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Miličić and Frank Wolter who have also helped me a lot in the last four years.
I would like to thank Conrad Drescher, Boontawee Suntisrivaraporn, and Rafael
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Chapter 1

Introduction

Knowledge representation is an area in artificial intelligence that concentrates on the
design of formalisms which can explicitly represent knowledge about a particular do-
main, and the development of reasoning methods for inferring implicit knowledge from
the represented explicit knowledge. Description Logics form a family of knowledge
representation formalisms which can be used to represent and reason with concep-
tual knowledge about a domain of interest [BCM+03]. The knowledge represented by
Description Logics is mainly static. In many applications, the domain knowledge is
dynamic. This observation motivates the research on how to update the knowledge
when changes in the application domain take place. This thesis is dedicated to the
study of updating knowledge, more precisely, assertional knowledge represented in
Description Logics. We start with introducing Description Logics in Section 1.1 and
proceed by illustrating the kinds of updates considered in this thesis in Section 1.2.
We introduce the integration of updates into linear temporal Description Logics in
Section 1.3. The structure of this thesis is outlined in Section 1.4.

1.1 Knowledge Representation with Description Logics

Description Logics (DLs) evolve from early knowledge representation formalisms such
as semantic networks [Qui67] and frames [Min74]. In these systems, knowledge is
represented by characterizing classes of objects and relationships between them. A
semantic network essentially is a directed labeled graph in which vertices represent
classes of objects (also called concepts) and edges represent relations between them.
The counterparts of these notions of concepts and relations in frame-based systems
are referred to as frames and slots. The main problem with both semantic networks
and frames is that they lack a formally defined semantics. Therefore, the standard
meaning of the knowledge and the results of reasoning provided by the systems are
strongly dependent on the implementation strategies. As a consequence, for the same
input different systems may return different results [Sow92]. Utilizing logic to supply
a formal semantics of the knowledge avoids this ambiguity and clarifies how reasoning
services have to interpret the knowledge in the domain of discourse. The earliest
logic-based knowledge representation formalism is KL-ONE [BS85], which inherits the
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2 Introduction

notions of concepts, roles, and individuals from semantic networks and frames, and
provides them with a first-order logic semantics. Although reasoning in the logic used
in KL-ONE proves to be undecidable [SS89], the foundations of systax, semantics, and
reasoning tasks of “logic-based concept languages” have been established. By making
a tradeoff between the expressivity of KL-ONE-like languages and the computational
complexity of reasoning, Description Logics are developed. Most DLs can be thought
of as decidable fragments of first-order logic.

A DL knowledge base usually consists of two components. The first one is an
assertional box, ABox for short, which is a world description about specific individuals.
With an ABox, one can assert that some individual exhibits the attribute described
by a concept and that two individuals are connected with a relation (also called role
in DLs). For instance, we can state that John has a daughter or a child named Peter,
Mary has a brother named Peter, and Mary has at least 2 brothers who are teachers
in the following way:

JOHN : ∃hasChild.(Female ⊔ {PETER})
hasBrother(MARY,PETER)
MARY : (> 2 hasBrother Teacher)

Each of the expressions above is called an assertion. An ABox is an incomplete
description of the world, i.e., there may be some assertions of which the truth value
cannot be determined by the assertions represented in the ABox. For instance, from
the above assertions, we cannot conclude that Mary is John’s daughter; likewise, we
cannot disprove it.

The second component of a DL knowledge base is a terminological box, TBox
for short, which describes relationships between concepts or roles. For example, the
following statements express that a father is exactly a man who has a child, and that
every woman who has a son is a parent.

Father ≡ Man ⊓ ∃hasChild.Person
Woman ⊓ ∃hasChild.Male ⊑ Parent

The first expression is a concept definition and the second one is a general concept
inclusion (GCI). An acyclic TBox contains only concept definitions without cyclic
definitions such as

Human ≡ ∃hasChild−.Human

in which the concept name Human is used to define itself (A human is defined as a child
of a human). Acyclic TBoxes are mainly used as a way to introduce abbreviations
of complex concepts. A general TBox consists of GCIs. General TBoxes have more
expressive power than acyclic TBoxes.

The semantics of DLs is given in a model-theoretic way. The meaning of a concept,
a role, an assertion, etc. is formally defined by interpretations, which, in contrast to
ABoxes, provide complete descriptions of the world. An interpretation I is a pair
(∆I , ·I), where ∆I is a non-empty set (the domain of I) and ·I is a function which
interprets concepts, roles, and individuals just as unary predicates, binary predicates,
and constants, respectively, in first-order logic. More specifically, ·I assigns a subset
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of ∆I to every concept name, a binary relation on ∆I to every role name, and an
element of ∆I to every individual name. The extension of ·I to complex concepts and
roles is defined in a straightforward way. An interpretation is a model of an assertion
if the interpretation of the individual, or the pair of individuals is in the interpretation
of the corresponding concept or role. A model of a concept definition A ≡ C is an
interpretation that maps A and C to the same subset of the interpretation domain.
Similarly, an interpretation is a model of a GCI C ⊑ D if it maps C to a subset of the
set it maps D to. ABoxes and TBoxes may be seen as conjunctions of expressions they
consists of, i.e., an interpretation I is a model of an ABox A (a TBox T , respectively)
if I is a model of every element of A (T , respectively).

Reasoning in DLs is also formally defined. For instance, the consistency problem
of an ABox A is to check whether A has a model. The computational complexity of
reasoning depends on the expressivity of the DL under consideration. The expressivity
of a DL is determined by the constructors used to build concepts and roles. The small-
est propositionally closed DL ALC [SS91] provides the following concept constructors:
negation (¬), conjunction (⊓), disjunction (⊔), value restriction (∀), and existential
restriction (∃). DLs are closely related to Modal Logics [BdRV01]. In [Sch91], the DL
ALC has been shown to be a notational variant of the Modal Logic Km. By extending
ALC with qualified number restriction ((> n r C) and (6 n r C)), inverse role (r−),
and nominals ({a}), we get the DL ALCQIO, which is the core language of the Web
Ontology Language (OWL) [HPS03] recommended by the World Wide Web Consor-
tium to represent knowledge in the Semantic Web [BLHL01, BHS05, HPSMW07].
In this thesis, we mainly focus on DLs between ALC and ALCQIO to investigate
the computation of updates. The standard reasoning tasks such as consistency in
those DLs have been investigated in the past twenty years. They are supported by
state-of-the-art DL reasoners, such as Pellet [SPG+07], FaCT++ [TH06], and Racer-
Pro [HM01], etc.

1.2 Updates

In this section, the first part is dedicated to introducing the problem of updating
logical theories, to illustrating how it can be applied to reasoning about action, and to
presenting motivations of computing updates in DLs. In the second part, we explain
why we focus on updating ABoxes, give the intuition behind various kinds of updates
considered in this thesis, and present an overview of the results. In the third part, we
discuss some related work on reasoning about action and computing updates in DLs.

Updating Logical Theories

A logical theory is a finite set of logical formulas.1 The problem of updating logical
theories has been studied for a long time in both the database and artificial intelligence
community. As discussed in the previous section, a logical theory can be used to

1In this section, we use terminology from first-order logic, such as literal and formula. Cf. [Dav93]
for their formal definitions. A knowledge base in DLs can also be viewed as a logical theory since
most DLs are fragments of first-order logic.
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describe what is known about the state of the world. As neither data nor knowledge
bases are static entities representing an unchanging monolithic domain once created,
solutions to the update problem are crucial for maintaining both data and knowledge
bases [Win90, Rei82, EG92, FUV83, Gär88].

Updating a logical theory can be formulated as follows. Assume that we are given
a logical theory T representing a certain domain of interest and a change that has
occurred within that domain represented by a formula ϕ. How should the theory T
be modified so that it represents the domain after the change expressed by ϕ? This is
the problem of updating logical theories. We call ϕ the update and the modified theory
T ∗ ϕ the update of T with ϕ.

Various, partly conflicting, proposals have been made to tackle the update prob-
lem [Gin86, FUV83, Dal88, Bor85, Web86, KM89, Win88]. The differences between
the proposals as well as almost all research problems in the field are caused by incom-
plete information which has to be dealt with if

• the update ϕ is nondeterministic (because it contains, say, a disjunction or an
existential quantifier) [Lin96], or

• the updated theory must satisfy additional domain constraints which are formu-
las satisfied in each state of the world no matter which changes take place [Lin95,
Thi97].

In fact, if the update ϕ consists of a conjunction of ground literals only and no domain
constraints must be met by the updated theory, it appears to be a consensus that the
following model-theoretic definition of the updated theory T ∗ ϕ is, at least from a
theoretical viewpoint, the most satisfactory one: T ∗ϕ should be defined as the theory
of the set M of all models which are obtained from models of T by changing the
interpretation of the atoms occurring in ϕ in such a way that ϕ becomes true and
leaving the interpretation of all other atoms unchanged. Each model of T is thought
of as a possible complete description of the world. The changes in the world caused
by ϕ are realized by changing the possible models of the world. Because it is not
clear which model describes the actual state of the world, the updated theory should
capture all changed models. We call this semantics of update the Winslett’s possible
model approach semantics, which has initially been proposed in [Win88] and further
elaborated e.g., in [Win90, BH93, Her96, DLMB98]. Sometimes, we also call this
semantics the Winslett’s semantics, or the PMA semantics for short. For the logical
languages considered so far by the database and artificial intelligence community,
hardly any problem arises in this case.

As addressed in [KM92], updating a logical theory can be applied to reasoning
about action. The most prominent two action theories are the Situation Calculus
[Rei01] and the Fluent Calculus [Thi05b]. In both action theories, a dynamic appli-
cation domain is axiomatized as a logical theory to express the initial state of the
world, action’s pre-conditions and post-conditions, and domain constraints. The pre-
conditions of an action describe under which conditions the action is executable while
the post-conditions are the changes which the action is going to make in the world
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when the action is applied. When the changes in an action’s post-condition take place
by executing the action, the axiom which represents the initial state of the world can
be updated by the post-conditions of the action for representing the new state of the
world. This procedure is called progression in the reasoning about action literature.

A fundamental problem in reasoning about action is projection, which is concerned
with determining whether or not a formula ϕ holds after a finite sequence of actions
has been applied, given a description of the pre-conditions and post-conditions of the
actions and what the world is like initially. Progression is one of two basic mechanisms
in action theory to do reasoning about action. The other one is called regression. Both
regression and progression are mechanisms that can be used to solve the projection
problem. Regression rewrites the formula ϕ into a new formula ϕ′ such that ϕ holds
after applying the actions iff ϕ′ is entailed by the initial world. Progression, instead
of rewriting ϕ, updates the description T of the initial world into a new description
T ′ such that ϕ holds after applying the actions iff ϕ follows from T ′. The action pro-
gramming language Golog [LRL+97] which is based on the Situation Calculus adopts
regression to solve the projection problem, while the action programming language
FLUX [Thi05a] which is based on the Fluent Calculus uses progression to do reason-
ing about action. One advantage of progression is that the updated theory can be
used to decide the entailment for different formulas. If regression is adopted, a new
rewritten formula has to be calculated when the entailment of a new formula needs
to be decided. Moreover, when the history of actions is very long, regression becomes
expensive. For those reasons, progression in the Situation Calculus has been inves-
tigated [LR97, LL09]. However, both of the action calculi are formulated in first- or
higher-order logic and thus they are so expressive that some restrictions on the ex-
pressiveness of the theory have to be applied in order to make progressing a knowledge
base or updating a theory in those action calculi feasible [LL09, Thi05a].

In DLs, the reasoning support provided by systems such as Pellet, FaCT++, and
RacerPro mainly concerns static knowledge bases and the support provided for rea-
soning about dynamic domains is limited and rather ad-hoc without theoretical foun-
dation. Action formalisms based on DLs were first proposed in [BLM+05]. There, the
projection problem is solved by an approach similar to regression and it is reduced to
checking logical consequences of ABoxes w.r.t. acyclic TBoxes. In this thesis, we focus
our attention on computing updates in DLs and thus provide a progression mechanism
in DLs to do reasoning about action.

All of the work on regression and progression in DLs establishes the theoretical
foundations to build DL-based action theories in which the expressiveness and decid-
ability of DLs are naturally inherited. On the one hand, DL-based action theories are
more expressive than the action theories based on propositional logic such as STRIPS
[Byl94]. On the other hand, they do not suffer from undecidable reasoning like both
the Situation Calculus and the Fluent Calculus. Regardless of adopting regression or
progression, the projection problem is reduced to checking logical consequences. In
the implementation based on such a DL-based action theory, DL reasoners can be
employed to decide logical consequences.
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Updates in DLs

As introduced in Section 1.1, a DL knowledge base consists of a TBox representing
relationships of concepts or roles using the names to model the domain of interest,
and an ABox representing properties of individuals in terms of names. Thus, one can
distinguish at least three distinct notions of updates for DL knowledge bases:

• the update problem for TBoxes without considering a particular ABox. In this
case one is interested in updates regarding the meaning of the names used to
represent a domain but not in changes to the underlying data. This topic is
outside the scope of this thesis. Observe, however, that it appears plausible
to assume that changes regarding the names are mostly required not because
the meaning of the names has changed but because the ontology engineer has
changed his/her beliefs regarding the meaning of the names. It follows that,
when changing TBoxes, the belief revision problem [AGM85, KM92] is more
important than the update problem. Work on this can be found in [Flo06,
FPA05, FPA06, HWKP06].

• the update problem for ABoxes without considering a particular TBox. It is a
basic form of the update problem and the main task of this thesis is to investigate
this problem.

• the update problem for ABoxes where the TBox is regarded as a set of domain
constraints which remains invariant under any changes of the world. This is
evidently an extension of the previous case. According to expressiveness, TBoxes
are divided into acyclic TBoxes and general TBoxes. The former one is mainly
used to introduce concept names as abbreviations of complex concepts. Actually,
most of the results in this thesis can be extended to this case. Some work
related to this has been done in [LLMW06c]. Alternatively, we can compile
acyclic TBoxes by unfolding these abbreviations [BCM+03], so that updates only
operate on ABoxes. For general TBoxes, there is still no satisfactory semantics
for update even in the DL ALC [BLM+05]. Moreover, under the Winslett’s
semantics, allowing general TBoxes as domain constraints leads to undecidable
reasoning about action. We will discuss this in more detail in the third part
“related work” of this section.

Hereby, the main focus of this thesis is updating ABoxes in DLs in the following
context:

• We adopt the Winslett’s PMA semantics and allow only for the updates that
consist of a conjunction of ground literals;

• We do not allow for TBoxes at all, regardless of whether they are interpreted as
domain constraints or as dynamic data.

It turns out that a number of new and challenging problems arise when the Winslett’s
semantics is applied to updating ABoxes. To discuss them recall that from the informal
description of the Winslett’s semantics above we obtain, given the set M of models
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of an ABox A and an update U consisting of ground literals, the set M ′ of updated
models. Our goal is to capture this set of models syntactically using an ABoxA′. If the
set of models of some ABox A′ coincides with M ′, then A′ is a logical update of A with
U . One question is which DLs between ALC and ALCQIO have enough expressive
power to do this? Unfortunately, the answer is mostly negative. Either we can show
that a logical update does not exist, e.g., in ALC, ALCO and ALCQIO, or we do
not know whether it exists, e.g., in ALCQI. This is a major problem, indeed. DLs
have been designed so as to find an optimal compromise between expressiveness and
computational behavior. Moving from one DL to another often has a major impact
on the performance of reasoners both from a theoretical and practical viewpoint.
So, we explore new ways of expressing updates in DLs for which reasoning support
is available. To this end, we consider, apart from exact updates, weaker forms of
expressing updates: an ABox A′ is

• an approximate update of A with U if, and only if, exactly the ABox assertions
entailed by M ′ follow from A′;

• a projective update of A with U if, and only if, A′ captures the set of reducts,
to the names used in A and U , of interpretations in M ′ (in this case A′ might
contain additional names);

• a approximate projective update of A with U if, and only if, exactly the ABox
assertions entailed by M ′ over the names of A and U follow from A′ (again A′

might contain additional names).

It is easy to see that a logical update matches also the other three kinds of updates and
that any approximate update or projective update is also an approximate projective
update. Logical updates are obviously the most desirable form of updates as they
describe exactly the set of updated models without using additional names. However,
projective updates are a reasonable alternative. In contrast to approximate updates,
logical and projective updates are invariant under moving to a more expressive DL.
More precisely, if A′ is a logical (projective, respectively) update in the DL L, then
it is a logical (projective, respectively) update in any DL L′ extending L. At the
cost of adding additional names, projective updates can be regarded as a reasonably
well-behaved alternative to logical updates. Obviously, if neither logical nor projective
update exists, then approximate or even approximate projective updates are still very
useful, as they completely describe the logical consequences of an update in a given
DL.

Which DLs under consideration are expressive enough to describe weaker forms of
updates? For approximate updates, the answer is no better than for logical updates.
Positive results emerge when we shift to projective updates: For every DL between
ALCO and ALCQIO, projective updates exist. For DLs without nominals (between
ALC and ALCQI), either a projective update does not exist, e.g., in ALC and ALCI,
or its existence is unknown, e.g., in ALCQI. We believe that nominals are essential
even for approximate projective updates, although a proof of this claim is still missing.

By showing that logical updates do not necessarily exist for ALCO, it is revealed
that adding nominals is not enough to capture logical updates. In order to express
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logical updates, we further increase the expressivity of ABoxes. One way to achieve
this is to allow for the @ constructor, which is known from hybrid logic [AdR01].
For every DL between ALCO and ALCQIO extended with the @ constructor, logical
updates exist. For most of those extended DLs without nominals, e.g., ALC@, the
existence of a logical update does not hold. The other option to describe logical up-
dates is to allow for Boolean operators on ABox assertions. ABoxes formulated this
way are called Boolean ABoxes. It turns out that for every DL L between ALCO
and ALCQIO, the expressive power of non-Boolean L@-ABoxes is exactly the same
as that of Boolean L-ABoxes. For convenience, the construction of logical updates
we present uses both the @ constructor and Boolean operators on ABox assertions.
Although neither of them is supported directly by DL reasoners, we can use the reduc-
tion approach [ABHM03, Bon07] or the DPLL(T) approach [NORCR07] to deal with
reasoning with logical updates. We can also resort to the reasoner Spartacus [Göt09]
for hybrid logic.

We summarize the relationship of the expressiveness and updates’ existence as
follows:

• Given only the @ constructor or only nominals, approximate updates do not
exist. This implies the same for logical updates.

• With nominals only, projective updates exist. This implies the same for approx-
imate projective updates. Without nominals, projective updates do not exist
independently of the @ constructor.

Another important problem addressed in this thesis is how big the constructed
logical update A′ is. In the worst case, the size of A′ is exponential in the size of
the whole input, i.e., in the size of A plus the size of U . Moreover, we show that an
exponential blowup cannot be completely avoided by proving that, even in the case
of propositional logic, the size of logical updates is not polynomial in the size of the
input unless every PTime-algorithm is LogTime-parallelizable, which is believed to
be similarly unlikely as PTime = NP [Pap94]. In contrast to the results by Cadoli et
al. [CDLS99], our result even applies to the restricted form of updates, i.e., updates in
propositional logic where the update is a conjunction of literals. Thus, our argument
provides further evidence for the claims in [CDLS99], where it is shown that, with
unrestricted updates, an exponential blowup in the size of the update cannot be
avoided unless the first levels of the polynomial hierarchy collapse.

In the update literature, an exponential blowup in the size of the update only is
viewed as much more tolerable than an exponential blowup in the size of the original
ABox since the former tends to be small compared to the latter. We believe that the
exponential blowup in the size of the original ABox cannot be avoided. While the
proof is left as an open problem, we exhibit two ways around the blowup. The first,
and more important one, is to consider projective updates instead of logical updates.
We present a construction of projective updates of polynomial size both in the original
ABox and in the update. They can be computed in polynomial time. The second is to
move to DLs which do not only contain nominals but also allow Boolean operators on
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roles, thus eliminating the asymmetry between concepts and roles found in standard
DLs. The size of a logical update is polynomial in the size of the original ABox (still
exponential in the size of the update). This is less interesting because it involves a
move to DLs for which developing reasoning support is still an open research problem.

Related Work

The literature on updates in databases and artificial intelligence is too vast to be
discussed here in general. We concentrate instead on recent work related to updates
in DLs.

The notions of approximate updates and approximate projective updates were first
proposed in [Bon07] in which the existence of updates is investigated for the DL ALC
combined with nominals and the @ constructor. In the present thesis, we extend
the results there to more expressive DLs. We also enhance some positive results.
For instance, Theorem 54 in [Bon07] shows that ALCO has approximate projective
updates by encoding the @ constructor in the logical update which is an ALCO@-
ABox with additional names. The size of the approximate projective update obtained
in this way may be exponential in the size of the input. Here, we give a polynomial
construction of even stronger, projective updates, directly from the input.

In [DT07], based on updating ABoxes, DLs are integrated into a general action
theory, the Fluent Calculus. This yields a fragment of the the Fluent Calculus in which
some reasoning tasks about action are decidable, shows that the Winslett’s semantics
is captured by state update axioms in the Fluent Calculus, and provides theoretical
foundations for integrating DL reasoning into action programming language like Golog
and Flux.

Closely related to the work presented in this thesis are [GLPR06, GLPR07], con-
sidering the problem of updating knowledge bases expressed in DLs from the DL-Lite
family. These are lightweight DLs which are tailored toward capturing conceptual
modeling constructs while keeping reasoning, in particular conjunctive query answer-
ing, tractable. In [GLPR06] it is proved that in DL-LiteF , updates exist when ABoxes
are extended by assertions of the form C(x), where x is a variable. In the terminol-
ogy introduced above, this means that projective updates exist for DL-LiteF . This is
shown even for ABox updates of DL-LiteF knowledge bases with general TBoxes as
domain constraints under the Winslett’s possible model approach semantics. Giacomo
et al. consider the existence of approximate ABox updates for DL-LiteF knowledge
bases with general TBoxes in [GLPR07]. This study is motivated by the fact that,
as mentioned above, in general no exact updates exist. It is shown that approximate
ABox of polynomial size (in the knowledge base and the update) always exist and can
be computed in polynomial time. Thus, DL-LiteF exhibits a much better behavior
regarding updates than the DLs considered in this thesis which have more expressive
power.

It is worth noting that it is not possible to generalize this approach to expressive
DLs like the ones considered in this thesis. For example, the following result follows
immediately from Theorem 22 in [BML+05]: There exists an ALCQI-ABox A and an
update U which consists of one assertion a : C where C is a complex ALCQI-concept
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such that it is undecidable whether an ALCQI-assertion a : D is true after the update
of A with U (D contains only names from A and U). It follows that, no update (any
of the four kinds of updates) of A with U can be effectively computed in any decidable
extension of ALCQI. Allowing GCIs as domain constraints indirectly makes updates
contain complex concepts and thus also leads to undecidable reasoning about action.

As mentioned before, the projection problem in DLs was first investigated in
[BLM+05]. It is shown there that for every DL L between ALC and ALCQIO, the
projection problem in L has the same complexity as the (in)consistency problem in LO
which is obtained by extending L with nominals. [LLM08] proves that in the DL EL in
which reasoning tasks such as consistency checking [BBL05, Sun09] are tractable, the
projection problem is already as hard as the one in ALC (PSpace-complete). Even
when allowing only empty TBoxes, projection in EL is co-NP-complete. The planning
problem, which is to look for a sequence of actions in order to achieve a given goal,
is investigated in these DL-based action formalisms [Mil07]. Planning is solved there
with the help of projection.

In [LLMW06a, LLMW06b], the DL-based action formalisms from [BLM+05] are
extended to allow general TBoxes as domain constraints. In order to deal with the
ramification problem, which is concerned with indirect effects of an action, coming
with general TBoxes, more information has to be offered when actions are defined. It
is shown that projection is still decidable for ALCQIO. One negative result about
those extended action formalisms is that consistency of an action is undecidable, i.e., it
is undecidable whether there exists an updated interpretation for every interpretation
under the semantics of actions defined there.

1.3 Integration of Updates into Linear Temporal DLs

The projection problem is to check whether or not some assertion ϕ holds after finitely
many updates.2 In other words, the assertion is verified in a time point in the future
determined by updates. In this way, projection can be viewed as verification of a
temporal property. In the literature, temporal extensions of DLs are employed to
describe more expressive temporal properties [BGL08, WZ00]. In those works, DLs
are combined with propositional temporal logics using a two-dimensional semantics,
where one dimension is for time and the other for the DL domain. In the consecutive
time points, the DL domain treats concept names and role names either independently
or immutably, i.e., the interpretations of those names either change freely or stay the
same [BGL08]. In the latter case, they are called rigid names. Following this approach,
we integrate ABox updates into linear temporal logic (LTL) [VW94, Pnu81]. More
specifically, the changes occurring in the DL domain are caused by application of
updates and thus the semantics of updates is respected in the DL domain along the
linear time points. Thus, all the names in the DL domains are either completely
rigid, e.g., the names not occurring in the updates, or partially rigid, e.g., the names

2Updates can be viewed as actions without pre-conditions. Actually, the pre-conditions of actions
will not affect the answer to the projection problem. Since this thesis mainly concentrates on updates,
in order to keep uniformity, we henceforth use updates instead of actions to refer to the input of
projection.
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on which interpretations minimally changes according to updates. On the one hand,
this extends the projection problem in the sense that it can inspect a property using
more expressive LTL temporal operators, such as the until operator. For example, the
formula

3(CA931 : ∃hasAccessTo.Runway) (1)

says that there is a time point when the airplane CA931 will have access to a runway.
On the other hand, we can use an infinite sequence of updates to specify a course of
processes during which the prospected property could happen.

We follow the notion of ALC-LTL formulas in [BGL08] where temporal operators
are allowed only in front of ABox assertions and extend assertions in ALC to the ones
in any DL between ALC and ALCQIO. Such a formula is called a DL-LTL formula.
Equivalently, a DL-LTL formula can be obtained by replacing propositional letters in
a propositional LTL formula with an ABox assertion.

We focus on infinite sequences of updates of the form α1 · · ·αm(β1 · · ·βn)ω. Such
a sequence of updates is called a Büchi sequence of updates since for every Büchi
automaton B, if the language accepted by B is not empty, then B accepts a word
with this form [TB73]. For instance, suppose that β1 · · ·βn are the repeatedly applied
updates after the update sequence α1 · · ·αm has been applied for initialization in the
air traffic control system in some airport. Then the formula (1) holds in the system
means that execution of α1 · · ·αm(β1 · · ·βn)

ω will ensure the airplane will have an
opportunity to use a runway. This extends the projection problem in the sense that it
checks whether a DL-LTL formula holds when a Büchi sequence of updates is applied
to an ABox. This problem can further be generalized to the one that allows for
sequences of updates accepted by a Büchi automaton instead of a fixed sequence of
updates. Suppose that Σ is a set of updates. In the more general problem, we are
offered a way to describe any infinite sequence of updates in an ω-regular language over
Σ instead of only Büchi sequences of updates since the class of languages accepted by
Büchi automata coincides with the class of ω-regular languages [BK08]. In this thesis,
we will present decision procedures for verifying DL-LTL formulas w.r.t. ABoxes and
Büchi sequences of updates (or Büchi automata, respectively).

1.4 Structure of the Thesis

In this section, we outline the structure of the present thesis.

• In Chapter 2 we formally introduce DLs between ALC and ALCQIO@: con-
cepts, roles, individuals, assertions, ABoxes, acyclic TBoxes, and their seman-
tics. The inference problems related to this thesis are also defined. We dis-
cuss the expressive power of the @ constructor and Boolean ABoxes because
both of them will be used in the construction of logical updates. Based on the
Winslett’s possible model approach semantics, four kinds of updates of ABoxes,
namely, logical updates, approximate updates, projective updates, and approx-
imate projective updates are introduced. We address some basic properties of
those updates that will be used later on in the thesis.
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• In Chapter 3 we concentrate on logical updates. A construction which explicitly
introduces both nominals and the @ constructor is presented. For an ABox A
and an update U , the size of the constructed logical update A′ is in the worst
case exponential both in the size of A and in the size of U . We show that
totally avoiding the exponential blowup on the input is not possible unless the
complexity classes PTime and NC coincide. Two ways to avoid the exponential
blowup in the size of the ABox are exhibited: to allow only for concept literals
in updates and to compute logical updates in a more expressive DL with more
role constructors. We show that the blowup produced by iterated updates is not
worse than the blowup produced by a single update.

• In Chapter 4 we concentrate on projective updates. A construction which ex-
plicitly introduces nominals is presented. For an ABox A and an update U ,
the size of the computed projective update is polynomial both in the size of A
and in the size of U . The direct application of this construction to updating
an ABox iteratively leads to an exponential blowup in the size of A. Instead of
computing projective updates iteratively, we exhibit a direct construction of a
projective update of the original ABox with a finite sequence of updates. The
updated ABox constructed in this way is bounded polynomially in the size of
the input. We illustrate how to employ these construction in practice.

• In Chapter 5 we show that the constructions of logical updates and projective
updates given in Chapter 3 and Chapter 4 introduce only necessary constructors.
Dropping either the @ constructor or nominals, even approximate updates are
not expressible. Without nominals, projective updates are not expressible.

• In Chapter 6 we present experimental results. We compare the construction time
and the size of logical update and projective update for a batch of randomly gen-
erated ABoxes and updates. Three approaches to deal with consistency checking
of Boolean ABoxes are compared on randomly generated Boolean ABoxes and
the logical updates generated before. The algorithm of solving the projection
problem in [BLM+05] is implemented. We compare its performance with log-
ical updates and projective updates against the same assertion ϕ which is the
checked assertion in the input of the projection problem. We also test those im-
plementations on updating ABoxes with iterative updates and compare different
approaches of computing the updated ABoxes and reasoning with them.

• In Chapter 7 we introduce the inference problems to verify DL-LTL formulas:
the satisfiability problem and the validity problem of DL-LTL formulas w.r.t.
ABoxes and Büchi sequences of updates. According to different forms of updates
in the input, two algorithms are presented to solve those problems. One of them
even works for the more general problems: the satisfiability problem and the
validity problem of DL-LTL formulas w.r.t. ABoxes and Büchi automata.

• In Chapter 8, we summarize the results of this thesis and discuss possible future
work.



1.4 Structure of the Thesis 13

Most of the results of this thesis have already been published. The computation of
logical updates and the analysis of their sizes were published in [LLMW06c]. We plan
to publish this, together with the results about the other three kinds of updates, as a
journal paper. The optimizations on the computation of logical updates are published
in [DLB+09b, DLB+09a]. The results in Chapter 7 have not been published yet.
Some results about the projection problem in DLs mentioned as “related work” in
Section 1.2 have been published in [LLMW06a, LLMW06b, LLM08] and are a part of
Maja Miličić’s Ph.D thesis [Mil08].
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Chapter 2

Preliminaries

We introduce the basic notions of DLs that are related to this thesis in Section 2.1.
Boolean ABoxes and their expressivity compared to the @ constructor are investigated
in Section 2.2. Section 2.3 is dedicated to illustrating the updates considered in this
thesis and showing some properties of those updates.

2.1 Description Logics

In DLs, concepts are inductively defined with the help of a set of constructors over
three disjoint sets of names: the set NC of concept names, the set NR of role names,
and the set NI of individual names. The set of constructors determines the expressivity
of a specific DL. The DLs used in this thesis are between ALC and ALCQIO@. In
what follows, we introduce the syntax of the DL ALCQIO@.

Definition 1 (ALCQIO@ Syntax). A role is of the form r or r− (the inverse role of
r) for a role name r ∈ NR. The set of ALCQIO@-concepts over NC, NR, and NI is
inductively defined as follows:

• Every concept name A ∈ NC is a concept.

• If C and D are concepts, r is a role, a is an individual name in NI, and n is a
natural number, the following are also concepts:

⊤ top
⊥ bottom
¬C negation

C ⊓D conjunction
C ⊔D disjunction
∃r.C existential restriction
∀r.C value restriction
{a} nominal

(> n r C) at-least qualified number restriction
(6 n r C) at-most qualified number restriction

@aC at

15
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A concept is atomic if it is a concept name. A concept is complex otherwise. △

As usual, we use C → D as an abbreviation for ¬C ⊔ D, and C ↔ D for (C →
D)⊓ (D → C). Throughout this thesis, we adopt the following notational conventions
in definitions and examples:

• In definitions and abstract examples, we use A,B for atomic concepts, C,D for
complex concepts, r, s for roles, a, b for individual names, and m,n for natural
numbers. In all cases, subscripts may be used.

• In concrete examples, concept names start with an uppercase letter followed by
lowercase letters (e.g., Happy, Clever), role names start with a lowercase letter
(e.g., hasChild), and individual names are composed of uppercase letters (e.g.,
MARY, JOHN).

The smallest propositionally closed DL is called ALC, which allows only for top,
bottom, negation, conjunction, disjunction, existential restriction and value restric-
tion. Allowing for additional constructors forms extensions of ALC. Letters and
symbols in the name of a DL indicate the availability of constructors in it. For in-
stance, the name ALCQIO@ stands for the DL obtained by extending ALC with
Qualified number restriction, Inverse role, nOminal and @. Among the constructors
of ALCQIO@, the inverse constructor is the only role constructor whereas the others
are concept constructors.

A DL L1 is a sublanguage of a DL L2 if every constructor available in L1 is also
available in L2. In this case, we can also say that L2 is a superlanguage of L1. If a
DL L1 is a sublanguage of a DL L and L is a sublanguage of a DL L2, we say that L
is between L1 and L2.

Concepts and roles are interpreted w.r.t. a model-theoretic semantics [Tar56],
where concepts are taken to refer to sets of objects in the domain of interest and
roles to relationships between them. Each individual name denotes an object in the
domain. Throughout this thesis, we use ♯S to denote the cardinality of a set S.

Definition 2 (ALCQIO@ Semantics). An interpretation I is a pair (∆I , ·I) where
the domain ∆I is a non-empty set and the interpretation function ·I is a function
which assigns

• a set AI ⊆ ∆I to every concept name A ∈ NC;

• a binary relation rI ⊆ ∆I ×∆I to every role name r ∈ NR;

• an element aI ∈ ∆I to every individual name a ∈ NI such that aI 6= bI for all
a, b ∈ NI with a 6= b.

Let x be an element of ∆I . Then, x is a named object of I if there exists some a ∈ NI

such that x = aI ; x is an anonymous object of I otherwise.
The interpretation function is extended to inverse roles by the following definition:

(r−)I = {(y, x) | (x, y) ∈ rI}.
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The interpretation function is extended to complex concepts as follows:

⊤I = ∆I

⊥I = ∅
(¬C)I = ∆I \ CI

(C ⊓D)I = CI ∩DI

(C ⊔D)I = CI ∪DI

(∃r.C)I = {x | ∃y : ((x, y) ∈ rI ∧ y ∈ CI)}
(∀r.C)I = {x | ∀y : ((x, y) ∈ rI → y ∈ CI)}
{a}I = {aI}

(> n r C)I = {x | #{y ∈ CI | (x, y) ∈ rI} ≥ n}
(6 n r C)I = {x | #{y ∈ CI | (x, y) ∈ rI} ≤ n}

(@aC)I =

{

∆I if aI ∈ CI

∅ otherwise

An interpretation I is called a model of a concept C if CI 6= ∅. △

Note that we adopt the unique name assumption (UNA), i.e., different individual
names are interpreted as different elements of the domain for all interpretations. In
general, the UNA is not required in DLs, nevertheless it is natural in reasoning about
action. We will illustrate this with the definition of semantics of updates (cf. Defini-
tion 17). Moreover, there are some proofs in this thesis which require the UNA, e.g.,
the proof of Lemma 56.

From Definition 2, we can see that (∃r.C)I = (> 1 r C)I and (∀r.C)I = (6
0 n ¬C)I for every interpretation I. For this reason, in the DLs that contain qualified
number restrictions, we will not treat existential restrictions and universal restrictions
explicitly.

In order to refer to the computational complexity of the inference problems later
on, we need to measure the size of inputs. Intuitively, the size of a concept or a role
is defined as the number of necessary symbols to write it down. The size of a role r,
denoted by |r|, is 1 if r is a role name and is 2 if it is an inverse role.

