤ q ≤ 120 }.

In contrast, the constraint inclusion (sys⊆ [110, 120])⊓ (pp⊆ [40, 60])⊑ (dia⊆
[60, 70]) is not valid w.r.t. the above FI. A countervaluation is v with v(sys) =
[110, 120], v(dia) = [0,∞), v(pp) = [40, 60]. This is because [110, 120]− [0,∞) =
[0, 120] and [40, 60] ⊆ [0, 120], i.e. v satisfies the FI, but v does not satisfy the
latter constraint inclusion.

Definition 5. The semantics of the concrete domain DL can be restricted w.r.t.
an FBox F by considering only valuations satisfying F . That is, a constraint
inclusion

d
Γ ⊑

⊔
∆ is valid in DL w.r.t. F , written DL,F |=

d
Γ ⊑

⊔
∆, if

this inclusion is satisfied in all valuations that satisfy F . Whenever we write
“w.r.t. F” in the following, only valuations satisfying F are considered.

Using this semantics restricted by an FBox, convexity and P-admissibility
are defined as before but the latter additionally takes the FBox F as part of the
input. The underlying semi-lattice L is taken into account through the computa-
tional complexity of its value set L, its partial order ≤, and its meet operation ∧.

Definition 6. DL is admissible w.r.t. F if DL is convex and satisfiability of
constraint conjunctions as well as validity of constraint inclusions are decidable,
all w.r.t. F . For a complexity class C, we say that DL is C-admissible w.r.t. F
if, all w.r.t. F , DL is convex and satisfiability of constraint conjunctions as well
as validity of constraint inclusions are in C when F is part of the input.

Next, we show that a hierarchical concrete domain DL is convex w.r.t. F if the
semi-lattice L is complete or well-founded or the FBox F is acyclic. There might
be further sufficient conditions for convexity; we leave this for future research.
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Definition 7. Let L be a bounded semi-lattice and F be an FBox. Given a finite
set Γ of constraints over the concrete domain DL, a canonical valuation of Γ
w.r.t. F is a valuation vΓ,F such that

1. vΓ,F |= F and
2. vΓ,F |= α iff. DL,F |=

d
Γ ⊑ α for each constraint α.

Moreover, we say that DL has canonical valuations w.r.t. F if such a valuation
vΓ,F exists for every finite, w.r.t. F satisfiable Γ .

Since for each constraint α in Γ , the inclusion
d

Γ ⊑α is valid, we infer with
the second condition that vΓ,F satisfies Γ .

A semi-lattice L is complete if every subset P ⊆ L has a meet
∧

P ∈ L, i.e.
such that

∧
P ≤ p for each p ∈ P and, if q ≤ p for each p ∈ P , then q ≤

∧
P .

Note that these two conditions generalize (SL4) and (SL5).

Theorem 8. For each complete semi-lattice L and for every FBox F , the con-
crete domain DL has canonical valuations and so is convex w.r.t. F .

Theorem 9. Let L be a computable, bounded semi-lattice and F be an FBox. If
L is well-founded or F is acyclic, then the concrete domain DL has computable
canonical valuations and is admissible w.r.t. F .

Now, we want to determine the time requirement for computing a canonical
valuation vΓ,F , which is measured w.r.t. the constraint set Γ and the FBox F .

An operation H : Ln → L is non-duplicating if, for all (p1, . . . , pn) ∈ Ln, the
size of H(p1, . . . , pn) is no larger than the size of (p1, . . . , pn). An FBox is non-
duplicating if all operations in it are non-duplicating and each feature occurs at
most once in any right-hand side.

Proposition 10. Consider a polynomial-time computable, bounded semi-lattice
L such that its meet operation is non-duplicating. Further consider an acyclic,
non-duplicating FBox F in which all occurring operations are polynomial-time
computable. W.r.t. F , the concrete domain DL has polynomial-time computable
canonical valuations and is P-admissible.

We obtain exponential complexity if ∧ and F are not non-duplicating.

Proposition 11. For every polynomial-time computable, bounded semi-lattice L
and for every acyclic FBox F in which all occurring operations are polynomial-
time computable, the concrete domain DL has exponential-time computable
canonical valuations and is EXP-admissible w.r.t. F .

