Modal Logics for Computer Science

Zusammenfassung der wissenschaftlichen Arbeiten

eingereicht bei der
Fakultat Informatik
der

Technischen Universitat Dresden

anstelle einer Habilitationsschrift

von Dr. rer. nat. Carsten Lutz
aus Hamburg

Februar 2006

Contents

1

2

7

Introduction

Modal Logic

2.1 History
2.2 Computer Science
2.3 The Rest of the (logical) World

Description Logic

3.1 Finite Model Reasoning,
3.2 Tractable Description Logics
3.3 Conservative Extensions,

Expressive Modal and Dynamic Logics

4.1 Enriched PDL. o
4.2 Enriched p-calculus.o oo oL
4.3 Boolean Modal Logic

Temporal and Spatial Logic

5.1 Quantitative Temporal Logic
5.2 Logics of Topological Relations

Logic for Multi-agent Systems

6.1 Public Announcement Logic
6.2 Alternating Temporal Logic

A Modal Approach to the Combination of Logics

A Eingereichte Arbeiten

27
27
29
31

35
35
37

41
41
43

48

68

1 Introduction

The main use of logic in computer science is to achieve a solid mathematical under-
pinning of the concepts that are central to this scientific discipline: on the one hand,
logic provides a theoretical foundation for many applied subfields of computer science,
as is probably most evident in the area of databases [1]. On the other hand, logic has
close ties with many subjects of theoretical computer science such as automata theory
and complexity theory. For example, the basic idea of descriptive complexity is to
study complexity theory by relating it to questions of expressiveness in logic [116].
Due to this central standing, the role of logic in computer science has been compared
to the role that calculus plays in physics [104].

A plethora of different logics has been studied in computer science. Without claim-
ing completeness, we can achieve a rough categorization by dividing into propositional
logic, modal logic, first-order logic, and higher-order logic. This thesis is concerned
with modal logic which, not only in this enumeration, is located between propositional
logic and first-order logic: syntactically, modal logic resembles propositional logic as
it does not include (explicit) quantifiers and variables. Semantically, modal logic is in-
terpreted in relational structures and very close to first-order logic. The name “modal
logic” is not used very often in computer science, but we can find a large number of
logics that can be conceived as modal, and also a multitude of applications of these
formalisms. To name a concrete example, one of the most classical applications of
logic in computer science is the specification and verification of software and hard-
ware systems, where modal logic appears, e.g., in the guise of temporal logic and the
propositional p-calculus [54].

The main reason for modal logic to be an effective tool in computer science is
its careful balance between expressiveness and computational complexity of reason-
ing. On the one hand, modal logic provides enough expressive power to capture the
relevant aspects of many applications. On the other hand, reasoning in modal logic
is usually more feasible than reasoning in first- and higher-order logic: first, decid-
ing satisfiability and validity is usually decidable in modal logic, whereas it is often
undecidable in first-order logics. And second, model checking is usually a polynomial-
time problem in modal logic, but intractable (PSPACE-complete) in first-order logic.
Because of this characteristics, modal logic can usually be found in applications in
which there is an emphasis on automated reasoning. One example is verification of
software and hardware systems, where reasoning is (for example) required to verify
whether a given implementation of a system meets its specification. Another example
is provided by description logics, a family of knowledge representation languages that
are essentially modal logics. In the area of DLs, automatically deciding subsumption
(which roughly corresponds to validity) is central to most applications.

In this thesis, we study a number of modal logics with applications in computer
science. Many of these logics and their applications are quite different, which nicely
illustrates the diversity of modal logics and their applications in computer science.
More specifically, we study description logics, whose applications are knowledge rep-
resentation in artificial intelligence, reasoning about conceptual database schemas,

and formal ontology. We study dynamic logics such as PDL and the p-calculus,
whose main application is the specification and verification of software systems. We
study quantitative temporal logic for reasoning about real-time systems and spatial
modal logics which provide a formal basis for geographic information systems (GISs).
Finally, we consider modal logic for use in multi-agent systems that have a number of
applications such as the verification of distributed open systems.

When studying a modal logic, we shall mainly be interested in the computational
complexity of reasoning, in the expressive power, and in the succinctness of these
logics. One of our primary technical tools for understanding modal logic will be com-
plexity theory. There are two main reasons for choosing this tool. First, we have
already argued that modal logic is often used in applications where automated rea-
soning plays a central role. In such applications, it is usually the ultimate goal to put
logical reasoning to work in implemented computer programs. Obviously, complexity
theory can provide us with insights about the feasibility of this goal. However, we
should be careful: since we are studying worst-case complexity, theoretical results can
hardly ever prove or disprove that there exists an implemented algorithm whose time
and space consumption is acceptable for practical applications. Instead, theoretical
results give us a first clue concerning the utility of a logic in practice, and non-trivial
research into optimization techniques as well as empirical evaluations have to follow.
To give an example, modern DL reasoners are usually based on algorithms that, in the
worst case, require at least exponential time. Still, due to a number of very effective
optimization techniques, these reasoners turn out to be very well-behaved in most
applications. A similar point is made by Gurevich in [100].

The second reason for choosing complexity theory as a technical tool is that de-
termining the computational complexity of reasoning in a logic can provide crucial
insights regarding the mathematics of this logic. We can learn, e.g., about its expres-
sive capabilities and shortcomings. From this perspective, what is most interesting
about complexity results for a logic is their proofs and the techniques used in the
proofs. This perspective is also taken e.g. by Gabbay et al. in [80] and (again) by
Gurevich in [101]. Of course, a similar statement can rightfully be made about, for
example, game theory, model theory, and proof theory. We prefer complexity theory
and, in general, advocate a liberal perspective on this issue.

This thesis is structured as follows. In Section 2, we introduce modal logic, give a
brief survey of their pre-computer science history, and then discuss the importance of
modal logic for computer science, and the importance of computer science for modal
logic. 'We then summarize the submitted papers proceeding in the same order as
above: we study description logics in Section 3, dynamic logics in Section 4, temporal
and spatial logics in Section 5, and logics for multi-agent systems in Section 6. Finally,
Section 7 is concerned with a genuinely modal way of integrating specialized logics into
more general ones such that desirable properties such as decidability are preserved.

2 Modal Logic

We give a brief introduction to modal logic in general, and to modal logic in computer
science in particular. Then, we analyze the tight links that modal logic has to other
logical disciplines and formalisms and discuss the (technical) aspects of modal logic
that are most relevant for computer science.

2.1 History

Modal logic originated in philosophy as an attempt to resolve the philosophical para-
doxes induced by the implication operator of classical logic, and as a logical tool for
studying the notions of necessity and possibility. The most influential early work
has been carried out by Lewis since the 1910s, and his writings [132,133] are often
viewed as the birth of modal logic. While philosophers continued to use and study
modal logics, in the 1930s it was also adopted by mathematicians such as Godel [88]
and Orlov [158]. Their aim was to interpret the intuitionistic logic of Brouwer by
extending classical propositional logic with an operator “it is provable that”. Today,
the language used by Godel is still regarded as the basic modal language. In modern
form, it can be defined as follows.

Definition 1 Let PV be a set of propositional variables and AP a set of atomic
programs. The set of modal formulas is the smallest set such that

e cvery p € PV is a modal formula;

e if v and Y are modal formulas and a € AP, then the following are modal formu-
las: =, p A, and Ogp.

It is common to use ¢ V1) as an abbreviation for =(=p A=), @ — ¢ for ~pV 1, and
Qap for =Og—ip. AN

The modal language introduced in Definition 1 is more accurately described as the
propositional multi-modal language. If AP is a singleton, we obtain the wunimodal
language and omit the index to diamonds and boxes. There are also first-order and
higher-order versions of modal logic [42], but they will not be considered in this thesis.

The modal logic of Gddel uses the unimodal language, and assigns to Uy the
intuitive meaning that “y is provable”. As the use of modal logic in mathematics
continued, other intuitive meanings have been given to [ly. For example, this hap-
pened when a topological semantics for modal logic was developed by McKinsey and
Tarski [150,151], in which Oy is interpreted as topological interior. Among the many
meanings that have been considered for [y in philosophy, we find “it is necessary that
@ is true” [111], “p is true at all time point in the future” [167], and “it is obligatory
that ¢ is true” [146].

A characterizing feature of the work carried out in the first half of the twentieth
century is that modal logic was understood as a purely syntactic endeavor. In par-
ticular, a modal logic was commonly defined by devising a set of axioms and a set of
inference rules. The main tools for studying modal logics were syntax manipulation

and proof theory. This axiomatic approach is also reflected by the modern definition
of a modal logic.

Definition 2 A modal logic is a set I' of modal formulas that
1. contains all propositional tautologies;
2. is closed under modus ponens, i.e., if p €' and p — ¢ € T, then ¢ € T';

3. is closed under uniform substitution, i.e., if p € I, then all formulas obtained
from @ by uniformly substituting propositional variables with modal formulas is
also in I

A modal logic is normal if it contains the formula
(K) O(p — q) — (Op — Og)
and s closed under generalization, i.e., p € I' implies Op € T. A

Most of the modal logics used in computer science are normal. As will be discussed in
more detail below, there is a close connection between normal modal logics and modal
logics that have a relational semantics

To define a modal logic, we can generate it using a set of modal axioms, where an
axiom is simply a modal formula.! To do this, we unite the axioms with the set of
propositional tautologies and close off under modus ponens and uniform substitution.
A normal modal logic can be generated by additional adding the (K) axiom and
closing off under generalization. For example, the normal modal logic generated by
the following axioms is known as S4:

(T) Op—»p
(4) Op — OOp.

S4 is one of the modal logics that was already defined by Lewis in his 1918 paper [132],
and this is also where the name derives from (it is the fourth of five modal “systems”
defined by Lewis). Studying the lattice of modal logics that is generated by relating
the logics admitted by Definition 2 via set inclusion is a major research issue in pure
modal logic, see for example [44,169,207].

In the early 1960s, Kripke proposed a semantics for modal logic that is based on
relational structures [124,125]. Although Kripke was not the first to define such a
semantics, his work fundamentally changed the world of modal logic by alleviating
the focus on syntax that was formerly characterizing the field.

Definition 3 A Kripke structure is a triple K = (W, (Rg)acap, V'), where

e W is a non-empty set of worlds;

!Often, it is more convenient to consider an axiom as a formula schema, i.e., a formula in which
each variable represents a modal formula. However, since modal logics are closed under uniform
substitution, technically it suffices that an axiom is a formula.

o R, CW x W is an accessibility relation on W;

eV : W — 2PV s a valuation assigning to each world a set of propositional
variables.

Given a Kripke structure K = (W, (Rg)acap, V), the satisfaction relation “=" between
worlds of K and modal formulas ¢ is defined as follows:

KwkEp iff peV(w) for all p e PV

K,w g iff KwlEe

KwEony iff KwkEeand K,wEy
K,wkEOww iff Kw o foralw €W with wRow'

We write K |= ¢ iff K,w = ¢ for allw € W. A frame is a Kripke structure without a
valuation, i.e., a pair F'= (W, (Ry)aeap). A Kripke structure K = (W, (Rg)acap, V)
is based on a frame F if F is obtained from K by dropping V.. We write F = ¢ if
K = ¢ for all Kripke structures K based on F. A

The advent of relational semantics had a fundamental impact on research in modal
logic. In the first years after Kripke’s papers, relational semantics was mainly viewed
as a technical tool, and studying the connection between axiomatic definitions of
modal logics and their relational semantics was (and to some extent still is) a major
research issue. Regarding this connection, the basic observation is that, for any class
C of frames, the set

Log(C) :={p |VF €C: F = ¢}

is a normal modal logic according to Definition 2. For example, if 7 is the class
of all unimodal frames whose accessibility relation is reflexive and transitive, then
Log(7) = S4. We say that S4 is determined by the class of reflexive and transitive
frames. However, the connection syntax-relational semantics is far from trivial. For
example, there are (uncountably) many modal logics that are not determined by any
class of frames. Such logics are called Kripke incomplete. In fact, research on the
relation between syntactically and semantically defined modal logics has occupied
modal logicians for many decades.

The existence of Kripke incomplete logics clearly means that relational semantics
has serious limitations. Other semantics such as the algebraic semantics surveyed
in [12] do not suffer from such a limited applicability. Still, relational semantics was
extremely successful: today, giving a relational semantics is one of the most standard
ways to define a modal logic and, as a field, modal logic has long abandoned its focus
on pure syntax manipulation and axiomatics. It seems that the success of relational
semantics is largely due to three reasons. First, it is a very intuitive semantics that
is grasped fairly easily. Second, in a large number of modern applications of modal
logic, the relational semantics suffices and is even suggested by the application. We
will see many examples of such applications in the subsequent sections of this thesis.
And third, compared to the axiomatic approach, relational semantics often allows
dramatically simpler proofs, e.g. when showing that two modal logics are not identical.

2.2 Computer Science

In the 1970s, computer scientists started to adopt modal logic for various purposes.
The most influential early work has been concerned with reasoning about the correct-
ness of computer programs and with the verification of discrete-state systems. Still
today, these are arguably the most important applications of modal logic in com-
puter science. Using modal logic for reasoning about programs was first suggested
by Burstall [45], and then showed its full potential in the papers of Pratt [163] and
Fischer and Ladner [74,75] on propositional dynamic logic (PDL), and in the paper of
Pnueli [162] on linear-time temporal logic (LTL). Despite aiming at a similar applica-
tion, the two proposals PDL and LTL are quite different and gave rise to two distinct
lines of research that are still very active today. In PDL, a program is viewed as
being composed from atomic programs via the constructs of a programming language.
Then, the behavior of (atomic and complex) programs is described in terms of their
input /output relation. The syntax of PDL offers explicit names for atomic programs,
operators for constructing complex programs out of simpler ones, and operators for
talking about the input and output of programs. In contrast, LTL does not make pro-
grams explicit in its syntax. It aims at describing the evolution of the state that an
(implicit) program takes while running. The operators offered by LTL allow to state
that certain events do or do not happen in the future, and that a certain property
remains true until another property is eventually established. While PDL is designed
for reasoning about programs that are supposed to terminate (matching the classical
idea of an algorithm), LTL is intended for the verification of reactive systems, i.e.,
systems that never terminate and interact in a specified way with their environment
while running. Examples of reactive systems include operating systems, microproces-
sors, aviation software, and the like. Here, we introduce PDL as an example for a
modal logic that originated in computer science.