Definition 3 (Concept Size). Let E be a concept over NC, NR, and NI. The size of
E, denoted by |E|, is defined inductively as follows:

• |E| = 1 if E = ⊤, E = ⊥, E = A with A ∈ NC, or E = {a} with a ∈ NI;

• |E| = |C| + |D| + 1 if E = C ⊓ D or E = C ⊔ D; |E| = |C| + 1 if E = ¬C;
|E| = |C|+ |r|+ 1 if E = ∃r.C or E = ∀r.C; |E| = |C|+ 2 if E = @aC;

• the size of E depends on coding of n if E = (> n r C) or E = (6 n r C).

|E| =

{

⌈log2(max{2, n})⌉+ |C|+ |r|+ 1 if binary coding is used for n
n+ |C|+ |r|+ 1 if unary coding is used for n

△

For later reference, we introduce the notion of subconcepts. Intuitively, a subcon-
cept of a concept E is a concept occurring in E. The set of the subconcepts of E is
the set containing all of subconcepts of E.
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Definition 4 (Subconcept). Let E be a concept over NC, NR, and NI. The set of
subconcepts Sub(E) of E is inductively defined as follows:

• Sub(E) = {E} if E = ⊤, E = ⊥, E = A with A ∈ NC, or E = {a} with a ∈ NI;

• Sub(E) = {E} ∪ Sub(C) ∪ Sub(D) if E = C ⊓D or E = C ⊔D;

• Sub(E) = {E} ∪ Sub(C) if E = ¬C, E = ∃r.C, E = ∀r.C, E = @aC, E = (>
n r C), or E = (6 n r C).

△

In DLs, an ABox is used to describe a specific state of affairs of an application
domain in terms of concepts and roles. Individual names can be asserted to have
properties. Such assertions are represented in an ABox.

Definition 5 (ABox). A concept assertion is of the form C(a) with a concept C
and an individual name a. A role assertion is of the form r(a, b) or ¬r(a, b) with a
role r and individual names a, b. An ABox assertion (or just assertion) is a concept
assertion or a role assertion. An ABox is a finite set of assertions.

An ABox A is simple iff every assertion in A is a literal, i.e., it has one of the
following forms:

A(a),¬A(a), r(a, b), or ¬r(a, b),

where A is a concept name, r is a role name, and a, b are individual names.
An interpretation I satisfies a concept assertion C(a) iff aI ∈ CI , a role assertion

r(a, b) iff (aI , bI) ∈ rI , and a role assertion ¬r(a, b) iff (aI , bI) 6∈ rI . We denote
satisfaction of an assertion ϕ by an interpretation I with I |= ϕ. An interpretation
I is a model of an ABox A (written I |= A) if I |= ϕ for all assertions ϕ ∈ A. Two
ABoxes A and A′ are logically equivalent (written A ≡ A′) iff they have the same set
of models. △

In order to increase readability, we sometimes write a concept assertion as a : C
instead of C(a).

In contrast to an interpretation, an ABox A is an incomplete description of the
world status, i.e., there can exist some assertion ϕ such that neither ϕ nor its negation
follows from A. This is a consequence of the adopted open world assumption for
ABoxes in DLs [BCM+03].

Based on the notion of the size of a concept and a role, we introduce the size of
an assertion and the size of an ABox in the next definition.

Definition 6 (ABox Size). The size of a concept assertion C(a) is |C|+ 1. The size
of a role assertion r(a, b) is |r| + 2. The size of an assertion ϕ is denoted with |ϕ|.
The size of an ABox A , denoted with |A|, is

∑

ϕ∈A |ϕ|. △

We illustrate the notions introduced so far by the following example:

Example 7. Consider the following ABox:

A = {JOHN:∃hasChild.Happy,MARY:Happy ⊓ Clever}.
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Apparently, all constructors used in A are available in ALC. The first assertion means
that John has a happy child and the second assertion tells us that Mary is happy and
clever. Since there are complex concepts occurring in A, A is not simple. The size of
JOHN:∃hasChild.Happy is 4. Sub(Happy ⊓ Clever) = {Happy ⊓ Clever,Happy,Clever}.

TBoxes are used in DLs to make statements about how concepts (and roles) are
related to each other. Those statements are background knowledge about the world
and can play the role of domain constraints in action theory [BLM+05] based on DLs.
We only consider the simplest kind of TBoxes, acyclic TBoxes, in this thesis. One can
introduce atomic concepts as abbreviations for complex concepts by an acyclic TBox.

Definition 8 (Acyclic TBox). A concept definition is of the form A ≡ C, where A is
a concept name and C is a concept. A concept name A directly uses a concept name
B in T if A ≡ C ∈ T and B occurs in C. The transitive closure of directly uses is
uses. An acyclic TBox T is a finite set of concept definitions such that

• there is not a concept name occurring more than once on the left-hand side of
concept definitions, and

• there is not a concept name that uses itself.

A concept name A in T is a defined concept name in T if there exists a concept
definition A ≡ C in T . Otherwise, it is a primitive concept name in T . We use def(T )
and pri(T ) to denote the set of defined concept names and the set of primitive concept
names in T , respectively.

An interpretation I satisfies a concept definition A ≡ C (written I |= A ≡ C) iff
AI = CI . An interpretation I is a model of an acyclic TBox T (written I |= T ) if
I |= A ≡ C for all concept definitions A ≡ C ∈ T . △

In the following definition, we introduce the size of a concept definition and the
size of a TBox.

Definition 9 (TBox Size). The size of a concept definition A ≡ C is |C| + 2. The
size of an acyclic TBox T , denoted with |T |, is

∑

A≡C∈T (|C|+ 2). △

Although updating ABoxes is the main focus of this thesis, acyclic TBoxes are
also useful in this thesis. We will see in Chapter 7 how to employ acyclic TBoxes to
verify DL-LTL formulas w.r.t. ABoxes and infinite sequences of updates.

Throughout this thesis, we use M(A), M(T ), and M(ϕ) to denote, respectively,
the set of all models of the ABox A, the TBox T , and the assertion ϕ. For a set Γ of
interpretations and an assertion ϕ, we write Γ |= ϕ iff I |= ϕ for all I ∈ Γ.

Reasoning in DLs makes implicit knowledge explicit. A whole range of reasoning
problems has already been investigated in the past twenty years of DL research. In
the next definition, we introduce the ones related to this thesis.

Definition 10 (Reasoning Problems). Let A be an ABox, T an acyclic TBox and ϕ
an assertion. Then

• A is consistent w.r.t. T iff M(A) ∩M(T ) 6= ∅.
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• ϕ is a (logical) consequence of A w.r.t. T (written A |=T ϕ) iff (M(A)∩M(T )) ⊆
M(ϕ).

△

In those reasoning problems the phrase “w.r.t. T ” will simply be dropped instead of
writing “w.r.t. ∅” if the TBox T under consideration is empty. Existing DL reasoners
implement different kinds of algorithms solving the aforementioned and other reason-
ing problems. Although negated role assertions and the UNA are slightly unusual and
may not be directly supported by DL reasoners, it has been shown in [Mil08] that
the consistency problem and the consequence problem with them do not increase the
computational complexity for the DLs.

2.2 The @ constructor and Boolean ABoxes

The @ constructor from hybrid logic [AdR01] is slightly non-standard in DLs and it is
not supported directly by DL reasoners. However, even approximate updates are not
expressible without it (see details in Section 5.2). In this sense, the @ constructor can
be regarded as the missing logical connective required in order to obtain (logical and
approximate) updates. Alternatively, we can use Boolean ABoxes [ABHM03], which
are closely related to the @ constructor but strictly more expressive.

Definition 11 (Boolean ABox). A Boolean ABox assertion (or just Boolean asser-
tion) is inductively defined as follows:

• Every ABox assertion is a Boolean ABox assertion;

• If ϕ and ψ are Boolean ABox assertions, then so are ϕ ∧ ψ and ϕ ∨ ψ.

A Boolean ABox is a finite set of Boolean ABox assertions.
Satisfaction of an ABox assertion by an interpretation I can be extended to a

Boolean ABox assertion in a straightforward way:

• I |= ϕ ∧ ψ if I |= ϕ and I |= ψ;

• I |= ϕ ∨ ψ if I |= ϕ or I |= ψ.

An interpretation I is a model of a Boolean ABox A (written I |= A) if I |= ϕ for
every Boolean assertion ϕ ∈ A. △

Note that we do not need to explicitly introduce negation since we admit negated role
assertions and concept negation is contained in every DL considered in this thesis. If
a Boolean ABox A contains only one Boolean assertion ϕ, then we sometimes write
A as ϕ instead of {ϕ}.

We also use M(A) to denote the set of all models of a Boolean ABox A. In the
same pattern as the ones of ABoxes, consistency of a Boolean ABox, equivalence of
two Boolean ABoxes, and logical consequence are defined.

The notion of the size of an ABox is extended to a Boolean ABox in the next
definition.
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Definition 12 (Boolean ABox Size). Let φ be a Boolean assertion of the form ϕ∧ψ
or ϕ ∨ ψ. The size of a Boolean assertion φ, denoted with |φ|, is |ϕ| + |ψ| + 1. The
size of a Boolean ABox A , denoted with |A|, is

∑

ϕ∈A |ϕ|. △

For a given DL L, a concept description C is an L-concept iff all constructors
of building C are available in L. Similarly, we can define L-assertions, L-ABoxes,
L-TBoxes, and Boolean L-ABoxes. The following lemma relates Boolean ABoxes and
the @ constructor. It shows that non-Boolean L@-ABoxes have exactly the same
expressive power as Boolean L-ABoxes provided that L is a DL between ALCO and
ALCQIO.

Lemma 13.
(i) Let L be a DL between ALC and ALCQIO. Then for every Boolean L@-ABox,
there exists an equivalent Boolean L-ABox;

(ii) Let L be a DL between ALCO and ALCQIO. Then for every Boolean L-ABox,
there exists an equivalent non-Boolean L@-ABox.

Proof. Concerning (i), let A be a Boolean L@-ABox, and let ϕ be an assertion from
A such that @bD is a subconcept of some concept occurring in ϕ.

Claim 1. For all interpretations I, I |= ϕ iff I |= (D(b) ∧ ϕ[⊤/@bD]) ∨ (¬D(b) ∧
ϕ[⊥/@bD]), where ϕ[X/@bD] denotes the concept obtained from ϕ by replacing all
occurrences of @bD with X.
Proof of Claim 1: I |= ϕ iff bI ∈ DI and I |= ϕ, or bI 6∈ DI and I |= ϕ iff
(@bD)I = ⊤I and I |= ϕ, or (@bD)I = ⊥I and I |= ϕ iff I |= ¬D(b) ∧ ϕ[⊥/@bD]
or I |= ¬D(b) ∧ ϕ[⊥/@bD] iff I |= (D(b) ∧ ϕ[⊤/@bD]) ∨ (¬D(b) ∧ ϕ[⊥/@bD]). This
finishes the proof of Claim 1.

Let A′ be the ABox obtained from A by replacing ϕ with (D(b) ∧ ϕ[⊤/@bD]) ∨
(¬D(b) ∧ ϕ[⊥/@bD]). By Claim 1, A′ is equivalent to A. Iterating this replacement
results in an equivalent Boolean L-ABox.

Concerning (ii), define a mapping ·∗ from ABox assertions in L to L@-concepts as
follows:

C(a)∗ = @aC

r(a, b)∗ = @a∃r.{b}

¬r(a, b)∗ = @a∀r.¬{b}

Every Boolean ABox assertion ϕ can be converted into an L@-concept ϕ∗ by replacing
∧ with ⊓, ∨ with ⊔, and every (possibly Boolean) assertion ψ with ψ∗.

Claim 2. For all interpretations I and for all individual names a, I |= ϕ iff I |= ϕ∗(a).
Proof of Claim 2: This can be shown by induction on the Boolean structure of ϕ.

• If ϕ is a non-Boolean assertion, then Claim 2 follows directly from the definition
of the mapping ·∗.

• ϕ = ψ1 ∨ ψ2. Thus, I |= ϕ iff I |= ψ1 or I |= ψ2 iff (by I.H.) I |= ψ∗
1(a) or

I |= ψ∗
2(a) iff I |= ψ∗

1 ⊔ ψ
∗
2(a).

• The case of ϕ = ψ1 ∧ ψ2 can be shown similarly to the above one.
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This finishes the proof of Claim 2.

Let A = {ϕ1, . . . , ϕn} be a Boolean L-ABox. Define a non-Boolean L@-ABox
A′ := {(ϕ∗

1 ⊓ · · · ⊓ ϕ
∗
n)(a)}, where a is an arbitrary individual name. As a direct

consequence of Claim 2, A′ is logically equivalent to A. ❏

Note that (ii) does not hold for ALC. More specifically, there are Boolean ALC-
ABoxes for which no equivalent non-Boolean ALC@-ABox exists. We will show this
in Corollary 57 in Chapter 5.

From the proof of Lemma 13, we can also see that the translation of Boolean
L-ABoxes into non-Boolean L@-ABoxes is polynomial, while the reverse translation
induces an exponential blowup. More precisely, this blowup is exponential in the
nesting depth of the @ constructor.

The DLs introduced so far are all used to represent static information of the
world. In the next section, we introduce the central notion of this thesis, updates,
which employ ABox assertions to express dynamic changes of the world.

2.3 Updates

In many applications of DLs, an ABox is used to represent the current state of affairs
in the application domain [BCM+03]. In such applications, it is necessary to update
the ABox in the case that the world has changed. A collection of new information
describing changes which take place in the world is referred to as an update in this
thesis.

Definition 14 (Update). A conditional update (or just update for short) U is a finite
set of expressions of the form ϕ/ψ, where ϕ is an ABox assertion (possibly involving
non-atomic concepts) and ψ is a literal, i.e., it has one of the following forms:

A(a),¬A(a), r(a, b), or ¬r(a, b)

where A is a concept name, r is a role name, and a, b are individual names. Let ϕ/ψ
be an expression in an update U . Then, ψ is called an effect of U and ϕ is called the
precondition of ψ in U .

An update U is unconditional iff for all ϕ/ψ ∈ U , ϕ = ⊤(a) for some individual
name a. In this case, we write the element of U as ψ instead of ⊤(a)/ψ. Thus, an
unconditional update is a simple ABox. △

In order to avoid contradictory information resulting from updates, a consistency
condition on updates is required: if ϕ/ψ and ϕ′/¬ψ are both in U , then the ABox
{ϕ,ϕ′} has to be inconsistent. In this thesis, we consider only consistent updates. In
order to analyze computational properties of updating ABoxes, we need to define the
size of updates.

Definition 15 (Update Size). The size of an update U is denoted with |U| and defined
by |U| =

∑

ϕ/ψ∈U (|ϕ|+ |ψ|). △
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Example 16. Consider the following update:

U = {PETER:∃hasCredit.{TRS}/PETER:Happy,
MARY:¬∃hasTopic.Seminar/MARY:¬Happy}.

As a result of achieving the credits of the term rewriting systems lecture, Peter is
happy, while Mary is unhappy because she cannot get a topic in a seminar. The size
of U is 14.

To define the semantics of updates, we must define how the application of an
update changes the world, i.e., how it transforms a given interpretation I into a new
one I ′. We adopt the possible models approach (PMA) initially proposed in [Win88]
and further elaborated e.g., in [Win90, BH93, Her96, DLMB98].1 The PMA was
first used in action formalisms based on DLs in [BLM+05]. Intuitively, an expression
ϕ/ψ means that if ϕ holds in the current state of the world, then the effect ψ holds
in the state after applying the update. The idea underlying the PMA is that the
interpretation should change as little as possible while still satisfying all the effects
whose preconditions are satisfied. We apply this minimization of change to updating
ABoxes in a way such that the interpretations of all concept and role names remain
as before unless they are affected by the update. Formally, the semantics of updates
is given by updating interpretations.

Definition 17 (Interpretation Update). Let U be an update and I, I ′ interpretations
such that ∆I = ∆I′

and I and I ′ agree on the interpretation of individual names.
Then I ′ is the result of updating I with U , written I =⇒U I

′, if the following conditions
hold:

• for all concept names A,

AI′
= (AI ∪ {aI | ϕ/A(a) ∈ U ∧ I |= ϕ}) \ {aI | ϕ/¬A(a) ∈ U ∧ I |= ϕ}, and

• for all role names r,

rI
′

= (rI ∪ {(aI , bI) | ϕ/r(a, b) ∈ U ∧ I |= ϕ})

\ {(aI , bI) | ϕ/¬r(a, b) ∈ U ∧ I |= ϕ}.

Let I be an interpretation and U an update. Then, an effect ψ of U is triggered in
I if there exists some ϕ such that ϕ/ψ ∈ U and I is a model of ϕ. Let U1 · · · Un
be a finite sequence of updates and I, I ′ two interpretations. Then, I ′ is the result
of updating I with U1 · · · Un, written I =⇒U1···Un I

′, if there are I0, . . . , In such that
I0 = I, In = I ′, and Ii =⇒Ui+1 Ii+1 for all i with 0 ≤ i < n. △

It is easily seen that, for each consistent update U , the relation =⇒U is functional.
Therefore, we can write IU to denote the unique I ′ with I =⇒U I

′.

1As discussed in [BH93, Her96, DLMB98], the PMA is inadequate when disjunctive effects or
integrity constraints are under consideration. In this thesis, neither of them is allowed and thus the
PMA is uncontroversial.
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The UNA plays an important role for giving reasonable semantics of updates.
Consider the unconditional update {A(a),¬A(b)} and some interpretation I with
aI = bI . It is clear that U is a consistent update. However, IU 6|= A(a) according
to the above definition, which means that triggered effects are not satisfied after the
update. Adopting the UNA avoids this unintuitive result.

As a direct consequence of Definition 17, updating an interpretation I can make
changes only on the named objects of I. More precisely, for all interpretations I, for
all x, y ∈ ∆I , for all A ∈ NC, and for all r ∈ NR, if x is an anonymous object of I,
then we have the following:

• x ∈ AI iff x ∈ AIU
,

• (x, y) ∈ rI iff (x, y) ∈ rI
U
, and

• (y, x) ∈ rI iff (y, x) ∈ rI
U
.

The above observation is frequently used in this thesis.

An ABox A is an incomplete description of the world and an model of A gives a
complete description of the world. The set of models of A is composed of all possible
world states. Updating an ABox A can be performed by updating the set of models
of A.

Definition 18 (Updated Model). Let A be an ABox. The set of models of the update
of A with U is denoted by M(A ∗ U) and defined by

M(A ∗ U) = {IU | I ∈M(A)}.

△

The main concern in the ABox update problem is to find out in which DLsM(A∗U)
can always be “described” and, if so, what is the minimal size of such a description.
The rather vague term “described” is deliberately used here and in what follows, four
different formalizations will be investigated. We start with two of them.

Definition 19 (Logical Update and Approximate Update). Let L be a DL. Let A be
an L-ABox and U an update. An L-ABox A′ is

• a logical update of A with U , in symbols A ∗ U ≡ A′, if

M(A ∗ U) = M(A′).

• an approximate update of A with U w.r.t. L, in symbols A ∗ U ≡L A
′, if for all

L-assertions ϕ, we have

M(A ∗ U) |= ϕ iff M(A′) |= ϕ.
△

We often refer to the ABox A in the above definition as the original ABox and the
ABox A′ as the updated ABox if it is clear from the context which kind of updates it
is.
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Example 20. Consider the ALC-ABox A in Example 7

A = {JOHN:∃hasChild.Happy,MARY:Happy ⊓ Clever}.

and the unconditional update U = {MARY:¬Happy}. A logical update of A with U is
the following ALCO-ABox A′:

A′ = {JOHN:∃hasChild.(Happy ⊔ {MARY}),MARY:¬Happy ⊓ Clever}.

Since the construction of logical updates will be addressed in Section 3.1, instead of
formally showing here that A ∗ U ≡ A′, we only give some intuition.

Because ABoxes adopt the open world assumption and thus present the domain in
an incomplete way, we have no information about whether or not Mary is a child of
John. However, because we cannot exclude that this is the case, after the update John
may have an unhappy child that is Mary. Mary is still clever even if she is no longer
happy.

As a direct consequence of Definition 17, a logical update of an ABox A with an
update U is also an approximate update of A with U w.r.t. any DL L. This justifies
the notation introduced for logical updates, i.e., L does not appear in A ∗ U ≡ A′.
Moreover, logical updates neither depend on the syntactic form of the given ABox nor
on the underlying DL. This is formalized as follows:

Lemma 21. Let L1 and L2 be two DLs, A1 an L1-ABox logically equivalent to the
L2-ABox A2, and U an update. If A′

i is a logical update of Ai with U formulated in
Li for i = 1, 2, then A′

1 is logically equivalent to A′
2.

Proof. M(A′
1) = M(A1 ∗ U) = {IU | I ∈ M(A1)} = {IU | I ∈ M(A2)} =

M(A2 ∗ U) = M(A′
2). ❏

Based on the above lemma, in what follows we can talk about the logical update of A
with U without referring to any underlying DL.

The situation is different for approximate updates. Approximate updates describe
updated ABoxes in the sense that they capture the logical consequences of the up-
date for a fixed DL L. However, an approximate update w.r.t. some DL L is not
necessarily an approximate update w.r.t. to its sublanguage L′. To prove this, we
introduce the notion of “logical equivalence w.r.t. an underlying DL L” (called L-
indistinguishability):

Definition 22 (L-indistinguishable). Let L be a DL. Two ABoxes A and A′ are
L-indistinguishable, written A ≡L A

′, if for all L-assertions ϕ, we have A |= ϕ iff
A′ |= ϕ. △

With the help of this notion we can formulate the following properties of approximate
updates:

Lemma 23. Let A be an ABox, U an update, and L a DL.

1. If A′ is a logical update of A with U , then A′′ is an approximate update of A
with U w.r.t. L iff A′ ≡L A

′′.
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2. If A1 and A2 are logically equivalent L-ABoxes and A′
i is an approximate update

of Ai with U w.r.t. L, for i = 1, 2, then A′
1 is logically equivalent to A′

2.

3. If A′ is a logical update of A with U and A′′ is an approximate update of A with
U w.r.t. L, then M(A′) ⊆M(A′′).

Proof.

1. “⇒”: Suppose that A ∗ U ≡ A′ and A ∗ U ≡L A
′′. Thus, for all L-assertions

ϕ, A′ |= ϕ iff M(A′) |= ϕ iff (since A ∗ U ≡ A′ implies M(A′) = M(A ∗ U))
M(A∗U) |= ϕ iff (since A∗U ≡L A

′′) M(A′′) |= ϕ iff A′′ |= ϕ. Hence, A′ ≡L A
′′.

“⇐”: Suppose that A ∗ U ≡ A′ and A′ ≡L A
′′. Thus, for all L-assertions ϕ,

M(A ∗ U) |= ϕ iff (since A ∗ U ≡ A′ implies M(A′) = M(A ∗ U)) M(A′) |= ϕ iff
A′ |= ϕ iff (since A′ ≡L A

′′) A′′ |= ϕ iff M(A′′) |= ϕ. Hence, A ∗ U ≡L A
′′.

2. Since A1 and A2 are logically equivalent, M(A1 ∗ U) = {IU | I ∈ M(A1)} and
M(A2 ∗ U) = {IU | I ∈M(A2)}, we have M(A1 ∗ U) = M(A2 ∗ U). Since A′

i is
an approximate update of Ai with U w.r.t. L for i = 1, 2, we have M(A′

1) |= ϕ
iff M(A1 ∗ U) |= ϕ and M(A′

2) |= ϕ iff M(A2 ∗ U) |= ϕ for every L-assertion ϕ.
Thus, M(A′

1) |= ϕ iff M(A′
2) |= ϕ, i.e., A′

1 ≡L A
′
2.

Assume that M(A′
1) 6= M(A′

2). Thus, there is an interpretation I such that
I |= A′

1 ∧ I 6|= A
′
2 or I |= A′

2 ∧ I 6|= A
′
1. In the case that I |= A′

1 ∧ I 6|= A
′
2,

we know that there exists an assertion ϕ ∈ A′
2 such that I 6|= ϕ. This, together

with I |= A′
1, yields A′

1 6|= ϕ. Since A′
2 is an L-ABox and ϕ ∈ A′

2, we have that
ϕ is an L-assertion and A′

2 |= ϕ which is a contradiction. The other case can be
proved similarly.

3. Assume that A ∗ U ≡ A′ and A ∗ U ≡L A
′′ such that M(A′) 6⊆ M(A′′). Thus,

there is an interpretation I such that I ∈ M(A′) and I 6∈ M(A′′). I 6∈ M(A′′)
implies that there exists an assertion ϕ ∈ A′′ such that I 6|= ϕ. This, together
with I ∈M(A′), implies A′ 6|= ϕ. A′′ |= ϕ and ϕ is an L-assertion since ϕ ∈ A′′.
Thus, A′ and A′′ are not L-indistinguishable. Point 1 of this lemma implies that
A′′ is not an approximate update of A with U w.r.t. L, which contradicts the
assumption.

❏

Point 1 of the above lemma gives us another characterization of approximate updates.
From Point 2, it is clear that approximate updates w.r.t. a fixed DL do not depend on
the representation of the updated ABox. Moreover, approximate updates of equivalent
L-ABoxes with an update U w.r.t. the same DL L are not only L-indistinguishable
but also logically equivalent. Point 3 captures a property of models of approximate
updates, which will be used in the proof of Theorem 59.

Returning to Example 20, we now show that there exists an ABox A′′ which is an
approximate update of A with U w.r.t. ALC.

Lemma 24. Consider the ABox A in Example 7, the update U = {MARY:¬Happy}
and the following ABox A′′:

A′′ = {JOHN:∃hasChild.(Happy ⊔ Clever),MARY:¬Happy ⊓ Clever}.
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Thus, we have A ∗ U ≡ALC A
′′.

Proof. By Lemma 23 Point 1, it is sufficient to show that A′ in Example 20 and A′′

are ALC-indistinguishable, i.e., for all ALC-assertions ϕ, A′ |= ϕ iff A′′ |= ϕ. Both
directions are shown by contraposition.

“⇐”: Assume that A′ 6|= ϕ for some ALC-assertion ϕ. Thus, there is a model I of
A′ such that I 6|= ϕ. I |= A′ implies that I |= JOHN:∃hasChild.(Happy⊔{MARY}) and
I |= MARY:¬Happy ⊓ Clever. The latter implies MARYI ∈ CleverI , which, together
with the former, yields I |= JOHN:∃hasChild.(Happy ⊔ Clever). Thus, I |= A′′. Hence,
A′′ 6|= ϕ since I |= A′′ and I 6|= ϕ.

“⇒”: Assume that A′′ 6|= ϕ for some ALC-assertion ϕ. If ϕ is a (possibly negated)
role assertion, then A′ 6|= ϕ since it is not hard to see that A′ 6|= ϕ for all role assertions
ϕ. Hence, ϕ is a concept assertion. Suppose ϕ = C(a) and take a model I of A′′ with
aI /∈ CI . By standard unravelling [BdRV01], we can convert I into a model J of A′′

such that (still) aJ /∈ CJ and the directed graph G = (∆J ,
⋃

r∈NR
rJ ) is such that

JOHNJ is not reachable from MARYJ .

• ∆J = {d0 · · · dk | k ≥ 0 ∧ ∀i ∈ {0, . . . , k} : di ∈ ∆I},

• for all A ∈ NC, AJ = {d0 · · · dk | d0 · · · dk ∈ ∆J ∧ dk ∈ A
I},

• for all r ∈ NR, rJ = {(d0 · · · dk, d0 · · · dk+1) | (d0 · · · dk, d0 · · · dk+1) ∈ ∆J ×∆J ∧
(dk, dk+1) ∈ r

I}, and

• for all a ∈ NI, a
J = aI .

By induction on the structure of C, it is not hard to show that for all ALC-concepts
C and all w = d0 · · · dk ∈ ∆J , dk ∈ C

I iff w ∈ CJ . Thus, we have

• J 6|= C(a) since I 6|= C(a), and

• J |= A′′ since I |= A′′.

Moreover, from the construction of J , aJ is not reachable in G from bJ for all a, b ∈ NI

with a 6= b.

If J is a model of A′, then A′ 6|= C(a) since J 6|= C(a). If J 6|= A′, then J |= A′′

implies

• J 6|= JOHN:∃hasChild.(Happy ⊔ {MARY}), and

• J |= JOHN:∃hasChild.(Happy ⊔ Clever).

Thus, there is a d∗ ∈ (¬Happy⊓Clever)J such that (JOHNJ , d∗) ∈ hasChildJ . We now
manipulate J into a new interpretation J ′ and show that J ′ |= A′ and J ′ 6|= C(a)
based on the fact that for all ALC-concepts C, for all interpretation I and for all
d ∈ ∆I , d ∈ CI is determined by the interpretations of concept and role names on
the elements those are reachable from d in G while it is not up to the interpretations
of individual names. There are two cases:
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Figure 1: The interpretations J and J ′ in the proof of Lemma 24.

• If a = MARY, then as depicted in J and J ′ in the first row in Figure 1, J ′ is
obtained from J by setting hasChildJ

′
= hasChildJ ∪ {(JOHNJ ,MARYJ )}. By

the UNA, aJ
′
6= JOHNJ ′

. By the forementioned fact, J ′ |= MARY:¬Happy ⊓
Clever and J ′ 6|= C(a) still hold. J ′ |= JOHN:∃hasChild.(Happy ⊔ {MARY}) is a
direct consequence of adding (JOHNJ ,MARYJ ) into hasChildJ .

• If a 6= MARY, then as depicted in J and J ′ in the second row in Figure 1,
J ′ is obtained from J by setting MARYJ ′

= d∗. From the construction of
J ′, J ′ |= JOHN:∃hasChild.(Happy ⊔ {MARY}) and J ′ 6|= C(a) still hold. J ′ |=
MARY:¬Happy ⊓ Clever since d∗ ∈ (¬Happy ⊓ Clever)J

′
.

In both cases, J ′ is a model of A′ and J ′ 6|= C(a). Thus, A′ 6|= C(a). ❏

We are ready to show that an approximate update of an ABox A with an update
U w.r.t. a given DL is not necessarily an update of A with U w.r.t. its superlanguage.

Lemma 25. There exist ABoxes A, A′′, and an update U such that A′′ is an ap-
proximate update of U w.r.t. ALC but A′′ is not an approximate update of U w.r.t.
ALCO.

Proof. Consider the ABox A, A′ and the update U in Example 20 and the ABox A′′

in Lemma 24. We know A ∗ U ≡ALC A
′′ by Lemma 24. Since A ∗ U ≡ A′ and A′ is

an ALCO-ABox, A ∗ U ≡ALCO A
′. By Lemma 23 Point 2, it remains to show that

A′ 6≡ A′′.

Consider the interpretation I displayed in Figure 2. We assume that in addition to
the points depicted there is an infinite set of points interpreting the individual names
a ∈ (NI \{JOHN,MARY}). On these additional points the concept and role names are
interpreted as empty set. The additional points are required to define interpretations



2.3 Updates 29
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Figure 2: The interpretation I in the proof of Lemma 25.

satisfying the UNA. It is easy to see that I 6|= A′ (since I 6|= JOHN:∃hasChild.(Happy⊔
{MARY})) and I |= A′′. Thus, A′ 6≡ A′′. ❏

Logical updates capture exactly the set of updated models while approximate
updates preserve the logical consequences of updated models. Two other formalisms
for describing updated ABoxes relativize those two properties to a fixed signature.

Definition 26 (Signature and Reduct). A signature S is a subset of NC ∪ NR ∪ NI.
The signature of a concept C, denoted with Sig(C), is the set of concept, role, and
individual names which occur in C. The signature of an ABox A, denoted with Sig(A),
is the set of concept, role, and individual names which occur in A.

Let I be an interpretation, S a signature, and M a set of interpretations. The
reduct of I to S, denoted with I↾S, is the interpretation which interprets only the
concept, role, and individual names from S and satisfies the following conditions:

• ∆I↾S = ∆I , and

• for all names x ∈ S, xI↾S = xI .

The reduct of M to S is denoted with M↾S and defined by

M↾S = {I↾S | I ∈M}.

△

Based on the above definition, two other formalisms about updating ABoxes can be
introduced.

Definition 27 (Projective Update and Approximate Projective Update). Let L be a
DL, A an L-ABox, U an update, and S the following signature:

S =
(

(NC ∪ NR ∪ NI) \ Sig(A′)
)

∪ Sig(A) ∪ Sig(U).

An L-ABox A′ is

• a projective update of A with U , in symbols A ∗ U ≡P A′, if

M(A ∗ U)↾S = M(A′)↾S.

The symbols in Sig(A′) \ (Sig(A) ∪ Sig(U)) are called the fresh symbols of the
projective update A′ of A with U .
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• an approximate projective update of A with U w.r.t. L, in symbols A∗U ≡P
L A

′,
if for all L-assertions ϕ with Sig(ϕ) ⊆ S, we have

M(A ∗ U) |= ϕ iff M(A′) |= ϕ.
△

It follows immediately from Definition 27 that a projective update of an ABox A with
an update U is also an approximate projective update of A with U w.r.t. any DL L.
Considering the four kinds of updates, we have the following lemma, which is a direct
consequence of Definition 19 and Definition 27.

Lemma 28. Let L be a DL, A and A′ L-ABoxes, and U an update. Then,

• if A ∗ U ≡ A′, then A ∗ U ≡L A
′ and A ∗ U ≡P A′;

• if A ∗ U ≡L A
′ or A ∗ U ≡P A′, then A ∗ U ≡P

L A
′.

Projective updates are not uniquely determined up to logical equivalence because
different sets of fresh symbols might be chosen. Nevertheless, similar to logical updates
they depend neither on the syntactic presentation of the ABox nor on the underlying
DL.

In the context of propositional updates, projective updates have been investigated
in detail in [CDLS99]. There, projective updates are discussed w.r.t. a “query equiva-
lence” property. In the setting of updating ABoxes, we call the resulting ABox satis-
fying this property an approximate projective update. According to their definition,
it is only required that

S = Sig(A) ∪ Sig(U).

This definition is equivalent to Definition 27 for the logics that have the interpolation
property [Cra57], e.g., propositional logic.

In Example 20, the logical update A′ of an ALC-ABox is expressed with the help
of the nominal constructor and its approximate update w.r.t. ALC exists. Is the
nominal constructor essential to express the logical update for an ALC-ABox? Or,
more generally, which DLs are closed under logical updates? Which constructors
are not necessary any more by considering weaker updates than logical ones? Those
problems are addressed in this thesis. The related notion of a DL having updates is
introduced in the next definition.

Definition 29. Let L be a DL. An update U is an L-update if ϕ is an L-assertion for
all ϕ/ψ ∈ U . The DL L

• has logical updates iff, for every L-ABox A and every L-update U , there exists
an L-ABox A′ such that A ∗ U ≡ A′.

• has approximate updates iff, for every L-ABox A and every L-update U , there
exists an L-ABox A′ such that A ∗ U ≡L A

′.

• has projective updates iff, for every L-ABox A and every L-update U , there
exists an L-ABox A′ such that A ∗ U ≡P A′.
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• has approximate projective updates iff, for every L-ABox A and every L-update
U , there exists an L-ABox A′ such that A ∗ U ≡P

L A
′.

△

Logical updates are obviously the most desirable form of updates in the sense that
they describe exactly the set of updated models without using additional non-logical
symbols. When the expressivity of the DL under consideration is inadequate, one
might choose other weaker kinds of updates. Projective updates preserve the logical
consequences of logical updates in a restricted signature in any DL, while approximate
updates are a reasonable alternative if we are interested in logical consequences in a
fixed DL but in an unrestricted signature. If neither of even those two updates exists,
then one may resort to approximate projective update as they completely describe
consequences in a restricted signature of logical updates in a given DL.

Another reason for choosing projective updates over logical updates is the size of
the updated ABoxes. As we will see in Chapter 3, the construction of logical updates
is exponential in the size of the original ABox together with the update, and this
blowup cannot be avoided unless every PTime algorithm is LogTime-parallelizable.
The projective update computed as described in Chapter 4 is polynomial both in the
size of the original ABox and in the size of the update. The size of resulting ABoxes
not only makes an impact on the space to store them but also usually influences the
time to do reasoning with them. We will show this by experimental results presented
in Chapter 6.