3.1 Intervals

Let N be a non-empty set of real numbers. The semi-lattice Int(N) consists of all
intervals over N , is partially ordered by set inclusion ⊆ and has set intersection
∩ as its meet operation. Int(N) is already bounded since its greatest element is



8 Francesco Kriegel

N = (−∞,∞), but we rather identify it with □ and add an artificial greatest
element ⊤. It also has a smallest element ∅ = (p, p) where p ∈ N is arbitrary, and
we identify this smallest element with the contradictory value ⊥. The inclusion
satisfies [p1, q1] ⊆ [p2, q2] iff. p2 ≤ p1 and q1 ≤ q2, and the intersection satisfies
[p1, q1] ∩ [p2, q2] = [max(p1, p2),min(q1, q2)], and similarly for the other interval
types. It follows that Int(N) is polynomial-time computable since ≤ is decidable
in polynomial time [30], and its meet operation is non-duplicating.

The hierarchical concrete domain DInt(N) is called the interval domain over
N . Since for every number p ∈ N , the singleton {p} equals the interval [p, p], we
can specify the precise numerical value of a feature with the constraint f ⊆ {p},
also written f = p. Moreover, instead of f ⊆ [p, q] we may also write p≤ f ≤ q.

Example 12. Through the interval domain over the non-negative 8-bit inte-
gers N := N ∩ [0, 28−1] we could express non-elevated blood pressure by
NonElevatedBP ≡ (sys ⊆ [0, 120)) ⊓ (dia ⊆ [0, 70)), elevated blood pressure
by ElevatedBP ≡ (sys ⊆ [120, 140)) ⊓ (dia ⊆ [70, 90)), and hypertension by
(sys ⊆ [140,∞)) ⊑ Hypertension and (dia ⊆ [90,∞)) ⊑ Hypertension. With the
above syntactic sugar, the first statement can also be written as NonElevatedBP≡
(0 ≤ sys < 120) ⊓ (0 ≤ dia < 70), and similarly for the other two. The concrete
values of patient bob can be represented by the assertions bob : (sys = 114) and
bob : (dia ⊆ [69, 69]). The KB consisting of all these aforementioned statements
entails bob : NonElevatedBP.

Example 13. Continuing Example 4, we can additionally consider the two FIs
dia ⊆ sys − pp and sys ⊆ dia + pp, which allow us to also infer interval values of
dia and sys given interval values of the respective other two. Importantly, this
does not destroy convexity.

This is in stark contrast to the concrete domain extending DQ,diff with con-
straints f ≥ b, f < b, f ≤ b, which allows to express interval values as well
(in a different way though). There, the constraint inclusion (sys − dia = 40) ⊑
(sys ≤ 120) ⊔ (dia > 80) is valid, violating convexity. Additionally using the ex-
pressivity of DQ,lin, we could express that pp = sys − dia by the CI ⊤ ⊑ (sys −
dia − pp = 0) as in Example 3 in [1]. Under this CI, the constraint inclusion
(pp = 40)⊑ (sys ≤ 120) ⊔ (dia > 80) would be valid, also violating convexity.

In our interval domain over the non-negative integers and with the cyclic
FBox {pp⊆sys−dia, dia⊆sys−pp, sys⊆dia+pp}, the similar constraint inclusion
(pp⊆ [40, 40])⊑(sys⊆ [0, 120])⊔(dia⊆(80,∞)) is not valid. A countervaluation is
v where v(sys) = [40,∞), v(dia) = [0,∞), v(pp) = [40, 40]. It satisfies the first FI
since [40,∞)− [0,∞) = [0,∞) ⊇ [40, 40], the second FI since [40,∞)− [40, 40] =
[0,∞) ⊇ [0,∞), and the third FI since [0,∞) + [40, 40] = [40,∞) ⊇ [40,∞).