Definition 4 The set of PDL formulas and programs are defined by simultaneous
induction as follows

e cach atomic program is a program and each propositional variable is a formula;

e ifa and B are programs and ¢ is a formula, then the following are also programs:
aUB, a; B8, o, ¢?
o if p and Y are formulas and « is a program, then the following are also formulas:
@, @A wa [04]%0

We use () as an abbreviation for =[a]—-p. The semantics of PDL is defined in terms
of Kripke structures K = (W, (Rq)acap, V'), where the elements of W are called states.
We simultaneously define the extension of R to complex programs and satisfaction of

PDL formulas in K:

R(Oél U O[Q) = R(Oq) U R(ag)

R(a; a2) = R(a1)o R(a2)

R(a") is the reflexive-transitive closure of R(c)

R(?) = {(ww) e W? | K,w = ¢}

KwkEp iff weV(p) forpePV

K,wl=—p iff KouwlEe

K,U)|:@1Ag02 Zﬁ Kﬂl}):(ﬁl cde,w':goQ

K,wE [a]p iff K,w' e foralw e W with (w,w') € R(a)

A

Let us briefly illustrate the use of PDL for reasoning about programs. Propositional
variables are used to represent properties that hold before and after the execution
of a program. Though the details are abstracted from, propositional variables may
thus stand for, e.g., “variable z has a non-zero value” and “list ¢ is empty”. Again
abstracting from the details, atomic programs represent atomic operations such as
variable incrementation, list concatenation, etc. With this intuition in mind, the PDL
formula

o — [ay

makes a statement about the input/output behavior of the program «: it expresses
that if ¢ holds before the execution of «, then 1 holds afterwards. Note that programs
are not interpreted as functional relations, and thus PDL assumes that programs are
non-deterministic.? The following examples show how the regular expressions available
to construct complex PDL programs can be used to describe standard constructs of
programming languages:

if o then avelse B (¢?7;) U (—¢?; 3)
while ¢ do « 075 a)"; —p?
repeat o until ¢ a; (=75 a)*; 7

It is interesting to observe that PDL is a blend of classical modal logic with Kleene
algebra, and thus extends the classical modal language from Definition 1. This is true
for many of the modal logics used in computer science. For example, LTL is based
on a temporal language that extends the classical modal language from Definition 1
with the binary operator “until” as first proposed by the mathematician Kamp in his
celebrated thesis [118]. A precise definition of the syntax and semantics of LTL can
be found in Section 5.1. For relatively up-to-date surveys of PDL and LTL, we refer
to the monographs [107] and [79], respectively.

The combination of modal logic and computer science has proved extraordinarily
fruitful. Apart from PDL and LTL and their classical application of reasoning about
programs and discrete-state systems, a plethora of modal formalisms and applications

2There are also deterministic versions of PDL, see e.g. [24].

have been suggested. The current thesis may serve as a witness for this claim: it
presents a number of very different modal logics that have applications in a variety of
subfields of computer science. In the following, we list some seminal contributions to
modal logic in computer science. It is by no means to be understood as a complete
list of formalisms and applications.

Branching time logic. When reasoning about time, we may either view the flow of
time as linear or as branching. In the latter case, the different branches emerging from
a point in time are viewed as different possible futures. It has been observed already
during the 1960s by philosophers such as Prior that branching time semantics suggests
dedicated logics that, in particular, admit quantification on branches [167]. Later,
such formalisms have blossomed in computer science mainly for two reasons: first,
they allow to relate the different possible evolutions of a reactive system; and second,
they sometimes enjoy significantly more attractive computational properties than their
linear time relatives. Most notably, the interest of computer science in branching time
has led to the CTL family of temporal logics whose most prominent family members
are CTL [51] and CTL* [66]. Intuitively, CTL* enriches LTL with universal and
existential path quantifiers, allowing a very liberal use of these quantifiers. CTL
requires that path quantifiers are used in a more controlled way, and unlike CTL*
does not comprise LTL as a fragment (with all LTL operators implicitly universally
path quantified). The most important effect of the restrictedness of CTL is that model
checking can be done in linear time [52], while it is PSPACE-complete in LTL [181] and
CTL* [68]. A good though slightly outdated survey of linear and branching temporal
logic in computer science can be found in [63].

The modal p-calculus. When dynamic logics such as PDL, LTL, and CTL were devel-
oped in the 1970s and 1980s, one main research goal was to push the expressive power
as far as possible while still retaining good computational properties. For example,
termination of programs cannot be expressed in PDL unless a well-foundedness opera-
tor is added [186]. This quest for expressive modal logics ultimately led to the proposal
of the modal p-calculus by Pratt [164] and, in its modern form, by Kozen [122]. Ar-
guably, the three most exciting features of the p-calculus are the following. First,
despite its considerable expressive power, it can be defined in a very short and elegant
way: it is simply propositional logic extended with an operator for smallest fixpoints
and with an operator for greatest fixpoints (plus some natural syntactic restrictions).
Second, it is computationally rather well-behaved. For example, satisfiability can be
decided in EXPTIME [67]. And third, its formulas are notorious for being extremely
unreadable. In particular, understanding formulas with nested fixpoints can give a
hard time even to experts. Since its invention, the p-calculus has been used in many
areas of computer science such as reasoning about programs and reactive systems,
and in process algebra. Other modal logics are often translated into the u-calculus
to obtain upper complexity bounds and to derive model theoretic properties. For
example, this is possible both for PDL and LTL. Finally, one of the most important
open questions from modal logic in computer science is concerned with the p-calculus:
model checking is known to be in NP N co-NP [30], but it is unknown whether model
checking can is tractable. A good survey with introductory character is [40].

Reasoning about Knowledge. As discussed already in Section 2.1, reasoning about
knowledge is one of the most classical applications of modal logic. This theme also
occurs rather frequently in computer science, in particular in the context of distributed
systems. For example, if we want to reason about cryptographic protocols, bargaining
sessions, or communicating robots, then the knowledge of the involved agents is clearly
of prime importance. Based on this observation, a large number of logics for reasoning
about knowledge have been proposed in computer science. Perhaps most notably,
computer scientists have put an emphasis on describing the temporal evolution of the
knowledge of agents. To obtain logics suitable for this purpose, classical modal logics
for reasoning about knowledge such as multi-modal S5 are combined with temporal
logics such as LTL, see [103] for an example. In the resulting two-dimensional modal
logics, there are several options for the interaction of knowledge and time such as
perfect recall vs. imperfect recall and synchronous systems (where all agents have
access to a shared clock) vs. asynchronous systems. A comprehensive survey can be
found in the monograph [70]. A particularly strong emphasis on reasoning about
knowledge can be observed in the area of multi-agent systems, where a multitude of
modal logics has been proposed. Notable examples include alternating temporal logic
(ATL) for reasoning about the collaborative capabilities of agents [11] and logics for
reasoning about the change of knowledge that is provoked by announcements made
to the agents either in public or in private [194].

Process theory is concerned with the study of processes, which describe the evolution
of a system. Systems are modelled in a variety of ways including algebraic descriptions,
Petri nets, and state-transition diagrams. To talk about the behavior of processes, it
is possible to use modal logics. The modal formalisms dominating the area of pro-
cess logic are mainly (different variations of) Henessy-Milner logic [109], temporal
logics such as CTL, and the modal p-calculus. One focus of the field is on identifying
appropriate equivalence relations between systems such as weak and strong bisimula-
tions. Not surprisingly, there is a close connection between such relations and modal
logic. For example, it has been proved in [109] that bisimulation equivalence coin-
cides with distinguishability by formulas of the basic modal language on the class of
finitely-branching models, but not on infinitely-branching ones.

Modal logic in Artificial Intelligence. A wide range of modal logics have been intro-
duced in artificial intelligence for vastly different purposes. We do not attempt to give
a comprehensive survey, but mention only two selected applications. First, description
logics are used in knowledge representation to formally describe the terminology of
an application domain. They were developed independently of modal logics, but later
found to be notational variants [177]. In description logic, a propositional letter is
used to describe a class of objects that gives rise to a terminological notion, and an
accessibility relation describes the relation between instances of these classes. Com-
plex formulas are then used to describe complex terminological notions in terms of
more basic ones. In the area of description logic, there is a strong emphasis on decid-
ing satisfiability and subsumption, where the latter is essentially validity. We refer to
the handbook [20] and Section 3 for more details. Second, several modal logics have
been used to formalize non-monotonic reasoning. The most prominent such modal

logic is the autoepistemic logic (AEL) of Moore [154], which is based on uni-modal
K45, i.e., the modal logic determined by a transitive and Euclidean accessibility rela-
tion. In AEL, the modal box Oy is read as “the agent believes that ¢ is true”. A set
of modal formulas is used to describe the initial beliefs of the agent, and the actual
beliefs are then characterized by means of a fixpoint equation in terms of the initial
beliefs. It is well-known that there exist faithful translations between autoepistemic
logic and other major non-monotonic logics such as Reiter’s default logic [121]. More
information can be found for example in the textbook [43].

As a further witness for the importance that modal logic has gained in computer
science, we may cite an article called “On the unusual effectiveness of logic in computer
science” [104]. It is the outcome of a workshop with the same name and analyzes the
importance that logic has gained in computer science. The article exemplarily presents
five of the most important applications of logic in computer science. Out of these five,
two applications are based on first-order logic, one is based on higher-order logic, and
two are based on modal logic.

As stressed in [31], the adoption of modal logic by computer science has also led
to considerable changes in the field of modal logic itself. For a start, computer science
has helped to overcome the status of relational semantics as a mere technical tool,
and thus contributed to viewing modal logic (also) as a semantic discipline. In fact,
axiomatizations of modal logics play a role also in computer science, but the view in
terms of relational semantics is often the more natural and more important one. The
main reason for this emphasis on relational semantics is that relational structures are
ubiquitous in computer science: they occur as the state-transition graphs of discrete
systems, as decorated trees in computational linguistics, as semantic networks in ar-
tificial intelligence, etc. Therefore, a genuinely semantic approach to defining modal
logics is often suggested by the application. An axiomatization may be undertaken
as a later step to get a better understanding of the modal logic at hand, but in many
cases it is not essential for the application.

Another key difference between classical modal logic and modal logic in computer
science is that computer scientists have been much less reluctant to deviate from the
standard modal language of Definition 1, and also from the standard Kripke semantics
of Definition 3. For example, the logic PDL introduced above goes beyond the stan-
dard modal language, and so do LTL, CTL, and the p-calculus. An application-driven
generalization of Kripke semantics can be found in Section 6.2, where we consider al-
ternating transition systems. This flexibility in defining the syntax and semantics
raises the question what actually characterizes a logic that we call “modal”. Some
clues to this question are provided in Section 2.3.

Perhaps the most important impact of computer science to modal logic is that,
in the words of [31], “computer scientists brought a whole new array of questions
to the study of modal logic”. Indeed, the classical subjects studied in modal logic
such as axiomatics and frame definability have been complemented with (at least) the
following subjects that originated in computer science.

Computational complezity. The question how hard it is to reason in a certain modal
logic. Here, “reasoning” can mean a lot of different things such as deciding the satisfi-

10

ability or validity of a given formula, deciding whether a given formula implies another
one, and even checking whether a given set of modal formulas is a conservative exten-
sion of another such set. Computer science also contributed new reasoning problems
whose computational complexity can be studied, most notably model checking as sur-
veyed in [53]. In model checking, the question is whether a distinguished state of a
given Kripke structure satisfies a given modal formula. Especially in reasoning about
finite state systems, model checking is a highly relevant reasoning problem. Determin-
ing “how hard” a reasoning problem is usually means checking whether there exists an
algorithm solving the problem at all (decidability), and if so, what are the resources
in terms of time and space that such algorithms require.

Expressivity. The study of what can and what cannot be expressed in a given modal
logic. When studying expressivity, the challenge usually is to identify the limitations
of a given logic by determining relevant properties that provably cannot be expressed
in the logic, and to relate different logics in terms of their expressive power. Often,
the identification of expressive shortcomings of a logic has led to the introduction and
study of new, more powerful logics. For example, Wolper’s observation that “p is true
at all even time points” cannot be expressed in LTL [206] has ultimately led to the
definition of the temporal p-calculus [196].

Succinctness is the question how “efficient” a logic is in expressing properties, i.e.,
what is the minimal length of formulas describing a given property. One reason
for studying succinctness is a further discrimination of logics that have the same
expressive power. For example, consider the following two logics: the restricted version
LTL" of LTL that has “always in the future” as its only temporal operators; and
FO3, which is first-order logic with only two variables and the only binary predicate
“<”. These logics are known to have the same expressive power if we consider only
Kripke structures that are based on the frame (N, <) [69]. However, there are natural
properties that can be expressed exponentially more succinct in FOS than in LTL
[69]. In general, there is an intimate interplay between computational complexity,
expressivity, and succinctness. In the concrete example of the frame (N, <), the
difference in succinctness explains the fact that, despite identical expressivity, there is
a huge difference in the computational complexity of satisfiability: NP-complete for
LTL" [181] vs. NExPTIME-complete for FO5 [69].

The new array of questions raised by computer scientists also gave rise to a new array
of techniques that have been developed to answer these questions. Arguably, the most
relevant technical contribution of computer science to modal logic lies is the discovery
and exploitation of the fruitful connection between modal logic and automata theory,
see for example [200] and [197]. This connection provides many elegant tools such as
non-deterministic w-automata and alternating tree automata which are well-suited for
proving upper complexity bounds, and often also for analyzing the expressivity and
succinctness of modal logics. For example, a succinctness proof based on alternating
automata can be found in [205]. Another development in modal logic that was fostered
by computer science is the use of techniques based on games. Historically, the main
use of games was to characterize and compare the expressive power of logics in the
style of Ehrenfeucht and Fraisse, see e.g. the textbook [134]. In the modal setting,

11

these games are very closely related to the notion of bisimulation. Nowadays, many
different types of games are used in many different ways, in particular also to determine
the computational complexity and succinctness of logics. For example, see [2] for a
succinctness result based on games.