A fundamental problem in reasoning about action is projection, which is to deter-
mine whether or not some effect that we usually want to make true really holds after
applying a given finite sequence of updates to the initial world description. In action
formalisms based on DLs, the projection problem was investigated in [BLM+05].

Definition 30 (Projection). Let A be an ABox and U1 · · · Un a finite sequence of
updates. An assertion ϕ is a consequence of applying U1 · · · Un to A (denoted by
AU1···Un |= ϕ) iff for all models I of A, and all interpretations I ′ with I =⇒U1···Un I

′,
we have I ′ |= ϕ. △

There are basically two mechanisms in action theory to solve the projection prob-
lem: regression and progression. Roughly speaking, regression reduces checking whether
the desired effect ϕ holds after the application of the updates U1 · · · Un (AU1···Un |= ϕ)
to verifying whether a rewritten effect ϕ′ is a logical consequence of the initial world
description A (A |= ϕ′). Regression is goal-oriented: Different effects often require
checking different reduced logical consequences. The action programming language
Golog [LRL+97] which is based on the Situation Calculus [Rei01] adopts regression
to solve the projection problem. In [BLM+05], projection is solved by an approach
similar to regression. More specifically, for an ABox A, a finite sequence of updates
U1 · · · Un and an ABox assertion ϕ (an input of the projection problem) in a DL L
between ALC and ALCQIO, we construct an LO-ABox Ared, an acyclic LO-TBox
Tred, and an L-ABox assertion ϕred such that ϕ is a consequence of applying U1 · · · Un
to A iff ϕred is a logical consequence of Ared w.r.t. Tred. One observation is that the
constructed Tred and ϕred are goal-oriented, i.e., they depend on ϕ.
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In contrast to regression, progression changes the initial world description accord-
ing to updates and then checks whether the desired effect holds in the resulting world
description. One advantage of progression is that different effects may be checked in
the same resulting world without any extra overhead. The action programming lan-
guage FLUX [Thi05a] which is based on the Fluent Calculus [Thi05b] uses progression
to do reasoning about action. Computing updates of ABoxes integrates progression
into DLs and it provides a solution to the projection problem. To check whether ϕ is
a consequence of applying U1 · · · Un to A (AU1···Un |= ϕ), we can compute the updated
ABox A′ by iteratively updating A with the updates U1 · · · Un and then we check
whether ϕ is a logical consequence of A′ (A′ |= ϕ).

Some experimental results will be presented in Section 6.3 on implementations that
can solve the projection problem in DLs. They are respectively based on regression
and progression.



Chapter 3

Logical Updates

We focus on the computation of logical updates and the analysis of the size of the
computed logical updates in this chapter. An algorithm for computing the logical
update of an ALCQIO@-ABox with a single update is presented in Section 3.1. The
size of the logical update achieved this way is exponential both in the size of the
original ABox and in the size of the update in the worst case. In Section 3.2, it is
shown that the exponential blowup cannot be entirely avoided unless the complexity
classes PTime and NC are identical, which is believed to be similarly unlikely as
PTime = NP [Pap94]. Two ways to avoid the exponential blowup in the size of
the ABox are exhibited in Section 3.3: to allow only for concept literals as effects
of updates and to compute logical updates in a more expressive DL with more role
constructors than any a DL introduced so far. In Section 3.4, we show that the
blowup produced by iterated updates is not worse than the blowup produced by a
single update.

3.1 Computing Logical Updates in ALCQIO@

In this section, we show that the expressive DL ALCQIO@ has logical updates. More-
over, the proof is easily adapted to the fragments of ALCQIO@ obtained by dropping
qualified number restrictions, inverse roles, or both. In Chapter 5, we will see that the
@ constructor is necessary for expressing even approximate updates and that approx-
imate updates and projective updates may not exist without nominals. This yields
that for the DLs between ALC and ALCQIO@, ALCO@ is the smallest DL which has
logical updates.

Our construction of updated ABoxes is an extension of the corresponding construc-
tion for propositional logic described in [Win90]. In what follows, we start with the
simple case, computing the logical update of an ABox with an unconditional update,
and continue with extending the computation to assemble updated ABoxes by condi-
tional updates. Computing the logical update of an ABox A with an unconditional
update U is reduced to updating assertions in A with U .

Let us start from coping with concept assertions. We proceeds as follows. First,
we consider updates of concepts on the level of interpretations. More precisely, we

33
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show how to convert a concept C and an unconditional update U into a concept CU

such that the following property holds: for all interpretations I and I ′ such that I
satisfies no assertions in U and I =⇒U I

′, we have CI = (CU )I
′
.

Intuitively, CU can be used after the update to describe exactly those objects that
have been in the extension of C before the update. The aim is to use the translation
CU to update concept assertions in ABoxes.

The limitation that CU satisfies this property only if I satisfies no assertion in U
can be overcome by replacing CU with CU ′

, where U ′ is the set of those assertions in U
that are violated in I. However, we are confronted with the problem that ABoxes have
many different models, and these models can violate different subsets of the update
U . Hence, there is no unique way of moving from CU to CU ′

as described above. The
solution is to produce an updated ABox for each subset U ′ ⊆ U separately, and then
simply take the disjunction. This idea can also be adopted to the case of conditional
updates. Because it is not clear which effects in an update are triggered in different
interpretations, we update the original ABox with all subsets of effects and take the
disjunction.

We first introduce a bit of notation. Throughout this thesis, we use Sub(A) to
denote the set of the subconcepts occurring in A, i.e.,

Sub(A) =
⋃

C(a)∈A

Sub(C).

We use Obj(A) to denote the set of individual names in the ABox A. For an uncondi-
tional update U , we use ¬U to denote {¬̇ϕ | ϕ ∈ U}, where ¬̇ϕ denotes the assertion
obtained by eliminating double negation in ¬ϕ. Let r be a role and a, b two individual
names. Then, we define

r(a, b)∈̇U =

{

r(a, b) ∈ U if r ∈ NR

s(b, a) ∈ U if r = s− with s ∈ NR

and

¬r(a, b)∈̇U =

{

¬r(a, b) ∈ U if r ∈ NR

¬s(b, a) ∈ U if r = s− with s ∈ NR

Finally, remember that (cf. Definition 17), for an interpretation I, IU denotes the
unique interpretation satisfying I =⇒U I

U . The inductive translation that takes a
concept C and an unconditional update U to a concept CU as explained above is given
in Figure 3. Using this translation, we can show the following lemma:

Lemma 31. Let U be an unconditional update and C an ALCQIO@-concept. For
every interpretation I with I |= ¬U and every individual name a, we have I |= C(a)
iff IU |= CU (a).

Proof. We first show the following claim:

Claim. If I |= ¬U , then, for all x, y ∈ ∆I and for all role names r ∈ NR, we have
(x, y) ∈ rI iff one of the following holds:

1. x 6= aI for all a ∈ Obj(U) and (x, y) ∈ rI
U
;
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AU =
(

A ⊔
⊔

¬A(a)∈U

{a}
)

⊓ ¬(
⊔

A(a)∈U

{a}), if A ∈ NC

{a}U = {a} ⊤U = ⊤ ⊥U = ⊥

(@aC)U = @a(C
U ) (¬C)U = ¬CU

(C ⊓D)U = CU ⊓DU (C ⊔D)U = CU ⊔DU

(> n r C)U = (
l

a∈Obj(U)

¬{a} ⊓ (> n r CU ))

⊔
⊔

a∈Obj(U)

(

{a} ⊓
⊔

n1+n2+n3=n
n2,n3≤#Obj(U)

(

(> n1 r ((
l

b∈Obj(U)

¬{b}) ⊓ CU ))

⊓(> n2 r ((
⊔

b∈Obj(U),r(a,b) 6∈̇U

{b}) ⊓ CU ))

⊓
⊔

S⊆{b|¬r(a,b)∈̇U},#S=n3

l

b∈S

@bC
U
)

)

(6 n r C)U = (
l

a∈Obj(U)

¬{a} → (6 n r CU ))

⊓
l

a∈Obj(U)

(

{a} →
l

n1+n2+n3=n+1
n2,n3≤#Obj(U)

(

¬(> n1 r ((
l

b∈Obj(U)

¬{b}) ⊓ CU ))

⊔¬(> n2 r ((
⊔

b∈Obj(U),r(a,b) 6∈̇U

{b}) ⊓ CU ))

⊔
l

S⊆{b|¬r(a,b)∈̇U},#S=n3

⊔

b∈S

¬@bC
U
)

)

Figure 3: Constructing CU .

2. x = aI for some a ∈ Obj(U) and

a. y 6= bI for all b ∈ Obj(U) and (x, y) ∈ rI
U
,

b. or y = bI for some b ∈ Obj(U) such that r(a, b) 6∈ U and (x, y) ∈ rI
U
,

c. or y = bI for some b ∈ Obj(U) such that ¬r(a, b) ∈ U .

Proof of the claim: “⇒”: In cases 1 and 2a, at least one of x, y is an anonymous
object of I. 1 and 2a follow from the fact that updating an interpretation I can make
changes only on the named objects of I. If both x and y are named objects of I (as
in the cases 2b and 2c), then r(a, b) 6∈ U since I |= ¬U and (aI , bI) ∈ rI . It is enough
to show that 2c does not hold implies that 2b holds. If ¬r(a, b) 6∈ U , then it follows

from Definition 17 that (x, y) ∈ rI implies (x, y) ∈ rI
U
. Thus, 2b holds.

“⇐”: In cases 1 and 2a, at least one of x, y is an anonymous object of I. Thus,
either of 1 and 2a implies (x, y) ∈ rI since updating an interpretation I can make
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changes only on the named objects of I. For the case 2b, (x, y) ∈ rI is a direct
consequence of Definition 17. For the case 2c, since ¬r(a, b) ∈ U and I |= ¬U , we
have (x, y) ∈ rI . This finishes the proof of the claim.

Let I be an interpretation such that I |= ¬U and let E ∈ Sub(A). By structural

induction on E, we show that (EU )I
U

= EI . As I and IU interpret all individuals in
the same way, this implies Lemma 31.

• The cases E = {a}, E = ⊤, and E = ⊥ are trivial since I and IU interpret all
individual names, ⊤, and ⊥ in the same way.

• E = A, for A a concept name: then

(AU )I
U

=
(

AIU
∪

⋃

¬A(a)∈U

{aI
U
}
)

\
⋃

A(a)∈U

{aI
U
}

=
(((

AI ∪
⋃

A(a)∈U

{aI}
)

\
⋃

¬A(a)∈U

{aI}
)

∪
⋃

¬A(a)∈U

{aI
U
}
)

\
⋃

A(a)∈U

{aI
U
}

= AI

since AI ∩
⋃

A(a)∈U

{aI} = ∅ and
⋃

¬A(a)∈U

{aI} ⊆ AI due to I |= ¬U .

• E = @aC: ((@aC)U )I
U

= (@a(C
U ))I

U
= (@aC)I since (CU )I

U
= CI and I and

IU interpret individuals in the same way.

• The cases E = ¬C, E = C ⊓D, and E = C ⊔D follow immediately from I.H.
and the definition of EU .

• E = (> n r C): Here we show in detail the proof only in the case that r is a
role name. The case that r is an inverse role can be proved analogously. The
intuition of the construction of (> n r C)U is depicted in Figure 4, where a solid
circle, a hollow circle, and a star respectively stand for a named, an anonymous,
and an arbitrary object of I.

x ∈ ((> n r C)U )I
U

iff (by the definition of (> n r C)U ) one of the following
holds:

1. x ∈
(

¬
⊔

a∈Obj(U){a}
)IU

and #{y | (x, y) ∈ rI
U
∧ y ∈ (CU )I

U
} ≥ n;

2. x = aI
U
, for some a ∈ Obj(U) and there are n1, n2, n3 ≥ 0 such that

n1 + n2 + n3 = n, n2, n3 ≤ #Obj(U), and

a. #{y | (x, y) ∈ rI
U
∧ y ∈

( d
b∈Obj(U) ¬{b}

)IU

∩ (CU )I
U
} ≥ n1,

b. #{y | (x, y) ∈ rI
U
∧ y ∈ (

⋃

b∈Obj(U),r(a,b) 6∈U{b}
IU

) ∩ (CU )I
U
} ≥ n2, and

c. #{b | ¬r(a, b) ∈ U ∧ bI
U
∈ (CU )I

U
} ≥ n3.

Note that three sets in 2a, 2b, and 2c are pairwise disjoint. By I.H., we have that
(CU )I

U
= CI . Thus, using the claim above, we obtain that x ∈ ((> n r C)U )I

U

iff one of the following holds:
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1. x is anonymous.
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n1 + n2 + n3 = n.

y is named,
r(a, b) 6∈ U , and
(x, y) ∈ rI

U
.

y is anonymous.

y is named and
¬r(a, b) ∈ U .

Figure 4: The case E = (> n r C) in the proof of Lemma 31.

1. x ∈
(

¬
⊔

a∈Obj(U){a}
)I

and #{y | (x, y) ∈ rI ∧ y ∈ CI} ≥ n;

2. x = aI , for some a ∈ Obj(U) and there are n1, n2, n3 ≥ 0 such that n1 +
n2 + n3 = n, n2, n3 ≤ #Obj(U), and

a. #{y | (x, y) ∈ rI ∧ y ∈
( d

b∈Obj(U) ¬{b}
)I
∩ CI} ≥ n1,

b. #{y | (x, y) ∈ rI ∧ y ∈ (
⋃

b∈Obj(U),r(a,b) 6∈U{b}
I) ∩ CI} ≥ n2, and

c. #{y | (x, y) ∈ rI ∧ y ∈ (
⋃

¬r(a,b)∈U{b}
I) ∩ CI} ≥ n3.

Note that n2, n3 ≤ #Obj(U) since for every y in the sets in 2b and 2c there
exists some b ∈ Obj(U) such that y = bI . Further, by the semantics of qualified
number restrictions, this is equivalent to

1. x ∈
(

¬
⊔

a∈Obj(U){a}
)I

and #{y | (x, y) ∈ rI ∧ y ∈ CI} ≥ n, or

2. x ∈
(
⊔

a∈Obj(U){a}
)I

and #{y | (x, y) ∈ rI ∧ y ∈ CI} ≥ n.

which is equivalent to x ∈ (> n r C)I .

• The case E = (6 n r C) is proved similarly to the previous case.

❏

We now extend the update of concepts to the update of ABoxes, while still re-
maining on the level of interpretations. We have seen that the translation CU is used
to update concept assertions. Additionally, we need to deal with role assertions. In-
tuitively, each role assertion remains the same if it does not contradict the update.
Let A be an ABox and U an unconditional update. If we have ϕ∈̇U for some role
assertion ϕ ∈ A, then AU is defined as {⊥(a)} for an arbitrary a ∈ NI. Otherwise, we
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define the ABox AU by setting

AU = {CU (a) | C(a) ∈ A} ∪

{r(a, b) | r(a, b) ∈ A ∧ ¬r(a, b) /̇∈U} ∪

{¬r(a, b) | ¬r(a, b) ∈ A ∧ r(a, b) /̇∈U}.

We show the following lemma:

Lemma 32. Let A be an ALCQIO@-ABox and U an unconditional update. If AU 6=
{⊥(a)} for all a ∈ NI, then for every interpretation I with I |= ¬U , we have I |= A
iff IU |= AU .

Proof. “⇒”: Let I be a model of A. We show that IU |= AU , i.e., for every ϕ ∈ AU ,
IU |= ϕ. Let ϕ = r(a, b). By the construction of AU , r(a, b) ∈ AU implies that
r(a, b) ∈ A and that ¬r(a, b)∈̇U does not hold. Thus, we know that I |= r(a, b) since
I |= A. Moreover, by the definition of IU , IU |= r(a, b). The case ϕ = ¬r(a, b) can be
proved analogously. If ϕ is a concept assertion EU (a) for some E(a) ∈ A, it follows
from Lemma 31 that IU |= EU (a).

“⇐”: Let IU |= AU . We show that I |= A. Let ϕ ∈ A. If ϕ = r(a, b), there are two
cases to consider:

1. ¬r(a, b)∈̇U . Then r(a, b) ∈ ¬U , and since I |= ¬U , we obtain that I |= r(a, b).

2. ¬r(a, b) /̇∈U . Then r(a, b) ∈ AU , and thus IU |= r(a, b). Since IU |= AU and
r(a, b) is in A, r(a, b)∈̇U does not hold. By definition of IU , we obtain I |=
r(a, b).

The case ϕ = ¬r(a, b) is analogous and the case ϕ = E(a) follows from Lemma 31.
❏

We are now in the position to lift updates from the level of interpretations to the level
of ABoxes and to extend it to the case of conditional updates. For a conditional update
U , we use rhs(U) to denote the set of the effects of U , i.e., rhs(U) = {ψ | ϕ/ψ ∈ U}.
The set of literals over rhs(U) is defined as LU = {ψ, ¬̇ψ | ψ ∈ rhs(U)}. A simple
ABox D is called a diagram for rhs(U) if it is a maximal consistent subset of LU , i.e.,
there is no strict superset of D which is also a consistent subset of LU . Let D be the
set of all diagrams for rhs(U). Let D ∈ D and U ′ ⊆ U . We define the ABox DU ′ as

DU ′ = {ψ | ¬̇ψ ∈ D and ϕ/ψ ∈ U ′}.

It follows from the above definition that DU ′ is a simple ABox. The next lemma shows
more properties of DU ′ .

Lemma 33. Let U be an update and D the set of all diagrams for rhs(U). Then, for
all D ∈ D and all U ′ ⊆ U ,

1. DU ′ is consistent.
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2. for all interpretations I, if I |= D and I |= ¬DU ′, where U ′ = {ϕ/ψ ∈ U | I |=
ϕ}, then IDU′ = IU .

3. for all interpretations I, if I |= DU ′, then (I¬DU′ )DU′ = I.

4. for all interpretations I, if I |= ¬DU ′ and I |= D, then for all ABoxes A, I |= A
implies that ADU′ 6= {⊥(a)} for all a ∈ NI.

Proof.

1. Assume that there exist a D ∈ D and a U ′ ⊆ U such that DU ′ is inconsistent.
Since DU ′ is a simple ABox, its inconsistency implies that there exists a ψ such
that {ψ, ¬̇ψ} ⊆ DU ′ . Thus, by the definition of DU ′ , we have {ψ, ¬̇ψ} ⊆ D, which
implies that D is inconsistent. However, the assumption that D is a diagram for
rhs(U) requires that D is consistent.

2. Since I =⇒U I
U and I =⇒DU′ I

DU′ , it follows from Definition 17 that ∆I =

∆IU
= ∆IDU′

and aI = aI
U

= aI
DU′

for all a ∈ NI. It remains to show that for

all X ∈ NC ∪ NR, XIU
= XIDU′

. Here, we only show this in the case that X is
a concept name. The case that X is a role name can be shown similarly. Let A
be a concept name. From Definition 17, we know the following:

AIU
= (AI ∪ {aI | ϕ/A(a) ∈ U ∧ I |= ϕ}) \ {aI | ϕ/¬A(a) ∈ U ∧ I |= ϕ}.

AIDU′
= (AI ∪ {aI | A(a) ∈ DU ′}) \ {aI | ¬A(a) ∈ DU ′}.

“⊆”: Assume that there exists an x ∈ ∆I such that x ∈ AIU
\ AIDU′

. Thus,

x ∈ AIU
implies that

• x ∈ AI and x 6∈ {aI | ϕ/¬A(a) ∈ U ∧ I |= ϕ}, or

• x 6∈ AI , x ∈ {aI | ϕ/A(a) ∈ U ∧ I |= ϕ} and x 6∈ {aI | ϕ/¬A(a) ∈ U ∧ I |=
ϕ}.

In the former case, x 6∈ AIDU′
implies that there exists some ¬A(a) ∈ DU ′

with x = aI . By the definition of DU ′ , we know that A(a) ∈ D and there
exists a ϕ such that ϕ/¬A(a) ∈ U ′. By the definition of U ′, we get I |= ϕ and

ϕ/¬A(a) ∈ U . Thus, aI 6∈ AIU
, which contradicts the assumption. In the latter

case, x ∈ {aI | ϕ/A(a) ∈ U ∧ I |= ϕ} implies that there exists some ϕ/A(a) ∈ U
such that aI = x and I |= ϕ. Thus, ϕ/A(a) ∈ U ′. Moreover, I |= ¬A(a) since
x 6∈ AI . Since D is maximal and I |= D, we know that ¬A(a) ∈ D, which,
together with ϕ/A(a) ∈ U ′, yields A(a) ∈ DU ′ . By 1 of this lemma, we know

that DU ′ is consistent, which implies ¬A(a) 6∈ DU ′ . Thus, aI ∈ AIDU′
, which is

a contradiction.

“⊇”: Assume that there exists an x ∈ ∆I such that x ∈ AIDU′
\ AIU

. Then,

x ∈ AIDU′
implies that

• x ∈ AI and x 6∈ {aI | ¬A(a) ∈ DU ′}, or
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• x 6∈ AI , x ∈ {aI | A(a) ∈ DU ′} and x 6∈ {aI | ¬A(a) ∈ DU ′}.

In the former case, x 6∈ AIU
implies that there exists some ϕ/¬A(a) ∈ U with

x = aI and I |= ϕ. Then, ϕ/¬A(a) ∈ U ′. Since D is maximal and I |=
D, aI ∈ AI yields A(a) ∈ D, which, together with ϕ/¬A(a) ∈ U ′, implies

¬A(a) ∈ DU ′ . Thus, aI 6∈ AIDU′
, which contradicts the assumption. In the

latter case, x ∈ {aI | A(a) ∈ DU ′} implies that there exists some A(a) ∈ DU ′

with aI = x. From the definition of DU ′ , it follows that there exists some ϕ such
that ϕ/A(a) ∈ U ′, which implies that ϕ/A(a) ∈ U and I |= ϕ. Since we consider

only consistent updates, I 6|= ϕ for all ϕ/¬A(a). Thus, aI ∈ AIU
, which is a

contradiction.

3. Following from the construction of DU ′ , DU ′ is an unconditional update. From
Definition 17, we know that (I¬DU′ )DU′ and I share the domain and the inter-
pretations of all individual names. For every A ∈ NC,

A(I¬DU′ )DU′
= ((AI ∪ {aI | A(a) ∈ ¬DU ′}) \ {aI | ¬A(a) ∈ ¬DU ′}∪

{aI | A(a) ∈ DU ′}) \ {aI | ¬A(a) ∈ DU ′}
= ((AI ∪ {aI | ¬A(a) ∈ DU ′}) \ {aI | A(a) ∈ DU ′}∪

{aI | A(a) ∈ DU ′}) \ {aI | ¬A(a) ∈ DU ′}.

Since I |= DU ′ , {aI | A(a) ∈ DU ′} ⊆ AI and AI ∩ {aI | ¬A(a) ∈ DU ′} = ∅.

Hence, A(I¬DU′ )DU′
= AI . Analogously, it can be shown that for every r ∈ NR,

r(I
¬DU′ )DU′

= rI . Thus, we obtain that (I¬DU′ )DU′ = I.

4. Assume that ADU′ = {⊥(a)} for some a ∈ NI. By the construction of ADU′ ,
either A = {⊥(a)} or there exists some role assertion ϕ ∈ A such that ϕ∈̇DU ′ .
The fact I |= A rules out the former case. Since ϕ∈̇DU ′ , we know that ¬̇ϕ is in
D. Since I |= A, I |= D, ϕ ∈ A, and ¬̇ϕ ∈ D, we get I |= ϕ and I |= ¬̇ϕ.

❏

As a direct consequence of 1 of Lemma 33, a diagram D for rhs(U) and a subset U ′

of U uniquely determine an unconditional update DU ′ for a given conditional update
U . In what follows, we will see how to employ DU ′ to compute updated ABoxes with
conditional updates.

Intuitively, a diagram gives a complete description of the part of an interpretation
that can be changed by performing an update. Each U ′ is a set of possibly violated
effects of U whose preconditions are satisfied in the current state of the world. Given
a diagram D and a subset U ′ of U , DU ′ determines all effects of U ′ that are violated
by interpretations whose relevant part is described by D.

We use
∧

A as an abbreviation for
∧

ϕ∈A ϕ. Then, we assemble the logical update
A′ of A with U as follows:

A′ =
∨

D∈D

∨

U ′⊆U

∧

ADU′ ∪ DU ′ ∪ DDU′∪

{ϕ | ϕ/ψ ∈ U ′}DU′ ∪ {¬̇ϕ | ϕ/ψ ∈ U \ U ′}DU′ .
(2)
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The component ADU′ is the update of the original ABox A, DU ′ asserts the effects of
U ′ that are triggered and violated, and DDU′ denotes the update of the diagram D.
The precondition of every effect of U is updated as well since an effect of U is triggered
if and only if its preconditions are satisfied. This implies that the preconditions of
triggered effects and the negation of the preconditions of untriggered effects hold before
executing the update.

Lemma 34. Let A be an ALCQIO@-ABox and U an update. Let A′ be the ALCQIO@-
ABox defined as (2). Then, A ∗ U ≡ A′.

Proof. We prove this lemma by showing M(A ∗ U) = M(A′).
“⊆”: Let I and I ′ be two interpretations such that I |= A and I =⇒U I

′. We
have to show that I ′ |= A′. For this purpose, it is enough to find a diagram D and a
subset U ′ of U such that I ′ is a model of the disjunct of A′ which is determined by
DU ′ . Consider the following subset D of LU :

D = {l ∈ LU | I |= l}.

We show that D is a diagram for rhs(U):

• D is consistent since I |= ψ for all ψ ∈ D.

• D is maximal: Assume that there exists a consistent subset D′ of LU such that
D ⊂ D′. Then, there is a ψ such that ψ ∈ D′ and ψ 6∈ D. By the definition of
D, ψ 6∈ D implies I 6|= ψ, which yields I |= ¬̇ψ. Hence, ¬̇ψ ∈ D. Together with
D ⊂ D′, this implies ¬̇ψ ∈ D′. Since both ψ and ¬̇ψ are in D′, D′ is inconsistent
which contradicts the assumption.

By the definition of D, we have that I |= D. Consider the following subset U ′ of U :

U ′ = {ϕ/ψ ∈ U | I |= ϕ}.

Thus, we have I |= ¬DU ′ since I |= D. It follows from 2 of Lemma 33 that I ′ = IDU′ .
Thus, it suffices to show that IDU′ is a model of the following disjunct BDU′ of A′:

BDU′ =
∧

ADU′ ∪ DU ′ ∪ DDU′∪
{ϕ | ϕ/ψ ∈ U ′}DU′ ∪ {¬̇ϕ | ϕ/ψ ∈ U \ U ′}DU′ .

(3)

By the definition of IDU′ , IDU′ |= DU ′ . Since I |= ¬DU ′ , I |= A, and I |= D, it
follows from 4 of Lemma 33 that neither of ADU′ and DDU′ is {⊥(a)} for all a ∈ NI.
Since I |= ¬DU ′ , I |= A, and I |= D, it follows from Lemma 32 that IDU′ |= ADU′

and IDU′ |= DDU′ . By the definition of U ′, we know that for all ϕ/ψ in U , ϕ/ψ ∈ U ′

implies I |= ϕ and ϕ/ψ 6∈ U ′ implies I |= ¬̇ϕ. Likewise, it follows from 4 of Lemma 33
that neither of {ϕ | ϕ/ψ ∈ U ′}DU′ and {¬̇ϕ | ϕ/ψ ∈ U \U ′}DU′ is {⊥(a)} for all a ∈ NI.
By Lemma 32, IDU′ |= {ϕ | ϕ/ψ ∈ U ′}DU′ ∪ {¬̇ϕ | ϕ/ψ ∈ U \ U ′}DU′ .

“⊇”: Let I ′ |= A′. We need to show that there exists an interpretation I such
that I |= A and I =⇒U I

′. Since I ′ |= A′, there exist a D ∈ D and a U ′ ⊆ U such
that I ′ |= BDU′ , where BDU′ is defined as (3).
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(∃r.C)U = (
l

a∈Obj(U)

¬{a} ⊓ ∃r.CU ) ⊔ ∃r.(
l

a∈Obj(U)

¬{a} ⊓ CU )

⊔
⊔

a,b∈Obj(U),r(a,b) 6∈̇U

({a} ⊓ ∃r.({b} ⊓ CU )) ⊔
⊔

¬r(a,b)∈̇U

({a} ⊓@bC
U )

(∀r.C)U = ((
l

a∈Obj(U)

¬{a})→ ∀r.CU ) ⊓ ∀r.((
l

a∈Obj(U)

¬{a})→ CU )

⊓
l

a,b∈Obj(U),r(a,b) 6∈̇U

({a} → ∀r.({b} → CU )) ⊓
l

¬r(a,b)∈̇U

({a} → @bC
U )

Figure 5: Constructing CU for existential and value restrictions.

Let I = (I ′)¬DU′ . Then it follows from Definition 17 that I |= ¬DU ′ . Since for
each fixed update U , the relation =⇒U is functional, IDU′ = ((I ′)¬DU′ )DU′ . Since
I ′ |= BDU′ , we know that I ′ |= DU ′ . By 3 of Lemma 33, I ′ |= DU ′ implies that
((I ′)¬DU′ )DU′ = I ′. Hence, IDU′ = I ′. Since I ′ |= BDU′ , none of ADU′ , DDU′ ,
{ϕ | ϕ/ψ ∈ U ′}DU′ , and {¬̇ϕ | ϕ/ψ ∈ U \ U ′}DU′ is {⊥(a)} for all a ∈ NI. By
Lemma 32 and since I ′ |= ADU′ and I |= ¬DU ′ , we obtain that I |= A. Likewise,
since I ′ |= DDU′ and I |= ¬DU ′ , we obtain that I |= D.

It remains to show that I =⇒U I
′. To this end, we show that U ′ = {ϕ/ψ ∈ U |

I |= ϕ}. This, together with I |= D, IDU′ = I ′ and I |= ¬DU ′ , yields that I ′ = IU

by 2 of Lemma 33.
Assume that U ′ 6= {ϕ/ψ ∈ U | I |= ϕ}. Then

• either there exists some ϕ/ψ ∈ U such that I |= ϕ and ϕ/ψ 6∈ U ′,

• or there exits some ϕ/ψ ∈ U ′ such that I 6|= ϕ.

In the former case, (¬̇ϕ)DU′ ∈ BDU′ since ϕ/ψ ∈ U and ϕ/ψ 6∈ U ′. Thus, I ′ |= BDU′

implies I ′ |= (¬̇ϕ)DU′ . By Lemma 32, we get I |= ¬̇ϕ, which contradicts I |= ϕ. In
the latter case, ϕ/ψ ∈ U ′ implies ϕDU′ ∈ BDU′ . I

′ |= BDU′ implies I ′ |= ϕDU′ . Thus,
by Lemma 32, we get I |= ϕ, which is a contradiction. ❏

The Boolean ABox operators are used only as an abbreviation for the “@” con-
structor. This can be safely done since the translation from Boolean ABoxes to non-
Boolean ones described in the proof of Lemma 13 is polynomial.

It is easy to adapt the construction of updated ABoxes to the DLs ALCO@,
ALCIO@, ALCQO@. For the former two, we have to treat existential and value
restrictions in the CU translation rather than number restrictions. The corresponding
translation is shown in Figure 5. The lemmas proved above for ALCQIO@ are then
easily adapted. As a direct consequence of Lemma 34 and the construction of logical
updates, we achieve the following theorem:

Theorem 35. All of the following DLs have logical updates: ALCO@, ALCIO@,
ALCQO@, and ALCQIO@.
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Size of Logical Updates

We now analyze the size of constructed logical updates. A close inspection of the
ABox A′ computed above reveals the following:

• For a concept C, we use d(C) to denote the maximal nesting depth of qualified
number restrictions in C. The size of CDU′ is exponential in the size of the
original ABox A. The exponential blowup is caused by the recursive translation
CDU′ and the duplication of CDU′ for qualified number restriction, existential
and value restriction. The number of recursions is bounded by d(C) and the
number of duplications is polynomially bounded by #Obj(DU ′). It is clear that
#Obj(DU ′) ≤ |DU ′ |. Thus, we can find a polynomial p such that, for every
concept C and every DU ′ ,

|CDU′ | ≤ |C| × (p(|DU ′ |))d(C).

• The size of D is linear in the size of U , and the size of DU ′ is linear in the size of
U . Thus, we can find a polynomial q such that, for every concept C and every
DU ′ ,

|CDU′ | ≤ |C| × (q(|U|))d(C).

It follows that the size of CDU′ is polynomial in the size of the update U .

• The number of disjuncts in A′ depends only on the size of U and is exponential
in U since there are exponentially many diagrams for rhs(U) and exponentially
many subsets U ′ of U . Thus, the size of A′ is exponential both in the size of A
and in the size of U .

These bounds hold independent of whether the numbers inside number restrictions
are coded in unary or in binary. Therefore, we obtain the following theorem:

Theorem 36. Let L ∈ {ALCO@,ALCIO@,ALCQO@,ALCQIO@}. Then there exist
polynomials p1, p2, and q such that, for every L-ABox A and every update U , there
exists an L-ABox A′ such that the following hold:

• A ∗ U ≡ A′;

• |A′| ≤ 2p1(|A|) · 2p2(|U|);

• A′ can be computed in time q(|A′|).

In Section 3.2, we will show that the exponential blowup cannot be entirely avoided
even for unconditional updates unless PTime = NC.

Logical Updates with Unconditional Updates

When we consider unconditional updates, the logical update A′ of the ABox A with
the update U is

A′ =
∨

D∈D

∧

ADU ∪ DU ∪ D
DU . (4)
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This is because we know that all of effects of an unconditional update are always
triggered, i.e., U ′ = U , and thus we do not need to combine the disjunction of all
of the subsets of U . Moreover, since the preconditions are of the form ⊤(a) and
updating ⊤(a) with any update results in ⊤(a), updated preconditions are not taken
into account. Note that the size of A′ is still exponential both in size of A and in the
size of U .

Logical Updates on Boolean ABoxes

In Section 2.2, Boolean ABoxes were introduced as a generalization of standard
ABoxes, and a close connection between Boolean ABoxes and the @ constructor was
established. We say that a DL L has logical updates on Boolean ABoxes if, for ev-
ery Boolean L-ABox A and update U , there exists a Boolean L-ABox A′ such that
M(A ∗ U) = M(A′). In fact, by using the arguments of Lemma 13, it is easy to see
that the expressive power of Boolean L-ABoxes is identical to the expressive power
of non-Boolean L@-ABoxes, for any DL L in {ALCO,ALCIO,ALCQO,ALCQIO}.
Hence, Theorem 35 and Theorem 36 can also be understood in terms of Boolean
ABoxes.

Due to the generalization of Lemma 13 to the relevant languages, the construction
presented in Section 3.1 can also be used to compute logical updates on Boolean
ABoxes: first convert the Boolean L-ABox into a non-Boolean L@-ABox, apply the
described construction, and then convert the resulting Boolean L@-ABox back into a
Boolean L-ABox.

Theorem 37. All of the following DLs have logical updates on Boolean ABoxes:
ALCO, ALCIO, ALCQO, ALCQIO, and their extensions with the @ constructor.

What is the size of updated Boolean ABoxes computed by the above approach? The
main observation is that, while the translation of Boolean L-ABoxes into non-Boolean
L@-ABoxes is polynomial, the reverse translation induces an exponential blowup.
More precisely, this blowup is exponential in the nesting depth of the @ constructor.
Since our translation CDU′ introduces nestings of the @ constructor whose depth is
linear in the size of C, this approach now produces a double exponential blowup both
in the size of the original ABox and in the size of the update for every L in Theorem 37
without the extension with the @ constructor.

Theorem 38. Let L ∈ {ALCO,ALCIO,ALCQO,ALCQIO}. Then there exist poly-
nomials p1, p2, and q such that, for every Boolean L-ABox A and every update U ,
there exists an Boolean L-ABox A′ such that the following hold:

• A ∗ U = A′;

• |A′| ≤ 22p1(|A|)
· 22p2(|U|)

;

• A′ can be computed in time q(|A′|).
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Note that for unconditional updates U , the double exponential blowup is only in the
size of the original ABox, i.e., |A′| ≤ 22p1(|A|)

· 2p2(|U|), since we do not need to update
the preconditions of U in this case.