Recall that the interval semi-lattice Int(N) is defined for every non-empty
set N of real numbers. The set N is partially ordered by the usual ordering ≤
and has the meet operation min, i.e. (N,≤,min) is itself a semi-lattice. It thus
makes sense to say that N is complete. The real numbers R, the non-negative
real numbers R+, the integers Z, the natural numbers N, the n-bit integers,
the n-bit floating-point numbers, the n-bit fixed-point numbers, and all finite
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subsets of R are complete, but the rational numbers Q is not — for instance, the
infimum of { (1 + 1/n)n+1 | n ≥ 0 } is Euler’s number e, an irrational number.
It is easy to see that the semi-lattice Int(N) is complete if the number set N is
complete, and so we obtain the below corollary to Theorem 8.

Corollary 14. If the semi-lattice (N,≤,min) is complete, then the interval do-
main DInt(N) has canonical valuations and is convex w.r.t. every FBox F .

An immediate consequence of Theorem 9 is that the interval domain DInt(R)
over all real numbers is admissible w.r.t. every acyclic FBox. Moreover, an ob-
vious corollary to Proposition 10 is as follows.

Corollary 15. W.r.t. each acyclic, non-duplicating FBox F in which all op-
erations are polynomial-time computable, the interval domain DInt(R) has
polynomial-time-computable canonical valuations and is P-admissible.

Next, we employ linear programming to handle affine FBoxes, which might
be cyclic. We call an FBox F affine if all operations in FIs in F are affine, i.e.
all FIs are of the form f ⊆

∑n
i=1 Pi · gi +Qi where the Pi and Qi are intervals.

For instance, the FI pp ⊆ sys − dia is affine, but bmi ⊆ bodyMass/bodyHeight2

is not. Since each affine FI represents two linear inequalities (one for the lower
bound of the interval value of f , and another one for the upper bound), we can
transform affine FBoxes into linear programs, which can be solved in polynomial
time [33]. We thus obtain the following result.

Proposition 16. Let c, c ∈ R+ be non-negative real numbers such that c ≤ c.
Restricted to closed intervals only, the interval domain DInt([c,c]) over the non-
negative real numbers between c and c is P-admissible w.r.t. each affine FBox F ,
i.e. all FIs are of the form f ⊆

∑n
i=1[ai, ai] · gi + [b, b].

It remains an open problem, whether the interval domains DInt([c,c]) remain
P-admissible w.r.t. affine FBoxes when all interval types would be considered.
We conjecture that the interval bounds can be computed using the same linear
program, but determining the correct interval types (closed or open at the lower
bound, closed or open at the upper bound) could possibly lead to a combinatorial
explosion. It is further unclear whether, without the bounding interval [c, c], the
interval domain DInt(R+) would still be P-admissible w.r.t. affine FBoxes. The
canonical valuation could then send features to intervals with upper bound +∞,
in which case the polytope described by the inequations would be unbounded.
This requires an LP-solver with support for unbounded solution polytopes.

We can also handle affine FBoxes together with negative numbers, but then
need to restrict the coefficient intervals [ai, ai] to singletons —as otherwise the
non-linear functions min and max would be required to compute a product [ai, ai]·
gi, i.e. the system of inequalities would not be linear anymore and could therefore
not be solved by linear-programming methods.

Proposition 17. Let c, c ∈ R be real numbers such that c ≤ c. Restricted to
closed intervals, the interval domain DInt([c,c]) over the real numbers in [c, c] is
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P-admissible w.r.t. each affine FBox F involving only singleton coefficients, i.e.
all FIs are of the form f ⊆

∑n
i=1{ai} · gi + [b, b].

Linear programming becomes NP-hard when restricted to integers only [38].
Unless P = NP, the integer interval domains DInt(Z), DInt(N), and DInt({0,1}) are
thus not P-admissible w.r.t. affine FBoxes. These domains are rather suitable for
integration into Horn logics [55] that do not allow for polynomial-time reasoning,
such as ELI [4], Horn-ALC [47], Horn-SROIQ [57], and existential rules [15].

Example 18. Example 3 in [1] shows that the combination of the concrete do-
mains DQ,diff and DQ,lin is not enough to express that intensive-care patients
need attention if their pulse pressure is larger than 50 or their current heart rate
exceeds their maximal heart rate. Moreover, this combination is not even convex.