2.3 The Rest of the (logical) World

To get a complete picture of the role that modal logic plays in computer science, it
is advisable to relate it to the other major logical formalisms that are applied there:
propositional logic, first-order logic and higher-order logic.

Propositional Logic

There is an obvious syntactic similarity between propositional logic and modal logic:
modal logic can be conceived as the extension of propositional logic with additional
unary operators. This is the historic view on modal logic, and it explains why modal
logics have initially been defined only in a syntactic way: it is simply not possible
to extend the semantics of propositional logic in a straightforward way to the modal
operators since these are not truth-functional. The similarity of propositional and
modal logic also shows up in the algebraic treatment of these two formalisms, where
propositional logic corresponds to Boolean algebra and modal logic corresponds to
Boolean algebra with operators.

When a (relational) semantic perspective is taken on modal logic, then it is in
many aspects much closer to first-order logic than to propositional logic. Neverthe-
less, it is sometimes possible to apply semantic techniques from propositional logic
to modal logic, see e.g. the satisfiability solver *-SAT for modal logic that is based
on a propositional satisfiability solver [87], and the BDD-based algorithm for decid-
ing satisfiability in modal logic presented in [160]. A completely different connection
between propositional logic and modal logic is provided by intuitionistic versions of
propositional logic as introduced by Heyting in [110]. The purpose of such logics is
to admit only “constructive” mathematical reasoning, and they are usually defined
syntactically by dropping from classical propositional logic the law of the excluded
middle. As first observed by Godel, there exists a natural translation of such logics
into the modal logic S4 [88]. Nowadays, it is standard to conceive intuitionistic logics
(which do not have explicit modal operators) as modal logics.

First-Order Logic

Syntactically, the similarities between modal logic and first order logic are limited. In
particular, first-order logic provides explicit variables for quantification over states,
while modal logic does not. The latter is true even for the many extended modal
languages that have been proposed in computer science. Thus, variable freeness is one
of the distinguishing features of modal logic. Arguments have been put forward by the
modal logic community that the presence of variables leads to unreadable formulas,
and by the first-order community that many properties can only be expressed in an
awkward way without variables. We express the belief that both is true at times,

12

and that there only exists a question of which approach is more well-suited for what
purpose.

Despite the differences in syntax, there is a close semantical connection between
modal logic and first-order logic: in view of Kripke semantics, it is obvious that
formulas of the basic modal language can be translated into equivalent formulas of first-
order logic with exactly one free variable. This is known as the standard translation,
which is inductively defined as follows, assuming that there exists one unary predicate
P of first-order logic for every propositional variable p, and one binary predicate R,
for every program a € AP:

STx(p) = P(x)

STx(_'(P) = _‘ST:L’(SO)

ST Av) = STulp) A STh(t)
STy(Uap) = Vy.Ra(z,y) — STy(¢)

In the translation, a fresh variable y is introduced for every box operator that is
encountered. The standard translation identifies modal logic as a fragment of first-
order logic. From the first-order perspective, the identification of this fragment, which
is suggested by the variable free syntax of modal logic and has surprisingly attractive
properties (to be discussed below), is perhaps the main achievement of modal logic.

Despite the existence of the standard translation, modal logic suggests a gen-
uine view on relational structures that is quite different from the view suggested by
first-order logic. An explanation for this phenomenon is obtained by considering the
standard translation. First, it produces first-order formulas with only one free vari-
able. And second, quantification occurs only in a syntactically restricted form where
the bound variable y occurs in a binary predicate R, together with the free variable
x. Intuitively, this means that modal formulas have a local flavor: they are evaluated
at a single state, and to evaluate them it suffices to consider only those states that
are reachable from the current state by a binary predicate R,. In contrast, first-order
formulas are global since they may contain an arbitrary number of free variables; there
simply is no “current state”. Moreover, when evaluating first-order formulas, we may
have to consider states that are arbitrarily far away in the structure.

It was already mentioned that the modal fragment of first-order logic has sur-
prisingly attractive properties. From the viewpoint of computer science, the most
attractive property certainly is a balanced compromise between expressiveness and
computational complexity. On the one hand, it is often possible to tailor modal logics
that have sufficient expressivity for the application at hand. For example, we have
seen in Section 2.2 that PDL was tailored for reasoning about programs. On the other
hand, if tailored carefully, then modal logics usually exhibit a much better computa-
tional complexity than the corresponding first-order logic. The modal logics described
in the main part of this thesis have all been engineered with the goal of achieving such
a balance. The most classical examples are the following:

e On the class of all Kripke structures, satisfiability in first-order logic is un-
decidable whereas satisfiability in the basic modal language is decidable and

13

PSpACE-complete [31]. Model checking is PSPACE-complete in the first-order
case, and in PTIME for the basic modal language.

e Both first-order logic and LTL are decidable on structured based on the temporal
frame (N, <). However, satisfiability in first-order logic is of non-elementary
complexity [185] while satisfiability in LTL is PSPACE-complete [181].

However, the penalty that one has to pay for the computational well-behavedness of
modal logic is that, usually (depending on the class of structures that is considered),
modal logics are less expressive than first-order logics. And even if a property is
expressible in both formalisms, then they can sometimes be expressed much more
succinctly in first-order logic than in modal logic. For example, consider once more
the temporal structures based on the frame (N, <). For all n > 0, every formula of
modal logic equivalent to the first-order formula

VmVy.(/\(Pl(:v) < Pi(y)) — (Pu(z) < Pn(y)))

<n

is of length at least 2¢ [69]. In practical applications, however, the lack in succinctness
of modal logic seems hardly ever to be problematic.

Several explanations for the attractive computational properties of modal logic
have been brought forward. Historically, the first relevant observation was made by
Gabbay [77]: we can modify the standard translation such that it produces first-order
formulas with only two variables. The way to achieve this is to alternate the two
variables with the nesting depth of the quantifiers. The two-variable fragment FO? of
first-order logic enjoys much better computational properties than full first-order logic.
Most notably, it is decidable (and NEXPTIME-complete) on the class of all structures
[95]. While this is a possible explanation for the good computational properties of basic
modal logic, it falls short of explaining the computational well-behavedness enjoyed
by extensions of the basic modal language such as PDL. While PDL is decidable
and EXPTIME-complete [75] despite including a transitive closure operator “*”, the
extension of FO? with a transitive closure operator on binary relations is E%—complete
and thus highly undecidable [97]. More information on the relation between modal
logic and the two-variable fragment of first-order logic can be found in Section 4.3 of
this thesis.

A more sustainable explanation is offered by Vardi [198], who states that the robust
decidability of modal logic is due to it having the tree model property: every satisfiable
modal formula has a model that has the shape of a (possibly infinite) tree. Indeed, this
property is enjoyed by basic modal logic and the vast majority of its extensions. It
also unlocks the door to using powerful and elegant automata-theoretic techniques for
proving decidability results and tight upper complexity bounds. Yet another explana-
tion has its origin in the syntactically restricted form in which quantification occurs
in formulas that are obtained from the standard translation. As already pointed out,
the bound variable y always occurs in a binary predicate R, together with the free
variable z. Intuitively, the quantifier is guarded by the predicate R, which results in
localized quantification. This observation has led to the introduction of the guarded

14

fragment of first-order logic [13]. The guarded fragment is a generalization of the class
of formulas obtained through the standard translation, and it allows only guarded
quantification. It turns out that the guarded fragment is computationally quite at-
tractive. For example, satisfiability is decidable and 2-ExXPTIME-complete [93]. It
even becomes EXPTIME-complete when a bound is imposed on the arity of predicates
(as in modal logic, where the bound is 2). These complexity bounds are retained in
relevant extensions of the guarded fragment, such as with fixpoints [98]. Therefore,
the computational well-behavedness of modal logics can be explained with the fact
that they fall inside the guarded fragment [94]. On the other hand, the computational
well-behavedness of the guarded fragment, in turn, can be explained with it having
some form of tree model property. For this reason, we feel that Vardi’s explanation is
the most basic and convincing one.

The connection between modal logic and first-order logic is certainly not limited
to the standard translation. In fact, it goes far deeper. In the following, we provide
a brief overview of the relevant results. Van Benthem has precisely characterized the
class of first-order formulas that are equivalent to a formula of modal logic: these are
exactly the formulas that are invariant under bisimulation. More details on this inter-
esting result can be found in the monograph [190]. Another connection to first-order
logic is provided through the notion of frame definability and via Sahlqvist formulae,
which are discussed in some more detail in the subsequent section about second-order
logic. Finally, it is even possible to understand first-order logic as a multidimensional
(propositional) modal logic [201]. The basic idea is to reserve one accessibility rela-
tion for each first-order variable, and then to understand the existential and universal
quantification on a variable as the diamond and box operators for the corresponding
accessibility relation. Then, first-order logic with n variables (roughly) corresponds to
the n-dimensional product of the modal logic S5. This product logic can be defined
by setting AP := {1,...,n}, requiring that the set of worlds W of Kripke structures
is the cross-product of n sets Wy, ..., W, and assigning to each box operator [J; the
following semantics:

K, (wi,...,wy) E Oip iff K, (wy,...,wi—1,w,wit1,...,w,) | o for all w' € W;.

A similar propositional view on first-order logic is adopted when using cylindric alge-
bra, see for example [12,108]. More information on the interesting and extensive field
of multi-dimensional modal logic can be found in the comprehensive monograph [80].

Second-Order Logic

When extending the standard translation from the basic modal language to PDL and
the p-calculus, it is no longer possible to use first-order logic as the target language. In
the case of PDL, the problem is due to the transitive closure operator “-*” and the fact
that transitive closure cannot be expressed in first-order logic, see e.g. [134]. In the
case of the p-calculus, the fixpoint operators are a form of second-order quantification
on unary predicates. Similar problems are encountered with LTL, where the modal
box and the until operator are defined using transitive closure. In all three cases,
however, it is unproblematic to extend the standard translation if we use second-order

15

logic as the target language. Thus, many of the modal logics that have been proposed
in computer science have a second-order flavor rather than only a first-order one.

In contrast to first-order logic, second-order logic on the class of all structures is
undecidable even if we restrict ourselves to only two variables. Therefore, the good
computational behavior of modal logics such as PDL cannot be explained by carrying
over the argument based on the decidability of two-variable first-order logic to the
second-order case. The remaining two arguments, however, can be carried over: the
tree model property and guarded quantification. Concerning the former, it can be
observed that even expressive modal logics such as PDL and the p-calculus have the
tree model property. This opens up two possibilities for proving decidability. First, it
enables the automata-theoretic approach to reasoning in modal logic. And second, it
allows to embed modal logic into the monadic second-order theory of trees, which is
decidable due to a classical result of Rabin [153]. In contrast to the automata theoretic
approach, such an embedding does usually not yield tight complexity bounds since the
monadic second-order theory of trees is of non-elementary complexity. Nevertheless,
this theory is often used to obtain decidability results for modal logic. An example of
this approach can be found in Section 4.1 of this thesis.

Concerning guarded quantification, it has been shown by Gradel and Walukiewicz
that the extension of the guarded fragment of first-order logic with fixpoint operators
is still decidable [98]. Even better, they show that, computationally, this extension
behaves just as good as the guarded fragment without fixpoints: it is 2-EXPTIME-
complete in general and only ExpPTIME-complete if a bound is imposed on the arity
of predicates. Thus, guarded fixpoint logic is capable of explaining also the low com-
putational complexity of modal logics with second-order features. However, it should
not come as a surprise that the good computational behavior of this logic, in turn, is
due to it having some form of tree model property.

As in the first-order case, the connection between modal logic and second-order
logic is not limited to the standard translation. In fact, Janin and Walukiewicz have
proved that there is an intimate connection between the p-calculus and monadic
second-order logic: a formula of the latter is equivalent to a formula of the u-calculus
if and only if it is invariant under bisimulation [117]. Thus, the u-calculus relates to
monadic second-order logic in precisely the same way as the basic modal language re-
lates to first-order logic! Another connection between modal logics using the classical
modal language and second-order logic is established by the notion of frame defin-
ability. We say that a class F of frames is modally definable is there exists a modal
formula ¢ such that

F={F|Fisa frame and F [¢}.

Since “F |= ¢” is defined by universally quantifying over all valuations V for F, it
should not be surprising that modal definability is closely related to definability of
frame classes in monadic second-order logic. In fact, every modal formula defines a
frame class that can also be defined using a monadic second-order formula, and there
are simple modal formulas that define frame classes not definable by a first-order
formula. For example, the McKinsey formula C10p — OUp defines the class of frames
(W, R) such that R is transitive and R’s converse is well-founded, and this frame

16

property cannot be defined in first-order logic [190]. An interesting line of research is
concerned with identifying large classes of modal formulas that define frame classes
which can also be defined using first-order logic. For example, this has led to the
identification of the class of Sahlqvist formulas [173].

17

3 Description Logic

Description logics (DLs) are a family of knowledge representation (KR) formalisms
that allow to represent the terminology of an application domain in a structured way.
Historically, the first DL system was the seminal KL-ONE system of Brachman [39],
which aimed at improving earlier KR formalisms such as frame-based systems [152]
and semantic networks [168] by actually having a formal semantics. About 15 years
after the development of KL.-ONE, Schild realized that many DLs can be viewed as
modal logics in disguise [177]. To illustrate this connection, we now introduce the
expressive description logic ALCQZ. It can be viewed as the core of OWL-DL, a
description logic that has recently been standardized by the W3C (the World Wide
Web consortium) as the ontology language to be used on the web [23]. OWL-DL and
its expressive fragments such as ALC Q7T are widely used in applications of description
logics, see for example the habilitation thesis [174] and references therein.