For the DLs L@, with L as in Theorem 38, we have logical updates on Boolean
ABoxes whose size is as described in Theorem 36, i.e., only single exponential blowup
is induced: the final conversion step of Boolean L@-ABoxes into Boolean L-ABoxes
can simply be omitted. It is still an open question whether the upper bounds given
in Theorem 38 can be improved.

In [DLB+09a], a construction of logical updates is introduced directly on Boolean
ABoxes1 and thus the forementioned first conversion step can be ignored. There,
the logical update of a Boolean ABox A is obtained by updating inductively each
non-Boolean assertion in A.

Lemma 39 ([DLB+09a]). Update distributes over conjunction and disjunction of
Boolean assertions, i.e.,

(ϕ1 ⊠ ϕ2) ∗ U ≡ (ϕ1 ∗ U) ⊠ (ϕ2 ∗ U),

where ⊠ denotes either ∧ or ∨, ϕ1, ϕ2 are Boolean assertions, and U is an update.

3.2 A Lower Bound for the Size of Logical Updates

In this section, we establish a general lower bound on the size of the updated ABox:
even in propositional logic, the logical update of an ABox even with an unconditional
update can become exponential in the size of the whole input which consists of the
original ABox and the update. At least, this holds unless every PTime algorithm
is LogTime-parallelizable, i.e., unless the complexity classes PTime and NC are
identical. As discussed by Papadimitriou in [Pap94], this is believed to be similarly
unlikely as PTime = NP. This lower bound on the size of updated ABoxes transfers
to all DLs considered in this paper. Note that this result complements the one from
[CDLS99], where it is shown that an exponential blowup of propositional updates
cannot be avoided if arbitrary formulas are allowed as updates unless the first levels
of the polynomial hierarchy collapses. Our argument uses a much more restricted
form of updates (conjunctions of literals) and refers to a different complexity-theoretic
assumption.

We start with introducing the notions of concept, ABox, and update, restricted to
propositional logic. After that, we introduce the notion of a uniform interpolant of a
propositional concept and show that the size of any representation of the logical update
is polynomially bounded by the size of the smallest uniform interpolant. Finally, by
establishing the relationship between uniform interpolants and Boolean circuits, we
prove that if an exponential blowup in the input of logical update could be avoided then
for any given Boolean circuit, there would be a polynomially bounded propositional
concept which computes the same Boolean function: If such a concept always exists,
then PTime = NC.

1Techniques of optimizing the construction of logical updates are discussed in [DLB+09a] as well.
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For the following definitions, we fix an individual name a. A propositional ABox
A is of the form {C(a)} with C a propositional concept, i.e., a concept that uses only
the concept constructors ¬, ⊓, and ⊔ over NC. The top concept (⊤) and the bottom
concept (⊥) still stand for tautology and falsity, respectively. A propositional update
U contains only assertions of the form A(a) and ¬A(a), where A is a concept name.
Observe that propositional ABoxes and propositional updates are only allowed to refer
to the single, fixed individual name a.

For the semantics, we fix a single object x. Since we are dealing with propositional
ABoxes and updates, we assume that interpretations do not interpret role names, and
that interpretation domains have only a single element x with aI = x.

Recall (cf. Definition 26) that Sig(C) denotes the set of concept names used in
a concept C and that for a set S of concept names, I↾S denotes the reduct of an
interpretation I that interprets only the concept names in S. With this, we introduce
the notion of a uniform interpolant:

Definition 40 (S-Uniform Interpolant). Let C be a propositional concept and S ⊆
Sig(C). Then a propositional concept D is called a uniform S-interpolant of C iff

• Sig(D) ⊆ S, and

• {I↾S | x ∈ C
I} = {I↾S | x ∈ D

I}.

△

It is easily seen that, for any propositional concept C and any S ⊆ Sig(C), a uniform
S-interpolant of C exists [D’A98]. One way to construct it is to use the “truth table”
of C and make a disjunction of all reducts of models of C to S. Moreover, if D is a
uniform S-interpolant of C and there exists a concept E such that Sig(E) ⊆ S and
{D(a)} ≡ {E(a)}, then E is also a uniform S-interpolant of C.

In the next lemma, we illustrate how to employ the shortest uniform S-interpolant
of the propositional concept C to construct the smallest logical update A′ of the propo-
sitional ABox {C(a)}. We show that the size of any logical update is polynomially
bounded by the size of A′.

Lemma 41. Let A = {C(a)} be a propositional ABox, U a propositional update, S the
set of concept names in C not occurring in U , D the shortest uniform S-interpolant
of C, and

A′ = {a : (D ⊓
l

A(a)∈U

A ⊓
l

¬A(a)∈U

¬A)}.

Then we have the following:

1. A ∗ U ≡ A′;

2. if A ∗ U ≡ A′′, then |A′| ≤ |U|+ |A′′|.
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Proof.

1. To prove 1, we have to show that M(A ∗ U) = M(A′).

“⇒”: Let I, I ′ be interpretations such that I |= A and I =⇒U I
′. We show that

I ′ |= A′, i.e., I ′ |= U and I ′ |= D(a). Since I =⇒U I
′, I ′ |= U . Moreover, since

I =⇒U I
′ and the concept names in S do not appear in U , we have I↾S = I ′↾S.

This, together with I |= C(a) and the fact that D is the uniform S-interpolant
of C, yields that I ′ |= D(a) as required.

“⇐”: Let I ′ be an interpretation such that I ′ |= A′. In particular, I ′ |= D(a).
Since D is the uniform S-interpolant of C, there is thus an interpretation I such
that aI ∈ CI and I↾S = I ′↾S. W.l.o.g., we assume that I and I ′ interpret concept
names occurring neither in C nor in U in the same way. We have to show that
I =⇒U I

′ and I |= A. The latter is clear since aI ∈ CI . For the former, it is
enough to show that for every concept name A,

(a) aI ∈ AI′
\AI implies A(a) ∈ U , and

(b) aI ∈ AI \AI′
implies ¬A(a) ∈ U .

For (a), let aI ∈ AI′
\ AI . As I↾S = I ′↾S, we have A /∈ S. Therefore, A appears

in U . This can be either in the form A(a) or ¬A(a). As the second yields a
contradiction to aI ∈ AI′

and I ′ |= A′, we are done. Case (b) is symmetric.

2. Now for 2. Suppose that A ∗ U ≡ A′′. Then A′ ≡ A′′ and A′′ = {E(a)} for
some concept E. Since A′′ is a logical update of A with U , we know that all
concept names occurring in E occur in A ∪ U as well. Now, for all concept
names A such that A(a) ∈ U , replace every occurrence of A in E by ⊤. For
¬A(a) ∈ U , replace every occurrence of A in E by ⊥. Denote the resulting
concept by E′. Then A′′ ≡ {E′(a)} ∪ U , which, together with A′ ≡ A′′, yields
A′ ≡ {E′(a)} ∪ U . Moreover, as E′ and U do not have any concept names in
common and A′ ≡ {E′(a)}∪U , we have {D(a)} ≡ {E′(a)}. It follows that E′ is a
S-interpolant of C. We derive |D| ≤ |E′| because D is the shortest S-interpolant
of C. But then

|A′| ≤ |D|+ |U|+ 1 ≤ |E′|+ |U|+ 1 ≤ |E|+ |U|+ 1 ≤ |A′′|+ |U|.
❏

The size of uniform interpolants of propositional concepts is closely related to the
relative succinctness of propositional concepts and Boolean circuits [Pap94].

Definition 42 (Boolean Circuit). A Boolean circuit is a graph c = (v, e) such that

• v = {1, . . . , n};

• there is no circle in c;

• all nodes in the graph have indegree (number of incoming edges) equal to 0,
1, or 2, and each node having indegree 0 (respectively 1, 2) is labeled with an
element in {⊤,⊥, X1, . . . , Xm} (respectively {¬}, {⊓,⊔}) and only the node n
has outdegree (number of outgoing edges) equal to 0.
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3d
i=1

(Oi ↔ Ii).

Figure 6: An example of Boolean Circuits.

Every node of c is called a gate of c. Gates with indegree 0 are called the input gates
of c. The node n is called the output gate of c. The size of c, denoted with |c|, is the
number of nodes in c. △

As shown in [Pap94], both propositional concepts and Boolean circuits can be used
to compute Boolean functions. For example, the circuit c depicted in Figure 6 can
be thought of as a representation of the propositional concept (X1 ⊓ X2) ⊔ ¬X3. It
is known that, unless PTime = NC, there exists no polynomial p such that every
Boolean circuit c can be converted into a propositional concept Ec that computes
the same Boolean function as c and satisfies |Ec| ≤ p(|c|), see e.g., Exercise 15.5.4 of
[Pap94]. In the following, we show that non-existence of such a polynomial p implies
that an exponential blowup of the logical update in the size of the whole input cannot
be avoided.

Theorem 43. Unless PTime = NC, there exists no polynomial p such that, for all
propositional ABoxes A and propositional updates U , there exists a propositional ABox
A′ such that

• A ∗ U ≡ A′ and

• |A′| ≤ p(|A|+ |U|).

Proof. Assume that such a p exists. Take a Boolean circuit c with k inputs. Then
c can be translated into a propositional concept Dc by introducing concept names
I1, . . . , Ik for the inputs and, additionally, one auxiliary concept name for the output
of every gate. Dc can be constructed with the conjunction of concepts determined by
the labels of the nodes, like e.g., the concept Dc in Figure 6:

• If a node i is labeled with an element in {⊤,⊥, X1, . . . , Xm}, then i is an input
gate of c. Thus, there is a conjunct Ii ↔ Oi in Dc;

• If a node i is labeled with ¬, then there is a conjunct ¬Oj ↔ Oi in Dc, where Oj
is the concept name corresponding to the output of gate j that has an outgoing
edge to gate i;
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• If a node i is labeled with ⊓ (⊔, respectively), then there is a conjunct Oj1⊓Oj2 ↔
Oi (Oj1⊔Oj2 ↔ Oi, respectively) inDc, where Oj1 and Oj2 are the concept names
respectively corresponding to the output of gate j1 and gate j2 both of which
have an outgoing edge to gate i;

Let G be the set of concept names introduced for gate outputs, and let On ∈ G be the
concept name for the output of the gate computing the final output of c. It follows
from the construction of Dc that there exists a polynomial q such that, for all Boolean
circuits c,

1. |Dc| ≤ q(|c|) and

2. for all interpretations I, x ∈ OI
n iff c outputs “⊤” on input b1, . . . , bk, where for

all j ∈ {1, . . . , k}, bj = ⊤ if x ∈ IIj and bj = ⊥ otherwise.

Now, set S = (Sig(Dc) \ G) ∪ {On}. Then the shortest uniform S-interpolant Ec of
Dc also satisfies Point 2. Thus, Ec is a (notational variant of a) propositional concept
computing the same Boolean function as c.

Consider the ABox A = {Dc(a)} and any update U such that the set of concept
names occurring in U is G \ {On} and the size of U is polynomial in the size of A.2

Thus, the smallest logical update A′ of A with U defined in Lemma 41 is

A′ = {a : (Ec ⊓
l

A(a)∈U

A ⊓
l

¬A(a)∈U

¬A)}.

By the assumption, we know that |A′| ≤ p(|A|+ |U|), which, together with |Ec| ≤ |A
′|,

implies |Ec| ≤ p(|A|+|U|). Thus, there is a polynomial p′ such that |Ec| ≤ p
′(|c|) since

|Ec| ≤ p(|A|+ |U|), A = {Dc(a)}, |Dc| ≤ q(|c|), and the size of U is polynomial in the
size of A. However, it is known that this would not happen unless PTime = NC.

❏

Theorem 43 carries over to all DLs considered in this paper. In the terminology
of Cadoli et al. [CDLS99], this result states that the common update operators for
propositional theories are not logically compactable even for updates with conjunctions
of literals (unless PTime = NC).

An exponential blowup cannot be entirely avoided unless PTime = NC. However,
we should pay attention to whether the blowup occurs in the size of the original ABox
A or in the size of the update U . As the update will usually be rather small compared
to the original ABox, an exponential blowup in the size of U is much more acceptable
than an exponential blowup in the size of A. The algorithm given in Section 3.1
produces an exponential in both |A| and |U|. In the case of propositional logic, Winslett
[Win90] gives an algorithm that blows up exponentially only in the size of U , but not
in the size of A. We believe that, for the languages mentioned in Theorem 36, the
exponential blowup in |A| can not be avoided in general, while the proof are left as
an open problem. In Section 3.3 we exhibit two ways around the exponential blowup
in the size of A.

2Such an update U always exists, e.g., U = {A(a) | A ∈ G \ {On}}.
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3.3 Smaller Logical Updates

The size of logical updates computed in Section 3.1 is exponential in the size of the
original ABox. In this section, we explore different ways such that it becomes possible
to compute logical updates that are only polynomial in the size of the original ABox
(but still exponential in the size of the update).

The first, rather restrictive solution is to admit only concept assertions as effects
of updates. As a result, for any concept C, every role remains intact when CDU′ is
constructed since updates do not have effects on role names at all. Then, in all DLs
captured by Theorem 35, computing the concepts CDU′ becomes a lot simpler: just
replace every concept name A in C with

(A ⊔
⊔

¬A(a)∈DU′

{a}) ⊓ ¬(
⊔

A(a)∈DU′

{a}).

If modified in this way, the construction in Lemma 34 yields updated ABoxes that are
only polynomial in the size of the original ABox (but still exponential in |U|). The
bound is independent of the coding of numbers.

The second solution is to consider computing logical updates in a more expressive
DL. Intuitively, updates with only concept assertions do not lead to an exponential
blowup because we have available the Boolean constructors on concepts, nominals,
and the @ constructor. In standard DLs, none of these operators is available for roles:
we can neither construct the union of roles, nor their complement, nor a “nominal
role” {(a, b)} with a and b individual names. In this section, we investigate updated
ABoxes in a language in which such constructors are available. The language we
consider is closely related to those languages introduced and investigated in [Bor96,
LS01, LSW01], and is of almost the same expressive power as C2, the two-variable
fragment of first-order logic with counting quantifiers [GOR97].

Denote by ALCQIO+ the DL extending ALCQIO@ by means of the role con-
structors ∩ (role intersection), ∪ (role union), ¬ (negated roles), and {(a, b)} (nom-
inal roles). In this DL, complex roles are constructed starting from role names and
nominal roles, and then applying ∩, ∪, ¬, and the inverse role constructor ·−. The
definition of the size of a role r is extended in a straightforward way:

• |r| = 2 if r = {(a, b)} for some a, b ∈ NI;

• |r| = |s|+ 1 if r = s− or r = ¬s;

• |r| = |r1|+ |r2|+ 1 if r = r1 ∩ r2 or r = r1 ∪ r2.

The interpretation of complex roles is as expected:

• {(a, b)}I = {(aI , bI)}, for all a, b ∈ NI;

• (r1 ∩ r2)
I = rI1 ∩ r

I
2 and (r1 ∪ r2)

I = rI1 ∪ r
I
2 ;

• (¬r)I = (∆I)2 \ rI .
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We note that reasoning in ALCQIO+ is decidable: this DL can easily be embed-
ded into C2 and, therefore, ABox consistency is decidable in NExpTime even if the
numbers inside number restrictions are coded in binary [GOR97, PST00, PH05]. This
bound is tight as, already in ALCQIO, reasoning is NExpTime-hard [Tob00]. We are
now ready to show the following result which is independent of the coding of numbers
in qualified number restrictions:

Theorem 44. There exist polynomials p1, p2, and q such that, for every ALCQIO+-
ABox A and every update U , there is an ALCQIO+-ABox A′ such that

• A ∗ U ≡ A′;

• |A′| ≤ p1(|A|) · 2
p2(|U|);

• A′ can be computed in time q(|A′|).

Proof. We modify the proof of Theorem 36. For ALCQIO+, the construction of the
concepts CDU′ is much simpler: it suffices to replace every concept name A in C with

(A ⊔
⊔

¬A(a)∈DU′

{a}) ⊓ ¬(
⊔

A(a)∈DU′

{a})

and every role name r in C with

(r ∪
⋃

¬r(a,b)∈DU′

{(a, b)}) ∩ ¬(
⋃

r(a,b)∈DU′

{(a, b)}).

The concepts CDU′ are therefore of size polynomial in the size of C. The ABox A′ can
then be constructed in the same way as in the proof of Theorem 36 and is polynomial
in the size of A, but exponential in the size of the update U . ❏

The asymmetry w.r.t. concept and role constructors available in standard DLs
leads to a more complicated construction of updated ABoxes. Computing logical
updates in ALCQIO+ gives smaller logical updates. However, there exist no state-
of-the-art DL reasoners which support ALCQIO+.3 In principle, reasoning in such
DLs can also be done with a first-order logic theorem prover. In [DLB+09a], some
experimental results for computing logical updates in DLs with and without additional
role constructors are presented.

An alternative to working with a DL such as ALCQIO+, is to work directly in
C2, the two-variable fragment with counting. Then, a result analogous to Theorem 44
is easily obtained.

3.4 Iterated Logical Updates

There are applications in which the domain of interest evolves continuously. In such
an environment, it is necessary to update an ABox over and over again. It is clearly
important that the exponential blowups of the individual updates do not add up. The
following theorem shows that this is indeed not the case. It holds independently of
the coding of numbers in qualified number restriction.

3The DL reasoner MetTel supports ALCIO+ [ST07].
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Theorem 45. There exist polynomials p1, p2 such that the following holds: for all
ABoxes A0, . . . ,An and conditional updates U1, . . . ,Un, if Ai is the ABox computed
by our algorithm when Ai−1 is updated with Ui, for 0 < i ≤ n, then

|An| ≤ 2p1(|A0|) · 2p2(|U1|+···+|Un|).

Proof. As argued in Section 3.1, for a concept C, when CDU′ is constructed, its size
has the following upper bound:

|CDU′ | ≤ |C| × (q(|U|))d(C),

where q is a polynomial and d(C) is the maximal nesting depth of qualified number
restrictions in C.

The crucial observation now is that, for every concept C and every DU ′ , d(C) =
d(CDU′ ). The maximal nesting depth of qualified number restrictions does not increase
when forming CDU′ . It follows that there exists a polynomial q′ such that for every
concept C and sequence of unconditional updates U ′

1, . . . ,U
′
i ,

|(CU ′
1)U

′
2···U

′
i | ≤ |C| × (q′(|U ′

1|+ · · ·+ |U
′
i |))

d(C).

Note that for every conditional update U , every diagram D of rhs(U), and every
U ′ ⊆ U , DU ′ is linear in the size of U . There are exponentially many disjuncts in the
size of U when the logical update of an ABox A with U is constructed.

A close inspection of the construction ofAi+1 fromAi using the concepts (CU ′
1)U

′
2···U

′
i

shows that there exists an additional polynomial p such that, for all i,

|Ai+1| ≤ 2p(|U1|+···+|Ui|) ×
∑

a:C∈A0

(|C| × (q′(|U1|+ · · ·+ |Ui|))d(C))+

i
∑

j=1

(

2p(|Uj |+···+|Ui|) ×
∑

a:C/ψ∈Uj

(|C| × (q′(|Uj |+ · · ·+ |Ui|))
d(C))

)

The first part yields the upper bound on the size of assertions obtained by updating
the assertions from A0 while the second part provides the upper bound on the size of
assertions obtained by updating the assertions which are preconditions in Uj . Note
that the preconditions in Uj are only updated by the sequence of updates Uj , . . . ,Ui.

The upper bound claimed in the theorem follows immediately from the above
inequation. ❏

Note that for an ABox A1 with the size 2p1(|A0|) · 2p2(|U1|) for some ABox A0 and
some update U1, the size of the logical update A2 of A1 with U2 is

2p1(2p1(|A0|)·2p2(|U1|)) · 2p2(|U2|)

in the worst case, which means that exponential blowups could add up. However, the
above proof shows if A1 is the updated ABox then the worst case does not happen
since for the updated ABox A1 computed in Section 3.1, the nesting depth of qualified
number restrictions is polynomially bounded by |A0|.
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If we consider only unconditional updates, alternatively, the updated ABox An
can be constructed by updating A0 with a single update U which is determined by
U1, . . . ,Un:

U = (. . . (U1 \ ¬U2) ∪ U2 · · · \ ¬Un) ∪ Un. (5)

It is not hard to see that for all I and I ′, if I =⇒U1···Un I
′ then I =⇒U I

′ and vice
versa. Thus, (. . . (A∗U1) . . . ∗Un) ≡ A∗U . If we compute An in this way, we need to
store the original ABox A0 and the history of updates which have been used to update
A0 so far. It is easy to see that |U| ≤ |U1| + · · · + |Un|. It follows from Theorem 36
that the size of An is bounded by 2p1(|A0|) · 2p2(|U1|+···+|Un|) which coincides with the
one in Theorem 45.

For the ways proposed in Section 3.3 to achieve smaller logical updates, the size of
the updated ABox is still polynomially bounded by the size of the original ABox when
we consider iterated updates. Moreover, the exponential blowups caused by individual
updates do not add up either, which can be shown similarly to Theorem 45.
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Chapter 4

Projective Updates

The logical updates constructed in Chapter 3 are of exponential size in both the
original ABox and the update. The aim of the current chapter is to show that one
can construct updates which are of polynomial size in the original ABox and the
update when considering projective instead of logical updates. We will show that this
holds for all DLs between ALCO and ALCQIO@. In Section 4.1, such a polynomial
construction of projective updates is presented for a given ABox A and an update U .
We show in Section 4.2 that the direct application of this construction to updating
an ABox A iteratively leads to an exponential blowup in the size of A. It is left as an
open problem if this exponential blowup can be entirely avoided. Instead of computing
projective updates iteratively, we exhibit a direct construction of a projective update
of the original ABox with a finite sequence of updates. The updated ABox constructed
in this way is bounded polynomially in the size of the input.

4.1 Computing Projective Updates in ALCQIO@

The central idea of achieving a more succinct construction of projective updates,
compared to logical updates, is to introduce new (concept or role) names to describe
the corresponding concepts and roles before the application of the update, where new
means that the names occur neither in the original ABox nor in the update. First, we
introduce some notions. Consider an ABox A and an update U . Let Sub(U) be the
set defined as follows:

Sub(U) =
⋃

ϕ/ψ∈U

Sub({ϕ,ψ}).

We say that a concept name or a role name is flexible in U if it occurs in the effects
of U . We define the set Cfle as follows:

Cfle = {C | C ∈ Sub(A) ∪ Sub(U) and C contains a flexible name in U}.

The set Cfle contains all of the subconcepts in the input whose interpretations can be
changed by U . We use Rfle to denote the set of flexible role names in U . We introduce

a new concept name A
(0)
C for each C ∈ Cfle and a new role name s

(0)
r for each role

name r ∈ Rfle. Intuitively, those new concept names (role names, respectively) are

55
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used to denote the corresponding concepts (role names, respectively) before executing
the update. More specifically,

• for every concept C ∈ Cfle, A
(0)
C shall represent the interpretation of C before

updating, and

• for every role name r ∈ Rfle, s
(0)
r shall represent the interpretation of r before

updating, but only with respect to named objects.

For a concept C and a role name r, we respectively define C(0) and r(0) as follows:

C(0) =

{

A
(0)
C if C ∈ Cfle

C otherwise
r(0) =

{

s
(0)
r if r ∈ Rfle

r otherwise

We define (r−)(0) = (r(0))− for a role name r. A
(0)
C and s

(0)
r define only on the concepts

and role names containing flexible names while the function ·(0) defines on arbitrary
concepts and roles. For example, for a concept C 6∈ Cfle, the interpretation of C is
the same before and after the application of the update since C does not contain any
flexible name.

Let rhs(U) be the set of all effects of the update U . We use Obj(U) to denote the
set of all individual names occurring in rhs(U). Let ϕ be an assertion. We use ϕ(0) to
denote the assertion defined as follows:

ϕ(0) =







C(0)(a) if ϕ = C(a)

(¬)r(0)(a, b) if ϕ = (¬)r(a, b) ∧ {a, b} ⊆ Obj(U)
(¬)r(a, b) if ϕ = (¬)r(a, b) ∧ {a, b} 6⊆ Obj(U)

We define a projective update A′ which is a union of a number of ABoxes. The

following ABox Aini simulates the ABox A using the new concept names A
(0)
C and roles

names s
(0)
r whenever the interpretation of C and r is possibly affected by the update

U :
Aini = {ϕ(0) | ϕ ∈ A}.

The following ABox states when the interpretation of roles before and after the update
definitely remains the same:

Ar = {(∃s(0)r .{b} ↔ ∃r.{b})(a) | {r(a, b),¬r(a, b)}∩rhs(U) = ∅∧a, b ∈ Obj(U)∧r ∈ Rfle}.

Let Obj be the set of all individual names occurring in A or U . Now we choose a new
individual name a∗ and a new role u and define the ABox Aaux as follows:

Aaux = {u(a∗, b) | b ∈ Obj}.

As stated in Aaux, the role name u connects the individual name a∗ to all individual
names occurring in the input. Let p(ϕ) be the abbreviation for an assertion ϕ defined
as follows:

p(ϕ) =







∃u.({a} ⊓ C) if ϕ = C(a)
∃u.({a} ⊓ ∃r.{b}) if ϕ = r(a, b)
∃u.({a} ⊓ ∀r.¬{b}) if ϕ = ¬r(a, b)
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It follows from the definition of Aaux that in every model of Aaux, a
∗ : p(ϕ) holds iff

ϕ holds. With the help of p(ϕ), the ABox AU states that for all ϕ/ψ ∈ U , if ϕ holds
before then ψ holds after applying U :

AU = {a∗ :
l

ϕ/ψ∈U

(p(ϕ(0))→ p(ψ))}.

It is also necessary to ensure that untriggered effects do not make any changes. To
this end, AU is defined as the following ABox:

AU = {a∗ :
l

ψ∈rhs(U)

(

(
l

ϕ/ψ∈U

¬p(ϕ(0)))→ (p(ψ(0))↔ p(ψ))
)

}.

Finally, we relate the interpretation of the new concept names A
(0)
C to the interpreta-

tion of the concepts C. Here we give the intuitions for two cases: C is a concept name
or an at-least number restriction. All other cases can be understood in a similar way.

• For a concept name A, {a | A(a) ∈ rhs(U) ∨ ¬A(a) ∈ rhs(U)} is the set of
all individual names on which U can make changes about A. As a result, the
interpretation of A will remains the same on the objects of the domain that are
not assigned to any individual name in this set.

• For an at-least number restriction (> n r C), the role r before applying the
update is represented by different roles depending on the objects connected
by r: if both of the objects are named, then it is represented by r(0); by r
otherwise. Thus, the objects in (> n r C) are divided into two parts: anonymous
objects and named objects. For the latter ones, their role successors are divided
accordingly as well.

The concept Cbi is a conjunction over all concepts from Figure 7, where the left
hand side ranges over Cfle. We want to state that the concept Cbi holds on all relevant
objects of the domain, i.e., the objects on which the changes of interpretation caused
by an update may affect the interpretation of concepts in Cfle. To achieve this, we
associate each concept C with a set PC of words r1 · · · rn ∈ NR

∗ inductively defined as
follows:

PC = {ǫ} if C is ⊤,⊥, A or {a},

for some A ∈ NC and some a ∈ NI

PC1⊓C2 = PC1 ∪ PC2

PC1⊔C2 = PC1 ∪ PC2

P¬C = PC

P@aC = PC

P(>m r C) = {rw | w ∈ PC} ∪ {ǫ}

P(6m r C) = {rw | w ∈ PC} ∪ {ǫ}
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(

A
(0)
A ⊓ ¬(

⊔

{A(a),¬A(a)}∩rhs(U) 6=∅

{a})
)

↔
(

A ⊓ ¬(
⊔

{A(a),¬A(a)}∩rhs(U) 6=∅

{a})
)

, if A ∈ NC

A
(0)
{a} ↔ {a} A

(0)
⊤ ↔ ⊤ A

(0)
⊥ ↔ ⊥

A
(0)
@aC

↔ @aA
(0)
C A

(0)
¬C ↔ ¬A

(0)
C

A
(0)
C⊓D ↔ C(0) ⊓D(0) A

(0)
C⊔D ↔ C(0) ⊔D(0)

A
(0)
(>n r C) ↔ ((

l

a∈Obj(U)

¬{a}) ⊓ (> n r C(0))) ⊔

(

(
⊔

a∈Obj(U)

{a}) ⊓
⊔

n1+n2=n
n2≤#Obj(U)

(

(> n1 r ((
l

b∈Obj(U)

¬{b}) ⊓ C(0)))

⊓(> n2 r
(0) ((

⊔

b∈Obj(U)

{b}) ⊓ C(0)))
)

)

A
(0)
(6n r C) ↔ ((

l

a∈Obj(U)

¬{a})→ (6 r C(0) )) ⊓

(

(
⊔

a∈Obj(U)

{a})→
l

n1+n2=n+1
n2≤#Obj(U)

(

¬(> n1 r ((
l

b∈Obj(U)

¬{b}) ⊓ C(0)))

⊔¬(> n2 r
(0) ((

⊔

b∈Obj(U)

{b}) ⊓ C(0)))
)

)

Figure 7: Bi-implications.

Intuitively, a word r1 · · · rn ∈ PC stands for a path composed of roles in C. For
instance, P∀r.(∀s.A⊓∃r−.B) = {ǫ, r, rs, rr−}. We define

Pfle =
⋃

D∈Sub(A)∪Sub(U)

PD.

Since updates can only change the interpretations of concept names and role names
on named objects, for all interpretations I and for all ALCQIO@-concept assertions
C(a), whether I |= C(a) depends only on those x ∈ ∆I such that x is reachable from
a named object in I via a path in Pfle. The following ABox Arel ensures that Cbi holds
at all of such x. We use ∀ǫ.C to denote C and ∀r1 · · · rn.C to denote ∀r1. . . .∀rn.C.
Now we define the ABox Arel as follows:

Arel = {∀uw.Cbi(a
∗) | w ∈ Pfle}.

Finally, we define

A′ = Aini ∪ Ar ∪ Aaux ∪ AU ∪ AU ∪ Arel. (6)
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In the next lemma, we show that the above ABox A′ is a projective update of A
with U :

Lemma 46. Let A be an ALCQIO@-ABox and U an update. Let A′ be the ALCQIO@-
ABox defined as (6). Then, A ∗ U ≡P A′.

Proof. We show that M(A ∗ U)↾S = M(A)↾S, where S is defined as in Definition 27.
“⊆”:
Assume that there is an I in M(A ∗ U). Then there exists a model I0 of A with

I0 =⇒U I. We have to show that there exists a model I ′ of A′ such that I↾S = I ′↾S.
We define I ′ by extending I↾S as follows:

(a∗)I
′

= x, for some x ∈ ∆I ,

uI
′

= {((a∗)I , bI) | b ∈ Obj},

(r(0))I
′

= rI0 , for r ∈ Rfle,

(A
(0)
C )I

′
= CI0 , for C ∈ Cfle.

Claim 1. For all concepts C ∈ Sub(A)∪Sub(U) and all objects d ∈ ∆I(= ∆I0 = ∆I′
),

d ∈ CI0 iff d ∈ (C(0))I
′
.

The proof of the claim: If C 6∈ Cfle, then C(0) = C. Thus, d ∈ CI0 iff (since I0 =⇒U I
and C 6∈ Cfle) d ∈ C

I iff (since I ′↾S = I↾S and Sig(C) ⊆ S) d ∈ CI′
iff d ∈ (C(0))I

′
. If

C ∈ Cfle, then C(0) = A
(0)
C . Thus, d ∈ CI0 iff (by the definition of I ′) d ∈ (A

(0)
C )I

′
iff

d ∈ (C(0))I
′
. This finishes the proof of Claim 1.

Claim 2. For all x, y ∈ ∆I , if either x 6= aI or y 6= aI for all a ∈ Obj(U), then
for all role names r in S, (x, y) ∈ rI0 iff (x, y) ∈ rI

′
. Otherwise, (x, y) ∈ rI0 iff

(x, y) ∈ (r(0))I
′
.

The proof of the claim: If either x 6= aI or y 6= aI for all a ∈ Obj(U), then (x, y) ∈ rI0

iff (x, y) ∈ rI , since I0 =⇒U I. Moreover, we have (x, y) ∈ rI
′

iff (x, y) ∈ rI since
I↾S = I ′↾S and r is in S. Thus, we obtain that (x, y) ∈ rI0 iff (x, y) ∈ rI

′
.

If there are a, b ∈ Obj(U) such that x = aI and y = bI , then r ∈ Rfle implies

r(0) = s
(0)
r . By the definition of I ′, we have (x, y) ∈ (s

(0)
r )I

′
iff (x, y) ∈ rI0 . If r 6∈ Rfle,

then r(0) = r. Moreover, since I0 =⇒U I and r 6∈ Rfle, we have (x, y) ∈ rI0 iff
(x, y) ∈ rI . By the definition of I ′, we have (x, y) ∈ rI

′
iff (x, y) ∈ rI . Thus, we

obtain that (x, y) ∈ rI0 iff (x, y) ∈ rI
′
. This finishes the proof of Claim 2.

Note that it follows from Claim 2 that for all x, y ∈ ∆I , if either x 6= aI or y 6= aI

for all a ∈ Obj(U), then for all role names r in S, (x, y) ∈ (r−)I0 iff (x, y) ∈ (r−)I
′
.

Otherwise, (x, y) ∈ (r−)I0 iff (x, y) ∈ ((r−)(0))I
′
.

Claim 3. For all x ∈ ∆I′
, x ∈ (Cbi)

I′
.

Since Cbi is the conjunction of concepts from Figure 6, where the left hand side ranges
over E ∈ Cfle, it is enough to show that for all E ∈ Cfle, x is in the interpretation of
the corresponding concept to E. We prove this by induction on the structure of E.

E = A for some A ∈ NC: We show that

x ∈ ((A
(0)
A ⊓ ¬(

⊔

{A(a),¬A(a)}∩rhs(U) 6=∅

{a}))↔ (A ⊓ ¬(
⊔

{A(a),¬A(a)}∩rhs(U) 6=∅

{a})))I
′
.
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Let X = {aI
′
| A(a) ∈ rhs(U) or ¬A(a) ∈ rhs(U)}. It suffices to show that for all

x 6∈ X, x ∈ (A
(0)
A )I

′
iff x ∈ AI′

. This holds since x ∈ (A
(0)
A )I

′
iff (by the definition of

I ′) x ∈ AI0 iff (since I0 =⇒U I and x is not in X) x ∈ AI iff (since I↾S = I ′↾S and A

is in S) x ∈ AI′
.

The cases E = ⊤, E = ⊥, E = {a}, E = @aC, E = ¬C, E = C⊓D and E = C⊔D
follow directly from the semantics of the concept and the induction hypothesis.

Now we show the case of E = (> n r C). Let Y be the concept on the right-hand

side of ↔. It is enough to show that x ∈ (A
(0)
(>n r C))

I′
iff x ∈ Y I′

.

For all x ∈ ∆I′
, x ∈ (A

(0)
(>n r C))

I′
iff (by the definition of I ′) x ∈ (> n r C)I0

iff (by semantics of (> n r C)) iff there are pairwise different d1, . . . , dn such that
(x, di) ∈ r

I0 , di ∈ C
I0 for all i ∈ {1, . . . , n} iff

• x 6= aI0 for all a ∈ Obj(U) and there are pairwise different d1, . . . , dn such that
(x, di) ∈ r

I0 , di ∈ C
I0 for all i ∈ {1, . . . , n}, or

• x = aI0 for some a ∈ Obj(U) and there are pairwise different

d1, . . . , dn1 , e1, . . . , en2

such that n1 + n2 = n, n2 ≤ #Obj(U), for all i ∈ {1, . . . , n1}, we have (x, di) ∈
rI0 , di ∈ C

I0 , and di 6= bI
′

for all b ∈ Obj(U), and for all i ∈ {1, . . . , n2}, we
have (x, ei) ∈ r

I0 , ei ∈ C
I0 , di = bI0 for some b ∈ Obj(U).

iff

• x 6= aI
′
for all a ∈ Obj(U) and there are pairwise different d1, . . . , dn such that

(x, di) ∈ r
I′

(by Claim 2), di ∈ (C(0))I
′
(by Claim 1) for all i ∈ {1, . . . , n}, or

• x = aI
′
for some a ∈ Obj(U) and there are pairwise different

d1, . . . , dn1 , e1, . . . , en2

such that n1+n2 = n, n2 ≤ #Obj(U), for all i ∈ {1, . . . , n1}, we have (x, di) ∈ r
I′

(by Claim 2), di ∈ (C(0))I
′

(by Claim 1), and di 6= bI
′

for all b ∈ Obj(U), and
for all i ∈ {1, . . . , n2}, we have (x, ei) ∈ (r(0))I

′
(by Claim 2), ei ∈ (C(0))I

′
(by

Claim 1), di = bI for some b ∈ Obj(U).

iff (by the semantics of Y ) x ∈ Y I′
.