With our interval domain these statements can be expressed through the
affine FIs pp⊆ sys−dia, and maxHR⊆220−age, and exceedHR⊆hr−maxHR, as
well as the CIs ICUPatient⊑(hr⊆□)⊓(sys⊆□)⊓(dia⊆□), and ICUPatient⊓(pp⊆
(50,∞))⊑NeedsAttention, and ICUPatient⊓(exceedHR⊆(0,∞))⊑NeedsAttention.

3.2 2D-Polygons

A 2D-polygon is a finite sequence of successively connected finite line segments
in the real plane R2 such that the end vertex of the last segment equals the start
vertex of the first. These line segments form a simple closed curve in R2, and
by the Jordan Curve Theorem [28, 36] each 2D-polygon has an interior region
(bounded by the curve) and an exterior region. In the following we identify each
2D-polygon with the subset of R2 consisting of its boundary and the interior
region. 2D-polygons are thoroughly studied in Computational Geometry and
frequently used in geographic information systems (GIS).

Every 2D-polygon can be represented as a finite sequence of vertex coordi-
nates in R2 — its line segments then connect each two subsequent coordinates
and, respectively, the first and last coordinate — and thus deciding the set of all
2D-polygons is trivial. Clipping algorithms allow for deciding in polynomial time
if a polygon is a subset of another (i.e. polygon containment without moving or
scaling operations) as well as for computing any Boolean operation involving
two polygons (union, intersection, difference, xor) in polynomial time [24, 54,
63]. However, intersections can be of quadratic size and might consist of unions
of disjoint 2D-polygons. In order to obtain a semi-lattice, which must be closed
under its meet operation, it would therefore be necessary to take the set of all
finite unions of separated 2D-polygons: we denote it by UGon(R2), its partial
order is containment ⊆, and its meet is intersection ∩. According to the above
references, UGon(R2) is polynomial-time computable (w.r.t. arithmetic com-
plexity). The hierarchical concrete domain DUGon(R2) is called polygon domain
over R2. A corollary to Proposition 11 is as follows.

Corollary 19. W.r.t. arithmetic complexity, the polygon domain DUGon(R2) has
exponential-time computable canonical valuations and is EXP-admissible w.r.t.
each acyclic FBox F in which all operations are polynomial-time computable.
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To the best of the author’s knowledge, it is unclear whether the intersection
of n polygons might reach an exponential size. If this worst case would not be
possible and, moreover, all operations in F are non-duplicating, then DUGon(R2)

would even be P-admissible w.r.t. F (w.r.t. arithmetic complexity).

Example 20. Locations can be represented as polygons in the real plane R2. For
instance, we have “Nöthnitzer Straße 46, 01187 Dresden” ⊆ “01187 Dresden” ⊆
“Dresden” ⊆ “Saxony” ⊆ “Germany” ⊆ “Europe” ⊆ “Earth”.

The situation is computationally easier with convex 2D-polygons, which con-
tain all line segments between each two of their points. One can think of convex
2D-polygons as two-dimensional generalizations of closed intervals. Both in lin-
ear time, we can decide the subset relation ⊆ and compute the intersection
operation ∩ for convex 2D-polygons [56, 60, 62]. Intersection is non-duplicating
[60]. However, deciding the set of all convex 2D-polygons is not trivial anymore
but needs linear time [60]. We denote the semi-lattice of all convex 2D-polygons
by CGon(R2), and it is linear-time computable (w.r.t. arithmetic complexity).
The hierarchical concrete domain DCGon(R2) is called convex-polygon domain
over R2.

Obviously, convex polygons are closed under intersection but not under
union, difference, and xor. Since union is monotonic, it can be used in FBoxes
when followed by the convex-hull operation (which computes the smallest en-
closing polygon that is convex). This is, however, not possible for difference and
xor since they are not monotonic. Suitable monotonic operations besides inter-
section and convex union are translation, rotation, and scaling, and these can
be computed in linear time as well. Below is a corollary to Proposition 10.

Corollary 21. W.r.t. each acyclic, non-duplicating FBox F in which all oc-
curring operations are polynomial-time computable, the convex-polygon domain
DCGon(R2) has polynomial-time computable canonical valuations and is P-ad-
missible (w.r.t. arithmetic complexity).