Let N¢ and Ng be sets of concept names and role names. The set of ALCOT roles
is defined as Nk U{r~ | » € Nr}. The set of ALCQT concepts is the smallest set such
that

e every concept name is a concept;

e if C and D are concepts, r is a role, and n > 0, then the following are also
concepts:
-C, CND, CUD, (<nrC), (znr(C)

We use (= n r C) to abbreviate (= nr C)N(<nrC), Ir.C for (= 1r C), Vr.C for
(<07 —C), T for an arbitrary (but fixed) propositional tautology, and L for = T. A
TBoz is a finite set of concept implications C T D. We use C = D to abbreviate the
two concept implications C'C D and D C C. Description logics are equipped with a
Tarski-style set-theoretic semantics. An interpretation T is a pair (AZ,-7), where A?
is a non-empty set (the domain), and = an interpretation function assigning

e to each A € Nc a subset AT C A7,
e to each r € Ng a binary relation 77 C A? x AZ,

The interpretation function can be inductively extended to complex roles and concepts
as follows:

) = {(e;d) | (d,e) €17}
|01 — AI CI
(C(I‘ID;I = CIF\WDI
(CcubD)yt = ctubp?
(KnrC)Y = {d|#{ecC|(de)ecrT} <n}

nrO)f = {d|#{ccC”|(de)cr’} =n)

where #S denotes the cardinality of the set S. An interpretation Z is a model of a
concept C if CT # (). Tt is a model of a TBox T if CT C DT foral CC D € 7.

18

Heart C (= 2 hasPart Ventricle)
Heart T (=1 hasPart Septum)
Heart C dconnectedTo.PulmonaryArtery
HeartComponent = JhasPart™.Heart
Ventricle C HeartComponent
Heart M JhasPart.Critical T Critical

Figure 1: An example TBox

The TBox formalism introduced above is sometimes referred to as general TBozes
since there are also several weaker variants. To illustrate the use of description logics
for representing the terminology of an application domain, consider the TBox dis-
played in Figure 1. It shows an excerpt from a medical terminology. The first three
lines state some necessary conditions that objects must satisfy in order to be a heart.
For example, they must have exactly two parts that are ventricles. The fourth line
gives necessary and sufficient conditions for an object to be a heart component, the
fifth line states that ventricles do not occur outside the heart, and the last line enforces
that any heart with a critical component is critical itself. While the toy example given
in Figure 1 is fictional, describing medical terminology is actually a major application
of description logics. For example, description logics underly the medical ontologies
SNOMED [56,183] and GALEN [170].

To understand the connection between description logics and modal logics, first
consider the fragment ALC of ALCQZ that is obtained by disallowing the use of the
inverse role constructor “r~”, and by replacing the number restrictions (< n r C)
and (< n r C) with the value restrictions 3r.C' and Vr.C. An ALC concept C can be
viewed as a formula ¢ of the basic modal language by identifying

e concept names with propositional variables;

e role names with atomic programs;

e the Boolean operators —, M, LI with =, A, V;

e the constructors Ir.C' and Vr.C' with {,.C' and OJ,.C respectively.

On the semantic level, an interpretation Z can be viewed as the Kripke structure
Kz = (AL, (17),eng, V), where V maps each d € AT to the set of concept names
A such that d € A%. Conversely, it is easy to convert a Kripke structure into a DL
interpretation. It is not difficult to see that this translation is faithful in the sense that
we have d € O iff K7,d |= ¢¢ for all interpretations Z, d € A%, and ALC concepts
C. The sketched correspondence between modal logic and DLs has been used by
Schild [176-178] and De Giacomo et al. [86] to transfer results between the two fields.
The correspondence can also be extended to the description logic ALCOZ: the modal
counterpart of the inverse roles r~ available in ALCQZ are backwards modalities, as

19

considered e.g. in the context of the p-calculus in [199]. The counterpart of number
restrictions are graded modalities that have been discussed for example in [72,73,191].

We call an ALCQT concept satisfiable w.r.t. a TBox 7 if there exists a model
T of T such that CT # (). We say that a concept D is subsumed by a concept E
w.r.t. T (written C C7 D) if CT C D7 holds in all models Z of 7. The most
important reasoning problems in DL are deciding the satisfiability of a given concept
C w.r.t. a given TBox 7, and checking whether there exists a subsumption relationship
between two given concepts w.r.t. a given TBox. Intuitively, satisfiability is important
to (automatically) verify whether a concept description makes sense from a logical
perspective, i.e., whether it is contradictory in itself or to a given TBox. Satisfiability
also plays an important role because many other inference problems can be reduced
to it. Subsumption can be used to check whether a concept D is more general than
a concept C, i.e., whether each instance of C' also is an instance of D. For example,
the concept name Heart is subsumed by the concept VhasPart.HeartComponent w.r.t.
the TBox in Figure 1. The main use of subsumption is to compute a hierarchy of the
concept names occurring in a TBox w.r.t. their generality. This hierarchy can then
be presented to developers and users of the TBox for browsing and inspection. It
is easy to see that unsatisfiability and subsumption are polynomially inter-reducible:
first, we have C T D if and only C' M =D is unsatisfiable w.r.t. 7; and second, C
is satisfiable w.r.t. 7 if and only if C Z7 L. Because of this close connection, in the
following we will often concentrate on satisfiability and assume that subsumption is
treated by means of the above reduction.

3.1 Finite Model Reasoning

A key difference between expressive DLs such as ALCQZ and less expressive ones such
as ALC is that the former are capable of enforcing infinite models. For example, the
concept —A is satisfiable w.r.t. the following ALCQOT TBox only in infinite models,

but not in finite ones:
-A C Ir.A

A C IrAN(LLIr T)

In contrast, every ALC concept that is satisfiable w.r.t. a TBox 7 is satisfiable in a
finite model of 7. This property is commonly called the finite model property (FMP).
The fact that ALCOT lacks the FMP cannot be ignored in many applications. For
example, an important application of DLs is reasoning about conceptual database
models such as ER diagrams and UML diagrams [49]. In this application, a DL
interpretation represents a database and a domain element of a DL interpretation
represents an object in a database. Since databases are considered to be finite, we
should be interested in deciding satisfiability and subsumption in finite models instead
of in unrestricted ones. Even in standard ontology applications such as in medical
informatics, finite model reasoning should probably be preferred over unrestricted
model reasoning: if CM—D is satisfiable in a medical terminology such as the one shown
in Figure 1, but only in infinite models, do we really want to conclude that C is not
subsumed by D? After all, the counterexamples witnessing non-subsumption require
that there are infinitely many anatomical parts around. This example also suggests

20

that finite model reasoning can be used in conjunction with standard reasoning to
exhibit modelling flaws. If a concept C' is satisfiable in unrestricted models, but not
finitely satisfiable, this may point to a problem and should be indicated to the ontology
designer.

Unfortunately, finite model reasoning in DLs is much less developed than standard
reasoning. The prime reason seems to be that it is technically much more involved.
The only relevant result is proved by Calvanese in [46], where it is shown that finite
satisfiability in ALCQT is decidable in 2-EXPTIME. In contrast, unrestricted sat-
isfiability in ALCQT is known to be ExpTIME-complete [86], and the lower bound
carries over to the finite case. Therefore, it was considered an important open question
whether or not finite model reasoning in ALCQT is more difficult than unrestricted
reasoning. In [140, 141], we answer this question positively: like their unrestricted
counterparts, finite satisfiability and finite subsumption in ALCQZ are “only” EXP-
TiME-complete. To prove the EXPTIME upper bound for satisfiability in ALCQZ, we
show how to translate a given concept C' and TBox 7 into a system of inequalities ¢ 7
such that C is finitely satisfiable w.r.t. 7 if and only if £c 7 admits an integer solution
with certain characteristics (an admissible solution). Deciding solvability of systems
of inequalities over the integers is known as integer programming [180]. Since inte-
ger programming is an NP-complete problem, the translation approach only yields a
NExpPTIME upper bound for finite satisfiability in ALCQZ. However, we additionally
show that the systems of inequalities obtained by the translation satisfy a monotonic-
ity condition, and that under this condition the existence of admissible solutions can
be decided in polynomial time. Therefore, we obtain the desired EXPTIME upper
bound.

It is interesting to note that the translation approach described above works only
if the numbers inside number restrictions are coded in unary. Note that the coding
has a severe impact on succinctness: while the length of (< n r C) is O(n) under
unary coding, it is only O(log(n)) under binary coding. Therefore, reasoning is po-
tentially more difficult under binary coding than under unary coding of numbers. Also
in [140,141], we show that this is actually not the case. We exhibit a polynomial re-
duction from finite satisfiability in ALCQZ under binary coding to finite satisfiability
in ALCFZ, which is the variant of ALCQZ that admits only the numbers 0 and 1
inside number restrictions. Since the coding of numbers obviously plays no role in the
case of ALCFZ, we obtain an EXPTIME upper bound also for finite satisfiability in
ALCQT under binary coding of numbers. In contrast to existing similar reductions
such as the one in [86], ours works also in the case of finite models and, for this
reason, is technically a lot more involved. In [140,141], we additionally show EXx-
PTIME-completeness of the reasoning task ABox consistency which we refrain from
discussing in detail here. Interesting results that are related to ours (but have been
proved later) are NEXPTIME-completeness of finite satisfiability in C2, the two vari-
able fragment of first-order logic with counting [96, 166], and EXpPTIME-completeness
of finite emptiness of two-way alternating tree automata [32].

21

3.2 Tractable Description Logics

The most important reasoning services offered by modern description logic reasoners
such as FaCT [114] and RACER [102] are the computation of concept satisfiability
and concept subsumption, both w.r.t. TBoxes. To realize these services, DL reason-
ers usually employ tableau algorithms for expressive DLs such as ALCQT and its
extensions [21]. Despite the fact that satisfiability and subsumption in expressive
DLs is usually ExpTiME-complete and that the implemented tableau algorithms are
even 2-NEXPTIME ones, DL reasoners exhibit a surprisingly good runtime behavior
that is sufficient for many applications. Still, the high computational complexity of
modern DLs also has a number of drawbacks, of which we mention only two: first,
the high complexity obviously implies that there exist inputs on which the reasoner
needs an unacceptable amount of time. Although such inputs are not encountered
too frequently in applications, there are cases when they occur. If this happens, the
user can only attempt to reformulate her knowledge base. Since the internals of mod-
ern DL reasoners are far from trivial and a convincing theoretic explanation for the
“usually” good runtime of DL reasoners is missing, the average user is often left to
guessing how to achieve a better runtime behavior. This is in contrast to the otherwise
purely declarative approach to knowledge representation using DLs. Second, there are
applications that require knowledge bases of massive size, such as the SNOMED sys-
tematized nomenclature of human and veterinary medicine [56,183] which is a TBox
involving ~400.000 concept names. Currently, such inputs are simply too large for
modern DL reasoners based on tableau algorithms.

Due to these drawbacks of expressive DLs, it has always been a goal of DL research
to identify small, yet useful description logics for which satisfiability and subsumption
are tractable [17,37,60,61,155]. Early attempts concentrated on variants of FLy,
which is the DL that comprises only the operators conjunction and universal value
restriction (Vr.C'). Although subsumption in FLg is indeed tractable, it becomes co-
NP-complete when extended with a very weak form of TBoxes [156] (acyclic TBoxes)
and is even PSPACE-complete with a stronger form [15,119] (cyclic TBoxes) that is
still weaker than the general TBoxes introduced above. Surprisingly, the sibling ££
of FLj that comprises only the operators conjunction and existential value restriction
(3r.C) has received much less attention. Only in 2004, it was observed by Brandt
that subsumption in £L is tractable even w.r.t. the general TBoxes introduced in this
section [41].3 Since several recent applications of DLs such as SNOMED are based
on variations of £L, this result has the potential to bring the quest for tractable and
useful DLs to a positive ending.

In the joint paper [16] with Baader and Brandt, we perform a detailed analysis
of the computational complexity of extensions of ££. In particular, we show that
subsumption in £L£ w.r.t. TBoxes remains tractable if we (simultaneously) add the
following means of expressivity:

e the bottom concept L (and thus disjointness between concept names through
concept implications AN B C 1);

3Satisfiability is trivial in ££ and FLo as there are no unsatisfiable concepts.

22

e nominals, i.e., a special sort of concept names that have to be interpreted in
singleton sets;

e arestricted form of concrete domains that allow reference to numbers and strings
in concept expressions;

e role inclusions 1 o --- o7, C s to be used in TBoxes, where r1,...,7, s are role
names, and the inclusion 7 o --- o, C s is satisfied by an interpretation Z if
7”11 0-+:0 7'% C s?. Observe that role inclusion can be used to express transitivity

of roles via r or C 7, and also right identities o s C s which are important in

medical applications such as SNOMED.

The resulting extension of £L is called ££++4. This result should be compared with
the fact that, as we also show in [16], subsumption in FLy w.r.t. general TBoxes is
ExpPTIME-complete. The polynomial time algorithm for ££++ given in [16] borrows
ideas from tableau algorithms for DLs, from algorithms for propositional Horn logic,
and from the filtration technique for modal logic.

We also consider other expressive means that are common in DLs and show that
subsumption in £L£ extended with any of the following is EXPTIME-complete:

e atomic negation, i.e., negation that can only be applied to concept names but
not to complex concepts;

e disjunction;

e at-least restriction (= nr C), even if n is restricted to 2 and C to T;
e at-most restrictions (< n r C), even if n is restricted to 1 and C to T;
e functional roles;

e each of the following constructors for forming complex roles: negation, union,
and transitive closure.

Additionally, we show that, in ££ extended with existential value restrictions on
inverse roles (3r~.C'), subsumption w.r.t. TBoxes is PSPACE-hard. The best known
upper bound is an EXPTIME one.

The polytime subsumption algorithm for ££+4+ has been implemented in a DL
reasoner called CEL. An empirical evaluation is undertaken in [19], where CEL is used
the reason on SNOMED and on the Gene Ontology [187], a TBox describing genes and
gene products that involves ~40.000 concept names. The main result of the evaluation
is that even the relatively naive implementation of the ££++ subsumption algorithm
in CEL can outperform existing and highly optimized reasoners for expressive DLs.
This could not be taken as granted: before CEL, Classic was the most advanced DL
reasoner that uses a polytime algorithm [37]. Still, reasoners based on expressive DLs
such as FaCT and RACER usually outperform Classic if used on TBoxes formulated
in Classic’s language. It is also interesting to note that CEL is able to compute the
subsumptions in SNOMED (currently in ~40 minutes), whereas reasoners based on

23

expressive DLs cannot handle SNOMED at all.* The developers of SNOMED have
recently signaled that they are interested in using ££+4++ and CEL for the further
development of SNOMED.