The case E = (6 n r C) can be shown similarly to the previous case. This com-
pletes the proof of Claim 3.

We are now ready to show I ′ |= A′, which implies I↾S ∈M(A′)↾S since I↾S = I ′↾S.

• I ′ |= Aini:

– For all C(0)(a) ∈ Aini, we know that C(a) is inA. I0 |= A implies I0 |= C(a)
and thus aI0 ∈ CI0 . By Claim 1 and aI0 = aI

′
, we have aI

′
∈ (C(0))I

′
.

Hence, I ′ |= C(0)(a).
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– For all r(a, b) ∈ Aini, by the definition of Aini, we know that r(a, b) ∈ A
and {a, b} 6⊆ Obj(U). I0 |= A implies I0 |= r(a, b). By Claim 2, we get
I ′ |= r(a, b).

– For all r(0)(a, b) ∈ Aini, we know that r(a, b) is in A and {a, b} ⊆ Obj(U).
I0 |= A implies I0 |= r(a, b). By Claim 2, we get I ′ |= r(0)(a, b).

– The cases ¬r(a, b) ∈ Aini and ¬r(0)(a, b) ∈ Aini can be proved similarly.

• I ′ |= Ar: It is enough to show that for all r ∈ Rfle, a, b ∈ Obj(U) such that

{r(a, b),¬r(a, b)} ∩ rhs(U) = ∅, I ′ |= ∃s
(0)
r .{b}(a) iff I ′ |= ∃r.{b}(a), which is

equivalent to showing that I ′ |= s
(0)
r (a, b) iff I ′ |= r(a, b).

Since {r(a, b),¬r(a, b)} ∩ rhs(U) = ∅ and I0 =⇒U I, we have I0 |= r(a, b) iff

I |= r(a, b). By the definition of I ′, we know that (s
(0)
r )I

′
= rI0 and rI

′
= rI .

Hence, I ′ |= s
(0)
r (a, b) iff I0 |= r(a, b), and I ′ |= r(a, b) iff I |= r(a, b). Thus,

I ′ |= s
(0)
r (a, b) iff I ′ |= r(a, b).

• I ′ |= Aaux: This is a direct consequence of the definition of uI
′
.

• I ′ |= AU : By the definition of I ′ and Aaux, it is enough to show that for all
ϕ/ψ ∈ U , I ′ |= ϕ(0) implies I ′ |= ψ. Consider ϕ/ψ ∈ U . If ϕ is a concept
assertion, then by Claim 1 we know that I ′ |= ϕ(0) implies that I0 |= ϕ. If ϕ is
a role assertion, then by Claim 2 we know that I ′ |= ϕ(0) implies that I0 |= ϕ.
Since I0 =⇒U I, we know that I0 |= ϕ implies I |= ψ. Since Sig(ψ) ⊆ S and
I↾S = I ′↾S, we know that I |= ψ implies I ′ |= ψ.

• I ′ |= AU can be proved similarly to I ′ |= AU .

• I ′ |= Arel: This follows from Claim 3 and the fact that I ′ |= Aaux.

“⊇”:

Assume that I |= A′. We construct I0 such that I0 |= A and I0 =⇒U I. Thus,
I↾S ∈ M(A ∗ U)↾S. Define I0 as follows: ∆I0 = ∆I ; for all individual names a,
aI0 = aI ; and for all concept names A 6∈ Cfle, set AI0 = AI . For all concept names
A ∈ Cfle, set d ∈ AI0 iff:

1. d ∈ AI and d 6∈ {aI | a ∈ Obj(U)}; or

2. d ∈ (A
(0)
A )I and d ∈ {aI | a ∈ Obj(U)}.

Similarly, for all role names r 6∈ Rfle, set rI0 = rI . For all role names r ∈ Rfle, set
(d1, d2) ∈ r

I0 iff:

1. (d1, d2) ∈ r
I and {d1, d2} 6⊆ {a

I | a ∈ Obj(U)}; or

2. (d1, d2) ∈ (s
(0)
r )I and {d1, d2} ⊆ {a

I | a ∈ Obj(U)}.
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Figure 8: Concept descriptionsD,E, paths w, v of roles, individual name b and domain
element d in the proof of Lemma 46.

It follows from the definition of I0 that

for all x, y ∈ ∆I , if either x 6= aI or y 6= aI for all a ∈ Obj(U), then for
all role names r in S, (x, y) ∈ rI0 iff (x, y) ∈ rI . Otherwise, (x, y) ∈ rI0

iff (x, y) ∈ (r(0))I .

(a)

As an immediate result of (a), we have that for all x, y ∈ ∆I , if either x 6= aI

or y 6= aI for all a ∈ Obj(U), then for all role names r in S, (x, y) ∈ (r−)I0 iff
(x, y) ∈ (r−)I . Otherwise, (x, y) ∈ (r−)I0 iff (x, y) ∈ ((r−)(0))I .

We show that I0 |= A and I0 =⇒U I.
Let w = r1 · · · rn be a path of roles and I an interpretation. We define wI as

follows:

wI =

{

{(x, x) | x ∈ ∆I} if n = 0
{(x0, xn) | ∃x1, . . . , xn−1 ∈ ∆I .∀i < n : (xi, xi+1) ∈ r

I
i+1} if n > 0

Let D be a concept such that D ∈ Sub(A) ∪ Sub(U) and E a subconcept of D. Let
w ∈ PD be a path such that wv ∈ PD for all v ∈ PE . The relationships between
those concepts and paths of roles are displayed in Figure 8. Moreover, let d ∈ ∆I be
such that (bI , d) ∈ wI for some individual name b occurring in A or U . We show by
induction on the structure of E that:

d ∈ EI0 iff d ∈ (E(0))I . (b)

E = A, a concept name. If A 6∈ Cfle, then A(0) = A and thus (b) is true by the

definition of AI0 . If A ∈ Cfle, then A(0) = A
(0)
A . If d 6∈ {aI | a ∈ Obj(U)}, then

d ∈ (A
(0)
A )I iff (since I |= Arel ∪Aaux) d ∈ A

I iff (by the definition of AI0) d ∈ AI0 . If

d ∈ {aI | a ∈ Obj(U)}, then d ∈ AI0 iff d ∈ (A
(0)
A )I by the definition of AI0 .

The cases E = ⊤, E = ⊥, E = {a}, E = @aF , E = ¬F , E = F ⊓G and E = F ⊔G
follow directly from the semantics of the concept and the induction hypothesis.

Now we show the case of E = (> n r F ). Then wr is in PD, and (wr)v is in PD
for all v ∈ PF . If E 6∈ Cfle, then E(0) = E and thus (b) is true by definition of I0. If

E ∈ Cfle, then E(0) = A
(0)
E . We distingush the following cases:

• d 6∈ {aI | a ∈ Obj(U)}. We have that d ∈ (A
(0)
E )I iff (since I |= Arel ∪ Aaux)

d ∈ (> n r F (0))
I
. By (a), for all x ∈ ∆I , we have that (d, x) ∈ rI iff (d, x) ∈ rI0 .
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Moreover, (d, x) ∈ rI implies that (bI , x) ∈ (wr)I . By I.H., it holds that x ∈ F I0

iff x ∈ (F (0))I . Thus we obtain that d ∈ (A
(0)
E )I iff d ∈ (> n r F )I0 , i.e., d ∈ EI0 .

• d ∈ {aI | a ∈ Obj(U)}. We have that d ∈ (A
(0)
E )I iff (since I |= Arel ∪ Aaux)

for some n1, n2 such that n1 + n2 = n and n2 ≤ #Obj(U) it holds that d ∈
(> n1 r (

d
b∈Obj(U) ¬{b} ⊓ F

(0)))I and d ∈ (> n2 r
(0) (

⊔

b∈Obj(U){b} ⊓ F
(0)))I .

Analogously to the previous case it can be shown that

d ∈ (> n1 r (
l

b∈Obj(U)

¬{b} ⊓ F (0)))I iff d ∈ (> n1 r (
l

b∈Obj(U)

¬{b} ⊓ F ))I0 .

Moreover, if x = cI , for some c ∈ Obj(U), by (a), we have (d, x) ∈ rI0 iff
(d, x) ∈ (r(0))I . Since F ∈ Sub(A) ∪ Sub(U), F is a subconcept of F , ǫ ∈ PF ,
(cI , x) ∈ ǫI and ǫv ∈ PF for all v ∈ PF , by I.H., we have that cI ∈ F I0 iff
cI ∈ (F (0))I . Thus, we obtain that d ∈ (> n2 r

(0) (
⊔

b∈Obj(U){b} ⊓ F
(0)))I iff

d ∈ (> n2 r (
⊔

b∈Obj(U){b} ⊓ F ))I0 .

Summing up the previous equivalences, we obtain that d ∈ (A
(0)
E )I iff d ∈ EI0 .

The case E = (6 n r C) can be shown similarly to the previous case. This finishes
the proof of (b).

We now show that I0 |= A. Let C(a) be a concept assertion in A. Then, I |=
C(0)(a). Since C is in Sub(A) ∪ Sub(U), C is a subconcept of itself, the empty word
ǫ is in PC , ǫv ∈ PC for all v ∈ PC , and (aI , aI) ∈ ǫI , we obtain by (b) that CI0 iff
(C(0))I . Thus, I |= C(0)(a) implies I0 |= C(a). For all role assertions ϕ ∈ A, it follows
from (a) that I |= ϕ(0) implies that I0 |= ϕ.

It is not hard to see that I |= Aaux ∪ AU ∪ AU implies

that for all ϕ/ψ ∈ U , I0 |= ϕ implies I |= ψ, and that for all ψ ∈ rhs(U),
if I0 6|= ϕ for all ϕ with ϕ/ψ ∈ U , then I0 |= ψ iff I |= ψ.

(c)

It remains to show that I0 =⇒U I. First, interpretations of all concept names
A 6∈ Cfle and all role names r 6∈ Rfle are identical in I0 and I. Second, I and I0
interpret all concept names A ∈ Cfle and all role names r ∈ Rfle in the same way on
the part of the domain ∆I unaffected by the update U , i.e., on ∆I \{aI | a ∈ Obj(U)}.

Consider x = aI for some a ∈ Obj(U). If {A(a),¬A(a)} ∩ rhs(U) 6= ∅, then there
exists some ϕ/ψ ∈ U such that ψ = A(a) or ψ = ¬A(a). Thus, (c) guarantees that the
interpretations of A in I0 and I respect I0 =⇒U I on x. If {A(a),¬A(a)}∩rhs(U) = ∅,

then I |= Arel∪Aaux implies that x ∈ (A
(0)
A )I iff x ∈ AI . By (c), x ∈ (A

(0)
A )I iff x ∈ AI0 .

Thus, we have x ∈ AI iff x ∈ AI0 .

Likewise, consider x = aI and y = bI for some a, b ∈ Obj(U). If {r(a, b),¬r(a, b)}∩
rhs(U) 6= ∅, then there exists some ϕ/ψ ∈ U such that ψ = r(a, b) or ψ = ¬r(a, b).
Thus, (c) ensures that rI0 and rI respect I0 =⇒U I on (x, y). If {r(a, b),¬r(a, b)} ∩

rhs(U) = ∅, then I |= Ar implies that (x, y) ∈ (s
(0)
r )I0 iff (x, y) ∈ rI . By the definition

of rI0 , (x, y) ∈ (s
(0)
r )I0 iff (x, y) ∈ rI0 . Thus, we have (x, y) ∈ rI0 iff (x, y) ∈ rI .

Overall, we obtain that I0 =⇒U I. ❏



64 Projective Updates

A
(0)
∃r.C ↔ (

l

a∈Obj(U)

¬{a}) ⊓ ∃r.C(0) ⊔

(

(
⊔

a∈Obj(U)

{a}) ⊓
(

∃r.((
l

b∈Obj(U)

¬{b}) ⊓ C(0))

⊔∃r(0).((
⊔

b∈Obj(U)

{b}) ⊓ C(0))
)

)

A
(0)
∀r.C ↔ ((

l

a∈Obj(U)

¬{a})→ ∀r.C(0)) ⊓

(

(
⊔

a∈Obj(U)

{a})→
(

∀r.((
⊔

b∈Obj(U)

{b}) ⊔ C(0))

⊓∀r(0).((
l

b∈Obj(U)

¬{b}) ⊔ C(0))
)

)

Figure 9: Bi-implications for existential and value restrictions.

For DLs L between ALCO and ALCIO@, the bi-implications of the concepts
with existential and value restrictions in Cbi are displayed in Figure 9. As a direct
consequence of Lemma 46 and the construction of projective updates, we achieve the
following theorem:

Theorem 47. All of the following DLs have projective updates: ALCO, ALCIO,
ALCQO, ALCQIO, and their extensions with the @ constructor.

Size of Projective Updates

It is not hard to see that |Aini| = O(|A|), |Ar| = O(|U|3), |Aaux| = O(|A| + |U|),
|AU | = O(|U|), and |AU | = O(|U|). For every concept D, the size of bi-implication
in Figure 7 is of size O(|U| · (|U| + |D|)). It is clear that #Cfle ≤ |A| + |U| and
for every D ∈ Cfle, |D| ≤ |A| + |U|. Thus, |Cbi| = O(|U| · (|U| + |A|)2). For every
w = r1 · · · rn ∈ Pfle, n ≤ |A|+ |U| and #Pfle ≤ |A|+ |U|. Thus,

|Arel| = O((|A|+ |U|+ |U| · (|U|+ |A|)2) · (|U|+ |A|))

= O(|U| · (|A|+ |U|)3)

Overall, we have |A′| = O(|U| · (|A|+ |U|)3).

We have shown that the size of A′ is polynomial in the size of A and U . More
precisely, |A′| is cubic in |A| and biquadratic in |U|. By a similar inspection of the
sizes of those concepts constructed according to the bi-implications in Figure 9, we
can obtain that for every L-concept D with a DL L between ALCO and ALCIO@,
the size of the bi-implication is O(|U| + |D|) and thus |A′| = O((|A| + |U|)3). These
bounds hold no matter how the numbers inside number restrictions are encoded.
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Theorem 48. Let L be a DL between ALCO and ALCQIO@. Then for every L-ABox
A and every update U , there exists an L-ABox A′ such that the following hold:

• A ∗ U ≡P A′;

• |A′| = O(|U| · (|A|+ |U|)3);

• A′ can be computed in time O(|A′|).

Projective Updates With Unconditional Updates

When we consider only unconditional updates U , Sub(U) is defined as

Sub(U) =
⋃

C(a)∈U

Sub(C)

as usual since U is an ABox. Moreover, Pfle is defined as

Pfle =
⋃

D∈Sub(A)

PD,

since there are no complex concepts occurring in U . As all of the effects are triggered
in an unconditional update, AU = U , and AU is now rendered unnecessary. Thus, we
compute A′ as follows:

A′ = Aini ∪ Aaux ∪ Ar ∪ U ∪ Arel.

Accordingly, for every w = r1 · · · rn ∈ Pfle, n ≤ |A| and #Pfle ≤ |A| and we can obtain
that |A′| = O(|U| · (|A|+ |U|)2 · |A|) if qualified number restriction is available in the
DL under consideration; |A′| = O((|A|+ |U|)2 · |A|+ |U|3) otherwise.

Projective Updates on Boolean ABoxes

Similar to logical updates on Boolean ABoxes, we say that a DL L has projective
updates on Boolean ABoxes if, for every Boolean L-ABox A and update U , there
exists a Boolean L-ABox A′ such that M(A ∗ U)↾S = M(A′)↾S, where S is defined as
in Definition 27.

Let L be a DL in {ALCO,ALCIO,ALCQO,ALCQIO}. It follows from Lemma 13
that L@ has projective updates on Boolean ABoxes: convert the original Boolean L@-
ABox to an equivalent non-Boolean L@-ABox by the polynomial translation in the
proof of Lemma 131 and then compute the projective update which is a non-Boolean
L@-ABox of polynomial size of the input as in Section 4.1. Overall, the resulting ABox
is polynomial in the size of the original ABox and the update.
L has also projective updates on Boolean ABoxes: by compiling away @ con-

structors in the resulting non-Boolean L@-ABox using the translation in the proof of

1In the proof of (ii) in Lemma 13, the mapping ·∗ can be easily extended to L@-ABox assertions.
As a result, we can obtain that for every Boolean L@-ABox, there exists an equivalent non-Boolean
L@-ABox.
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Lemma 13, we obtain an equivalent Boolean L-ABox. Although this translation is
exponential in the worst case, the size of the Boolean L-ABox constructed in this way
is still polynomial in the size of the input since neither converting a Boolean L-ABox
to a non-Boolean L@-ABox nor the construction of projective updates induces nesting
@ constructors.

Theorem 49. All of the following DLs have projective updates on Boolean ABoxes
which are of polynomial size in both the original ABox and the update: ALCO,
ALCIO, ALCQO, ALCQIO, and their extensions with the @ constructor.

The following lemma gives us another way to simulate the @ constructor by intro-
ducing an auxiliary role name.

Lemma 50. Let L be a DL in {ALCO,ALCIO,ALCQO,ALCQIO}. Then for every
L@-ABox A, there exists an L-ABox A′ such that

M(A)↾(NC∪NR∪NI)\{u} = M(A′)↾(NC∪NR∪NI)\{u},

where u is a role name which does not occur in A.

Proof. First convert all concepts occurring in A into the negation normal form
(NNF), i.e., negation signs occurs only in front of concept names or nominals. This
conversion can be done by the following rules:

¬(C ⊓D) ; ¬C ⊔ ¬D; ¬(C ⊔D) ; ¬C ⊓ ¬D;
¬(> (n+ 1) r C) ; (6 n r C); ¬(6 n r C) ; (> (n+ 1) r C);

¬(> 0 r C) ; ⊥; ¬@aC ; @a(¬C).

Then, we obtain A′ from A by replacing every concept of the form @aD in A with
∃u.({a}⊓C). It is easy to see that those two steps can be done in polynomial time of
|A|. Let S = (NC ∪ NR ∪ NI) \ {u}. Now we show that M(A)↾S = M(A′)↾S.

“⊆”: Let I ∈M(A). Then we define I ′ by extending I↾S as follows:

uI
′
= {(d, e) | {d, e} ⊆ ∆I}.

For an ALCQIO@-concept C, we use C ′ to denote the concept obtained from C by
doing the forementioned replacement.

Claim 1. For all d ∈ ∆I and for all ALCQIO@-concepts C with Sig(C) ⊆ S, d ∈ CI

implies d ∈ (C ′)I
′
.

Proof of Claim 1. We prove Claim 1 by induction on the structure of C.

• The cases C = A, C = ¬A, C = {a}, C = ¬{a}, C = D ⊓ E, or C = D ⊔ E
follow from I.H., the definition of I ′, and the definition of C ′.

• C = (> n r D): Since Sig(C) ⊆ S, we know that u 6= r and thus rI = rI
′
. It

follows from d ∈ CI that #{e | e ∈ DI ∧ (d, e) ∈ rI} ≥ n. By I.H., we get
that e ∈ (D′)I

′
iff e ∈ (D)I . Thus, #{e | e ∈ (D′)I

′
∧ (d, e) ∈ rI

′
} ≥ n, which,

together with C ′ = (> n r D′), implies that d ∈ (C ′)I
′
. The case C = (6 n r D)

can be proved analogously.
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• If C = @aD, then d ∈ (@aD)I implies aI ∈ DI . By I.H., we know that
aI ∈ (D′)I

′
. It follows from the definition of uI

′
that (d, aI) ∈ uI

′
. Moreover,

since aI = aI
′
and C ′ = ∃u.({a} ⊓D′), we get d ∈ (C ′)I

′
.

This finishes the proof of Claim 1.

We now show that I ′ |= A′. Let ϕ ∈ A′. If ϕ is a role assertion, then ϕ ∈ A. Since
I |= A and ϕ ∈ A, I |= ϕ. Moreover, since u does not occur in ϕ, it follows from
the definition of I ′, I ′ |= ϕ. If ϕ is a concept assertion C ′(a), then by Claim 1 we get
I ′ |= C ′(a) since I |= C(a) and aI = aI

′
.

“⊇”: Let I ′ ∈ M(A′). We show that I ′ |= A. Similar to Claim 1, we can show
that for all d ∈ ∆I′

and all ALCQIO@-concepts C with Sig(C) ⊆ S, d ∈ (C ′)I
′

implies d ∈ CI′
by induction on the structure of C (The proof is very similar to the

one of Claim 1 and we do not show the details here). This yields that for all concept
assertions C(a) ∈ A, I ′ |= C(a) since I ′ |= C ′(a). For all role assertions ϕ in A,
I ′ |= ϕ since I ′ |= A′ and ϕ ∈ A′. ❏

This lemma generalizes Lemma 53 in [Bon07] which is used to show that ALCO
has approximate projective updates. First, the DL under consideration is extended
from ALCO to all DLs between ALCO and ALCQIO. Second, this lemma can be
used to show existence of projective updates which are stronger than approximate
projective updates.

Let L be a DL in Lemma 50. After we obtain a non-Boolean L@-ABox from
the computation of the projective update, we use the construction in the proof of
Lemma 50 to simulate the @ constructor and thus get a non-Boolean L-ABox instead
of using the construction in the proof of Lemma 13.

On the one hand, this construction is polynomial in the worst case, compared to
the one in Lemma 13. On the other hand, it is not equivalence preserving because of
the introduced role name u, but it preserves projective updates. It also follows from
the proof of Lemma 50 that A is consistent iff A′ is consistent, i.e., the construction
of A′ is consistency preserving. By induction on the Boolean structure of Boolean
assertions, this claim can be easily extended to Boolean ABoxes:

Lemma 51. Let L be a DL in {ALCO,ALCIO,ALCQO,ALCQIO}. Then for every
Boolean L@-ABox A, there exists a Boolean L-ABox A′ such that A is consistent iff
A′ is consistent.

The above lemma will be used to decide consistency of Boolean ABoxes with the @
constructor in Section 6.2.

4.2 Iterated Projective Updates

In this section, we first show by an example that even for unconditional updates, the
direct application of the construction in Section 4.1 to updating an ABox A iteratively
leads to an exponential blowup in the size of A.



68 Projective Updates

Example 52. Consider the ABox A0 = {∃r.A(a)} and the updates

U1 = · · · = Un = {r(a, b)}.

For all i ∈ {1, . . . , n}, we use C
(i)
bi to denote the concept Cbi if the update Ui is applied.

When the projective update of A0 with U1 is constructed according to the construction
in Section 4.1, the following concept

A
(0)
∃r.A ↔ (¬{a} ⊓ ¬{b}) ⊓ ∃r.A ⊔

({a} ⊔ {b}) ⊓
(

∃r.((¬{a} ⊓ ¬{b}) ⊓A) ⊔ ∃s(0)r .(({a} ⊔ {b}) ⊓A)
)

is a conjunct in C
(1)
bi . Thus, there are bi-implications for both ∃r.A and ∃r.((¬{a} ⊓

¬{b}) ⊓ A) when C
(2)
bi is computed since both concepts contain the flexible name r

in U2. Similarly, the bi-implication for each of those concepts has two subconcepts

containing r. Therefore, the size of C
(i)
bi is exponential in the size of A0 when A0 is

updated iteratively.

It is left as an open problem if this exponential blowup can be entirely avoided.
Instead of computing projective updates iteratively, we exhibit a construction of a
projective update of the original ABox with a finite sequence of updates. The updated
ABox constructed in this way is bounded polynomially in the size of the input.

As introduced in Section 4.1, we use the name A
(0)
C (s

(0)
r , respectively) to denote

the concept C (role name r, respectively) before executing the update U1. Consider

updates U1, . . . ,Un. For all i ∈ {1, . . . , n}, we introduce a new name A
(i−1)
C (s

(i−1)
r ,

respectively) to denote the concept C (role name r, respectively) before executing the
update Ui. Other notions need to be revised as follows:

• The set Sub(U) collects the subconcepts appearing in the sequence of updates:

Sub(U) =
n
⋃

i=1

Sub(Ui).

• We say that a concept C contains a flexible name in U1, . . . ,Un iff there exists
an i ∈ {1 . . . , n} such that C contains a flexible name in Ui.

• We use Cfle to collect concepts which may be changed by some Ui, which is
defined as follows:

Cfle = {C | C ∈ Sub(A) ∪ Sub(U) ∧ C contains a flexible name in U1, . . . ,Un}.

• Similarly, we use Rfle to denote the set of role names occurring in U1, . . . ,Un. For
a concept C and a role name r, and an i with i ∈ {0, . . . , n− 1}, the mappings
C(i) and r(i) are defined as follows:

C(i) =

{

A
(i)
C if C ∈ Cfle

C otherwise
r(i) =

{

s
(i)
r if r ∈ Rfle

r otherwise

Additionally, let C(n) and r(n) denote C and r, respectively, to streamline nota-
tion later on.
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Let Obj be the set of all individual names occurring inA or U1, . . . ,Un. For an assertion
ϕ and an i ∈ {0, . . . , n}, the assertion ϕ(i) is defined as follows:

ϕ(i) =

{

C(i)(a) if ϕ = C(a)

(¬)r(i)(a, b) if ϕ = (¬)r(a, b)

The ABox Aini is defined as before. For all i ∈ {1, . . . , n}, we define an ABox A
(i)
r as

A
(i)
r = {(∃r(i−1).{b} ↔ ∃r(i).{b})(a) | {r(a, b),¬r(a, b)} ∩ rhs(Ui) = ∅∧

a, b ∈ Obj ∧ r ∈ Rfle}.

The ABox Aaux and the abbreviation p are defined as before. For all i ∈ {1, . . . , n},
we define an ABox AUi

as

AUi
= {a∗ :

l

ϕ/ψ∈Ui

(p(ϕ(i−1))→ p(ψ(i)))}.

Similarly, for all i ∈ {1, . . . , n}, we define an ABox AUi
as

AUi
= {a∗ :

l

ψ∈rhs(Ui)

(

(
l

ϕ/ψ∈Ui

¬p(ϕ(i−1)))→ (p(ψ(i−1))↔ p(ψ(i)))
)

}.

The bi-implications in Figure 7 needs minor changes:

• replace every occurrence of (0) with (i− 1) and replace r with r(i);

• replace Obj(U) with Obj and replace rhs(U) with rhs(Ui).

For all i ∈ {1, . . . , n}, we use C
(i)
bi to denote the conjunction of bi-implications, where

the left hand side ranges over Cfle. Pfle is defined as before and for all i ∈ {1, . . . , n},

the ABox A
(i)
rel is defined as follows:

A
(i)
rel = {∀uw.C

(i)
bi (a∗) | w ∈ Pfle}.

Finally, we define

An = Aini ∪ Aaux ∪
n
⋃

i=1

(A
(i)
r ∪ AUi

∪ AUi
∪ A

(i)
rel ). (7)

Similarly to the proof of Lemma 46, we can show that (· · · (A0 ∗U1) ∗ · · · ∗ Un) ≡
P An.

A close inspection of the construction of An shows the following upper bound of the
computed projective update regardless of the coding of numbers:

Theorem 53. For all ABoxes A0 and updates U1, . . . ,Un, if An is the ABox computed
as in (7), then

• (· · · (A0 ∗ U1) ∗ · · · ∗ Un) ≡
P An, and

• |An| = O((|U1|+ · · ·+ |Un|) · (|A|+ |U1|+ · · ·+ |Un|)3).
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The above theorem gives a clue of how to compute projective updates of ABoxes
in practice when new updates arise again. Suppose that An computed as in (7) is the
result of updating A0 with U1, . . . ,Un. We assume that the structure of An is known,
i.e., for every assertion ϕ in An, we know which part of An (as specified in (7)) ϕ
belongs to. Moreover, when An is computed, the sets Cfle, Rfle, and Pfle are stored. If
An needs to be updated with another update Un+1, then the new sets C′

fle, R′
fle, and

P′
fle are computed again according to A0 and U1, . . . ,Un+1. Based on the difference of

the corresponding sets, we can construct An+1 by modifying An. Alternatively, An+1

can be directly constructed from A0 and U1, . . . ,Un+1 as in (7). In both cases, the
original ABox A0 and the history of updates which have been used to update A0 so
far are stored.

If A0 is updated only with unconditional updates, then the idea of calculating the
accumulated update U of U1, . . . ,Un as in (5) can be applied to computing projective
updates as well. The updated ABox obtained by updating the original ABox with U
is then polynomial in the size of the input. As we have seen in Section 3.4, merging
a sequence of unconditional updates into one update does not have an impact on the
size of the computed logical updates whereas it does affect the size of the projective
updates constructed as in Section 4.1. This is because in the construction of iterative
projective updates, there are some subconcepts for which exponentially many bi-
implications are introduced (cf. the subconcept ∃r.C in Example 52), which is avoided
by merging updates.



Chapter 5

DLs Having No Updates

In Chapter 3, we have shown how to compute logical updates with the help of nominals
and the @ constructor. In Chapter 4, projective updates are constructed employing
nominals. In this chapter, we show that those constructors are really necessary to
build updated ABoxes, i.e., they cannot be built without them. More precisely, in
Section 5.1, we show that projective updates are not expressible in DLs (between
ALC and ALCNI@) without nominals.1 The proof (with minor modifications) works
also for approximate updates, i.e., describing approximate updates needs nominals as
well. In Section 5.2, we show that extending DLs (between ALCO and ALCQIO)
with nominals only is not sufficient to express approximate updates. Section 5.3 sums
up the results about the expressivity of a DL and the existence of updates.

5.1 Nominals and Updates

In this section, we illustrate the relationship between nominals and existence of pro-
jective updates and approximate updates. In the constructions of both logical and
projective updates, respectively presented in Chapter 3 and Chapter 4, nominals are
explicitly employed, i.e., they are introduced no matter whether they appear in the
original ABox. We now demonstrate that the introduction of nominals is somehow
unavoidable. We start with showing that the DL ALC has no projective updates.

Lemma 54. ALC does not have projective updates.

Proof. Consider the ABoxes A = {a : ∃r.A, r(b, a)}, U = {¬A(b)} and

A′ = {¬A(b), r(b, a), a : ∃r.(A ⊔ {b})}.

It is easy to see that A′ is the logical update of A with U , i.e., A ∗ U ≡ A′. Assume
now that there exists a projective update B of A with U , i.e., A ∗ U ≡P B. We show
that this leads to a contradiction.

Claim 1. There exists a model I of B such that aI /∈ (∃r.A)I .

The above claim holds since

1Here, N stands for unqualified number restriction. We will introduce its definition later on.
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• there are models I of A′ such that aI /∈ (∃r.A)I ;

• for all interpretations I, whether or not aI ∈ (∃r.A)I depends only on I↾S, where
S = ((NC ∪ NR ∪ NI) \ Sig(B)) ∪ Sig(A) ∪ Sig(U); and

• every I↾S can be extended to a model of B since A ∗ U ≡P B.

Claim 2.

(a) For all n ≥ 0, B |= a : ∃r.(A ⊔ ∃r2n.⊤), where ∃rn.C denotes the n-fold nesting
∃r. · · · .∃r.C, with ∃r0.C = C;

(b) For all n ≥ 0, there does not exist a set of assertions

X = {r(c0, c1), r(c1, c2), . . . , r(ck, ck+1), . . . , r(cn, ck)}

such that a = c0, 0 ≤ k ≤ n, and B |= ϕ for all ϕ ∈ X.

To prove (a) observe that, for all n ≥ 0, we have A′ |= a : ∃r.(A ⊔ (∃r2n.⊤)). The
crucial observation is that due to a : ∃r.(A⊔ {b}) ∈ A′, for every model I of A′, there
must be a d ∈ ∆I such that (aI , d) ∈ rI and d ∈ AI , or bI = d. In the latter case, we
get an r-cycle of length 2 between aI and bI since r(b, a) ∈ A′. A ∗ U ≡P B implies
A ∗ U ≡P

ALC B. Thus, together with A′ |= a : ∃r.(A ⊔ (∃r2n.⊤)) and the fact that
a : ∃r.(A ⊔ ∃r2n.⊤) is an ALC-assertion with Sig(a : ∃r.(A ⊔ ∃r2n.⊤)) ⊆ S, we have
B |= a : ∃r.(A ⊔ ∃r2n.⊤).

For (b), assume that there exists such a set X. Observe that for all interpretations
I, I |= X if, and only if, the interpretation of X forms a “balloon” in I starting
from aI with an r-cycle starting at cIk . Consider the concept C = ∃rk.A ⊓ ¬∃rn+1.A.
Based on this observation, it is not hard to see that X ∪{C(a)} is inconsistent, which,
together with that B |= ϕ for all ϕ ∈ X, yields that B ∪ {C(a)} is also inconsistent.
Thus, M(B) |= ¬C(a). Moreover, since Sig(C(a)) ⊆ S and A ∗ U ≡P

ALC B, and since
C(a) is an ALC-assertion with Sig(C(a)) ⊆ S, we have M(A′) |= ¬C(a), which implies
that A′∪{C(a)} is inconsistent. However, it is easy to construct a model of A′∪{C(a)}
and thus we have derived a contradiction.

Now take the model I of B in Claim 1. We unravel I into an interpretation J as
follows:

• ∆J = {d0 · · · dk | k ≥ 0 ∧ ∀i ∈ {0, . . . , k} : di ∈ ∆I};

• for all A ∈ NC, AJ = {d0 · · · dk ∈ ∆J | dk ∈ A
I};

• for all role names s with s 6= r,

sJ = sI ∪ {(d0 · · · dk, d0 · · · dk+1) ∈ ∆J ×∆J | (dk, dk+1) ∈ s
I},

and for the role name r,

rJ = {(cI1 , c
I
2 ) | ∃c1, c2 ∈ NI : B |= r(c1, c2)} ∪

{(d0 · · · dk, d0 · · · dk+1) ∈ ∆J ×∆J | (dk, dk+1) ∈ r
I};
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• for all a ∈ NI, a
J = aI .

Notice that rJ is well-defined since given an ABox B and a role name r, the set
{r(c1, c2) | ∃c1, c2 ∈ NI : B |= r(c1, c2)} is decidable. By induction on the structure of
C, it is easy to see that the following claim holds:

Claim 3. For all ALC-concepts C and all w = d0 · · · dk ∈ ∆J , we have w ∈ CJ iff
dk ∈ C

I .

By Claim 3 and since I 6|= a : ∃r.A, we have J 6|= a : ∃r.A. Claim 3 also implies
that J is a model of B:

• For all concept assertions C(c) ∈ B, we have I |= C(c). Thus, J |= C(c) by
Claim 3.

• For all positive role assertions ϕ ∈ B, we have, by definition of J , J |= ϕ.

• Let ¬r(c1, c2) ∈ B be a negated role assertion. Then, I |= B implies I |=
¬r(c1, c2). Assume that J 6|= ¬r(c1, c2), i.e., J |= r(c1, c2). It follows from the
definition of J that J |= ϕ implies I |= ϕ, for all positive role assertions ϕ.
Thus, I |= r(c1, c2), which is a contradiction.

We define the depth d(C) of an ALC-concept C as the nesting depth of existential
and value restrictions in C. The depth d(B) of an ABox B is defined as max{d(C) |
C(c) ∈ B} if B contains a concept assertion; d(B) = 0 otherwise. In the next step,
we further modify J by “cutting off” all paths in ∆J at length d(B). Thus, let
∆J ′

= {d0 · · · dk ∈ ∆J | k ≤ d(B)}, let BJ ′
and sJ

′
be the restrictions of BJ and sJ

to ∆J ′
for all B ∈ NC and s ∈ NR, and let cJ

′
= cJ for all c ∈ NI. The interpretation

of individual names is well-defined since for all c ∈ NI, c
J is of length 0 (and thus not

dropped). It is not hard to prove the following claim by induction on the structure of
C:

Claim 4. For all ALC-concepts C with d(C) = i ≤ d(B), and all w = d0 · · · dk ∈ ∆J

with k ≤ d(B)− i, we have w ∈ CJ iff w ∈ CJ ′
.