Contrary to Int(R), neither UGon(R2) nor CGon(R2) are complete. One
reason is that the unit circle can be obtained as the intersection of regular
polygons (for each n ∈ N with n ≥ 3, take a smallest regular n-sided polygon
that encloses the unit circle). The polygon semi-lattices are also not well-founded,
and thus we cannot obtain corollaries to Theorems 8 and 9 w.r.t. cyclic FBoxes.

3.3 Regular Languages

Given a finite alphabet Σ, the semi-lattice Reg(Σ) consists of all regular lan-
guages over Σ, is partially ordered by set inclusion ⊆, and its meet opera-
tion is set intersection ∩. It is not complete since regular languages are not
closed under arbitrary intersections (only under finite ones). More specifically,
L =

⋂
{ Σ∗ \ {w} | w ̸∈ L } for each language L, and thus for two symbols

a, b ∈ Σ the non-regular language { anbn | n ∈ N } is an intersection of regular
languages. Thus, convexity does not follow from Theorem 8.
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In order to obtain a computable semi-lattice, we need to work with finite rep-
resentations of regular languages. With regular expressions, binary intersections
of regular languages can have exponential size even over a binary alphabet [25],
i.e. the meet would not be computable in polynomial time. It is no alternative to
instead use one-unambiguous/deterministic regular expressions since they can-
not describe all regular languages and are not even closed under intersection,
even though their inclusion problem is in polynomial time [19, 32, 48].

Using finite automata as representations is preferred, on the one hand since
to obtain the meet/intersection of two regular languages we can compute the
product of the respective finite automata in polynomial time [37]. On the other
hand, a language inclusion L1 ⊆ L2 holds iff. the language equivalence L1∩L2 =
L2 holds, and thus it suffices to check if the product of both finite automata is
equivalent to the second automaton. For deterministic automata this is possible
in polynomial time [16, 31], but otherwise needs polynomial space [61].

The semi-lattice DFA(Σ) consists of all deterministic finite automata over Σ,
is partially ordered by automata inclusion ⪯ where A ⪯ B if L(A) ⊆ L(B),
and its meet operation is the product ×, which satisfies L(A × B) = L(A) ∩
L(B). It is thus polynomial-time computable. Furthermore, FA(Σ) comprises
all finite automata and is polynomial-space computable. Since finite automata
and deterministic ones have equal power in the sense that they both describe all
regular languages, both semi-lattices can serve as representations of Reg(Σ).

The hierarchical concrete domains DDFA(Σ) and DFA(Σ) are called the
regular-language domains over Σ. Since single words are regular languages, pre-
cise string values are supported: we may write (f = w) instead of (f ⪯ A) when
L(A) = {w}. Further note that □ is the automaton that accepts every string, ⊥
accepts no string at all, and ⊤ is an artificial greatest element.

Example 22. Let Σ be an alphabet containing all Latin letters, e.g. The Unicode
Standard. We use a feature hasTitle to represent the title string of a research
paper. Further take a DFA A such that L(A) = Σ∗ ◦ {description logic} ◦ Σ∗.
With that, the CI ScientificArticle⊓ (hasTitle⪯A)⊑DLPaper expresses that the
concept of all DL papers subsumes the concept of all scientific articles with a
title containing “description logic” as substring.

Even without an FBox, the regular-language domains DDFA(Σ) and DFA(Σ)

are in general not P-admissible. In a nutshell, meets need not be non-duplicating,
and thus accumulating all upper bounds of the same feature could yield an expo-
nentially large automaton. More specifically, if a constraint set Γ contains several
constraints f ≤A for the same feature f , then computing the value vΓ,F (f) boils
down to computing the intersection of all these automata A. Since emptiness
of intersections of finite automata is PSpace-hard [43] and graph reachability
is NL-complete [35], vΓ,F (f) cannot be computed in polynomial time, unless
P = PSpace. We obtain, however, the following corollary to Proposition 11.