3.3 Conservative Extensions

Modern applications of DLs require terminologies of large scale and complex structure
whose design and maintenance is a challenging task. Moreover, terminologies and their
applications evolve over time, and therefore it is frequently necessary to maintain,
refine, customize, and integrate terminologies. These tasks, in turn, rely on basic
operations on TBoxes such as revision, extension, and merging with other TBoxes.
When such operations are performed on well-established and tested TBoxes, it is of
prime importance to have control of the resulting consequences. To illustrate this
issue, we discuss two example scenarios.

First, suppose that a knowledge engineer maintains a well-tested TBox 7 that
formalizes the terminology of an application domain. Assume that the engineer wants
to extend 7 with a number of additional concept implications that describe the termi-
nology of a part of the domain that was not yet covered by 7. Moreover, the extended
TBox is used in an application that requires computing subsumptions between con-
cepts, and for which the TBox 7 was used before. To avoid unexpected results when
using the extended TBox, the existing part of 7 should not be compromised by the
new axioms. In particular, the extended TBox should not entail new subsumptions
between concepts that are formulated in the signature of the old TBox, where the
term “signature” refers to the concept and role names used.

Second, assume that there are two well-established TBoxes 77 and 75 that describe
different and largely independent aspects of an application domain, but nevertheless
have an overlap in signature. To use 7; and 75 together in the same application, one
would like to merge them by simply taking their union. Similarly to the case of TBox
extensions, it is then important to know whether the merging operation compromises
the component TBoxes: are there any subsumptions in the signature of 7; entailed
by 71 U 75 that are not entailed by 77 alone, and likewise for 75. Intuitively, the
entailment of such subsumptions means that there may be unexpected results when
using the merged terminology in place of the component terminologies.

The reasoning problems suggested by these two examples can be conveniently
formalized using the notion of a conservative extension, which has been widely studied
and applied in mathematical logic and in the philosophy of science. Formally, a TBox
T UT' is a conservative extension of a TBox 7 iff C Ty D implies C Ty D
for all concepts C and D formulated in the signature of 7. Equivalently, 7’ is a
conservative extension of 7 iff every concept in the signature of 7 that is unsatisfiable
w.r.t. 7 U7’ is already unsatisfiable w.r.t. 7. Now, the reasoning problem that is
relevant for the examples above is the following: given TBoxes 7 and 77,is 7 U7’ a

“We have been informed that the FaCT++ reasoner, which is based on an expressive DL, is able
to compute the subsumptions in SNOMED within 3 hours. However, we have not yet been able to
reproduce these results.

24

conservative extension of 77 In the following, we will refer to this problem simply as
conservativeness. Obviously, conservativeness captures both TBox extension (where
T’ contains the additional concept implications) and TBox merging.

In the joint paper [85] with Ghilardi and Wolter, we propose conservativeness as a
relevant reasoning problem for description logics and analyze its decidability and com-
putational complexity in the description logic ALC. The basic results is that deciding
conservativeness in ALC is 2-ExXpPTIME-complete. The lower bound is proved by a
reduction of the word problem for exponentially space-bounded alternating Turing
machines as introduced in [50]. The upper bound is obtained by an algorithm that
can be viewed as an elaborate kind of type elimination procedure as first proposed
by Pratt in the context of PDL [163]. More precisely, to check whether 7 U 7" is
not a conservative extension of 7, we have to check whether there is a model Z of T
such that no model J bisimilar to Z can be extended to a model of 7 U 7’, where
ertended means adding an interpretation of the concept and role names occurring in
7’ but not in 7. With 7-type, we mean a set of subconcepts of concepts in 7 sat-
isfying some basic Boolean closure conditions. 7’-types are defined analogously. To
check the existence of a model as just described, we use an algorithm that considers
type pairs, i.e., pairs (t,T) where t is a T-type and T a set of 7'-types. Intuitively,
T contains all the 7’-types to which ¢ can be extended in an interpretation of 7 to
obtain an interpretation of 7 U7’. The algorithm starts with all type pairs and then
repeatedly eliminates pairs that cannot be realized in an interpretation. It stops if no
more elimination is possible or it finds a type pair (¢,7) with 7' =). In the latter
case, T U7’ is not a conservative extension of 7.

We then perform a more refined complexity analysis revealing that there exists an
algorithm for deciding conservativeness that takes only exponential time in the size
of 7 and double-exponential time in the size of 7’. Especially in the case of TBox
extensions, where 7" typically is very small compared to 7, this is a relevant observa-
tion showing that, in such cases, deciding conservativeness is not substantially more
complex than deciding the standard reasoning problems satisfiability and subsumption
(which are EXPTIME-complete in ALC).

While conservativeness already provides the TBox designer with relevant informa-
tion, we can be even more informative: assume that the extension of a TBox turns
out not to be a conservative extension. This may or may not be intended, and it is
up to the developer to decide whether the new TBox faithfully represents the domain
under consideration. To support her in this decision, it is useful to compute witness
concepts, i.e., examples of concepts that were satisfiable before, but are unsatisfiable
after the extension. Out algorithm for deciding conservativeness can also be used to
compute witness concepts. We prove that the length of (the smallest) witness concepts
can be triple exponential in the size of the original TBoxes (but not worse).

We also consider a further refinement of conservativeness that is motivated by the
observation that non-conservative extensions and mergings of TBoxes are sometimes
intended and completely acceptable. Suppose the original TBox 7 consists of a core
terminology (e.g., an upper-level ontology [99]) formulated in a signature I' that by no
means should be corrupted, and of other parts for which a non-conservative extension

25

is acceptable or even intended. In this case, the required reasoning problem is the
following: given a set I' of concept names and roles and terminologies 7 and 77, is
there a concept in the signature I' that is unsatisfiable w.r.t. 7 U 7', but satisfiable
w.r.t. 77 We prove that, in ALC, deciding this refined version of conservativeness
is also 2-EXPTIME-complete. However, there is a significant difference to the basic
reasoning problem: in the refined version, we cannot get an algorithm whose runtime
is only exponential in the size of 7: even for a fixed TBox 7, the complexity of
deciding whether 7 U7 is a conservative extension of 7 w.r.t. I' is 2-ExpTime-hard.

26

4 Expressive Modal and Dynamic Logics

In this section, we propose and analyze several very expressive modal logics: an exten-
sion of PDL, several extensions of the p-calculus, and some so-called Boolean modal
logics that admit the Boolean operators on programs. Historically, members of the
PDL and p-calculus family of modal logics are often called dynamic logics because
their purpose is to reason about the changes that programs and actions in finite-state
systems provoke in the truth of propositions. We are interested in expressive variants
of such logics mainly for the reason that, in computer science logic, it has always been
a major research goal to identify logics that are as expressive as possible and still de-
cidable. This is witnessed e.g. by research on the two-variable fragment of first-order
logic [95,96,159,166] the guarded fragment [13,93,98], the u-calculus [122,126,175],
and monadic theories of trees [153]. In general, research in this direction is interesting
both from a theoretical and practical perspective because it helps to understand the
limits of decidability. Moreover, expressive and decidable logics are useful as a target
formalism for embedding other, more specialized logics with the aim of transferring
complexity theoretic and model theoretic results such as upper complexity bounds
and the tree model property. As will be discussed in more detail below, this is also
the main motivation for considering the logics analyzed in this section.

4.1 Enriched PDL

Since the invention of PDL in the 1970s for reasoning about programs, the adaptation
to a growing number of applications has led to many modifications and extensions.
Nowadays, these additional applications are often the main driving force behind the
continuing interest in the PDL family of logics, see e.g. [3,7,28,58,86]. An important
family of variations of PDL is obtained by adding an intersection operator “N” on
programs, and possibly additional program operators. The semantics of this operator
is as expected:
R(Oq N 042) = R(Oél) N R(Ozg).

Unfortunately, the extension of PDL with intersection (IPDL) is notorious for being
“theoretically difficult”. This is mostly due to an intricate model theory: in contrast
to most other extensions of PDL, the addition of intersection destroys the tree model
property in a rather serious way. This is witnessed e.g. by the formula

“pA[b]L A {((a;p?;a) NO*)T

which enforces a cycle of length 2. It is easy to modify this formula such that it
enforces a cycle whose length is exponential in the length of the formula. Original
PDL and many of its extensions can be decided using automata on infinite trees or an
embedding into the alternation-free fragment of the u-calculus. By adding intersection
to PDL and destroying the tree model property, we leave this framework and thus
lose the toolkit of results and techniques that have been established over the last
twenty years. Consequently, the results obtained for IPDL are sparse. The first result
about the computational properties of PDL with intersection is due to Harel, who
proved that satisfiability in IPDL with deterministic programs is undecidable [106].

27

In 1984, Danecki showed that dropping determinism regains decidability [57]. He also
establishes a 2-EXPTIME upper bound.

Since 1984, it was unknown whether Danecki’s upper bound is tight. In 2004,
Martin Lange and I were able to prove a 2-EXPTIME lower bound for satisfiability in
IPDL, thus showing that Danecki’s upper bound cannot be improved. The result is
presented in [131] and rests on a reduction of exponentially space bounded alternating
Turing machines. More precisely, we give three variations of the reduction: the first
one uses the test operator “p?” of IPDL and shows that satisfiability is EXPTIME-
hard even if we restrict ourselves to tree structures. The second reduction is a slight
variation of the first one and does not require the test operator. Since there are
relevant applications of PDL that do not require this operator, a lower bound is more
convincing if it does not rely on test. The drawback of the second reduction is that
it does not work on tree structures. Finally, the third reduction uses a sophisticated
encoding to establish 2-EXPTIME hardness of satisfiability in IPDL even without the
test operator and on tree structures. It is interesting to note that the expressive
power of PDL and IPDL coincides on tree structures since we can simply remove the
intersection operator from IPDL programs by computing the intersection of regular
expressions (this does not work on non-tree structures). Still, satisfiability in PDL
and IPDL on tree structures is of quite different complexity: EXPTIME-complete vs.
2-ExpTIME-complete.

It is interesting that, until recently, virtually nothing was known about further
extensions of IPDL. Most strikingly, the natural extension of IPDL with a converse
operator “-~” on programs has never been investigated. This operator has the follow-
ing semantics:

R(a™) = {(v,w) | (w,v) € R(a)}.

The extension of IPDL with this operator is called ICPDL. 1 addressed ICPDL in
my paper [136], where I prove that satisfiability in ICPDL is decidable by developing
a satisfiability preserving translation into the monadic second-order theory of trees.
This result has several interesting consequences:

First, decidability of ICPDL implies decidability of the information logic DAL
(Data Analysis Logic), a problem that has been open since DAL was proposed in
1985 [71]. The purpose of DAL is to aggregate data into sets that can be characterized
using given properties, and, dually, to determine properties that best characterize a
given set of data. Technically, DAL may be viewed as the variant of IPDL obtained
by requiring all relations to be equivalence relations and admitting only the program
operators N and U*, where the latter is a combination of PDL’s operators U and -*.
In ICPDL, equivalence relations can be simulated using (a U a™)* for some atomic
program a. Thus, DAL can be viewed as a fragment of ICPDL.

Second, there is a close correspondence between variants of PDL and description
logics. In particular, the description logic ALC\eg [14,86] is a syntactic variant of PDL
without the test operator [177], and the intersection operator of IPDL corresponds to
the intersection role constructor in description logics. The latter is a traditional con-
structor that is present in many DL formalisms, see e.g. [47,61,138,149]. Decidability
and complexity results play a central role in DL, but have never been obtained for

28

the natural extension ALCry of ALCreg with role intersection. Clearly, ALCl, is a
syntactic variant of test-free ICPDL, and thus my decidability result carries over.

Third, ICPDL can be applied to obtain results for modal logics of knowledge. The
basic observation is as in the case of DAL: ICPDL can simulate equivalence relations
by writing (e Ua™)*. Since union and transitive closure of programs can be combined
to express the common knowledge operator of epistemic logic, and intersection of
programs corresponds to the distributed knowledge operator, decidability of ICPDL
can be used to obtain decidability for epistemic logic with both common knowledge
and distributed knowledge. We should admit, however, that this approach is rather
brute force: since the common knowledge and distributed knowledge operators of
epistemic logic cannot be nested to build up more complex operations on relations,
epistemic logic lacks much of the complexity of ICPDL. Therefore and as noted in [70],
decidability can also be obtained using more standard techniques.

As already noted above, the decidability result is obtained by a translation into the
monadic second-order theory of trees. This involves a tricky encoding of the non-tree
models if ICPDL into tree-shaped abstractions. Due to the high complexity of monadic
second order logic and the structure of the formulas obtained by the translation (in
which the alternation depth of quantifiers is not constant), we obtain only a non-
elementary upper bound for satisfiability in ICPDL. The best known lower bound is
the 2-EXPTIME one for IPDL proved in [131]. It seems likely that satisfiability in
ICPDL is actually also contained in 2-EXPTIME. A proof, however, is far from trivial
and seems to require a combination of the techniques used in [57] and [136].

4.2 Enriched p-calculus

The p-calculus extends the basic modal language from Definition 1 by adding fixpoint
operators pzx.¢ and vx.p, where x is from a fixed set Var of fizpoint variables. To
define the semantics of the additional operators, we introduce valuations for fixpoint
variables. Given a Kripke structure K = (W, R,V) and a set {x1,...2,} C Var, a
valuation for this set is an assignment V : {z1,...7,} — 2". For a valuation V,
a fixpoint variable z, and a set W' C W, we denote by V[x « W] the valuation
obtained from V by assigning W’ to 2. We then define the consequence relation “=Y"
between worlds in Kripke structures and formulas of the p-calculus with reference
to a valuation V. The Boolean operators and the modal operators are treated as in
Definition 3, where the valuation V is simply passed on from the left-hand side to the
right-hand side of the “iff” clauses. The remaining cases are as follows:

KwgEYx iff w e V(x) for all x € Var
KowEY (uzg) f (W CW [{veW|KvEEWgrcw)}
KawkEY (ve.p) iff YW CW |W C{veW| Ko FWI
One of the main uses of the p-calculus is as a target formalism for embedding temporal
and modal logics with the goal of transferring computational and model theoretic

properties such as the EXPTIME upper complexity bound. It has been advocated by
several authors that also description logics should be embedded into the p-calculus,

29

mainly to identify DLs that are of very high expressive power, but computationally
still well-behaved [48,126,175]. When putting this idea to work, we face the problem
that modern DLs include several constructs that cannot easily be translated into the u-
calculus. Most importantly, these constructs are inverse roles (corresponding to inverse
programs in the p-calculus), number restrictions (corresponding to graded modalities),
and nominals (recall that nominals are a special sort of concept names/propositional
variables that have to be interpreted in a singleton set).