It follows from the definition of J ′ that aJ
′
= aJ , AJ ′

⊆ AJ and rJ
′
⊆ rJ . Thus,

J 6|= a : ∃r.A implies that J ′ 6|= a : ∃r.A. Additionally, J |= B implies that J ′ is a
model of B:

• As an immediate consequence of the construction of J ′, all (possibly negated)
role assertions ϕ ∈ B are not invalidated.

• Let C(a) ∈ B be a concept assertion. Then, d(C) ≤ d(B) and there exists a
d0 ∈ ∆J ′

such that aI = d0. Hence, J ′ |= C(a) by Claim 4 and since J |= C(a).

Since J ′ |= B, it follows from Claim 2(a) that J ′ |= a : ∃r.(A ⊔ ∃r2n.⊤) for all
n ≥ 0. Additionally, J ′ 6|= a : ∃r.A implies that J ′ |= a : ∃r2n+1.⊤ for all n ≥ 0.
Thus, by the construction of J ′ from J , there must exist d0, d1, . . . , dn ∈ ∆I such that
aJ

′
= d0, (di, di+1) ∈ r

J ′
for all i < n, and (dn, dk) ∈ r

J ′
for some k ≤ n. However,

this yields that a set X with the properties of Claim 2(b) exists. ❏
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The above proof can be extended to show that every DLs betweenALC toALCNI@

does not have projective updates, where the letter N in the name of a DL stands for
unqualified number restrictions. Compared to qualified number restrictions, every at-
least (at-most, respectively) unqualified number restriction is of the form (> n r ⊤)
((6 n r ⊤), respectively) with n a natural number and r a role, i.e., only the top
concept can appear in number restrictions.

The crucial step in making the proof work for the DLALCNI@ (and its fragments)
is to construct J by unraveling I such that Claim 3 holds for all ALCNI@-concepts.
In addition, by extending the notion of the depth d(C) to ALCNI@-concepts C as
the nesting depth of number, existential, and value restrictions in C,2 the rest of the
proof can be easily gone through.

In order to extend the unraveling technique to ALCNI@, we modify the proof in
two places:

1. The model I of B in Claim 1 requires additionally that for all d ∈ ∆I , the sets
{(d, d′) | (d, d′) ∈ rI} and {(d′, d) | (d′, d) ∈ rI} are infinite. Such a model exists
for the same reason as before: A′ has such models I and the above requirement
only restricts on I↾S.

2. J is built from I as follows:

• Let ∆J be the set of all words w = d0s0d1s1 · · · sk−1dk such that

– k ≥ 0;

– d0, . . . , dk ∈ ∆I ;

– s0 ∈ {r, r
−};

– s1, . . . , sk−1 are roles;

– for i < k, (di, di+1) ∈ s
I
i and if si = s−i+1, then di 6= di+2.

• BJ = {d0 · · · dk ∈ ∆J | dk ∈ B
I} for all B ∈ NC;

• for every s ∈ NR with s 6= r,

sJ = sI ∪ {(d0 · · · dk, d0 · · · sdk+1) ∈ ∆J ×∆J | (dk, dk+1) ∈ s
I} ∪

{(d0 · · · s
−dk+1, d0 · · · dk ∈ ∆J ×∆J | (dk+1, dk) ∈ s

I}.

• for the role name r,

rJ = {(cI1 , c
I
2 ) | ∃c1, c2 ∈ NI : B |= r(c1, c2)} ∪

{(d0 · · · dk, d0 · · · rdk+1) ∈ ∆J ×∆J | (dk, dk+1) ∈ r
I} ∪

{(d0 · · · r
−dk+1, d0 · · · dk) ∈ ∆J ×∆J | (dk+1, dk) ∈ r

I}.

• aJ = aI for all c ∈ NI.

The next lemma shows that Claim 3 indeed holds for all ALCNI@-concepts:

2A more careful definition would “reset” the depth when encountering the “@” operator, but this
is not necessary for our purposes.
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Lemma 55. Consider the ABox B in the proof of Lemma 54. Let I be a model of B
such that for all d ∈ ∆I , the sets {(d, d′) | (d, d′) ∈ rI} and {(d′, d) | (d′, d) ∈ rI} are
infinite and J the interpretation obtained from I by the above construction. Then, for
all ALCNI@-concepts C and all w = d0 · · · dk ∈ ∆J , we have w ∈ CJ iff dk ∈ C

I .

Proof. We proof this lemma by induction on the structure of C. If C = A for some
concept name A, then it follows from the definition of AJ that w ∈ AJ iff dk ∈ A

I .
The cases C = ⊤ and C = ⊥ hold trivially. By I.H., the cases C = ¬D, C = @aD,
C = D ⊓ E, C = D ⊔ E hold.

Consider the role name r. Then (> n r ⊤)J = ∆J and (> n r ⊤)I = ∆I since for
all d ∈ ∆I , the sets {(d, d′) | (d, d′) ∈ rI} and {(d′, d) | (d′, d) ∈ rI} are infinite. Thus,
w ∈ (> n r ⊤)J iff dk ∈ (> n r ⊤)I .

Consider C = (> n s ⊤) with a role name s and s 6= r. “⇒”: w ∈ (> n s ⊤)J

implies that there are pairwise distinct w1, . . . , wn such that (w,wi) ∈ s
J for all i with

1 ≤ i ≤ n.

• If k = 0, then for all i with 1 ≤ i ≤ n, wi ∈ ∆I and (dk, wi) ∈ rI . Thus,
dk ∈ (> n s ⊤)I .

• If k ≥ 1, then w is of the form d0 · · · dk−1sk−1dk. For all i with 1 ≤ i ≤ n, wi
is either of the form d0r · · · dksdpi

with (dk, dpi
) ∈ sI or of the form d0 · · · dk−1

with (dk, dk−1) ∈ s
I . Since w1, . . . , wn are pairwise distinct, for all wi, wj such

that 1 ≤ i, j ≤ n, i 6= j, and wi and wj are of the first form, dpi
6= dpj

. If some
wi with 1 ≤ i ≤ n is of the second form, then s−k−1 = s and for all wi those are

of the second form, dpi
6= dk−1. Therefore, dk ∈ (> n s ⊤)I .

“⇐”: dk ∈ (> n s ⊤)I implies that there are pairwise distinct e1, . . . , en such that
(dk, ei) ∈ s

I for all i with 1 ≤ i ≤ n.

• If k = 0, then for all i with 1 ≤ i ≤ n, (dk, ei) ∈ r
J . Thus, dk ∈ (> n s ⊤)J .

• If k ≥ 1, then w is of the form d0 . . . dk−1sk−1dk. For all i with 1 ≤ i ≤ n, if
s−k−1 6= s or dk−1 6= ei, then (w,wsei) ∈ rJ ; Otherwise, (w, d0 · · · dk−1) ∈ r

J .
In addition, for all i with 1 ≤ i ≤ n, there is at most one ei with ei = dk−1.
Therefore, w ∈ (> n s ⊤)J .

The cases C = (> n s ⊤) and C = (6 n s ⊤) with an inverse role s can be proved
analogously.

Consider C = ∃s.D.3 “⇒”: w ∈ (∃s.D)J implies that there exists w′ such that
w′ ∈ DJ and (w,w′) ∈ sJ .

If s is a role name with s 6= r then

• if k = 0, then w′ = d′ for some d′ ∈ ∆I and (dk, d
′) ∈ sI . By I.H., w′ ∈ DJ

implies d′ ∈ DI . Thus, dk ∈ (∃s.D)I .

3Existential and value restrictions cannot be expressed by unqualified number restrictions. We
have to treat them explicitly.
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• If k ≥ 1, then w is of the form d0 · · · dk−1sk−1dk. Thus, w′ is either of the form
d0r · · · dksdk+1 with (dk, dk+1) ∈ s

I or of the form d0 · · · dk−1 with (dk, dk−1) ∈
sI . If w′ is of the first form, then by I.H., w′ ∈ DJ implies dk+1 ∈ DI . If
w′ is of the second form, then by I.H., w′ ∈ DJ implies dk−1 ∈ D

I . Overall,
dk ∈ (∃s.D)I .

Consider C = ∃r.D.

• If k = 0, then w′ is either of the form d′ such that dk = cI1 , d′ = cI2 for some
d′ ∈ ∆I , c1, c2 ∈ NI, and B |= r(c1, c2), or of the form dkrd

′ with (dk, d
′) ∈ rI . In

the first case, I |= B implies that (dk, d
′) ∈ rI . In both cases, by I.H., w′ ∈ DJ

implies d′ ∈ DI . Thus, dk ∈ (∃r.D)I .

• k ≥ 1: This case can be shown similarly to the case that s 6= r and k ≥ 1.

The case that s is an inverse role can be shown analogously.
“⇐”: dk ∈ (∃s.D)I implies that there exists ej ∈ ∆I such that (dk, ej) ∈ s

I and
ej ∈ D

I .
Suppose that s is a role name with s 6= r.

• If k = 0, then (dk, ej) ∈ sJ . By I.H., ej ∈ DI implies ej ∈ DJ . Thus,
dk ∈ (∃s.D)J .

• If k ≥ 1, then w is of the form d0 . . . dk−1sk−1dk. If s−k−1 6= s or dk−1 6= ej ,

then (w,wsej) ∈ sJ . Otherwise, (w, d0 · · · dk−1) ∈ sJ . In the first case, by
I.H., ej ∈ D

I implies wsej ∈ D
J . In the second case, by I.H., ej ∈ D

I implies
d0 · · · dk−1 ∈ D

J . Therefore, w ∈ (∃s.D)J .

Consider C = ∃r.D.

• If k = 0, then (dk, dkrej) ∈ r
J . By I.H., ej ∈ ∆I implies dkrej ∈ ∆J . Thus,

dk ∈ (∃r.D)J .

• k ≥ 1: This case can be shown similarly to the case s 6= r and k ≥ 1.

The case that s is an inverse role can be shown analogously. The case C = ∀s.D
can be proved similarly to the case C = ∃s.D. ❏

The unraveling of a model of an ABox described above does not preserve the
number of r-successors. The enhanced Claim 1 which requires that every object
in the domain has infinitely many r-successors ensures correctness of Claim 3 for
unqualified number restriction. Nevertheless, this does not suffice to make the claim
true for qualified number restrictions since those r-successors also have to satisfy
the respective qualifications. Following the methodology in the proof of Lemma 55,
either an enhanced claim or a different example of A and U is necessary to show
the non-existence of projective updates for arbitrary ALCQI@-ABoxes. This is left
as an open problem, although we believe that nominals are necessary for expressing
projective updates.

Theorem 56. Let L be a DL between ALC and ALCNI@. Then L does not have
projective updates.
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It follows from Lemma 55 that for some DLs, Boolean ABoxes are strictly more
expressive than the @ constructor, e.g., there are Boolean ALC-ABoxes for which no
equivalent non-Boolean ALC@-ABox exists.

Corollary 57. There exists no non-Boolean ALCNI@-ABox that is equivalent to the
Boolean ALC-ABox B = {¬A(b), r(b, a), a : ∃r.A ∨ r(a, b)}.

Proof. We can see that B is equivalent to the ABox A′ in Lemma 56 since the
Boolean assertion a : ∃r.A∨r(a, b) apparently has the same set of models as the ABox
assertion a : ∃r.(A ⊔ {b}). Assume that there is a non-Boolean ALCNI@-ABox B′

which is equivalent to B. Then, we have A′ ≡ B′, which, together with A ∗ U ≡ A′,
yields A ∗ U ≡ B′. Hence, A ∗ U ≡P B′, which leads to a contradiction. ❏

As we have seen, the ABox A and the update U in Lemma 54 are used to show
that L does not have projective updates for any L between ALC and ALCNI@. In the
proof, only Claim 1 and Claim 2 exploit the assumption that B is a projective update
of A with U . In particular, Claim 1 also holds if B is an approximate update since by
3 of Lemma 23, every model of the logical update is also a model of an approximate
update. Claim 2 also holds even if B is an approximate projective update. Thus, we
obtain the following theorem:

Theorem 58. Let L be a DL between ALC and ALCNI@. Then L does not have
approximate updates.

We have shown that nominals are crucial to describe both projective updates and
approximate updates. The necessity of nominals for expressing approximate projective
updates is still open. The main difficulty of extending the proof of Lemma 54 is to
prove Claim 1 if B is an approximate projective update of A with U .

5.2 The @ Constructor and Updates

In the last section, we investigated the relationship between nominals and the existence
of updates. More specifically, every DL L between ALC and ALCNI@ has neither
projective updates nor approximate updates. In Chapter 4, we have seen that adding
nominals to L leads to existence of projective updates. This section is dedicated to
showing that only adding nominals is not enough to express approximate updates.

Theorem 59. Let L be a DL between ALCO and ALCQIO. Then L does not have
approximate updates.

Proof. We start the proof by exhibiting an ABox A and an update U such that no
approximate update of A with U w.r.t. L exists. Let A = {a : ∃r.A}, U = {¬r(a, b)}
and

A′ = {a : ∃r.A ⊔@bA,¬r(a, b)}.

Then, it is easy to see that A ∗ U ≡ A′.
Note that the logical update A′ is an ALC@-ABox, but not an ALCO-ABox. Our

aim is to show that there is no L-ABox B with B ≡L A
′, which implies that there is

no L-ABox B such that A ∗ U ≡L B by 1 of Lemma 23.
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Figure 10: The interpretations I and I ′.
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Figure 11: The interpretation I ′′.

Assume to the contrary that such a B exists. Choose a role name s that does not
occur in A′ and B. Now consider the interpretations I and I ′ displayed in Figure 10.
We assume that the individual names a and b are mapped to the objects of the same
name as shown in the figure. We also assume that in addition to the points depicted
there is an infinite set of points interpreting the individual names distinct from a and
b. On these additional points the concept and role names are interpreted as the empty
set. (The additional points are required to define interpretations satisfying the UNA.)
Clearly, I and I ′ are models of A′. Therefore, it follows from 3 of Lemma 23 that
they are models of B. Consider the additional interpretation I ′′ in Figure 11 (again
there are additional points interpreting the remaining individual names in the same
way as in I and I ′). We show the following:

Claim 1. I ′′ 6|= B.

Proof of Claim 1. Assume I ′′ |= B. Define

C = ¬A ⊓ ∃s.({a} ⊓ ∀r.¬A).

Clearly, I ′′ |= C(b). This implies that I ′′ 6|= ¬C(b), which, together with I ′′ |= B,
yields that B 6|= ¬C(b). Since B ≡L A

′, we know that A′ 6|= ¬C(b). This means that
A′ ∪ {C(b)} is consistent. Analyzing A′ and C, it is readily checked that this is not
true. This finishes the proof of Claim 1.

Claim 2. I ′′ |= B
Proof of Claim 2. We know that I |= B and I ′ |= B. Let ϕ ∈ B. First assume
that ϕ is a (possibly negated) role assertion. Since I and I ′′ interpret role names
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L1 L1O L@
1 L1O

@ L2 L2O L@
2 L2O

@

≡ X X X E ? X ? E

≡L X X X E ? X ? E

≡P X P X P ? P ? P

≡P
L ? P ? P ? P ? P

Table 1: Expressivity and updates.

and individual names in the same way, we know that for all such assertions ϕ, I |= ϕ
iff I ′′ |= ϕ. Thus, I |= B implies I ′′ |= ϕ. Now let ϕ be a concept assertion C(c).
First assume that c 6= b. Then the part of I ′′ that is reachable from c via any path
composed of roles in which s does not occur is identical to the corresponding part
of I. Since s does not occur in B, s does not occur in C. Since I |= B, and for C an
ALCQIO-concept in which s does not occur, the truth of assertions C(c) in a model
J only depends on the set of points reachable from cJ by the forementioned paths of
roles, we get I ′′ |= C(c). Now let c = b. Then the part of I ′′ that is reachable from b
via any path of roles in which s does not occur is identical to the corresponding part
of I ′. Thus, we can argue similarly to the case c 6= b to show that I ′′ |= C(c). This
completes the proof of Claim 2.

As Claim 1 and 2 contradict each other, no such B exists. ❏

As we can see in the above proof, nominals are used in the concept C and thus
this proof cannot be used for showing that L does not have approximate updates for
a DL L between ALCQ and ALCQI@.

It follows from Theorem 35 that, for DLs with both nominals and the @ construc-
tor, approximate updates exist since logical updates are also approximate updates.
Whether or not one can compute more succinct approximate updates is still an open
problem.

5.3 Expressiveness vs. Updates — A Summary

Summing up the results about the expressivity of a DL and the existence of its updates
so far, we obtain Table 1, where L1 is a DL in {ALC,ALCN ,ALCI,ALCNI}, L2

is a DL in {ALCQ,ALCQI}, the letters P and E respectively stand for existence of
updates polynomial and exponential in the size of the original ABox and the update,
the letter X means the DL does not have the corresponding updates, and the symbol
? means that it is still open whether the DL has the corresponding updates.

Adding only nominals, approximate updates are not yet expressible while even
logical updates are expressible with the addition of the @ constructor. On the one
hand, since the exponential blowup cannot be avoided unless PTime =NC as shown in
Theorem 43, the @ constructor can be viewed as the missing constructor in standard
DLs to describe logical updates. On the other hand, the @ constructor is oversized
for covering approximate updates. It is unclear whether there exists a DL that offers
adequate expressivity for approximate updates but not for logical updates. Whether
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L LO L@ LO@

≡ ? 2E ? E

≡L ? 2E ? E

≡P ? P ? P

≡P
L ? P ? P

Table 2: Expressivity and updates on Boolean ABoxes.

a polynomial construction of approximate updates exists for DLs with both nominals
and the @ constructor is left as an open problem.

It is clear that adding nominals leads to the existence of projective updates whose
size is even polynomially bounded. This also implies the existence of approximate
projective updates. We believe that all the ? in Table 1 should be X, i.e, without
nominals even the weakest kind of updates is not expressible.

We have introduced the notions that a DL L has logical updates and projective
updates on Boolean ABoxes. Approximate updates and approximate projective up-
dates on Boolean ABoxes are defined in a straightforward way. Considering updates
on Boolean ABoxes, we collect the results from Theorem 38 and Theorem 49 and
present them in Table 2, where L is a DL between ALC and ALCQI and 2E means
that the size of constructed update is double exponential in the size of the whole input.
Except that the lower bound of the size of logical updates for LO@ is known, none of
the other constructions has been proven to be optimal.

In [Bon07], the notions of uniform ABox interpolants and uniform Boolean ABox
interpolants were employed to establish the relationship between approximate up-
dates and approximate projective updates. It is shown there that if a DL L has
uniform ABox (Boolean ABox, respectively) interpolation, then L has approximate
updates (on Boolean ABoxes, respectively) iff L has approximate projective updates
(on Boolean ABoxes, respectively). This opens us another way to investigate the ex-
istence of updates. For instance, it is known that ALC does not have approximate
updates. If ALC has ABox uniform interpolation, then ALC does not have approx-
imate projective updates either. Unfortunately, Bong has shown that ALC does not
have ABox uniform interpolation. The followings have also been shown by Bong:

(a) ALC does not have approximate updates on Boolean ABoxes, which strengthens
the result in [LLMW06c] that ALC does not have logical updates on Boolean
ABoxes.

(b) ALC has Boolean ABox uniform interpolation and thus the non-existence of
approximate projective updates for ALC on Boolean ABoxes is obtained.

This leads us to an obvious question: Can we extend those proofs of (a) and (b) to
more expressive DLs as we did in Lemma 55? This is left as future work. Another
question is whether the proof for (a) can be directly used for showing that ALC does
not have approximate projective updates (on non-Boolean ABoxes). The answer is
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negative because in the proof of (a) a Boolean ABox assertion is constructed as a
logical consequence of updated models whereas approximate projective updates on
non-Boolean ABoxes preserve only non-Boolean assertions.
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Chapter 6

Experimental Results

In this chapter, we present experimental results. In Section 6.1, we compare the size
and the constructing time of logical updates and projective updates achieved from
the implementations based on the computation introduced in the previous chapters.
We explore how well those algorithms work in the experiments. As we have seen in
Chapter 3, both the @ constructor and Boolean assertions are used to compute logical
updates. However, DL reasoners support neither of them directly. In Section 6.2,
three reasoning approaches handling inference problems of such Boolean ABoxes are
described. We compare and analyze their performance. We also compare reasoning
with logical updates to reasoning with projective updates. As described in Chapter 2,
the projection problem can be solved via progression or regression. Updating ABoxes
is an application of progression in DLs. The projection problem in DLs was also solved
by a reduction to the consistency problem of ABoxes w.r.t. acyclic TBoxes, which is
similar to regression [BLM+05]. In Section 6.3, we present some experimental results
of the implementation based on this reduction.

All the implementations in this chapter are written in Java unless it is explicitly
pointed out otherwise. The size of the input and output complies with the definitions
in Chapter 2. The unit of time measurement is millisecond (ms). In order to confine
the execution environment and hence to induce sensible comparison, the experiments
were performed on the same Linux testing server sitting in a temperature-controlled
room. The server was equipped with a 3.16GHz Intel Core 2 Duo CPU and 4GB of
memory. The Java runtime environment in the server is version 1.6.

6.1 The Comparison of Logical And Projective Updates

In this section, we compare the size and the constructing time of logical updates
and projective updates achieved from the implementations based on the computation
introduced in the previous chapters.

In order to test the performance of our implementation on a sufficiently large set of
data, we implemented a random generator of ALC-ABox assertions in which several
parameters are used to control the shape of generated assertions: the number d of
nesting roles in a concept assertion, the number ncs of the constructors in a concept

83



84 Experimental Results

d ncs nc nr ni pr na

1 – 8 1 – 30 1 – 20 1 – 10 1 – 10 30 0 – 23

Table 3: Parameters of the random ABox generator.
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Figure 12: The size of logical and projective updates.

assertion, the numbers nc, nr, and ni of concept names, role names, and individual
names in a concept assertion, the probability pr% of generating a role assertion, and
the number na of assertions. The parameters used for generating testing data are
displayed in Table 3. An unconditional update is associated to each generated ABox.
In every update, the probability of generating a role assertion is 30%, the probability
of using a concept, role, and individual name which does not appear in the ABox is
10%, and the probability of generating a negated literal is 50%. Overall, we generate
2000 ABoxes (each contains 2 – 23 assertions) and 2000 updates (each contains 1 –
11 assertions).1

For each ABox A and each update U , we compute the logical update and the
projective update of A with U . The comparison of the implementations for logical
updates and projective updates is depicted in the left graph of Figure 12 in which
the sizes of updated ABoxes (vertical axis) are plotted against the sizes of the inputs
(horizontal axis).2 It is clear that the sizes of logical updates increase much faster
than the ones of projective updates. With nesting existential and value restrictions in
the inputs, the computation of logical updates easily used up memory.

An algorithm for computing logical updates based on the one in Section 3.1 is
implemented in ECLiPSe-Prolog [ECL09] by Drescher with optimizations discussed

1All generated inputs in this chapter are in KRSS format [PSS93].
2Except the graphs of Figure 15, the numbers in vertical axes in the graphs in this chapter are

logarithmized (loge n) in order to achieve clearer view of experimental results.
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in [DLB+09a] to achieve a more compact representation of logical updates. Drescher
provided the experimental results in this chapter that are related to this algorithm.
Most of the optimization techniques in the implementation are syntactical such as
simplifying the construction of CDU (a) based on the UNA and identifying independent
assertions, while a few of them involve DL reasoning. We do not discuss the technical
details of those optimizations but rather use examples to illustrate their intuition.

Consider the concept assertion A(a) and DU = {¬A(b)}. The construction defined
in Section 3.1 produces ADU (a) = (A ⊔ {b})(a). Based on the UNA, we can simplify
it and obtain an equivalent assertion A(a).

For an ABox A and an update U , α ∈ A is an independent assertion iff A ∗ U ≡
((A\{α})∗U)∪{α}. Intuitively, independent assertions in A are the assertions which
may be intact when one updates A with U . An easy way of syntactically detecting
some independent assertions is to identify assertions which do not contain any concept
or role names appearing in the update.

One of the optimization techniques which involve DL reasoning is to identify all
diagrams D such that D ∪ A is inconsistent. The disjuncts for such diagrams can be
dropped when the logical update is constructed [LLMW06c]. Of course, the consis-
tency checking of D ∪ A needs the support of DL reasoning. In the implementation,
we did not use the optimization techniques which require reasoning because the time
spending on them was not paid off.

The comparison of the sizes of optimized logical updates and projective updates
is displayed in the right graph of Figure 12. On the one hand, the graph indicates
that there are a few inputs for which the logical updates are space consuming even
for the optimized construction. More specifically, there are 110 inputs of which the
sizes of logical updates are bigger than the sizes of projective updates including 64
inputs for which the computation of logical updates used up memory. On the other
hand, the sizes of most logical updates constructed by the optimized algorithm are
smaller than the sizes of projective updates. This suggests that the optimizations
effectively decreased the sizes of logical updates on most testing data. The computing
time of the updated ABoxes is displayed in Figure 13.3 Building logical updates took
more time than computing projective updates because of optimizations for the former.
Considering the decreased size, it is clear that those optimizations are valuable.

We also plot in the right graph of Figure 12 the sizes of logical updates in ALCO+,
which is the DL ALCO extended with the role constructors introduced in Section 3.3.
We can see that the sizes of logical updates in ALCO+ are the smallest. In fact, they
can be computed in a short time (within 20ms for most of them). We did not plot
the time of those logical updates in Figure 13 because the points would be very close
to the horizontal axis and lap over some other points. However, the main obstacle
which keeps us from using those updates in practice is to find a reasoner for this DL.
Likewise, reasoning on Boolean ABoxes is not directly supported by the state-of-the-
art DL reasoners. In the next section, we will illustrate how to solve this problem.

3The function for measuring runtime in ECLiPSe-Prolog returns 0 if the runtime is less than 10
milliseconds. We also did this approximation for the runtime obtained from Java. Those points with
vertical coordinates loge 0 are missing in Figure 13.
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Figure 13: The computing time of logical and projective updates.

6.2 Reasoning with Logical Updates

Let L be a DL between ALC and ALCQIO. As we have seen in Chapter 3, the con-
struction of logical updates of L-ABoxes assembles Boolean LO@-ABoxes. Reasoning
with Boolean ABoxes is not directly supported by standard DL reasoners.4 Reasoning
with ALC-LTL formulas [BGL08] requires Boolean ABox reasoning, too. In order to
do reasoning with those logical updates, we need to handle the @ constructor and
Boolean assertions. In this section, we concentrate on three approaches to solving
the consistency problem of such Boolean ABoxes: The first is based on a polynomial
reduction which is consistency preserving, the second is based on DPLL(T), and the
third resorts to the reasoner Spartacus for hybrid logic.

The reduction approach

Given a Boolean LO@-ABox A, we construct a non-Boolean LO-ABox A′′ which
preserves consistency of A: We first transform A to an equivalent non-Boolean LO@-
ABox A′ as we show in the proof of Theorem 49. Then, A′ can be transformed to a
consistency preserving non-Boolean LO-ABox A′′ by the polynomial reduction in the
proof of Lemma 50. Overall, the size of A′′ is polynomial in the size of A. Since A′′

is a non-Boolean LO-ABox, we can resort to DL reasoners to decide its consistency.

The DPLL(T) approach

Given a Boolean LO@-ABox A, we first convert A into a consistency preserving
Boolean LO-ABoxA′ by Lemma 51 and then decide consistency ofA′ by the DPLL(T)
approach.

Most modern SAT-solvers [ES03, dMB08] are variants of the DPLL procedure
introduced by Davis, Putnam, Logemann, and Loveland in [DP60, DLL62]. We first
briefly recall the DPLL transition rules in [NORCR07] and then illustrate how to

4A list of DL reasoners is available at http://www.cs.man.ac.uk/~sattler/reasoners.html.
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employ their extension, the DPLL(T) approach, to solve the consistency problem of
Boolean ABoxes.

The DPLL system can effectively decide satisfiability of a propositional formula
in conjunctive normal form (CNF), which is the normal form for most modern SAT-
solvers. Before we introduce the definition of the DPLL system, we first give some
notions which will be used later on.

A literal is p or ¬p for a propositional letter p. A finite disjunction of literals is
called a clause. A propositional formula in CNF is a finite conjunction of clauses.
A partial model M is a finite sequence l1, . . . , ln of literals (possibly labeled with d)
such that there is not a literal l with both l,¬l appearing in M , where if l = ¬p for
some propositional letter p, then ¬l = p. The labeled literals in M are called decision
literals. The decision level of M , denoted by dl(M), is the number of decision literals
in M . For every literal l in M , the decision level of l (¬l, respectively), denoted by dl(l)
(dl(¬l), respectively)), is the number of decision literals in M from the first element
of M to l.

For a partial model M and a literal l, l is defined in M if l ∈M (denoted also by
M |= l), or ¬l ∈M (denoted also by M |= ¬l). Otherwise, l is undefined in M . For a
partial model M and a clause C with C = l1 ∨ · · · ∨ ln, M |= ¬C iff M |= ¬li for all i
with 1 ≤ i ≤ n. In this case, we call C a conflict clause under M .

Definition 60 (The DPLL System in [NORCR07]). The DPLL system consists of the
transition rules in Figure 14. The data structure on which the DPLL system works is
of the form M ‖ F , where M is a partial model and F is a propositional formula in
CNF. By each application of a rule, M ‖ F is transformed to M ′ ‖ F ′ (denoted with
M ‖ F =⇒M ′ ‖ F ′). △

Given a propositional formula F (in CNF), we can run exhaustively the DPLL
transition rules in Figure 14 with the input ∅ ‖ F . Different strategies for the ap-
plication of the rules result in different DPLL algorithms. We adopt the strategy of
MiniSat [ES03] to implement the algorithm of our SAT-solver, which is the same as
Algorithm 1 without Line 5, 12, and 21.

The partial model M is initialized in Line 1. The unit propagate rule is ex-
haustively applied in Line 4–6. The function containsConflictClause(F,M) in Line 7
returns true iff there exists a conflict clause C in F under the current partial model
M . If no conflict clauses have been found, then depending on whether M is complete
(Line 8), either the algorithm terminates with true (Line 9) or the decide rule is
applied (Line 11). If some conflict clause is detected, then depending on the decision
level of M (Line 15), either the algorithm returns false (Line 16) or the backjump
rule is applied (Line 18–19) according to the conflict clause. A so-called backjump
clause C ′ generated by backjump(C) is added into F in Line 20. This process will be
repeated (Line 3–23) until the algorithm returns true or false.

One of the strengths of the DPLL system is to use Backjump instead of Backtrack
so that the searching space can be efficiently pruned [NORCR07]. In order to apply
the backjump rule, we need to construct a backjump clause C ′ ∨ l′.
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UnitPropagate
M ‖ F ∧ (C ∨ l) =⇒M, l ‖ F ∧ (C ∨ l)
if M |= ¬C and l is undefined in M .

Decide
M ‖ F =⇒M, ld ‖ F
if l or ¬l occurs in a clause of F , and l is undefined in M .

Fail
M ‖ F ∧ C =⇒ fail
if M |= ¬C and dl(M) = 0.

Backjump
M, ld, N ‖ F ∧ C =⇒M, l′ ‖ F ∧ C
if M, ld, N |= ¬C, and there is some clause C ′ ∨ l′ such that
F ∧ C |= C ′ ∨ l′, M |= ¬C ′, l′ is undefined in M , and l′ or ¬l′ occurs in F .

Learn
M ‖ F =⇒M ‖ F ∧ C
if all propositional letters of C occur in F and F |= C.

Figure 14: The DPLL transition rules.

There are basically two approaches to constructing a backjump clause: the implica-
tion graph based approach [ZMMM01] and the resolution based approach [NORCR07].
In a typical DPLL implementation, the clause that records the reason of the existence
of each non-decision literal l in M is memorized [NORCR07]. There are two possi-
bilities that a non-decision literal l can be added into M . The first one is the result
of applying the unit propagate rule, in which case we associate l with C ∨ l. The
other one is the result of applying the backjump rule and thus we associate l with the
constructed backjump clause C ′ ∨ l′. For a non-decision literal l, we use the function
cl(l) to denote the clause associated to l.

Algorithm 2 shows how to implement the backjump rule, where a backjump clause
is built based on the resolution approach. The set L collects (Line 1) all literals in
the conflict clause C that are in the decision level of M . The most recently defined
literal l in C according to the current partial model is obtained by the function get-
LastDefinedElement(C) (Line 3). Then, resolution is done (Line 4) with the clause C
and the clause associated to l. The set L is updated (Line 5) afterwards. Repeatedly
resolving the most recently defined literal l in C until there is only one literal in the
decision level of M leads to a backjump clause [NORCR07]. In Line 7, we get the
value of k which is the second biggest decision level of the literals in the backjump
clause. The literals in M whose decision level are bigger than k are removed from M
(Line 8). The constructed backjump clause C ′ ∨ l′ consists of the literals in C and the
only literal in L is assigned to l′ (Line 9). The partial model is updated in Line 10 to
decision level k. The backjump clause is associated (Line 11) to the new non-decision
literal l′ in M . The backjump clause C is returned and will be added into F by the
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Algorithm 1 A DPLL(T) Algorithm

Procedure isConsistent(F )
Input: a propositional formula F in CNF
Output: true/false

1: M := ∅
2: loop
3: loop
4: UnitPropagate()
5: callDLReasoner()
6: end loop
7: if not containsConflictClause(F,M) then
8: if all literals in F is defined in M then
9: return true

10: else
11: Decide()
12: callDLReasoner()
13: end if
14: else
15: if dl(M) = 0 then
16: return false
17: else
18: C := getAConflictClause()
19: C ′ := Backjump(C)
20: Learn(C ′)
21: callDLReasoner()
22: end if
23: end if
24: end loop

learn rule.

The DPLL(T) approach combines a DPLL procedure with a theory solver that
can handle conjunctions of literals in the theory to solve the satisfiability problem
modulo theories (SMT) [NORCR07]. The consistency problem of Boolean ABoxes
can be viewed as an instance of SMT where ABox assertions are the theory atoms
and a DL reasoner serves as the theory solver.

Let us consider the above DPLL algorithm extended with Line 5, 12, and 21. Sup-
pose that the input Boolean ABox A of Algorithm 1 is in CNF, i.e., substituting every
ABox assertion in A with a propositional letter results in a propositional formula FA

in CNF. The idea is to run the DPLL algorithm on FA and to call the DL resoner
whenever a new literal is added into the current partial model M (by every application
of UnitPropagate, Decide, or Backjump). The DL reasoner will determine consistency
of the ABox containing the assertions corresponding to M . Thus, the DPLL(T) al-
gorithm can recognize the impossibility of extending the current partial model and
apply the backjump rule as soon as possible. One issue is that in general DL reasoners
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Algorithm 2 A backjump algorithm

Procedure backjump(C)
Input: a conflict clause C
Output: a backjump clause

1: L := {l | l is a disjunct in C ∧ dl(l) = dl(M)}
2: while |L| > 1 do
3: l := getLastDefinedElement(C)
4: C := doResolution(C, cl(l))
5: L := {l | l is a disjunct in C ∧ dl(l) = dl(M)}
6: end while
7: k := 2ndMaxElement({dl(l) | l occurs in C})
8: M := removeElementsBiggerThanLevel(M,k)
9: l′ := getAElement(L)

10: M := M, l′

11: cl(l′) := C
12: return C

cannot directly deal with negated assertions such as ¬(C(a)) and ¬(r(a, b)). Fortu-
nately, this issue can be easily rounded if the DL reasoners can handle nominals since
¬(C(a)) ≡ (¬C)(a) and ¬(r(a, b)) ≡ (∀r.¬{b})(a). We have a preprocessing step for
this before invoking the DL reasoner.

One of the challenges for improving the performance of the algorithm based on
the DPLL(T) approach is to ensure that the theory solver efficiently finds a minimal
explanation of an inconsistent theory. It is widely understood that small explanations
tend to behave better in practice [NORCR07]. Explaining why an ABox is inconsistent
is an instance of the pinpointing problem [Sch03, BP08]. An explanation is a minimal
subset of the input ABox, containing only those assertions that are responsible for the
inconsistency. Formally, it is defined as follows: Given an inconsistent ABox A, an
explanation of A is an inconsistent subset A′ of A. An explanation A′ of A is minimal
iff there is no explanation B′ of A such that B′ is a strict subset of A′. Based on
smaller explanations, one can usually build smaller backjump clauses in the DPLL(T)
approach. The smaller backjump clauses are, the more search space is pruned.