Corollary 23. W.r.t. each acyclic FBox F in which all occurring operations
are polynomial-time computable, the regular-language domain DDFA(Σ) has
exponential-time computable canonical valuations and is EXP-admissible.
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The DFA operations corresponding to the language operations union ∪, in-
tersection ∩, and complement − are polynomial-time computable. DDFA(Σ) is
thus EXP-admissible w.r.t. each acyclic FBox involving these operations only.
In contrast, concatenation ◦, Kleene-star ∗, mirror/reversal ←, left-quotients
\, and right-quotients / on DFAs are exponential-time computable but not
polynomial-time computable [65]. However on FAs, all operations but com-
plement are polynomial-time computable, and mirror/reversal is even non-
duplicating. DFA(Σ) is EXPSpace-admissible w.r.t. acyclic FBoxes using these
polynomial-time operations.

It is worth mentioning that, if we have at most one inclusion (i.e. constraint
or FI) per feature, then in the procedure in the proof of Theorem 9 neither the
automata product operation nor the automata inclusion relation needs to be
used, and so we have the following corollary.

Corollary 24. Let F be an acyclic, non-duplicating FBox in which all occurring
operations are polynomial-time computable. Further let Γ be a constraint set. If
F ∪Γ contains, for each feature f , at most one inclusion with f on the left, then
the canonical valuation of Γ w.r.t. F can be computed in polynomial time.

Example 25. Assume the features givenName, familyName, and name are used to
represent persons’ names. Then for instance, the concept Male⊓(givenName⪯A)
where L(A) = {F} ◦Σ∗ describes all males whose given name starts with ‘F’.

Moreover, the FI name ⪯ givenName ◦ {_} ◦ familyName allows to infer a
regular language value of name when values of givenName and familyName are
available (i.e. both are not ⊤). If the latter two are precise values (languages
consisting of a single word), then also name gets a precise value through the FI.
Note that ‘_’ stands for a white space. The FI shortName⪯ initial(givenName) ◦
{._} ◦ familyName generates a shortened form of a name that only contains the
initial of the given name followed by a dot, where the function initial is defined
by L(initial(A)) := { s | s ∈ Σ and there is w ∈ Σ∗ such that s ◦ w ∈ L(A) }.

The semi-lattices Reg(Σ), DFA(Σ), and FA(Σ) are not well-founded since,
already over the unary alphabet {a}, the regular languages Li := { aj | i ≤ j }
where i ∈ N form an infinite descending chain L0 ⊃ L1 ⊃ L2 ⊃ · · · . These semi-
lattices are also not complete (see above). W.r.t. cyclic FBoxes, we can thus not
conclude convexity by Theorems 8 and 9.

For a restricted class of FBoxes, however, we obtain systems of language
inclusions known to be solvable in exponential time [10]. An n-ary operation H
on DFA(Σ) is left-linear if H(X1, . . . ,Xn) = X1 ◦ A1 ∪ · · · ∪ Xn ◦ An ∪ B and
right-linear if H(X1, . . . ,Xn) = A1 ◦X1 ∪ · · · ∪An ◦Xn ∪B, where A1, . . . ,An,B
are DFAs. An FBox F is linear if the operations in its FIs are either all left-linear
or all right-linear.

Proposition 26. The regular-language domain DDFA(Σ) has exponential-time
computable canonical valuations and is EXP-admissible w.r.t. each linear FBox.

If precise values (single words) are sufficient for the application, we could also
use the semi-lattice (Σ∗∪{⊥,⊤},≤,∧) where ≤ is the smallest partial order such
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(c) GL-leucine

Fig. 1: Three graphs representing chemical compounds

that ⊥ < w < ⊤ for each w ∈ Σ∗. The meet operation ∧ thus satisfies ⊤∧w = w,
w∧w = w, and w∧⊥ = ⊥ for each w ∈ Σ∗∪{⊥,⊤}, and w1∧w2 = ⊥ whenever
w1, w2 ∈ Σ∗ with w1 ̸= w2. This semi-lattice is complete and, by Theorem 8,
its hierarchical concrete domain is convex w.r.t. every FBox. Since during the
computation of a canonical valuation each feature value can be refined at most
two times (from ⊤ to some w, and then possibly to ⊥), this concrete domain
is P-admissible w.r.t. each FBox in which all operations are polynomial-time
computable. The disadvantage is, however, that string search like in Example 22
is not possible anymore. On the other hand, this suggests that in DDFA(Σ) and
DFA(Σ) everything involving only precise values is possible in polynomial time.