This observation has led to the enrichment of the p-calculus with backwards pro-
grams, graded modalities, and nominals. The p-calculus simultaneously enriched with
all these means of expressivity is called the fully enriched pi-calculus. More precisely,
this logic is obtained by extending the p-calculus as follows: first, a program of the
fully enriched p-calculus is either an atomic program or the converse a~ of an atomic
program a. Second, we introduce nominals, which are a special kind of propositional
variable. In contrast to standard propositional variables, nominals are true in exactly
one world of each Kripke structure. And third, we replace the diamond and box op-
erators with graded modalities, i.e., an atleast operator (n,a)y and an allbut operator
[n, a]p, where n is a non-negative integer and « a (possibly converse) program. The
semantics of the new operators is as follows:

K,wEY (n,a)p iff #{veW |(w,v) € Rla)ANK,vEY ¢} >n
KwEY [n,ale iff #veW | (w,v) € Ra)AK,vEY ¢} <n

Thus, (n,a)p states that atleast n + 1 a-successors satisfy ¢, and dually, [n,a]—¢
expresses that all but at most n a-successors satisfy ¢. Note that the modalities
(a)p and [afg of the standard p-calculus can be expressed as (0,a)p and [0, a]yp,
respectively.

The fully enriched p-calculus is expressive enough to accommodate a very large
class of modal and description logics. Alas, it is too expressive: as shown by Bonatti
and Peron in [34], satisfiability in the fully enriched p-calculus is undecidable. In con-
trast, some fragments of it are known to be decidable: the u-calculus extended with
inverse programs and nominals (full hybrid p-calculus) and the p-calculus extended
with inverse programs and graded modalities (full graded p-calculus) are both decid-
able and ExpPTIME-complete, see [175] and [48,126]. In the latter case, this result
is known only when the numbers in graded modalities are coded in unary or when
inverse programs are not admitted.

The above results raise the question of maximal decidable fragments of the fully
enriched p-calculus. In the joint paper [33] with Bonatti, Murano, and Vardi, we study
this question in a systematic way by considering all fragments of the fully enriched
p-calculus that are obtained by dropping at least one of inverse programs, graded
modalities, and nominals. It turns out that dropping any of these three means of
expressivity regains decidability and EXPTIME-completeness. More precisely, we prove
that this is the case for the p-calculus extended with nominals and graded modalities
(the hybrid graded p-calculus) and for the p-calculus extended with inverse programs
and graded modalities where the numbers in graded modalities are coded in binary.

30

Our results are based on the automata-theoretic approach. We introduce fully
enriched automata (FEAs), which work on infinite forests and use a parity acceptance
condition. Intuitively, these automata generalize alternating automata on infinite
trees in a similar way as the fully enriched p-calculus extends the standard p-calculus:
FEAs can move up to a node’s predecessor (by analogy with inverse programs), move
down to at least n or all but n successors (by analogy with graded modalities), and
jump directly to the roots of the input forest (which are the analogues of nominals).
We prove that the emptiness problem is decidable for fully enriched automata and
then show how to reduce to this problem satisfiability in the hybrid graded and the
full graded p-calculi, exploiting the forest model property enjoyed by these logics.
Observe that decidability of the emptiness problem for FEAs does not contradict the
undecidability of the fully enriched p-calculus: the latter does not enjoy a forest model
property, and hence satisfiability cannot be decided using forest-based FEAs.

To show that the emptiness problem for FEAs is in EXPTIME, we introduce an
additional automata model: two-way graded parity tree automata (2GAPTs). These
automata are interesting in their own right because they generalize in a natural way
two existing, but incomparable automata models: two-way alternating tree automata
(2APT) [199] and graded parity tree automata (GAPT) [126]. We give a polynomial
reduction of the emptiness problem for FEAs to that for 2GAPTs, and then show
containment in EXPTIME for the 2GAPT emptiness problem by a reduction to the
emptiness of graded nondeterministic parity tree automata (GNPT) as introduced
in [126].

4.3 Boolean Modal Logic

Modal logics such as PDL extend the basic modal language by allowing to construct
complex programs from atomic ones using program operators such as composition and
union. The basic idea of Boolean modal logic (BML) as studied for example in [82] is to
admit the Boolean operators —, N, and U on programs (with the obvious semantics),
and thus to alleviate at least to some extent the asymmetry between propositional
variables (unary predicates) and programs (binary predicates) that can be observed
in the basic modal language.

An interesting property of BML is that, in this logic, we can define the so-called
window operator. To understand this operator, recall that [,¢ holds at a world w
iff w’ being accessible from w implies that ¢ holds at w’. Thus, it is obviously quite
natural to define an operator 0, that is symmetric to O,: T, ¢ holds at a world w
iff ¢ holding at a world w’ implies that w’ is accessible from w. This operator is
called the window operator, where the name is derived from the symbol used for it. In
contrast to the standard modal box, which can be thought of as expressing necessity,
the window operator can be understood as expressing sufficiency. Logics with this
operator were investigated from different viewpoints by, e.g., Humberstone, Gargov
et al., and Goranko [83,89,90,115]. In BML, the window operator @, ¢ can simply be
expressed as [—a]—p. As pointed out in a joint paper with Sattler [138], the window
operator is quite useful in the context of description logics. There, it can be used to
make statements such as “fighters for animal rights love all animals”, which is not

31

no negation atomic negation full negation

— PSpace-compl. ExpTime-compl.
U PSpace-compl. | ExpTime-compl.
N PSpace-compl. | NExpTime-compl. | NExpTime-compl.

N and U | PSpace-compl.

Figure 2: Complexity of various fragments of BML.

expressible in standard DLs.

In the joint paper [139] with Sattler, we investigate the complexity of reasoning in
Boolean modal logic and its natural fragments. We find that satisfiability in full BML
is NExpPTIME-complete, in contrast to PSPACE-completeness of the basic modal lan-
guage. The upper bound is immediate by an obvious translation into the two-variable
fragment of first-order logic, and the lower bound is established using a NEXPTIME-
complete variant of the domino problem. In contrast to the standard (undecidable)
domino problem of [29,120], in the NEXPTIME-complete variant the task is to tile
a torus of exponential size [35]. We then show that there are (at least) two ways to
lower the complexity of satisfiability in BML to EXpTIME-completeness. The first
is to drop union and intersection, retaining negation as the only program operator.
Then, the window operator is still definable and we can show an EXPTIME upper
bound using non-deterministic automata on infinite trees. To do this, we introduce a
tree abstraction of models. This is necessary since the addressed logic does not have
the tree model property, as witnessed for example by the formula

p A [nal-p

which enforces a reflexive loop and can be modified to enforce cycles of exponential
length. The lower bound is easily obtained by reducing satisfiability in the basic modal
logic enriched with a universal modality, c.f. [91].

The second way to lower the complexity of satisfiability to EXPTIME-completeness
is to put a finite bound on the number of accessibility relations. Indeed, our NEX-
PTIME lower bound relies on the fact that an unbounded number of relations are
available. When such a bound is imposed, we can use a sequence of reduction steps
to reduce satisfiability in BML to satisfiability in the basic modal language enriched
with the universal modality. Since the latter is EXPTIME-complete, we obtain the
desired result. In [139], we also analyze some other fragments of BML. The results
are summarized in Figure 2, where the grey entries have already been known, and
“atomic negation” means that negation can only be applied to (formulas and) atomic
programs.

In terms of expressive power, the inclusion of Boolean program operators brings
modal logic closer to FO?, the two-variable fragment of first-order logic. The reason
for this is that the latter includes the Boolean operators and does not distinguish
between their application to unary and binary predicates. It is therefore a natural

32

question to ask what we have to add to BML to reach exactly the expressive power of
FO?, and how the computational complexity and succinctness of the resulting modal
logic relates to the complexity and succinctness of FO?. We investigate these questions
in the joint paper [142] with Sattler and Wolter. It turns out that adding to BML
a backwards program operator “a”” (as in Section 4.2) and an identity program id
with

R(id) = {(w,w) | w € W}

suffices to reach the expressive power of FO?. Let us call the resulting logic enriched
BML. Finding an equivalence preserving translation from enriched BML to FO? is an
easy task. For the converse direction, we use a translation inspired by a similar one
of Etessami, Vardi, and Wilke in [69].

Given that enriched BML and FO? have the same expressive power, it is interesting
to compare their succinctness and computational complexity. In particular, modal
logics are usually computationally simpler than (finite variable fragments of) first-
order logic, but also less expressive. Thus, the reason for the computational simplicity
of modal logics is not quite clear: is it their reduced expressive power or is it that
they talk about relational structures in a less succinct way than first-order logic.
Our analysis of enriched BML, which has ezactly the same expressive power as FO?,
provides some evidence in favour of the second explanation.

Regard the succinctness, we forst observe that the translation from BML to FO?
produces formulas whose length is linear in that of the original formula, but the
converse translation involves an exponential blowup in formula length. Indeed, such a
blowup cannot be avoided since, as we show in [142], there are properties that can be
expressed exponentially more succinct in enriched BML than in FO?. More precisely,
let ¢, be the following formula of FO?2, for n > 1:

vy A (N B@) = (B@) < Bly)
k=0.n—1 j=0.k—1

ANV B@) = (B@) < B)

k=0.n—1 j=0.k—1

Using the fact that this formula enforces a domain of cardinality at least 27, it can
be shown that every formula of enriched BML that is equivalent to ¢, is of length at
least 2" /2.

As we show in [142], this difference in succinctness between enriched BML and
FO? indeed has an impact on computational complexity. First, satisfiability in FO?
is NExpTIME-complete [76,95]. This holds regardless of the number of binary predi-
cates (even if there are none at all). In contrast, the complexity of enriched BML is
sensitive to the number of accessibility relations. If an unbounded number is avail-
able, enriched BML inherits NExpTiME-hardness from plain BML. Together with
the linear translation to FO?, we thus get NEXPTIME-completeness. On the other
hand, if we impose a finite bound on the number of accessibility relations, then sat-
isfiability in enriched BML is ExPTIME-complete. The lower bound is easy to show.
In [142], we establish the upper bound by first using a series of non-trivial reductions

33

to simplify the problem, and then applying a Pratt-style type elimination procedure
as first proposed in [163]. Thus, we observe the interesting effect that the differ-
ence in succinctness between modal logic and first-order logic induces a difference in
computational complexity only if we impose a bound on the number of variables.

It is interesting to note that our results from [142] generalize the main results
from Etessami et al. [69], who consider only structures based on the frame (N, <). Tt
also improves a result by Borgida [36], who identifies a description logic that has the
same expressive power as FO?. In contrast to Borgidas logic, enriched BML has a
weaker set of program operators, and this makes the expressive equivalence with FO?
considerably less obvious.

34

5 Temporal and Spatial Logic

Modal logics of time and space have several interesting applications in computer sci-
ence. As has been discussed in Section 2.2, the main application of temporal logic is
reasoning about the behavior or reactive systems, i.e., systems that run continuously
and are supposed to interact with their environment in a specified way. Examples
include microprocessors, operating systems, and communication protocols. Spatial
logics are mainly used in geographic information systems (GIS) and for various appli-
cations in artificial intelligence. The term GIS refers to a family of technologies that
allow to store, manage, and analyze spatial data [135]. Most GIS have deductive ca-
pabilities that allow to infer new spatial knowledge from the information that is stored
explicitly, and these reasoning capabilities are often based on a spatial logic. More
information on reasoning in GIS can for example be found in the book [62]. In artifi-
cial intelligence, spatial reasoning is essential in subfields such as image understanding
and robot navigation. The literature is somewhat scattered, but the book [184] covers
many relevant subjects. There are several different ways to use modal logic for spatial
reasoning. Some of them are discussed in more detail in Section 5.2.

5.1 Quantitative Temporal Logic

The classical approach to reasoning about reactive systems is based on purely qualita-
tive logics such as LTL, CTL, and CTL*. However, when real-time properties play a
crucial role in the description of the system behavior, this rather abstract approach is
no longer feasible. For example, if we are modelling a network router or even aviation
software, it may not be sufficient to know that the software will eventually react to
a critical situation. What we want to enforce is that it reacts within a concrete time
interval, say within 10 milliseconds. Such concrete distances between events cannot be
adequately described in qualitative logics such as LTL. Consequently, the basic logical
tool for reasoning about real-time systems is provided by quantitative logics, which are
usually extensions of LTL with metric operators. To obtain a realistic model of time,
such logics are commonly interpreted in the real line. Examples of such quantitative
logics can be found in [8-10,112,179].

To introduce real-time temporal logics, we start with the purely qualitative logic
LTL. The language of LTL is obtained by extending the basic modal language from
Definition 1 with a binary until operator ¢i/1. We do not include a “next-time”
operator () since we will interpret LTL in structures based on the real numbers
and, in such structures, the next point in time is clearly not a meaningful concept.
A Kripke structure K = (W, R, L) is a real-time structure if W = R™ is the set of
non-negative real numbers, and R is the standard “<” relation on the reals. The
consequence relation is defined as usual for the operators of the basic modal language,
and as follows for the until operator:

K,w = oy 1 iff there is a v € W such that wRv, K, v |= 1,
and K, u |= ¢ for all u with w < u < v.

When reasoning about real-time systems, it is often natural to consider only real-time
structures such that, in every bounded interval, each propositional variable changes

35

its truth value only finitely often. This condition is called the Zeno condition (after
Zeno’s paradox) or the finite variability assumption (FVA). It reflects the fact that
most reactive systems cannot change their state infinitely often while approaching
some fixed point in time. However, there are also significant cases in which it is useful
to give up the FVA, see e.g. [27,59,105] for discussions of this subject.