As shown in Algorithm 3, if the DL reasoner reports inconsistency (Line 1), then
according to the decision level of M , either the backjump rule will be applied (Line 3–
7), followed by an application of the learn rule, or the algorithm isConsistent(F) termi-
nates and reports inconsistency of the input (Line 9). In the former case, an explana-
tion C of inconsistency will be given by the DL reasoner, which means that one of the
literals in the set of literals corresponding to the assertions in the explanation has to
be falsified (Line 4) since the set of those assertions in the explanation is inconsistent.
In this sense, C is a conflict clause under the current partial model and hence we can
do Backjump with C (Line 5). The generated backjump clause is added into F in
Line 6. Since there is a new literal l′ in M after the application of the backjump rule,
we will recursively call the DL reasoner (Line 7).
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Algorithm 3 A DL-reasoner calling Algorithm

Procedure callDLReasoner()

1: if not isConsistentByDLReasoner(M) then
2: if dl(M) > 0 then
3: C :=getAnExplanantionByDLReasoner(M)
4: C := {¬l | l is a disjunct in C}
5: C ′ :=Backjump(C)
6: Learn(C ′)
7: callDLReasoner()
8: else
9: reportInconsistency()

10: end if
11: end if

The Spartacus approach

The reasoner Spartacus can be used for deciding the satisfiability problem of formulas
in hybrid logic [Göt09]. For a Boolean ALCO@-ABox A, we can construct, with the
help of the @ constructor, a formula ϕA in hybrid logic such that A is consistent iff ϕA

is satisfiable. Basically this construction is just to present A in the syntax of hybrid
logic. First replace all role assertions in A by the following rules:

r(a, b) ; ∃r.{b}(a); ¬r(a, b) ; ∀r.¬{b}(a).

Then, all concept assertions C(a) in A is replaced by @aC
′ where C ′ is obtained by

applying the following rules to C:

A ; A; C ⊓D ; C ∧D; C ⊔D ; C ∨D;
{a} ; = a; ∃r.C ; 〈r〉C; ∀r.C ; [r]C.

Note that there are no rules for negation and the @ constructor since they are presented
in the same way in both Description Logic and hybrid logic.

Experimental results

Two algorithms which solve the consistency problem of Boolean ABoxes are im-
plemented: one is based on the reduction approach and the other is based on the
DPLL(T) approach. Pellet was chosen as the DL reasoner in the implementation be-
cause it supports nominals and pinpointing [SPG+07]. Henceforth, we call the former
implementation Pellet-UR and the latter one Pellet-DPLL. When we do reasoning
with Spartacus, we need to transform the testing data into the format which Spar-
tacus accepts. The time of this transformation is not included in the runtime. The
experiments were carried out on two sets of testing data: one of them is obtained from
a random Boolean ABox generator and the other is from logical updates in Section 6.1.

We implemented a random generator of Boolean ALC-ABoxes, which randomly
generates a propositional formula in CNF and then assigns a randomly generated
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n1 n2 n3 d ncs nc nr ni pr

3 – 53 6 – 36 8 – 83 2 – 23 6 – 106 2 – 12 1 – 12 1 – 12 20

Table 4: Parameters of the random Boolean ABox generator.
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Figure 15: Reasoning with generated Boolean ABoxes.

assertion to each propositional letter. Several parameters are used to control the
shape of the generated Boolean ABoxes: the number n1 of literals in a clause, the
number n2 of propositional letters, the number n3 of clauses, the number d of nesting
roles in a concept assertion, the number ncs of the constructors in a concept assertion,
the numbers nc, nr, and ni of concept names, role names, and individual names in
a concept assertion, and the probability pr% of generating a role assertion. The
parameters used for generating 1000 testing data are displayed in Table 4.

In Figure 15, we plot the runtime of Pellet-DPLL, Pellet-UR, and Spartacus on
these testing data against the sizes of the Boolean ABoxes. We depict the performance
on consistent and inconsistent Boolean ABoxes separately. For Pellet-UR, the runtime
linearly increases with the size of the input. Spartacus performed similarly to Pellet-
UR. On 33 inconsistent ABoxes Pellet-DPLL also exhibits a linear increase in runtime,
while on 967 consistent ABoxes the runtime is less predictable. Pellet-DPLL performs
better on all of the inconsistent Boolean ABoxes. On about 60% of the consistent
ABoxes, the Pellet-UR approach did best. In Pellet-DPLL the frequent invocations
of Pellet are more likely to pay off if inconsistency of the current partial model can be
detected often: We then can build a backjump clause that helps to prune the search
space. The runtime of Pellet-UR is about the same on both consistent and inconsistent
input data if they have the similar size. This holds for Spartacus as well.

In Section 6.1, we have constructed 1936 Boolean ABoxes which are logical updates
of the randomly generated ABoxes.5 Those logical updates provide us another set of

5Notice that the logical updates computed by the optimized algorithm are Boolean ABoxes in
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Time Pellet-DPLL Pellet-UR Spartacus

0 – 1000 1807 1861 1859

1000 – 2000 24 30 10

2000 – 3000 17 11 8

3000 – 10000 55 18 2

10000 – 30000 16 4 9

30000 – 300000 12 12 3

300000 – 450000 3 0 0

* 2 0 0

Table 5: Reasoning with logical updates.

testing data. Since every updated ABox is consistent, we check its logical consequences
instead of its consistency. For every Boolean ABox A, we randomly generate 10
assertions, each of which contains only the names occurring in A. The probability
of generating a role assertion is 30%. Every generated concept assertion constains
30 concept constructors. Let A be a Boolean ABox and ϕ an assertion. Then ϕ
is a logical consequence of A iff A ∪ {¬ϕ} is inconsistent. Although negation is not
explicitly available in Boolean ABoxes, the negation sign in front of ϕ can be absorbed
into the assertion ϕ as we did in the DPLL(T) approach.

We plot the testing results in the left graph of Figure 16 in which the numbers on
the horizontal axis stand for the size of the ABox and the update, and the numbers on
the vertical axis are the average time for reasoning against 10 assertions plus the time
of computing the corresponding update. We can see that Pellet-UR worked fastest for
small inputs and Spartacus did fastest for big inputs. The statistics of the runtime for
those three approaches is given in Table 5 in which the numbers in the first column
means the range of time, ∗ means running out of memory, and other numbers means
for how many inputs the corresponding approach returned answers in the given time
range.

We also compare the performance of reasoning with logical updates and projective
updates. We did the testing with the latter starting from the small inputs proceeding
to the big ones. On the first 1052 inputs, we got answers on 1047 inputs. However,
after that using up memory happened very often (approximately once for every three
inputs). We plot the testing results according to the first 1047 inputs for which
reasoning with both logical and projective updates returns an answer. As shown in
the right graph of Figure 16, reasoning with logical updates (Pellet-UR) is faster than
reasoning with projective updates on most inputs.

For both logical and projective updates, the time for computing updates is rela-
tively small compared to the reasoning time, and the latter is dominated by the size
of the computed updated ABox. Hence, optimizations aiming to streamline updates

CNF that are usually more compact than the ones in DNF constructed according to the algorithm in
Section 3.1. Cf. [DLB+09a] for a more detailed discussion of the representation of logical updates in
CNF and DNF.
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Figure 16: Reasoning with updates.

are valuable. Although projective updates exhibit better computational behavior in
theory, they did not perform better than the optimized construction of logical up-
dates. For this reason, optimizations to the former are strongly required. Note that
most optimization techniques in [DLB+09a] for logical updates do not help to decrease
the size of projective updates. For example, the one based on the UNA and the one
detecting diagrams D such that D ∪ A is inconsistent are not applicable to the con-
struction of projective updates since they aim at the specific construction of logical
updates. Identifying independent assertion can be applied, but it does not impact
much on the size of the constructed projective update.

Actually, the concept Cbi which is a conjunction of bi-implications is responsible
for the size of the constructed projective update. The construction of bi-implications

in Figure 9 can be simplified to A
(0)
∃r.C ↔ ∃r.A

(0)
C and A

(0)
∀r.C ↔ ∀r.A

(0)
C if r is not in Rfle,

i.e., the update does not change the interpretation of r. This can be applied to the bi-
implications for qualified number restrictions, too. We have included this optimization
in our implementation. In order to improve the performance of projective updates,
we need to explore other optimizations. This is left as future work.

6.3 An Implementation of the Projection Algorithm

As described in Chapter 2, the projection problem can be solved based on either
progression or regression. In [BLM+05], the projection problem in DLs has also been
solved by a reduction to the logical consequence problem of ABoxes w.r.t. acyclic
TBoxes, which is similar to regression. In this section, we present experimental results
of the implementation of this reduction.

Our testing data are the ABoxes A and the updates U generated in Section 6.1
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Figure 17: Experimental results on the projection problem.

and the assertions ϕ generated in Section 6.2. We check whether ϕ is a consequence
of applying U to A. We compare the runtime of the implementation based on the
reduction and the ones based on updating ABoxes. Since we need to construct a
new ABox and a new TBox for each assertion ϕ even without changing the original
ABox A and the update U , we include all the construction time in the runtime. For
reasoning with updates, we count the computation time of updates only once in the
runtime if A and U do not change. Notice that we include all reasoning time for 10
assertions instead of average reasoning time. The aim of the testing we did in this
section is to compare the approaches to reasoning about action but not the efficiency
of reasoners. For this reason, we chose Pellet to decide consistency. In principle, we
can also use FaCT++ [TH06] and Spartacus.

The implementation based on the reduction can solve projection on 1991 out of
2000 inputs, which means that it returns answers for all 10 assertions on the same
ABox and update. The testing finished in 10 minutes on all those inputs and in 2
minutes on most of them. The left graph of Figure 17 shows its performance compared
to reasoning with logical updates (Pellet-UR). There are 101 out of 1927 inputs on
which Pellet-UR spent more time. In the right graph of Figure 17, we plot the testing
results for the inputs for which both reasoning with projective updates and projection
return answers. Although the former run faster than the latter on 856 out of 1044
inputs, the time used by the former increases more rapidly for the relatively big inputs.

We summarize the experimental results obtained so far about projection in Ta-
ble 6. The upper part of the table lists the number of experiments performed for
the corresponding methods, while the lower part presents pairwise comparison among
them and the numbers in parentheses say for how many inputs both the two corre-
sponding methods did not run of the memory. It is worth observing that there are no
inputs for which two of those three reasoning methods did not return answers. They
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Logical update (a) Proj. update (b) Projection (c)

No. of experiments 2000 1052 2000

Achieving answers 1934 1047 1991

< > =

(a) vs. (b)
(1047)

907 57 83

(a) vs. (c)
(1927)

1824 101 2

(b) vs. (c)
(1044)

856 188 0

Table 6: A summary of experimental results.

met the worst cases in different inputs although in principle reasoning with the inputs
containing nesting existential and value restrictions is supposed to be expensive for
all of them.

We also performed experiments which do reasoning with a sequence of updates.
Testing data are the same as before. We check whether one assertion ϕ is a consequence
of applying U1, . . . ,Un to A for all n ≤ 2000. The sequence of updates is merged into
one update as discussed in Section 3.4. We did not update the ABoxes iteratively
because it would blow up quickly even for one of the smallest inputs for both projective
updates (n = 15) and projection (n = 39). For logical updates, whether merging or not
did not have much impact on the performance of reasoning. We run the experiments
on 10 ABoxes according to their sizes. The results are listed in Table 7 in which
the numbers in the first column are the indices of files storing the input ABoxes and
other numbers stand for the length (n) of the sequence of updates the corresponding
experiment was carried out to in 30 minutes. If the length reaches 2000 in 30 minutes,
then the number in parentheses indicates the time of reasoning. The order of the
indices in general reflects the order of sizes of the ABoxes. As we can see from the
table, reasoning with projective updates ran fastest on the small inputs. However,
once the size of ABox grows to a certain degree, the reasoning with the projective
updates becomes very expensive. From this point of view, logical updates are not as
sensitive as projective updates to the size of the original ABox. Although projection
did not perform best on the small inputs, it was the most efficient method on the large
inputs.

The testing results obtained in this section are at odds with the empirical conclu-
sion that progression outperforms regression when the history of updates is long. The
reason might be that the implementations are not optimal, or that reasoning about
action in DL domains essentially behaves like this.
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ABox index Pellet-UR Proj. update Projection

37 2000 (526429) 2000 (306661) 2000 (731408)

406 2000 (582790) 2000 (326655) 2000 (849365)

668 71 1568 693

713 168 80 2000 (834778)

1009 86 13 181

1124 78 6 2000 (903835)

1213 41 7 639

1268 68 5 668

1331 39 11 238

1712 19 1 181

Table 7: Reasoning with sequences of updates.
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Chapter 7

Verification of DL-LTL Formulas

In this chapter, we verify DL-LTL formulas w.r.t. ABoxes and Büchi sequences of
updates. In Section 7.1, we define the satisfiability problem and the validity problem
of DL-LTL formulas w.r.t. ABoxes and Büchi sequences of updates. We show that
the latter problem can be polynomially reduced to the complement of the former
problem. We investigate the satisfiability problem in DLs between ALC and ALCQIO
for two cases: unconditional updates and conditional updates. It turns out that in the
former case the satisfiability problem has the same complexity as the (non-)projection
problem. This is illustrated in Section 7.2. In the latter case, we present in Section 7.3
an algorithm to solve the satisfiability problem by extending the decision procedure
of satisfiability of propositional LTL formulas [WVS83, VW86] with the help of the
techniques to decide the projection problem [BLM+05]. This algorithm even works
for the more general problem that allows for sequences of updates accepted by a Büchi
automaton instead of a fixed sequence of updates. Suppose that Σ is a set of updates.
In the more general problem, we are offered a way to describe any infinite sequence of
updates in an ω-regular language over Σ instead of only Büchi sequences of updates
since the class of languages accepted by Büchi automata coincides with the class of ω-
regular languages [BK08]. The lower bounds are left open in the case that conditional
updates, or Büchi automata are allowed in the satisfiability problem.

7.1 The Inference Problems

In this section we formally introduce the inference problems relevant to verifying DL-
LTL formulas w.r.t. ABoxes and Büchi sequences of updates.

Let Σ be a finite set of updates. An infinite sequence over Σ is a function w : N 7→
Σ, where N is the set of natural numbers. Intuitively, w(n) is the n-th update in the
sequence. The following definition tells us the form of infinite sequences of updates
we are interested in:

Definition 61 (Büchi Sequence of Updates). Let Σ be a finite set of updates. A
Büchi sequence of updates is an infinite sequence w over Σ such that there are m,n
(m < n) satisfying the following property:

∀i > 0 : w(m+ i) = w(m+ k),

99
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where k is congruent to i modulo n. The size of w, denoted by |w|, is
∑m+n

i=0 |w(i)|.
△

Intuitively, an infinite sequence w over Σ is a Büchi sequence if it runs into a cycle from
w(m + n) back to w(m + 1). Hence, we also denote a Büchi sequence of updates by
α1 · · ·αm(β1 · · ·βn)

ω. Such a sequence of updates is called a Büchi sequence of updates
since for every Büchi automaton B, if the language accepted by B is not empty, then
B accepts a word with this form [TB73].

We follow the notion of ALC-LTL formulas from [BGL08], where temporal oper-
ators are allowed only in front of ABox assertions, and generalize this notion to any
DL. Such a formula is called a DL-LTL formula. Equivalently, a DL-LTL formula can
be obtained by replacing propositional letters in a propositional LTL formula with an
ABox assertion.

Definition 62 (DL-LTL formula). The set of DL-LTL formulas can be defined by
induction:

• if ϕ is an ABox assertion, then ϕ is a DL-LTL formula;

• if φ, ψ are DL-LTL formulas, then so are φ ∧ ψ, φ ∨ ψ, ¬φ, Xφ, and φUψ.

The size of a DL-LTL formula ϕ, denoted by |ϕ|, is the number of LTL operators in
ϕ plus |ψ| for every occurrence of every assertion ψ in ϕ. △

As usual, we use true as an abbreviation for A(a)∨¬A(a) with a concept name A and
an individual name a, 3φ as abbreviation for trueUφ, and 2φ as an abbreviation for
¬3¬φ.

A next formula Xφ can be read as φ holds in the next time point. An until formula
φUψ can be read as φ will always hold until ψ holds.

Definition 63 (DL-LTL Structure). A DL-LTL structure is an infinite sequence I =
(Ii)i=0,1,... of interpretations Ii = (∆, ·Ii). Given a DL-LTL formula φ, a DL-LTL
structure I = (Ii)i=0,1,..., and a time point i ∈ {0, 1, 2, . . .}, validity of φ in I at time
i (written I, i |= φ) is defined inductively:

I, i |= φ iff Ii |= φ where φ is an ABox assertion
I, i |= φ ∧ ψ iff I, i |= φ and I, i |= ψ
I, i |= φ ∨ ψ iff I, i |= φ or I, i |= ψ
I, i |= ¬φ iff not I, i |= φ
I, i |= Xφ iff I, i+ 1 |= φ
I, i |= φUψ iff there is k ≥ i such that I, k |= ψ and

I, j |= φ for all j, i ≤ j < k

△

In general, interpretations of concept and role names in a DL-LTL structure can
be completely independent of each other, or some concept names or role names are
interpreted in the same way. In the latter case, they are called rigid names in [BGL08].



7.1 The Inference Problems 101

We do not use rigid names here because the changes on the interpretations of names
are restricted by the semantics of update. In DLs, an interpretation is a complete
description of the world and thus a DL-LTL structure can be viewed as a sequence of
consecutive snapshots of the world. In order to use a DL-LTL structure to represent
the world descriptions in which changes are caused by applying updates, we introduce
the following definition:

Definition 64 (DL-LTL Structure w.r.t. w). Let w be a Büchi sequence of updates. A
DL-LTL structure I = (Ii)i=0,1,... w.r.t. w is a DL-LTL structure such that Ii =⇒w(i)

Ii+1 for all i ≥ 0. △

In contrast to [BGL08], we have the restriction that we disallow general concept
inclusions (GCIs) and even concept definitions to appear in the DL-LTL formula ϕ
because we want to avoid the semantics problem. For example, if ϕ = 2(C ⊑ D),
then each interpretation in a DL-LTL structure satisfying ϕ needs to satisfy C ⊑ D.
As a result, this indirectly introduces GCIs as domain constraints into DL action
formalisms. However, there does not yet exist a satisfactory semantics of such action
formalisms even in the DL ALC [BLM+05]. For concept definitions, we could allow the
formulas of the form 2(A ≡ C) as a conjunction to occur at the top-level of ϕ. This is
equivalent to including such concept definitions as domain constraints. This extension
would not change the complexity results in this chapter [BLLuM05]. In order to keep
the presentation uniform in this thesis, we do not consider acyclic TBoxes. If concept
definitions could occur in an arbitrary form, e.g.,

(A ≡ C) ∧ X¬(A ≡ C),

then the belief revision problem is more suitable in this setting than the update prob-
lem as discussed in Section 1.2.

In the next definition, we introduce the inference problems relevant to verifying
DL-LTL formulas considered in this chapter:

Definition 65 (Satisfiability and Validity). Let A be an ABox, w a Büchi sequence
of updates and ϕ a DL-LTL formula. Then,

• ϕ is satisfiable w.r.t. A and w iff there is a DL-LTL structure I = (Ii)i=0,1,...

w.r.t. w such that I0 |= A and I, 0 |= ϕ.

• ϕ is valid w.r.t. A and w iff for all DL-LTL structures I = (Ii)i=0,1,... w.r.t. w,
if I0 |= A, then I, 0 |= ϕ.

△

Throughout this chapter, we abbreviate the satisfiability (validity, respectively) prob-
lem of DL-LTL formulas w.r.t. ABoxes and Büchi sequences of updates as the satis-
fiability (validity, respectively) problem. We use a tuple (A, w, ϕ) to denote an input
of the satisfiability or the validity problem, where A, w, and ϕ are defined as in Defi-
nition 65. In the subsequent sections, we will show how to decide those two inference
problems for DLs L between ALC and ALCQIO, i.e., all assertions appearing in A,
w, or ϕ are formulated in L.
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Note that for all DL-LTL formulas ϕ, all ABoxes A, and all Büchi sequences w of
updates, ϕ is valid w.r.t. A and w iff ¬ϕ is unsatisfiable w.r.t. A and w. Thus, validity
can be reduced to (un)satisfiability. From now on, we concentrate on the satisfiability
problem.

7.2 Unconditional Updates

In this section, we solve the satisfiability problem of DL-LTL formulas w.r.t. ABoxes
and Büchi sequences of updates in DLs between ALC and ALCQIO for the case that
all the updates in the Büchi sequence w are unconditional updates.

Let (A, w, ϕ) with w = α1 . . . αm(β1 . . . βn)
ω be an input of the satisfiability prob-

lem. The following lemma tells us that, for all interpretations I, if I ′ is the result
of updating I with β1 · · ·βn, then I ′ is the result of updating I ′ with β1 · · ·βn, i.e.,
the sequence of interpretations runs into a circle after the application of the same
sequence of updates twice.

Lemma 66. Let I and I ′ be two interpretations and β = β1 · · ·βn be a sequence of
updates. If I =⇒β I

′, then I ′ =⇒β I
′.

Proof. Suppose I ′ =⇒β J
′ for some interpretation J ′ (such a J ′ always exists,

since for all updates U , =⇒U is a total function on all interpretations). Thus, it is
enough to show that I ′ = J ′. Since it follows from I =⇒β I

′ and I ′ =⇒β J
′ that

∆I = ∆I′
= ∆J ′

and aI = aI
′
= aJ

′
for all a ∈ NI, it suffices to show that for all

A ∈ NC and all r ∈ NR, we have AI′
= AJ ′

and rI
′
= rJ

′
. Here we show only the

former and the latter can be proved analogously.

“⊆”: Assume that AI′
6⊆ AJ ′

. Then there is a d ∈ ∆I such that d ∈ AI′
and

d 6∈ AJ ′
. Since I ′ =⇒β J

′, there is a βj ∈ {β1, . . . , βn} such that ¬A(a) ∈ βj for some
a ∈ NI with aI = d and for all i with j < i ≤ n, we have A(a) 6∈ βi. (Intuitively, it
means that d is removed from A by βj and never added afterwards.) However, together
with I =⇒β I

′, such a βj in β implies d 6∈ AI′
, which contradicts the assumption.

“⊇”: Assume that AJ ′
6⊆ AI′

. Then there is a d ∈ ∆I such that d ∈ AJ ′
and

d 6∈ AI′
. Since I ′ =⇒β J

′, there is a βj ∈ {β1, . . . , βn} such that A(a) ∈ βj for some
a ∈ NI with aI = d and for all i with j < i ≤ n, we have ¬A(a) 6∈ βi. (Intuitively, it
means that d is added into A by βj and never removed afterwards.) However, together
with I =⇒β I

′, such a βj in β implies d ∈ AI′
, which contradicts the assumption.

❏

It follows from Lemma 66 that each DL-LTL structure I w.r.t. w is determined by
the first m+ 2n interpretations in I and thus it is enough to check satisfiability of ϕ
only on those interpretations. Based on this observation, we can solve the satisfiability
problem by the reduction to the consistency problem of ABoxes w.r.t. acyclic TBoxes:

• Construct an acyclic TBox Tred and an ABox Ared from A, w, and ϕ; and

• Compute an ABox Aϕ from ϕ by a tableau algorithm.
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We show that ϕ is satisfiable w.r.t. A and w iff Ared ∪ Aϕ is consistent w.r.t. Tred.
Intuitively, Ared and Tred are to ensure the semantics of updates and Aϕ is to guarantee
the semantics of LTL operators.

Without loss of generality, we can assume that there are no LTL negation signs
in ϕ. First, we transform ϕ into LTL negation normal form (LTL-NNF), i.e., LTL
negation signs occur only in front of ABox assertions.1 To this end, we need to
introduce the release operator R which is the dual operator of U. ϕRψ = ¬(¬ϕU¬ψ),
i.e., I, i |= ϕRψ iff for all m ≥ i, I,m |= ψ or there exists a k such that I, k |= ϕ and
I, j |= ψ for all j with i ≤ j ≤ k. First, by exhaustively applying the following rules,
every DL-LTL formula ϕ can be transformed to an equivalent one in LTL-NNF.

¬(ϕ ∧ ψ) ; ¬ϕ ∨ ¬ψ; ¬(ϕ ∨ ψ) ; ¬ϕ ∧ ¬ψ;
¬(ϕUψ) ; ¬ϕR¬ψ; ¬(ϕRψ) ; ¬ϕU¬ψ;
¬Xϕ ; X¬ϕ.

Second, replace, respectively, ¬(C(a)) with (¬C)(a), ¬(r(a, b)) with ¬r(a, b), and
¬((¬r)(a, b)) with r(a, b) after the LTL-NNF of ϕ is obtained. It is not hard to see that
those replacements are satisfiability preserving and can be done in time polynomial
in the size of ϕ. The size of the formula obtained is polynomial in the size of ϕ.

The construction of Tred and Ared is inspired from [BLM+05]. Let Obj be the set
of all the individual names in the input. Let Sub be the set of all the subconcepts in
the input. We introduce the following concept names and role names:2

• For every C ∈ Sub and every i ≤ m+ 2n− 1, we introduce a concept name T
(i)
C

to represent C at the i-th time point.

• For every concept name A (role name r, respectively) and every i ≤ m+2n− 1,
we introduce A(i) (r(i), respectively) to represent A (r, respectively) at the i-th
time point, but only w.r.t. the named objects.

• We use a concept name N as abbreviation of the union of the individual names
in Obj.

Let us start with constructing Tred which consists of several components. The first
component is TN .

TN = {N ≡
⊔

a∈Obj

{a}}.

For every C ∈ Sub, there is a concept definition of T
(i)
C in T

(i)
Sub. The concept definition

of T
(i)
C is defined inductively on the structure of C as described in Figure 18. We are

now ready to assemble Tred:

Tred = TN ∪ (
m+2n−1

⋃

i=0

T
(i)
Sub).

1It is required that ϕ is in LTL-NNF because Aϕ is constructed by a tableau-based algorithm
which works on DL-LTL formulas in LTL-NNF.

2Note that the auxiliary individual name ahelp and ABox Aaux and role names ra for all a ∈ Obj

used in [BLM+05] are not necessary here since we consider only unconditional updates.
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T
(i)
A ≡ (N ⊓A(i)) ⊔ (¬N ⊓A(0)) if A ∈ NC

T
(i)
{a} ≡ {a}

T
(i)
¬C ≡ ¬T

(i)
C

T
(i)
C⊓D ≡ T

(i)
C ⊓ T

(i)
D

T
(i)
C⊔D ≡ T

(i)
C ⊔ T

(i)
D

T
(i)
∃r.C ≡

(

N ⊓
(

(∃r(0).(¬N ⊓ T
(i)
C )) ⊔ (∃r(i).(N ⊓ T

(i)
C ))

)

)

⊔(¬N ⊓ ∃r(0).T
(i)
C ))

T
(i)
∀r.C ≡

(

N →
(

(∀r(0).(¬N → T
(i)
C )) ⊓ (∀r(i).(N → T

(i)
C ))

)

)

⊓(¬N → ∀r(0).T
(i)
C )

T
(i)
(>n r C) ≡

(

N ⊓
⊔

0≤j≤min{n,#Obj}

(

(> j r(i) (N ⊓ T
(i)
C ))⊓

(> (n− j) r(0) (¬N ⊓ T
(i)
C ))

)

)

⊔(¬N ⊓ (> n r(0) T
(i)
C ))

T
(i)
(6n r C) ≡

(

N →
d

0≤j≤min{n+1,#Obj}

(

¬(> j r(i) (N ⊓ T
(i)
C ))⊔

¬(> (n− j) r(0) (¬N ⊓ T
(i)
C ))

)

)

⊓(¬N → (6 n r(0) T
(i)
C ))

Figure 18: Concept definitions in T
(i)
Sub.

The TBoxes TN and T
(i)
sub ensure that for all concept C ∈ Sub, at the i-th time point

C is represented by the concept name T
(i)
C and that in particular the interpretations

of concept and role names remain unchanged by updates on the anonymous objects.
The changes by updates on the named objects will be guaranteed by Ared. For every
ABox assertion ϕ we define ϕ(i) as

ϕ(i) =











T
(i)
C (a) if ϕ = C(a)

r(i)(a, b) if ϕ = r(a, b)

¬r(i)(a, b) if ϕ = ¬r(a, b)

(8)

For 1 ≤ i ≤ m+ 2n− 1, we define the ABox A
(i)
rhs as follows:

A
(i)
rhs = {ψ(i) | ψ ∈ w(i− 1)}.

Intuitively, the ABox A
(i)
rhs ensures that the effects of w(i − 1) hold at the i-th time

point. For 1 ≤ i ≤ m+ 2n− 1, the ABox A
(i)
min only contains

1. the following assertions for every a ∈ Obj and every concept name A which
occurs in the input:

a : (A(i−1) → A(i)) if ¬A(a) 6∈ w(i− 1);

a : (¬A(i−1) → ¬A(i)) if A(a) 6∈ w(i− 1).
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2. the following assertions for all a, b ∈ Obj and every role name r which occurs in
the input:

a : (∃r(i−1).{b} → ∃r(i).{b}) if ¬r(a, b) 6∈ w(i− 1);

a : (∀r(i−1).¬{b} → ∀r(i).¬{b}) if r(a, b) 6∈ w(i− 1).

The ABox A
(i)
min guarantees that the interpretations of concept names and role names

remain intact on named objects if they are not affected by the update w(i− 1). The
ABox Aini which assures that the ABox A is satisfied at time point 0 is defined as
follows:

Aini = {ϕ(0) | ϕ ∈ A}.

Then, we construct Ared as follows:

Ared = Aini ∪
m+2n−1

⋃

i=1

A
(i)
rhs ∪

m+2n−1
⋃

i=1

A
(i)
min.

As revealed in [BLM+05], from every interpretation I such that I |= Tred and
I |= Ared we can construct the crucial part of a DL-LTL structure w.r.t. w and vice
versa.

Lemma 67. Let (A, w, ϕ) be an input of the satisfiability problem. Let Ared and Tred
be respectively the ABox, and the TBox obtained according to the above construction.
Then, we have

(a) for every I0, . . . , Im+2n−1 such that I0 |= A and Ii =⇒w(i) Ii+1 for every i
with 0 ≤ i < m+ 2n − 1, there exists an interpretation J such that J |= Ared,
J |= Tred, and for all i ∈ {0, . . . ,m + 2n − 1} and for all assertions ψ in the
input, Ii |= ψ iff J |= ψ(i).

(b) for every interpretation J such that J |= Ared, J |= Tred, there exist interpre-
tations I0, . . . , Im+2n−1 such that I0 |= A, for every i with 0 ≤ i < m+ 2n− 1,
Ii =⇒w(i) Ii+1, and for all i ∈ {0, . . . ,m + 2n − 1} and for all assertions ψ in

the input, Ii |= ψ iff J |= ψ(i).

The tableau rules displayed in Figure 19 are designed to satisfy the semantics of
LTL operators in the DL-LTL formula ϕ, where

• in the ∨-rule we have:

B′ = (A \ {(ϕ1 ∨ ϕ2)
(i)}) ∪ {ϕ

(i)
1 }, and

B′′ = (A \ {(ϕ1 ∨ ϕ2)
(i)}) ∪ {ϕ

(i)
2 };

• in the U-rule1 and the U-rule2, we have:

Bk = (A \ {(ϕ1 Uϕ2)
(i)}) ∪ {ϕ

(i)
1 , . . . , ϕ

(k−1)
1 , ϕ

(k)
2 }

for all k with i ≤ k < m+ 2n, and

Bk = (A \ {(ϕ1 Uϕ2)
(i)}) ∪ {ϕ

(i)
1 , . . . , ϕ

(m+2n−1)
1 , ϕ

(m+n)
1 , . . . , ϕ

(k−1)
1 , ϕ

(k)
2 },

for all k with m+ n ≤ k < i;
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A ∈ S ∧ (ϕ1 ∧ ϕ2)
(i) ∈ A

A := (A \ {(ϕ1 ∧ ϕ2)
(i)}) ∪ {ϕ

(i)
1 , ϕ

(i)
2 }
∧-rule

A ∈ S ∧ (ϕ1 ∨ ϕ2)
(i) ∈ A

S := (S \ {A}) ∪ {B′,B′′}
∨-rule

A ∈ S ∧ (Xϕ)(i) ∈ A ∧ i < m+ 2n− 1

A := A \ {(Xϕ)(i)} ∪ {ϕ(i+1)}
X-rule1

A ∈ S ∧ (Xϕ)(i) ∈ A ∧ i = m+ 2n− 1

A := A \ {(Xϕ)(i)} ∪ {ϕ(n+m)}
X-rule2

A ∈ S ∧ (ϕ1 Uϕ2)
(i) ∈ A ∧ i ≤ m+ n

S := S \ {A} ∪ {Bi, . . . ,Bm+2n−1}
U -rule1

A ∈ S ∧ (ϕ1 Uϕ2)
(i) ∈ A ∧ i > m+ n

S := S \ {A} ∪ {Bm+n, . . . ,Bm+2n−1}
U -rule2

A ∈ S ∧ (ϕ1 Rϕ2)
(i) ∈ A ∧ i ≤ m+ n

S := S \ {A} ∪ {Bi, . . . ,Bm+2n−1,B
∞
1 }

R -rule1

A ∈ S ∧ (ϕ1 Rϕ2)
(i) ∈ A ∧ i > m+ n

S := S \ {A} ∪ {Bm+n, . . . ,Bm+2n−1,B∞2 }
R -rule2

Figure 19: Tableau rules.

• and in the R-rule1 and the R-rule2 we have:

Bk = (A \ {(ϕ1 Rϕ2)
(i)}) ∪ {ϕ

(i)
2 , . . . , ϕ

(k)
2 , ϕ

(k)
1 },

for all k with i ≤ k < m+ 2n,

B∞1 = {ϕ
(i)
2 , . . . , ϕ

(m+2n−1)
2 },

Bk = (A \ {(ϕ1 Uϕ2)
(i)}) ∪ {ϕ

(i)
2 , . . . , ϕ

(m+2n−1)
2 , ϕ

(m+n)
2 , . . . , ϕ

(k)
2 , ϕ

(k)
1 },

for all k with n+m ≤ k < i, and

B∞2 = {ϕ
(m+n)
2 , . . . , ϕ

(m+2n−1)
2 }.

As we can see from Figure 19, the tableau rules operate on a set of sets of DL-LTL
formulas. Each formula is labeled with (i). Intuitively, the label stands for the time
point, e.g., ψ(i) can be read as the formula ψ holds at time point i. We say that a
tableau rule is applied to a formula ψ if ψ is the formula appearing explicitly in the
upper part of the rule. We say that a set B of labeled formulas is generated by an
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application of a tableau rule if B occurs explicitly in the appended set or gets assigned
in the lower part of the rule. We exhaustively apply the tableau rules to S = {{ϕ(0)}}
for a DL-LTL formula ϕ. The following lemma tells us that every application of a
tableau rule to a formula preserves satisfiability of the formula:

Lemma 68. Let (A, w, ϕ) be an input of the satisfiability problem. Let S be the set
in some status of the tableau algorithm starting with {{ϕ(0)}}. Assume that S

′ is
obtained from S by an application of one of the tableau rules in Figure 19 to some
formula in Al with Al ∈ S. Then for every DL-LTL structure I = (Ii)i=0,1,... w.r.t.
w, the following statements are equivalent:

• I, i |= ϕ for all ϕ(i) ∈ Al.

• there exists a generated Bk ∈ S
′ by the application of the tableau rule such that

I, i |= ϕ for all ϕ(i) ∈ Bk.

Proof. It is obvious for the ∧-rule and the ∨-rule. By Lemma 66, I is of the following
form:

(I0, . . . , Im+n, . . . , Im+2n−1, Im+n, . . . , Im+2n−1, Im+n, . . . ).

Thus, it follows immediately that the statements in this lemma are equivalent for the
X-rule1 and the X-rule2.