3.4 Graphs

All finite, labeled graphs constitute a semi-lattice Graph, where the partial order
≤ is defined by G ≤ H if there is a homomorphism from H to G. It is well-known
that ≤ is NP-complete [21], but in P for acyclic graphs [22]. The meet of two
graphs is their disjoint union, thus a non-duplicating operation, and the great-
est element in this semi-lattice is the empty graph. Obviously, Graph is neither
complete nor well-founded, and so we cannot apply Theorems 8 and 9. It thus re-
mains unclear whether the graph domain DGraph is convex w.r.t. cyclic FBoxes.

Corollary 27. The graph domain DGraph has computable canonical valua-
tions w.r.t. acylic FBoxes. Moreover, it is NP-admissible w.r.t. every acyclic,
non-duplicating FBox in which all operations are polynomial-time computable,
and it is EXP-admissible w.r.t. every acyclic FBox in which all operations are
polynomial-time computable.

Example 28. Structural formulas of molecules can be represented as labeled
graphs. Each node is labeled with the atom it represents, and the edges are
labeled with the binding type (e.g. single bond, double bond, etc.). Figure 1
shows three exemplary graphs. Graph (c) represents L-leucine, and we can inte-
grate it into a KB with the statement L-Leucine ≡ (hasMolecularStructure ≤
GL-leucine). Moreover, the statement AminoAcid ≡ (hasMolecularStructure ≤
Gcarboxylic acid group)⊓(hasMolecularStructure≤Gamino group) expresses that amino
acids are organic compounds that contain both amino and carboxylic acid func-
tional groups. If K is the KB consisting of the aforementioned statements, then
K |= L-Leucine⊑AminoAcid since GL-leucine ≤ Gcarboxylic acid group ∧ Gamino group.
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4 Reasoning in EL++ with Hierarchical Concrete Domains

Like other convex concrete domains, a hierarchical concrete domain DL can be
integrated into EL++ but, in addition to Section 2, every EL++[DL] KB may
contain finitely many FIs. Of course, a model of such a KB must also satisfy
all FIs in it. In order to guarantee that reasoning is decidable, a restriction on
the interplay of RIs and range inclusions must be fulfilled by every EL++[D] KB
[5], see Condition 1 below. To this end, we define the range set of a role r in K
by Range(r,K) := { C | there is a role s s.t. R |= r ⊑ s and Ran(s) ⊑ C ∈ K },
where R is the subset of all RIs in K. All such range sets can be computed in
polynomial time by first transforming each RI r1 ◦ · · · ◦ rn⊑ s into a context-free
grammar rule s→ r1 . . . rn (see Lemma IV in [9] for details) and then deciding
the word problem for this grammar (e.g. with the CYK algorithm [23, 39, 64]).

Definition 29. Consider a bounded semi-lattice L. An EL++[DL] knowledge
base (KB) K is a finite set of CIs, RIs, range inclusions, and FIs such that

1. Range(s,K) ⊆ Range(rn,K) for every RI r1 ◦ · · · ◦ rn ⊑ s in K with n ≥ 2,
2. and the hierarchical concrete domain DL is convex w.r.t. all FIs in K.

For a complexity class C we say that DL is C-admissible w.r.t. K if DL is C-
admissible w.r.t. the FBox consisting of all FIs in K.

For Condition 1 range inclusions on s must not imply further concept member-
ships than already implied by the range inclusions on rn; otherwise emptiness of
intersections of two context-free grammars could be reduced to subsumption [5].

Reasoning in EL++[D] can be done by means of a rule-based calculus [4, 5,
40, 42], and a hierarchical concrete domain DL can be seamlessly integrated into
this calculus. Compared to the primal calculus [4, 5], it is only necessary to take
the FIs into account. For integration into the improved calculus [40, 42] we only
need to add the following two rules responsible for interaction between concrete
and logical reasoning (where F consists of all FIs in the KB), see [46] for details.