Moving from qualitative to quantitative logics is often accompanied by a consid-
erable increase in computational complexity of the satisfiability problem. The most
important example demonstrating this effect is LTL. Satisfiability of LTL over the
non-negative reals as introduced above is PSPACE-complete [172] both with and with-
out FVA. Consider now an additional operator ¢ U},) ¥, where n and m are rational
numbers coded in binary, and the semantics is as follows:

K,w = pUjp,m) ¥ iff there is a v € W such that w +n <v <w+m, K,v =,
and K, u = ¢ for all u with w < u < v.

We use O,) to abbreviate T U,) - Let mLTL denote the extension of LTL with
this metric version of the until operator. In mLTL, satisfiability is EXPSPACE-complete
if the case n = m is not admitted in the metric until operator, and even undecidable if
it is [8,10,112]. Thus, the complexity is considerably higher than in the corresponding
quantitative logic LTL. However, not all linear-time quantitative temporal logics are
computationally as hard as mLTL. In the joint paper [143] with Walther and Wolter,
our goal is to identify quantitative real-time logics whose complexity is not worse than
that of qualitative logics, i.e., in PSPACE or below.

Some such computationally well-behaved quantitative logics have already been
known before our investigations. In particular, it was known that the complexity of
mLTL can be brought down to PSPACE by requiring that the lower parameter n to the
metric until operator has the value zero [8]. We use mLTL™ to refer to this fragment of
mLTL. In contrast to EXPSPACE-completeness and undecidability of mLTL, PSPACE-
completeness of satisfiability in mLTL™ had only been proved under the FVA. In our
paper [143], we propose a new technique for polynomially reducing satisfiability in
metric temporal logics with numbers coded in binary to satisfiability in the same logic
with numbers coded in unary. A notable feature of this technique is that it does not
depend on the FVA. Since satisfiability in mLTL™ with unary coding of numbers is
known to be PSPACE-complete also without the FVA [112], we can use our reduction
to prove containment in PSPACE of the same logic with numbers coded in binary.
Thus, we identify a relevant quantitative temporal logic for which reasoning is not
harder than in the qualitative version even without the FVA. The proof is presented
in [143] as an example application of the reduction technique. In that paper, we also
present another application of our technique. This application is RTCTL, a metric
version of CTL that is equipped with a discrete-time semantics. This logic has been
proposed by Emerson et al. [64], who also show EXPTIME-completeness. Using our
technique, we can reprove the upper bound in a much simpler way than Emerson et
al.: due to the discrete time semantics, we obtain a direct reduction of satisfiability in
RTCTL (with numbers coded in binary) to satisfiability in qualitative CTL and thus
get the desired EXPTIME upper bound.

36

If we drop the until operator from LTL retaining the modal box as the only tem-
poral operator, satisfiability in the resulting logic LTLg is NP-complete (with the
real-line based semantics) [182]. In our paper [143], we also try to identify quantita-
tive counterparts of this computationally rather well-behaved temporal logic. First, we
establish three negative results showing that all of the following fragments of mLTL™
are still PSpPACE-hard:

1. the only temporal operators are O and Qg)¢, With n coded in unary;
2. the only temporal operator is Qg)¢, with n coded in binary;

3. the only temporal operator is ¢ U]o1] Y-

Observe that the second and third fragments do not include any qualitative temporal
operators. The three PSPACE lower bounds are proved using reductions from LTL
interpreted on the natural numbers. An analysis of the possible fragments of mLTL™
reveals the following logic as the only natural remaining candidate for a fragment of
mLTL™ for which satisfiability is in NP:

4. the only temporal operator is Qg ,,, with n coded in unary.

Indeed, we are able to show containment in NP of satisfiability in this logic by devising
an algorithm that first guesses a set of types (sets of subformulas of the input formula
satisfying certain Boolean closure conditions) that is of polynomial cardinality, and
then constructs and solves a system of linear inequalities with rational coefficients over
the real numbers to deal with the metric operators. We give two separate algorithms
for the case with and without FVA. Thus, Logic 4 as described above appears to
be the right quantitative counterpart of LTL with the modal box as only temporal
operator. Observe that this logic can only make statements about a bounded prefix
of the future. Still, such a logic can be useful for reasoning about the evolution of
real-time systems whose runtime is a priori bounded.

As an interesting side note, note that our results for Logics 2 and 4 illustrate
that the coding of numbers can make a difference in computational complexity for
quantitative real-time logics.

5.2 Logics of Topological Relations

It has already been noted that there are several different ways to use modal logic for
reasoning about space. As always in modal logic, the main issue is to choose a suitable
meaning for the states, the accessibility relations, and the propositional variables. The
most standard way of using modal logic for spatial reasoning is based on topological
spaces. Recall that a topological space is a pair ¥ = (U,I), where U is a set and I is
an interior operator on U, i.e., for all s,t C U, we have

)y = U I(s) C s

I(s)NI{t) = I(sNt) I(s) = I(s).

As suggested already by Godel, it is possible to use U as the set of states of a uni-modal
logic and interpret the box operator as the interior operation. Then, a propositional

37

S t s t s t st
sdct sect stppt s tppit
s t ts s t s t
spot seqt sntppt s ntppi t

Figure 3: The eight relations between regions.

variable identifies a subset of U, which intuitively corresponds to a spatial region.
Godel clearly did not think of spatial reasoning in computer science when proposing a
topological semantics for modal logic. However, this connection was established later
by other researchers. Most notably, Bennett has shown that constraint satisfaction
problems based on the RCC8 set of topological relations can be reduced to satisfiability
in modal logic [25]. This connection has proved rather fruitful and was exploited in
a still ongoing line of research, see for example [26,81,157,165]. Other approaches
to spatial reasoning that are based on modal logic with the box operator interpreted
as topological interior can be found in [5,6]. An approach to spatial reasoning using
modal logics based on distances and metric spaces is presented in [128].

In this section, we consider a different approach to spatial reasoning with modal
logic that is also based on topological spaces. We start with introducing the RCCS8 set
of topological relations. Given a topological space T = (U, 1), a region is a non-empty,
regular closed subset of U, where s C U is reqular closed if Cl(s) = s. Intuitively,
requiring regular closedness excludes pathological cases of regions such as points and
lines in the standard topology of R?. The extension of the eight RCC8 relations
dc (‘disconnected’), ec (‘externally connected’), tpp (‘tangential proper part’), tppi
(‘inverse of tangential proper part’), po (‘partial overlap’), eq (‘equal’), ntpp (‘non-
tangential proper part’), and nttpi (‘inverse of non-tangential proper part’) is defined
as follows on the set of regions of a topological space T:

yedc® iff snt=0
1) €ect iff I(s)NI(t) =
(s,t) € po* iff I(s)NI(t) #
(s,t) €eq® iff s=t
t)etpp®r iff sCt A sZI{t) A s#t
)€ ntppt iff s CI(t) A s#t

(s,t) € tppi® iff (t,s) € tpp*
(s,t) € ntppi* iff (¢, s) € ntpp™.

A sNt#0

0
DANsZtANtZs

Figure 3 gives examples of the eight RCC8 relations in the real plane R2.

We now define a modal logic MLgrccg as follows. For the syntax, we define a set

38

of relation symbols
RCC8 := {dc, ec, tpp, tppi, po, eq, ntpp, nttpi}

and introduce a box operator [r]¢ for each topological relation r € RCC8. For the
semantics, we use Kripke structures K = (W, (R;);crccs, V') induced by a topological
space T = (U,1), i.e.,

o W =U,;
e R, =r* for all r € RCCS;
e V is such that, for all p € PV, the set {w € W | p € V(w)} is a region in %.

Our logic MLgccg is well-suited for spatial reasoning in a GIS-like context. We only
give a simple example. In the example, we use the universal boxr U, p, which states
that ¢ holds at all states in the model. Since the RCCS8 relations are jointly exhaustive,
the universal box can be defined as follows:

Oy = /\ [r]¢.

reRCC8

Our example makes several (very simplified) statements about the relationship of
cities, harbors, rivers, and the sea. Based on this “background theory”, it then de-
scribes the relationship of the city of Dresden and the river Elbe.

Oy (harbor-city < (city A ({tppi)harbor V (ntppi)harbor)))
Oy (harbor — ({ec)river V (ec)sea))
Oy (Dresden — harbor-city)
O (Elbe — river)
Oy (Dresden — N\ crccs— {dc}[|—sea)
Ou(Dresden — ({po) Elbe N \crccs—{dcy [r] (river — Elbe)))

From these formulas, it follows that Dresden has a tangential or non-tangential part
that is a harbor and is related via ec to the river Elbe.

The modal logic MLgccg has first been proposed by Cohn in 1993 [55], but its
computational properties turned out to be very hard to analyze and even decidability
was an open problem for a long time. Only in 2004, in the joint papers [144, 145]
with Frank Wolter we managed to settle this question. More precisely, we analyze the
expressive power and decidability of MLrccg. Regarding the expressivity, we show
the following main results:

e Constraint satisfaction problems based on the RCCS relations can be embedded
into MLgrccg in a straightforward way.

o MLRgccg has the same expressive power as the corresponding two variable frag-
ment of first-order logic, but the latter is exponentially more succinct. Techni-
cally, these results are closely related to those presented in Section 4.3.

39

These results already indicate that the expressive power of MLgrccsg is rather high. In
fact, it turns out to be too high for decidability. In [144,145], we settle the complexity
of MLgrccg by giving a very general undecidability proof that applies to MLgrccg and
many of its variants. For example, the result also holds if we consider only Kripke
structures induced by a fixed topological space such as R? and R3, which are the
most natural ones for spatial reasoning. The undecidability result also applies if we
modify our notion of a region by requiring that regions are, for example, a convex set
or a hyper-rectangle. The undecidability proof is based on a sophisticated, linearized
encoding of the domino problem that was inspired by [147,171]. By modifying the
construction, we are able to strengthen our result to a proof of E%—hardness, although
this stronger result does not apply to all cases that are captured by the undecidability
proof. In a further modification, we show that even the restriction to finite (but
unbounded) topological spaces does not regain decidability.

Finally, we consider the RCC5 set of spatial relations that can be obtained from
the RCC8 set by coarsening (1) the tpp and ntpp relations into a new “proper-part of”
relation pp; (2) the tppi and ntppi relations into a new “has proper-part” relation ppi;
and (3) the dc and ec relations into a new disjointness relation dr. By a reduction of
satisfiability in the 3-dimensional product of the modal logic S5, we show that even the
counterpart MLgccs of MLgrccg that is obtained by replacing the RCC8 relations with
the RCC5 relations is undecidable. This result does not subsume the undecidability
result for MLgrccg since it does not apply to as many variations of the logic as the
MLRgccg result. Indeed, in the RCCbH case some relatively natural logics remain that
could turn out to be decidable.

A decidable logic based on the RCC8 relations whose semantics is very different to
that of MLgrccg is presented as an example in Section 7.

40

6 Logic for Multi-agent Systems

The agent paradigm has been extensively used in computer science and artificial in-
telligence. While a generally accepted definition of what an agent is seems to be
difficult to attain, there are some properties that are considered typical for agents:
they operate autonomously, have control over their actions and internal state, and
they interact with other agents via input and output channels. This general approach
has been applied in a large number of quite different applications such as autonomous
trading [202], the synthesis of communication protocols [4], and the specification and
verification of distributed systems [70]. There are many properties of agents that
may be relevant for an application and are useful to capture in a logic. Arguably,
most attention has been devoted to the knowledge of agents, and to the evolution of
knowledge over time.

Epistemic logic for reasoning about the knowledge of agents is a classical subject
of modal logic in philosophy, c.f. the work of von Wright [208] and Hintikka [111]. In
epistemic logic, one uses the modal language from Definition 1, and there is one modal
box [, for each agent a. The formula [, is read as “agent a knows ¢”. The basic
epistemic logic is usually defined axiomatically as the normal modal logic generated
by the following axioms (c.f. Definition 2 and the following example):

(T) Uap — p
(4) Uap — O0ep
(5) =Ogp — O, 0gp.

Intuitively, the (T) axiom states that an agent can only know true things, the (4)
axiom describes positive introspection (agents know what they know), and the (5)
axiom describes negative introspection (agents know what they don’t know). In the
modal logic literature, this basic epistemic logic is usually called S5.

Semantically, S5 is the modal logic determined by the class of frames whose ac-
cessibility relations are equivalence relations. In the context of knowledge, the basic
semantic intuitions are as follows: in a Kripke structure K = (W, R, V'), each world
s € W describes a possible state of affairs {¢ | K,s = ¢}. Note that what we called
“state of affairs” also includes complete information about the knowledge of agents.
Concerning the accessibility relations, if sR,s’ for some s,s’ € W and some agent
a, then in state of affairs s, agent a considers the state of affairs s’ possible. Thus,
knowing ¢ means that ¢ is true in all state of affairs that are considered possible.

6.1 Public Announcement Logic

The knowledge of agents in multi-agent systems is usually not static, but evolves over
time. To use epistemic logic in computer science applications, it is therefore usually
necessary to add expressive means for speaking about the dynamic aspects of knowl-
edge. The most standard approach as described by Fagin, Halpern, Moses, and Vardi
in the monograph [70] consists in adding temporal operators to the basic epistemic

41

logic and using a product semantics. A different approach is taken by dynamic epis-
temic logics (DELs), in which epistemic logic is extended with dynamic operators that
allow to describe the ramifications of knowledge-changing actions. Although DELs are
a relatively young field, a large number of formalisms have been proposed, and the
various proposals differ considerably in expressive power [22,84,161,188,189,192,193].
However, there is a dynamic operator that is included in almost all proposed logics:
the public announcement operator that has first been introduced in [161]. This opera-
tor allows to state that, after some announcement that is publicly made by an outsider
to all agents simultaneously, some property holds true. Both the announcement and
the property may include epistemic statements such as “agent a knows fact F” or
“agent a knows that agent b does not know fact F”. The announcement is assumed to
be truthful, i.e., the person making the announcement does not lie. The effect of the
announcement being public is that everybody knows the announced fact, everybody
knows that everybody knows it, and so forth. It is interesting to note that the an-
nounced fact is not necessarily true anymore after the announcement. For example,
this is the case if the announced fact is “agent a knows fact F', but agent b doesn’t
know that” (because, after the announcement, agent b knows that agent a knows F').