U -rule1: Suppose that this rule is applied to (ϕ1 Uϕ2)
(i) ∈ Al. Then we know that

for all i ≤ m + n, I, i |= ϕ1 Uϕ2 iff (by the semantics of U) there exists a k ≥ i such
that I, k |= ϕ2 and I, j |= ϕ1 for all i ≤ j < k iff (from the form of I) there exists a k
with i ≤ k < m+ 2n such that I, k |= ϕ2 and I, j |= ϕ1 for all j with i ≤ j < k, i.e.,
there is one generated Bk such that I, i |= ϕ for all ϕ(i) ∈ Bk \ Al.

U-rule2: Suppose that this rule is applied to (ϕ1 Uϕ2)
(i) ∈ Al. Then we know that

for all i > m + n, I, i |= ϕ1 Uϕ2 iff (by the semantics of U) there exists a k ≥ i such
that I, k |= ϕ2 and I, j |= ϕ1 for all i ≤ j < k iff (from the form of I) there exists a k
with i ≤ k ≤ m+ 2n− 1 such that I, k |= ϕ2 and I, j |= ϕ1 for all j with i ≤ j < k or
there exists a k with m+ n ≤ k < i such that I, k |= ϕ2 and I, j |= ϕ1 for all j with
i ≤ j ≤ m+ 2n and for all j with m+ n ≤ j < k, i.e., there is one generated Bk such
that I, i |= ϕ for all ϕ(i) ∈ Bk \ Al.

Similarly, the form of I, together with the semantics of R, implies that the two
statements in the lemma are equivalent if either of the R-rule1 and the R-rule2 is
applied. ❏

After the tableau algorithm terminates with S, for every A in S, every labeled
formula in A is an ABox assertion and the function defined in (8) can be applied to
those assertions.3 Thus, every A in S can be viewed as an ABox. Then, we use the
set S, together with the constructed Tred and Ared to decide whether ϕ is satisfiable
w.r.t. A and w.

Lemma 69. Let S be the set when the tableau algorithm terminates. Then ϕ is
satisfiable w.r.t. A and w iff there is an Aϕ ∈ S such that Ared ∪ Aϕ is consistent
w.r.t. Tred.

3The termination of the tableau algorithm will be addressed later on when we analyze the com-
plexity.
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Proof. “⇒”: If ϕ is satisfiable w.r.t. A and w then there is a DL-LTL structure I =
(Ii)i=0,1,... w.r.t. w such that I0 |= A and I, 0 |= ϕ. By (a) of Lemma 67, there exists
an interpretation J such that J |= Ared, J |= Tred and for all i ∈ {0, . . . ,m+ 2n− 1}
and for all assertions ϕ in the input, Ii |= ϕ iff J |= ϕ(i). By Lemma 68, I, 0 |= ϕ
implies that there exists Aϕ ∈ S such that I, i |= ϕ for all ϕ(i) ∈ Aϕ. Since for every
ϕ(i) ∈ Aϕ, ϕ is an assertion, I, i |= ϕ yields Ii |= ϕ. Hence, J |= Aϕ.

“⇐”: Let J be a common model of Ared ∪Aϕ and Tred with some Aϕ ∈ S. Then
it follows from (b) of Lemma 67 that there exist interpretations I0, . . . , In+2m−1 such
that I0 |= A and Ii =⇒w(i) Ii+1 for all i with 0 ≤ i < m+2n−1 and for all assertions

ϕ in the input, Ii |= ϕ iff J |= ϕ(i). Define I as follows:

(I0, . . . , Im+n, . . . , Im+2n−1, Im+n, . . . , Im+2n−1, Im+n, . . . ).

By Lemma 66, I is a DL-LTL structure w.r.t. w. J |= Aϕ implies that for all
ψ(i) ∈ Aϕ, Ii |= ψ, i.e., I, i |= ψ. By Lemma 68, we have I, 0 |= ϕ. ❏

The size of an input (A, w, ϕ) is defined as |A|+|w|+|ϕ|. Given an input (A, w, ϕ),
the size of Ared and Tred is polynomial in the size of input and they can be constructed
in time polynomial in the size of the input. This is independent of the codings of
numbers in the number restrictions in the input [Mil08].

Let S be the set obtained by exhaustively applying the tableau rules to {{ϕ(0)}}.
In general, the size of S can be exponential in the size of the input. However, we
need only one element Aϕ in S such that Ared ∪Aϕ is consistent w.r.t. to Tred. For a
DL-LTL formula ϕ, Aϕ can be constructed in NPSpace since

• each application of a tableau rule generates at most m+ 2n (i.e., polynomially
many) sets of labeled formulas;

• every labeled formula in generated sets is a strict subformula of the formula that
the rule applies to and i in all labels (i) is never over m+ 2n− 1;

• there is a tableau rule applicable iff there is an LTL operator in S.

By Savitch’s theorem [Pap94], the construction of Aϕ can be done in PSpace. Over-
all, Ared, Aϕ and Tred can be constructed in PSpace. Consistency checking of an
ALCQO-ABox w.r.t. an acyclic ALCQO-TBox is in PSpace [BML+05] if the num-
bers in qualified number restriction are coded in unary. For ALCIO, it is in ExpTime

[ABM99]. For ALCQIO, a fragment of C2, it is in NExpTime [Tob00, PH05], even if
the numbers are in binary coding. Thus, we obtain an upper bound of the satisfiability
problem of DL-LTL formulas w.r.t. ABoxes and Büchi sequences of updates in DLs
between ALC and ALCQIO.

Lemma 70. The satisfiability problem of DL-LTL formulas w.r.t. ABoxes and Büchi
sequences of updates is

• in PSpace for ALCQO if the numbers in qualified number restrictions are coded
in unary;

• in ExpTime for ALCIO;

• in NExpTime for ALCQIO.
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In what follows, we show that those upper bounds are tight by reducing the pro-
jection problem to the (un)satisfiability problem. It has been shown in [BLM+05] that
for DLs L between ALC and ALCQIO, the projection problem in L is as hard as the
(in)consistency problem in LO even if every update is unconditional.

We can reduce the projection problem in L to the validity problem in L. Let A
be an ABox and Ui an unconditional update for all i with 1 ≤ i ≤ n. It is easy to see
that an assertion ϕ is a consequence of applying U1 . . .Un to A iff Xnϕ is valid w.r.t.
A, and U1 . . .Un(∅)

ω (in which Xn is the abbreviation of n Xs). Thus, the complexity
results about the projection problem in [BLM+05] imply the following lemma:

Lemma 71. The validity problem of DL-LTL formulas w.r.t. ABoxes and Büchi se-
quences of updates is

• PSpace-hard for ALC;

• ExpTime-hard for ALCI;

• co-NExpTime-hard for ALCQI.

The above lemma does not rely on the coding of numbers. Recall that the validity
problem can be further reduced to the (un)satisfiability problem. Thus,

Theorem 72. The satisfiability problem of DL-LTL formulas w.r.t. ABoxes and Büchi
sequences of updates for a DL L is

• PSpace-complete if L is in {ALC,ALCO,ALCQ,ALCQO} and the numbers in
qualified number restriction are coded in unary;

• ExpTime-complete if L is in {ALCI,ALCIO};

• NExpTime-complete if L is in {ALCQI,ALCQIO}.

7.3 Conditional Updates

Lemma 66 is crucial for deciding the satisfiability problem of DL-LTL formulas w.r.t.
ABoxes and Büchi sequences of updates because it tells us that an infinite sequence
of interpretations in a DL-LTL structure w.r.t. a sequence of unconditional updates
consists of only finitely many interpretations. As a result, the semantics of temporal
operators involving “infinite” meaning such as U and R can be easily checked. However,
when we allow conditional updates, the corresponding claim of Lemma 66 does not
hold any more. For example, if ϕ of ϕ/ψ in an update β1 holds only after applying
the update β2, then ψ will not indeed take effect until the second execution of β1, and
thus, it cannot be guaranteed that the sequence of interpretations runs into a circle
immediately after applying updates twice.

The key observation here is that there are only finitely many updates occurring
in a Büchi sequence of updates. As a result, for every DL-LTL structure I w.r.t.
w, there are only finitely many interpretations appearing in I, although we are not
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sure by which time point they have all shown up in I. Based on this observation,
we combine the algorithm of the satisfiability problem of propositional LTL formulas
and the one of the projection problem in DLs to solve the satisfiability problem of
DL-LTL formulas w.r.t. ABoxes and Büchi sequences of updates. It turns out that
this satisfiability problem in DLs between ALC and ALCQIO is still decidable. The
solution even works for a more general satisfiability problem in which Büchi sequences
of updates are given by a nondeterministic Büchi automaton [Büc60]:

Definition 73 (Nondeterministic Büchi Automaton). A (nondeterministic) Büchi
automaton A is a tuple A = (Q,Σ,∆, I, F1, . . . , Fn) with n ≥ 0 where

• Q is a finite set of states;

• Σ is a finite alphabet;

• ∆ ⊆ Q× Σ×Q is a transition relation;

• I ⊆ Q is a set of initial states.

• for all i with 1 ≤ i ≤ n, Fi ⊆ Q is a set of final states.

Let w = a0a1 · · · ∈ Σω, a run of A on w is a sequence of q0q1 · · · ∈ Q
ω such that q0 ∈ I

and (qi, ai, qi+1) ∈ ∆ for all i ≥ 0. A run q0q1 . . . is accepting if the set {i | qi ∈ Fj}
is infinite for all j ∈ {1, . . . , n}. The ω-language accepted by A, denoted by Lω(A), is
defined by

Lω(A) = {w ∈ Σω | there is an accepting run of A on w}.

The size of a Büchi-automaton A, denoted by |A|, is defined as #Q plus the sum of
the size of every element of Σ. △

We are ready now to introduce the generalized inference problems:

Definition 74 (Satisfiability and Validity with Generalized Inputs). Let A be an
ABox, ϕ a DL-LTL formula, and Σ a finite set of (possibly conditional) updates. Let
B = (Q,Σ, I,∆, F ) be a Büchi automaton.4 Then we say that

• ϕ is satisfiable w.r.t. A and B iff ϕ is satisfiable w.r.t. A and w for some w ∈
Lω(B).

• ϕ is valid w.r.t. A and B iff ϕ is valid w.r.t. A and w for all w ∈ Lω(B).
△

Still, the validity problem of DL-LTL formulas w.r.t. ABoxes and Büchi automata can
be reduced to the (un)satisfiability problem w.r.t. ABoxes and Büchi automata since
¬ϕ is unsatisfiable w.r.t. A and B iff ϕ is valid w.r.t. A and B. Thus, we can focus
on the satisfiability problem. Moreover, for all w = α1 · · ·αm(β1 · · ·βn)

ω there exists
a Büchi automaton B such that Lω(B) = {w}. Such a B can be constructed in time

4Without loss of generality, we assume that B has only one set of final states [GPVW95, BK08].
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polynomial in the size of w. It is obvious that ϕ is satisfiable w.r.t. A and w iff ϕ is
satisfiable w.r.t. A and B.

The problems in Definition 74 generalize the ones in the previous section: they
allow for conditional updates, and instead of a fixed sequence of updates the sequences
of updates in the input are the language accepted by a Büchi automaton.

We use a tuple (A,B, ϕ) to denote an input of the satisfiability problem as in
Definition 74. We first introduce some notions. Let Obj be the set of all individual
names occurring in the input. We define

D = {ψ | ψ is an ABox assertion in the input }∪
{A(a) | A is a concept name appearing in the input ∧ a ∈ Obj}∪
{r(a, b) | r is a role name appearing in the input ∧ a, b ∈ Obj}.

For every ψ ∈ D, we introduce a propositional letter pψ. We use PL to denote the set
of propositional letters corresponding to the ABox assertions in D. For all DL-LTL
formulas ϕ such that all assertions occurring in ϕ are in D, we use the function pl(ϕ)
to denote the propositional LTL formula obtained by replacing all assertions ψ in ϕ
with pψ. We construct the following (propositional) LTL formula from ϕ and A:

ϕ̂ = pl(ϕ) ∧
∧

ψ∈A

pl(ψ).

W.l.o.g., we assume that for all p ∈ PL, p occurs in ϕ̂. Otherwise we add p ∨ ¬p
into ϕ̂ as a conjunct. Moreover, we assume w.l.o.g. that there are no “∨” signs in ϕ̂
(otherwise replace ϕ̂1 ∨ ϕ̂2 with ¬(¬ϕ̂1 ∧ ¬ϕ̂2)).

5 It is clear that those replacements
are satisfiability preserving and the size of the obtained formula is polynomial in the
size of ϕ and can be constructed in time polynomial in the size of ϕ [BK08]. Let us
recall how to decide the satisfiability problem of propositional LTL formulas with the
help of Büchi automata according to [WVS83, VW86] where the notion of the closure
of a propositional LTL formula is used.

Definition 75. The closure cl(ϕ̂) of a propositional LTL formula ϕ̂ is defined induc-
tively as follows:

• cl(p) := {p,¬p};

• cl(¬ϕ̂) := cl(ϕ̂);

• if ϕ̂ ∈ {ϕ̂1 ∧ ϕ̂2, ϕ̂1 U ϕ̂2}, then cl(ϕ̂) := {ϕ̂,¬ϕ̂} ∪ cl(ϕ̂1) ∪ cl(ϕ̂2);

• cl(Xϕ̂) := {Xϕ̂,¬Xϕ̂} ∪ cl(ϕ̂).
△

The closure cl(ϕ̂) of ϕ̂ is the set of subformulas of ϕ̂ and their negations. A type for ϕ̂
is a maximal and “local” consistent subset of cl(ϕ̂). Formally, it is defined as follows:

Definition 76. A type for ϕ̂ is a subset T ⊆ cl(ϕ̂) such that:

5We require this here because the decision procedure of satisfiability of propositional LTL formulas
is defined on formulas with this form.
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1. ψ̂ ∈ T iff ¬ψ̂ /∈ T , for all ¬ψ̂ ∈ cl(ϕ̂);

2. {ϕ̂1, ϕ̂2} ⊆ T iff ϕ̂1 ∧ ϕ̂2 ∈ T , for all ϕ̂1 ∧ ϕ̂2 ∈ cl(ϕ̂);

We use TP(ϕ̂) to denote the set of types for ϕ̂. For T, T ′ ∈ TP(ϕ̂), we write T →X T
′

if

• for all Xψ̂ ∈ cl(ϕ̂), Xψ̂ ∈ T iff ψ̂ ∈ T ′;

• for all ϕ̂1 U ϕ̂2 ∈ cl(ϕ̂), we have ϕ̂1 U ϕ̂2 ∈ T iff

– ϕ̂2 ∈ T or

– ϕ̂1 ∈ T and ϕ̂1 U ϕ̂2 ∈ T
′.

△

Let there be l until formulas (which are the formulas of the form ψ1 Uψ2) in cl(ϕ̂) and
assume that these formulas are linearly ordered. Let P(PL) be the set of subsets of
PL. We define the Büchi automaton Aϕ̂ as

Aϕ̂ = (TP(ϕ̂),P(PL), Iϕ̂,∆ϕ̂, F
1
ϕ̂, . . . , F

l
ϕ̂),

where

• Iϕ̂ = {T ∈ TP(ϕ̂) | ϕ̂ ∈ T} ;

• ∆ϕ̂ = {(T, a, T ′) | a ∩ cl(ϕ̂) = T ∩ PL and T →X T
′};

• F iϕ̂ = {T ∈ TP(ϕ̂) | ϕ̂1 U ϕ̂2 /∈ T or ϕ̂2 ∈ T} if the i-th until formula in cl(ϕ̂) is
ϕ̂1 U ϕ̂2.

It has been shown that Aϕ̂ has the following property [WVS83, VW86]:

Lemma 77. For all M = (Xi)i=0,1,... ∈ (P(PL))ω, M ∈ Lω(Aϕ̂) iff M, 0 |= ϕ̂. If

T0T1 · · · is an accepting run of Aϕ̂ on M , then for all i ≥ 0 and all ψ̂ ∈ cl(ϕ̂), we

have ψ̂ ∈ Ti iff M, i |= ψ̂.

Let S be a subset of P(PL), i.e., a set of subsets of PL. We define a Büchi automa-
ton AS = (QS ,ΣS , IS ,∆S , F

1
S , . . . , F

l
S , F

l+1
S ) based on Aϕ̂, S, and B as following:

• QS = TP(ϕ̂)×Q;

• ΣS = P(PL)× Σ;

• IS = {(T, q) | T ∈ Iϕ̂ ∧ q ∈ I};

• ((T1, q1), (X,U), (T2, q2)) ∈ ∆S iff the following conditions hold:

– X ∈ S;

– (T1, X, T2) ∈ ∆ϕ̂ and (q1,U , q2) ∈ ∆;

– for all ψ/φ ∈ U , pl(ψ) ∈ T1 implies pl(φ) ∈ T2.
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– for all p ∈ PL with p = pl(A(a)) for some A(a) ∈ D with A ∈ NC,

∗ if p ∈ T1 and there is no ϕ1/¬A(a) ∈ U such that pl(ϕ1) ∈ T1, then
p ∈ T2, and

∗ if ¬p ∈ T1 and there is no ϕ1/A(a) ∈ U such that pl(ϕ1) ∈ T1, then
¬p ∈ T2

– for all p ∈ PL with p = pl(r(a, b)) for some r(a, b) ∈ D with r ∈ NR,

∗ if p ∈ T1 and there is no ϕ1/¬r(a, b) ∈ U such that pl(ϕ1) ∈ T1, then
p ∈ T2, and

∗ if ¬p ∈ T1 and there is no ϕ1/r(a, b) ∈ U such that pl(ϕ1) ∈ T1, then
¬p ∈ T2

• F jS = {(T, q) | T ∈ F jϕ̂} for all 1 ≤ j ≤ l and F l+1
S = {(T, q) | q ∈ F}.

The above automaton has two functionalities: the changes on the named objects
respect the semantics of updates and the semantics of LTL operators in ϕ are taken
care of. Let Sub be the set of all the subconcepts in the input. The interpretations of
the anonymous objects are guaranteed to remain unchanged by an acyclic TBox Tred:

Tred = TN ∪ (
k

⋃

i=1

T
(i)
Sub),

where TN and T
(i)
Sub defined as in the last section.

For all 1 ≤ i ≤ k, we define

Ai = {ψ(i) | ∃p ∈ Xi : ψ = pl(p)} ∪ {¬ψ(i) | ∃p ∈ PL \Xi : ψ = pl(p)},

where ψ(i) are defined as in the last section. After absorbing LTL negation signs into
assertions, Ai can be viewed as an ABox. The realizability of the propositional types
in DLs is ensured by the following ABox Ared:

Ared =
k

⋃

i=1

Ai.

Lemma 78. ϕ is satisfiable w.r.t. A and B iff there is a set S ⊆ P(PL) such that
Lω(AS) 6= ∅ and Ared is consistent w.r.t. Tred.

Proof. “⇒”: Suppose that ϕ is satisfiable w.r.t. A and B. Then there exists a
w = U0U1 · · · ∈ Lω(B) such that ϕ is satisfiable w.r.t. A and w, and thus there is a
DL-LTL structure I = (Ii)i=0,1,... w.r.t. w such that I0 |= A and I, 0 |= ϕ. We define
Xi for all i ≥ 0 and S as follows:

Xi = {p ∈ PL | ∃ψ ∈ D : pl(ψ) = p ∧ Ii |= ψ}.

S = {Xi | i = 0, 1, . . . }.

For all i ≥ 0, we define

Ti = {ψ̂ ∈ cl(ϕ̂) | ψ̂ = pl(ψ) ∧ I, i |= ψ}.
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Since I, 0 |= ϕ and I0 |= A, it follows from the above definition that ϕ̂ ∈ T0.
Moreover, it is easy to see that for all i ≥ 0, Ti ∈ TP(ϕ̂).

Since w = U0U1 · · · ∈ Lω(B), then there exists an accepting run q0q1 . . . of B on
w. Now we show that (T0, q0)(T1, q1) . . . is a run of AS on (X0,U0)(X1,U1) . . . :

• For all i ≥ 0, Ti ∈ TP(ϕ̂) and qi ∈ Q, and thus (Ti, qi) ∈ QS .

• Since ϕ̂ ∈ T0, we have T0 ∈ Iϕ̂, which, together with q0 ∈ I, implies (T0, q0) ∈ IS .

• For all i ≥ 0, ((Ti, qi), (Xi,Ui), (Ti+1, qi+1)) ∈ ∆S . This holds since

– Xi ∈ S is an direct consequence of the definition of S.

– (qi,Ui, qi+1) ∈ ∆ since q0q1 . . . is an accepting run of B on w. Moreover,
(Ti, Xi, Ti+1) ∈ ∆ϕS since

∗ Xi ∩ cl(ϕ̂) = Ti ∩ PL: It suffices to show that for all p ∈ PL with
p = pl(ψ), Ii |= ψ iff p ∈ Ti. This is implied by the definitions of Ti
and Xi.

∗ Ti →X Ti+1 for all i ≥ 0:

· for all Xψ̂ ∈ cl(ϕ̂) with Xψ̂ = pl(Xψ), Xψ̂ ∈ Ti iff (by the definition
of Ti) I, i |= Xψ iff (by the semantics of DL-LTL formulas) I, i+1 |=
ψ iff (by the definition of Ti+1) ψ̂ ∈ Ti+1.

· for all ψ̂U φ̂ ∈ cl(ϕ̂) with ψ̂U φ̂ = pl(ψUφ), ψ̂U φ̂ ∈ Ti iff (by
the definition of Ti) I, i |= ψUφ iff (by the semantics of DL-LTL
formulas) there exists a k ≥ i such that I, k |= φ and for all j
with i ≤ j < k, I, j |= ψ iff there exists a k such that k = i and
I, k |= φ or there exists a k > i such that I, k |= φ and for all j
with i ≤ j < k, I, j |= ψ iff (by the definition of Ti+1) φ̂ ∈ Ti, or
ψ̂ ∈ Ti and I, i+ 1 |= ψUφ (i.e., ψ̂U φ̂ ∈ Ti+1).

– the other conditions follow immediately from the semantics of updates and
the definition of Ti.

Moreover, the above sequence is accepting: Suppose that for some j ∈ {1, . . . , l + 1},
the set {i | (Ti, qi) ∈ F jS} is finite. Since q0q1 . . . is an accepting run of B, {i |

(Ti, qi) ∈ F l+1
S } is infinite. Thus, j is in {1, . . . , l}. This yields that {i | Ti ∈ F jϕ̂}

is finite. Then there exists a natural number i0 such that Ti 6∈ F jϕ̂ for all i ≥ i0.

This implies for the j-th until formula φ̂U ψ̂, φ̂U ψ̂ ∈ Ti and ψ̂ 6∈ Ti for all i ≥ i0.
Suppose ψ̂U φ̂ = pl(ψUφ). Thus, I, i |= φUψ and I, i 6|= ψ for all i ≥ i0, which is a
contradiction to the semantics.

It remains to show that Ared is consistent w.r.t. Tred. It follows from the con-
struction of S that there are only finitely many elements in S. Suppose that S =
{X1, . . . , Xk}. For each ι ≥ 0, we know that there is an iι ∈ {1, . . . , k} such
that Xiι = {p ∈ PL | ∃ψ ∈ D : pl(ψ) = p ∧ Iι |= ψ}. Conversely, for each
i ∈ {1, . . . , k}, there is an ι ≥ 0 such that i = iι. Let ι1, . . . , ιk ∈ {0, 1, . . . } be
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such that iι1 = 1, . . . , iιk = k. The interpretation J is obtained from Iιi by the
following construction:6

• ∆J = ∆Iι1 (= ∆Iι2 = · · · = ∆Iιk ),

• aJ = aIι1 (= aIι2 = · · · = aIιk ) for all a ∈ NI,

• NJ = {aJ | a ∈ Obj},

• (A(i))J = AIιi for all concept names A in the input and 1 ≤ i ≤ k,

• (A(0))J = AI0 for all concept names A in the input,

• (r(i))J = rIιi for all role names r in the input and 1 ≤ i ≤ k,

• (r(0))J = rI0 for all role names r in the input, and

• (T
(i)
C )J = CIιi for all C ∈ Sub and 1 ≤ i ≤ k.

It follows from the definition of J that J |= TN . By induction on the structure of
C, it can be shown that for all C ∈ Sub and for all i with 1 ≤ i ≤ k, J satisfies the

concept definition of T
(i)
C (cf. the proof of Lemma 3.2.3 in [Mil08] for details). Thus,

we get J |= Tred.
The definition of J implies that for all i with 1 ≤ i ≤ k and for all p ∈ PL with

p = pl(ψ), Iιi |= ψ iff J |= ψ(i). The definition of Xi implies that p ∈ Xi iff Iιi |= ψ.
Thus, J |= Ai for all i with 1 ≤ i ≤ k. This yields J |= Ared.

“⇐”: Suppose that there is a set S ⊆ P(PL) such that Lω(AS) 6= ∅ and Ared is
consistent w.r.t. Tred. Thus, there exists a common model J of Ared and Tred. For
i ∈ {1, . . . , k}, we define Ji as follows:

• ∆Ji = ∆J ,

• aJi = aJ for every individual name a ∈ NI,

• AJi = (T
(i)
A )J for every concept name A in the input, and

• rJi = (r(i))J ∩ (NJ ×NJ ) ∪ (r(0))J ∩ (∆J × (¬N)J ∪ (¬N)J ×∆J ) for every
role name r in the input.

By induction on the structure of C, we can show that for each C ∈ Sub, CJi =

(T
(i)
C )J (cf. the proof of Lemma 3.2.3 in [Mil08] for details). In addition, J |= Ared

implies that for all i with 1 ≤ i ≤ k, J |= Ai. Thus, for all p ∈ PL with p = pl(ψ),
p ∈ Xi iff Ji |= ψ (this is going to be used later on in the proof of (9)).

Since Lω(AS) 6= ∅, then there is an accepting run (T0, q0)(T1, q1) . . . of AS on
(X0,U0)(X1,U1) . . . . We define M = (Xι)ι=0,1,... and w = U0U1 . . . . Then, it follows
from the definition of AS that T0T1 . . . is an accepting run of Aϕ̂ on M and q0q1 . . .

6It is possible that Iι1 , . . . , Iιk
do not respect the order in I, but this does not matter for our

proof.
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is an accepting run of B on w. The latter yields w ∈ Lω(B). It remains to show
that there exists a DL-LTL structure I = (Ii)i=0,1,... w.r.t. w such that I0 |= A and
I, 0 |= ϕ.

By the definition of ∆S , for all ι ≥ 0, there exists exactly one iι such that 1 ≤
iι ≤ k, Xiι ∈ S and Xι = Xiι . Consider the DL-LTL structure I = (Iι)ι=0,1,... with
Iι = Jiι for all ι ≥ 0.

It follows from Lemma 77 that for all ι ≥ 0, for all ψ̂ ∈ cl(ϕ̂), ψ̂ ∈ Tι iff M, ι |= ψ̂.
By induction on the structure of ψ̂, we can show that

∀ι ≥ 0.∀ψ̂ ∈ cl(ϕ̂) with pl(ψ) = ψ̂ : M, ι |= ψ̂ iff I, ι |= ψ. (9)

Thus, we know that

∀ι ≥ 0.∀ψ̂ ∈ cl(ϕ̂) with pl(ψ) = ψ̂ : ψ̂ ∈ Tι iff I, ι |= ψ. (10)

Now we show that for all ι ≥ 0, Iι =⇒Uι Iι+1. By the definition of Iι, we know
that all of Iι share the domain and interpretation of individuals. It follows from the
definitions of J1, . . . ,Jk and the fact J |= Tred that for all x, y ∈ ∆J , we have

• for each concept name A in the input, if x 6∈ NJ , then x ∈ AJi iff x ∈ (A(0))J ;
and

• for each role name r in the input, if x 6∈ NJ or y 6∈ NJ , then (x, y) ∈ rJi iff
(x, y) ∈ (r(0))J .

This implies the anonymous objects respect the semantics of updates, which, together
with (10) and the definition of ∆S yields that the conditions in Definition 17 are
satisfied. Since ϕ̂ ∈ T0 and T0 is a type for ϕ̂, we know that pl(ϕ) ∈ T0. By (10),
I, 0 |= ϕ. Similarly, I, 0 |= ψ for all ψ ∈ A, i.e., I0 |= A. ❏

The size of an input (A,B, ϕ) is defined as |A|+ |B|+ |ϕ|. Given an input (A, w, ϕ)
with the size n, P(PL) can be constructed in time exponential in n. A subset S of
P(PL) can be constructed in nondeterministic time exponential in n and the size of S
is bounded exponentially in n. The size of AS is bounded exponentially in n and it
can be constructed in time exponential in n after S is given. The emptiness problem
of AS can then be decided in time exponential in n [EL85b, EL85a]. Ared and Tred
can be constructed in time exponential in n and the size of Ared and Tred is bounded
exponentially in n.

For the DLs in which consistency checking of an ABox together with an acyclic
TBox can be decided in PSpace (ExpTime and NExpTime, respectively), we do the
following to decide whether ϕ is satisfiable w.r.t. A and B:

1. Guess S in NExpTime.

2. Construct AS and decide Lω(AS) = ∅ in ExpTime.

3. Construct Ared and Tred and decide its consistency in ExpSpace (2-ExpTime

and 2-NExpTime).
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Overall, the satisfiability problem can be decided in ExpSpace (2-ExpTime and 2-
NExpTime, respectively).

Lemma 79. The satisfiability problem of DL-LTL formulas w.r.t. ABoxes and Büchi
automata is

• in ExpSpace for ALCQO if the numbers in qualified number restrictions are
coded in unary;

• in 2-ExpTime for ALCIO;

• in 2-NExpTime for ALCQIO.

The above upper bounds hold for the complemented problem of the validity problem
of DL-LTL formulas w.r.t. ABoxes and Büchi automata.

Acyclic TBoxes can be introduced as domain constraints and updates can be ex-
tended to the actions with pre-conditions and occlusions as defined in [BLM+05].
With those, the upper bound of the computational complexity of the inference prob-
lems presented in this section will not change [BLLuM05]. In order to keep uniformity,
we focus on updates of ABoxes without TBoxes.

Comparing to the complexity of (non-)projection, there exists an exponential
blowup since the size of the constructed Ared and Tred is exponential in the size of
the input. The lower bounds are still open in the case that one of conditional up-
dates, Büchi automata, and occlusions is allowed in the satisfiability problem. Notice
that occlusions do not make the planning problem harder than the projection prob-
lem [Mil07] and that, to the best of our knowledge, there is no known solution to
the planning problem when conditional actions are allowed which has the same upper
bound as the projection problem. In this sense, allowing for unconditional actions
with occlusions could be the first step to go to look for a better algorithm.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis, we have investigated updates of ABoxes in DLs and analyzed their
computational behavior. The main motivation for this endeavor is to establish the
theoretical foundations of progression in action theory based on DLs and to provide
support for reasoning about action in DLs. We introduced four forms of updates of
ABoxes under the Winslett’s possible model approach semantics: logical updates, ap-
proximate updates, projective updates, and approximate projective updates. Logical
updates are the most exact updates in the sense that they capture precisely the set of
updated models and projective updates are exact with a restricted signature. Both of
them are independent of the underlying DL. Approximate updates preserve the logi-
cal consequences of logical updates in a fixed DL and approximate projective updates
preserve the logical consequences in a fixed DL w.r.t. a restricted signature.

We presented two algorithms for ALCQIO@ and its fragments: one is to compute
logical updates and the other is to compute projective updates. The size of the
computed logical update of an ABox A with an update U is exponential both in the
size of A and in the size of U . We show that the exponential blowup in the size of
the whole input cannot be completely avoided unless the complexity classes PTime

and NC coincide, which is believed to be as unlikely as PTime = NP. If we compute
logical updates iteratively, the exponential blowups will not add up. The size of the
projective update built with our algorithm is both polynomial in the size of A and in
the size of U . Differing from logical updates, the construction of iterative projective
updates will change the computational behavior because it gets an exponential blowup
in the size of A. In order to avoid this, we propose to keep the original ABox A and the
history of updates U1 · · · Un in memory when we compute projective updates. When a
new update Un+1 arrives, instead of computing the update iteratively we compute the
projective update from A and U1 · · · Un+1 directly. The size of the projective update
computed this way is polynomial both in the size of A and the size of U1 · · · Un+1.

We also explore the relationship between the expressiveness of DLs and the ex-
istence of updates in them. The positive results shown by our algorithms are that
logical updates exist for DLs between ALCO@ and ALCQIO@ and that projective
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updates exist for DLs between ALCO and ALCQIO@. The negative results are that
without either the @ constructor or nominals approximate updates do not exist and
that without nominals projective updates do not exist. More precisely, we proved that
approximate updates do not exists for DLs between ALCO and ALCQIO and DLs
between ALC and ALCNI@, and projective updates do not exist for DLs between
ALC and ALCNI@.

The algorithms have been implemented and their performance compared. The im-
plementation of the projection problem based on the approach similar to regression has
been compared to the one employing updated ABoxes. Logical updates and projective
updates can be computed efficiently but the time of reasoning with them is mainly
dominated by their sizes. With the optimizations, the implementation based on logi-
cal updates performed better even than projective updates, especially for the inputs
with big ABoxes. The implementation based on the approach similar to regression is
more efficient when the sequence of updates is long.

Another problem investigated in this thesis is verifying DL-LTL formulas. We
introduced the satisfiability problem and the validity problem of DL-LTL formulas
w.r.t. ABoxes and Büchi sequences of updates. The latter can be reduced to the com-
plement problem of the former. It turned out that the satisfiability problem has the
same computational complexity as the projection problem if only unconditional up-
dates are allowed. For conditional updates, we showed that the satisfiability problem
is still decidable by presenting an algorithm to solve the satisfiability problem which
works even for a more general problem in which the infinite sequence of updates is
given via a Büchi automaton.

8.2 Future Work

There are at least the following directions for future work. The first one is to find
answers to the open problems left in this thesis. Secondly, one can restrict the ABox
update problem for better computational behavior. The third one is to extend the
problem in order to fit a more general setting.

We have shown that for logical updates, the exponential blowup in the size of
the whole input most likely cannot be completely avoided. It is still open whether
we can avoid a blowup in the original ABox. Concerning the existence of updates,
approximate updates present no more positive results than logical updates. One can
look for a better construction of approximate updates other than computing them
via logical updates or enhance the lower bound of logical updates to approximate
updates. Although projective updates exhibit theoretically computational behavior,
they did not perform better than the optimized construction of logical updates. For
this reason, optimizations of the former are strongly required. One can also work on
the questions listed in Table 1 and Table 2 in Section 5.3. We can see that we still
have little knowledge about approximate projective updates. Since the other stronger
form of updates had some difficulty with testing particularly for iterative updates,
exploring a direct construction of approximate projective updates might give rise to
a more satisfactory solution.
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As we have seen in Section 3.3, allowing only concept literals to occur in updates
or building updates in DLs with role constructors will avoid the exponential blowup of
logical updates in the size of ABoxes. One can try to find similar restrictions on other
kinds of updates to achieve smaller updates. The state-of-the-art reasoners supporting
role constructors are also strongly required since logical updates are very succinct with
them. For DLs in which updates do not exist, one can look for the exact corresponding
syntactical conditions. Alternatively, one can investigate updates in EL++ which is a
family of lightweight DLs [BBL05]. Note that it is unlikely to get an algorithm which
computes updates of EL-ABoxes in a polynomial time since the projection problem
in EL is already co-NP-hard. However, spending more time on achieving the updates
of polynomial size may be still worth doing in practice, because reasoning in EL is
tractable.

Another possible extension of the ABox update problem is to search for a satis-
factory semantics for updates containing complex concepts or roles, maybe even for
GCIs as domain constaints. This is a challenging work. In action theories, there are
proposals for this employing circumscription [McC86, Lif94] to minimize the changes
on names. Circumscription in DLs is investigated in [BLW09]. The question is how
to apply their results to obtain a decent semantics for updates or actions.

Comparing the satisfiability problem of DL-LTL formulas w.r.t. ABoxes and Büchi
sequences of updates to the (non-)projection problem, there exists an exponential
blowup in the complexity of the algorithm presented in Section 7.3 for DLs between
ALC and ALCQIO. The algorithm can be easily extended to actions defined in
[BLM+05]. It is still an open problem whether or not those upper bounds are optimal.
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