RD :
C ⊑ (f1 ≤ p1) · · · C ⊑ (fm ≤ pm)

C ⊑ (g ≤ q)
: DL,F |=

md

i=1

(fi ≤ pi)⊑ (g ≤ q)

RD,⊥ :
C ⊑ (f1 ≤ p1) · · · C ⊑ (fm ≤ pm)

C ⊑⊥ :
md

i=1

(fi ≤ pi) unsatisfiable in DL,F

However, we restrict attention to nominal-safe KBs, i.e. nominals {i} must not
occur in conjunctions and each right-hand side of a concept or range inclusion
must not be a single nominal {i}. Full support for nominals in EL++[D] is tech-
nically quite involved and makes reasoning more expensive: the degree of the
polynomial describing the worst-case reasoning time would then be larger by 1
[41]. We conjecture the same for EL++[DL] KBs that are not nominal-safe.

Range inclusions are not natively supported by the rule-based calculus, but
they must rather be eliminated [5]. This transformation was originally described
for KBs in normal form only, but can now be done without prior transformation
to normal form, see [46] for details.
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Theorem 30. Let L be a bounded semi-lattice. For all nominal-safe EL++[DL]
KBs w.r.t. which the hierarchical concrete domain DL is P-admissible, the follow-
ing reasoning tasks can be done in polynomial time: consistency, classification,
subsumption checking, instance checking, and concept satisfiability.

In the proof of the above result, we build a canonical model of the KB iff. it is
consistent. Now with the hierarchical concrete domains we can use the canonical
valuations for this. The benefit is that the canonical model is universal w.r.t. all
nominal-safe assertions {i}⊑C, before it was only universal w.r.t. such assertions
without concrete constraints. Our canonical models are thus appropriate for
computing optimal repairs [8, 9, 44, 45] of KBs involving concrete domains.

We can also use NP- or EXP-admissible concrete domains in EL++. Reason-
ing works in the very same way, i.e. the logical reasoning can still be done in
polynomial time, but the concrete reasoning is more expensive.

Theorem 31. Fix a bounded semi-lattice L. For all nominal-safe EL++[DL]
KBs w.r.t. which the hierarchical concrete domain DL is NP-admissible, the fol-
lowing reasoning problems are in NP: consistency, concept satisfiability, sub-
sumption checking, and instance checking. They are in EXP if DL is EXP-
admissible. In both cases, the classification can be computed in exponential time.

5 Future Prospects

An interesting question for future research is whether non-local feature inclusions
f≤H(R1◦g1, . . . , Rn◦gn) would lead to undecidability or could be reasoned with,
where the Ri are role chains. The operator must then be defined for lists of values,
like in the non-local feature inclusion combinedWealth⊆

∑
(hasAccount◦balance)+∑

(holdsAsset ◦ value) over the interval domain, which computes the aggregated
wealth of a person or company. At first sight, it seems that the undecidability
proof for EL(DQ2,aff) [13] cannot be adapted to this setting. (Mind the braces:
(D) instead of [D] allows for role chains in front of features.) The computation
of canonical valuations must then take into account the graph structure induced
by the role assertions entailed by the knowledge base.

In general, it is unclear whether a hierarchical concrete domain is admissible
w.r.t. cyclic FBoxes. According to our results for interval domains and regular-
language domains, admissibility can be ensured by approaches to solving systems
of equations or inequations involving elements of the underlying semi-lattice.
This is still open for the polygon domains and the graph domains. In order to
get rid of the global bounds c and c in Propositions 16 and 17, we need linear-
program solvers supporting solution polytopes over the extended reals R+∪{∞}.

Since hierarchical concrete domains are convex by design, they are also ap-
propriate for other Horn logics [55] such as ELI [4], Horn-ALC [47], Horn-SROIQ
[57], and existential rules [15]— extending the chase procedure with support for
them would be practically relevant. Interesting would further be an empirical
evaluation, at best with a clear separation of logical and concrete reasoning—
especially when tractable logics are equipped with intractable concrete domains.
More hierarchical concrete domains of practical relevance should be explored.
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