Formally, the public announcement operator is a binary modal operator [p] that is
supposed to express “if ¢ is true and publically announced, then) is true afterwards”.
The operator has a conditional meaning since we want to be able to make statements
about the consequences of the public announcement of a formula ¢ without making
assumptions about (or even having knowledge of) the truth of ¢. The new operator
has the following semantics:

K,s =gl iff K, s = implies Ko, s =1

where the model K|y := (W', R, V") is defined as follows:

W'o= {teW|K,tE)
R, = R,n (W' x W)
Vilp) = V(p)nW"

Intuitively, the semantics can be understood as follows. Once that ¢ has been an-
nounced, no agent will consider a state w possible in which —¢ is true. Hence, these
states can be dropped from the model which is what happens through the transition
from K to K|p.

Existing research about logics including the public announcement operator has
mainly concentrated on expressiveness and axiomatics. In [137], I analyze the com-
putational complexity of reasoning in epistemic logics extended with the public an-
nouncement operator and also investigate the succinctness of such logics. 1 start
with public announcement logic (PAL), the extension of epistemic logic (as introduced
above) with the public announcement operator. It is well-known that the expressive
power of PAL is identical to the expressive power of EL: there exists an equivalence
preserving translation from the former to the latter [161,194]. Computationally, this
translation is only moderately useful: it yields decidability of reasoning in PAL, but

42

it does not produce tight complexity bounds due to an exponential blowup in formula
size.

In [137], T show that reasoning in PAL is of the same complexity as reasoning in EL.
To this end, I first propose a novel, equivalence preserving translation from PAL to EL.
Like the existing one, this translation induces an exponential blowup in formula size.
However, the advantage of the new translation is that it can easily be modified such
that it becomes only satisfiability preserving, but avoids the exponential blowup in
formula size. The modified translation takes formulas of single-agent PAL to formulas
of single-agent EL, and formulas of multi-agent PAL to formulas of multi-agent EL
extended with an “everybody knows” operator. Thus, I can use the translation to
prove that (i) single-agent PAL is NP-complete, and (ii) multi-agent PAL is PSPACE-
complete. I then extend the equivalence-preserving translation and its satisfiability
preserving modification to PAL extended with (two variants of) common knowledge.
In this case, the target language of the translation is PDL, and I obtain EXpPTIME-
completeness results.

Due to the fact that PAL and EL are equally expressive and of the same com-
putational complexity, one may be tempted to think that the addition of the public
announcement operator to EL is only syntactic sugar and not of much interest. How-
ever, it has been convincingly argued in [188,194] that PAL is a much more intuitive
and natural formalism for talking about the dynamics of knowledge than EL. In [137],
I identify another, more formal argument in favor of PAL: I prove that there are
properties that can be expressed exponentially more succinct in PAL than in EL. Of
course, this succinctness result also implies that one cannot hope to find an equiva-
lence preserving translation from PAL to EL that avoids an exponential blowup. A
limitation of my current succinctness result is that it applies only to the class of all
Kripke structures (where the accessibility relations can be any relation), and not to
the class of epistemic structures (where accessibility relations have to be equivalence
relations).

6.2 Alternating Temporal Logic

In many agent-based systems, the agents have the ability to execute actions in order
to bring about a desired state of the system. Usually, different actions are available
to different agents, and agents can execute actions concurrently so that the resulting
system state depends on the combination of actions that were executed. In such a
situation, it is rewarding for agents to form coalitions: a coalition of agents may be
able to bring about a state of the system that cannot be achieved by any single agent.
In [11], Alur, Henzinger, and Kupferman propose alternating temporal logic (ATL) as
a formalism for the specification and verification of open distributed systems. It was
soon realized that ATL is also a highly appropriate formalism for reasoning about
the strategic abilities of coalitions of agents [113]. Technically, ATL can be viewed
as a game-theoretic generalization of CTL. Using the path quantifiers of CTL, one is
essentially restricted to stating that some state of the system is either inevitable or
possible. In ATL, we can describe how coalitions of agents can control the state of
the system, such as “agents 1 and 2 can cooperate to ensure that, no matter what the

43

other agents do, the system will not enter an invalid state”. Semantically, ATL is based
on alternating transition systems (ATSs), which can be viewed as a generalization of
Kripke structures that emphasizes the game-like nature of multi-agent systems.

Let AG be a countably infinite set of agents. A coalition is a finite set A C AG of
agents. The set of ATL formulas is the smallest set such that

e every propositional letter is an ATL formula;

e if ¢ and ¥ are ATL formulas and A is a coalition, then the following are ATL
formulas: =, @ A, (A)Ow, (A)Dee, (A)pU .

The modality ((A)) is called a path quantifier and O (“next”), O (“always”), and
U (“until”) are called temporal operators. We use ((A)Op as an abbreviation for
(A)TU e

We now introduce the semantics of ATL. An alternating transition system (ATS)
for ¥ C AG is a tuple S = (IL, ¥, Q, 7, §) where

e II C PV is a finite, non-empty set of propositional variables,

¥ ={ai,...,a,} C AG is a (finite) set of n > 0 agents,
e () is a finite, non-empty set of states,

7 :Q — 2" is a valuation function which assigns to every state a set of propo-
sitional variables that are true there, and

e) :Q XX — 229 is a transition function which maps a state ¢ € Q and an
agent a € X to a set of choices 0(q, a) available to a at ¢ such that the following
condition is satisfied: for every state ¢ € Q) and every set Qg . .., @, of choices
Qa; € 6(q,a;), 1 <i <n, the intersection Qq, N--- N Qg, is a singleton set.

Intuitively, (g, a) describes the choices available to agent a in state ¢: when in state g,
agent a chooses a set from (g, a) to ensure that the “next state” will be among those
in the chosen set. It is natural to generalize this notion to A-choices for coalitions A:
let S =(II,%,Q,n,0) be an ATS. For each state ¢ € @ and each coalition A C 3, set

5(q, A) = {Qa C Q| Qa=Nyecs Qa where for each a € A, Q, € 6(¢q,a)} if AF#0
B CUE) ifA=0

When in state ¢, the coalition A may jointly choose a set from (g, A) to ensure
that the next state is from this set. Observe that (¢, X) is a set of singletons. The
states appearing in singletons in §(g, 3) are the successors of ¢, i.e., whatever choices
the individual agents make, the next state of the system will be from |J (g, X). This
explains the definition of §(q,?): the empty set of agents cannot influence the behavior
of the system, so the only choice that the empty coalition has is the set of all successors.

The definition of satisfaction of ATL formulas in ATSs relies on the notions of
a computations and a strategy, which are introduced in the following. An infinite
sequence A = qpq1q2 - -+ € Q¥ of states is a computation if, for all positions i > 0,

44

@i+1 is a successor of ¢;. As a notational convention, for any finite or infinite sequence
A = AoA1--- and i > 0, we use A[{] to denote the i-th component \; and A0, 7] to
denote the initial sequence Ag---A;. A strategy for an agent a € X is a mapping
fa: QT — 29 such that for all A € Q* and all ¢ € Q, fa(\-q) € d(q,a). Intuitively, a
strategy f, maps each history of states A - ¢ to a choice in (g, a) available to agent a
at the current state q. A strategy for agents in a coalition A C 3 is a set of strategies
Fa = {fs | a € A}, one for each agent in A. The set out(q, Fa) of outcomes of a
strategy F4 starting at a state ¢ € @) is the set of all computations A = qoq1q2--- € Q¥
such that ¢ = ¢ and giy1 € Ny, cp, fa(A[0,4]) for all i > 0.

We can now define the semantics of ATL. Given an ATS S = (I, X, Q, 7,), the
satisfaction relation = between states ¢ € @ and ATL formulas is defined as follows:

e S.q E=piff p e n(q) for all propositions p € II;
* S,qFEpiff S,q~ ¢;

e S, qE iV it S,ql= 1 orS,q k= po;

e S,q F (A)Qup iff there is a strategy F4 such that for all computations A €
out(q, Fa), it holds that S, \[1] = ¢;

e S.q E (A)Op iff there is a strategy F4 such that for all computations A €
out(q, Fla), it holds that S, A[i] |E ¢ for all positions ¢ > 0;

e S5,q E (A)p1U p2 iff there is a strategy F4 such that for all computations
X € out(q, Fa), there is a position i > 0 such that S, A[i] = ¢2 and S, A\[J] F ¢1
for all positions j with 0 < j < 7.

Note that there is an intimate relationship between CTL and ATL. Let 3 be the set of
all agents in an ATS §. On S, we can then simulate CTL’s existential path quantifier
E as the cooperation expression (X)), while we can simulate CTL’s universal path
quantifier A as the cooperation expression (((})). Clearly, this translation only works if
the set of agents ¥ is finite and known in advance.

Here are some simple example formulas in ATL. The formula (C))O¢ asserts the
controllability of the overall system by some coalition C' with respect to property (.
That is, it states that the coalition C' can cooperate to ensure that the property ¢
always holds in the system, no matter how the components of the system outside C
behave. The formula (a))Oseey(msg) says that agent a can guarantee that agent b
eventually sees the message msg (where seey(msg) is an atomic proposition). Finally,
{(a))O-seep(msg) expresses that agent a can ensure that agent b never sees the message
msg.

The complexity of satisfiability in ATL was first addressed by van Drimmelen
in [195]. The main result proved in [195] is EXPTIME-completeness of ATL satisfia-
bility, where the lower bound stems from the simple reduction of satisfiability in CTL
sketched above, and the upper bound is established by a reduction to the emptiness of
alternating automata. However, as we observe in the joint paper [204] with Walther,
Wolter, and Wooldridge, the result of van Drimmelen only covers the case where the

45

set of agents is finite and fixed, i.e., not viewed as part of the input: first, the reduction
of CTL satisfiability requires that we can form the path quantifier (X)) and thus ¥
has to be finite and known; and second, the automata used in the proof of the upper
bound work on trees whose outdegree is exponential in |X|, and for this reason the
runtime of the obtained algorithm is double exponential if |X| is considered as part of
the input, and single exponential only if ¥ is assumed to be constant. To illustrate
that the outdegree cannot easily be reduced, we exhibit the following sequence of
ATL formulas (¢;);en. This sequence is such that, for any ATS S, state ¢, and ¢ > 0,
S, q = ¢; implies that ¢ has at least 2¢ successors in S:

vi="\ ({a;)Op; A (a;)Op))

1<j<i

As every agent a; may choose the propositional letter p; to be true or false at a
successor state, jointly the agents ai,...,ar may choose any possible valuation of
P1,...,pr for a successor state. As there are 2' such valuations, there must be as
many SUcCessors.

In [204], we consider the following three variations of satisfiability in ATL.

(a) Satisfiability over given sets of agents:

Given a finite set ¥ of agents and a formula ¢ using only agents from 3, is ¢
satisfiable in an ATS over X7

(b) Satisfiability over arbitrary sets of agents:

Given a formula ¢, is there a finite set ¥ of agents (containing the agents referred
to in ¢) such that ¢ is satisfiable in an ATS over X7

(c) Satisfiability over formula-defined sets of agents:

Given a formula ¢, is ¢ satisfiable in an ATS over exactly the agents which occur
in ?

Notice that, in none of these problems, the set of agents is assumed to be fixed.
Our first observation is that it suffices to consider Problem (a) for upper bounds and
Problem (b) for lower bounds: Problems (a) and (c) are polynomially reducible to each
other, while Problem (b) is polynomially reducible to (a). The reductions between
(a) and (c) are fairly obvious. For the reduction from (b) to (a), we show that, for
each formula ¢ and each set of agents X D X, ¢ is satisfiable in an ATS for ¥ iff it
is satisfiable in an ATS for ¥, U {a}, for one fresh agent a.

We then prove that Problem (a) is in EXPTIME by blending the techniques used by
van Drimmelen in [195] with the standard “tableau algorithm” for CTL [63,65] which,
although often called a tableau algorithm, has more resemblance with a Pratt-style
elimination procedure [163]. The basic idea is to start with the set of all types, where
a type is a set of subformulas of the input formula satisfying certain Boolean closure
conditions. Then, we repeatedly eliminate types that cannot be realized in an ATS. To
check realizability, we have to consider all coalition formulas (A))O¢ and (A)oU ¢

46

occurring in the type and try to construct a tree-shaped fragment of an ATS that
witnesses satisfiability of the formula and uses only types not yet been eliminated.
These trees have exponential outdegree, but still the overall runtime of the procedure
is only exponential. A similar construction as used in the correctness proof of our
algorithm has been independently developed by Goranko and van Drimmelen in [92],
where it is used to prove completeness of an ATL axiomatization. Our technique has
been extended to a version of ATL enriched with epistemic operators in [203].

We establish an EXPTIME lower bound for Problem (b) by reducing the global
consequence problem in the modal logic K, i.e., the problem to decide, given two
formulas ¢ and ¥ of the basic modal language, whether every Kripke structure K
that makes ¢ true in every state also makes 1) true in every state. It follows that all
of the Problems (a) to (c) introduced above are EXPTIME-complete.

47

7 A Modal Approach to the Combination of Logics

Many of the modal logics that have been developed in computer science single out
a particular aspect of the application domain such as the temporal evolution of the
system state, and then aim at representing the chosen aspect as faithful as possible.
When complex formal models are required in applications, there arises a need for logics
that can represent multiple aspects of the application domain in an integrated way.
For example, to analyze the dynamic aspects of multi-agent systems, we need a logic
containing both temporal operators and operators for talking about the knowledge of
agents. In general, there are basically two ways to address this shortcoming: first,
we can construct for each application a new logical system that offers all the required
operators; and second, we can use general combination methodologies to combine
existing specialized logics into more general ones that subsume all the component
logics w.r.t. expressive power. Several combination techniques have been analyzed
in the literature including fusions [18,123], fibring [78], and product constructions
[80,148]. In all these combination methods, a main concern is the transfer of “good”
properties such as decidability, axiomatizations, and upper complexity bounds from
the component logics to the combination.

In the joint paper [127] with Kutz, Wolter, and Zakharyaschev, we introduce a
new combination method called &-connection that has a distinguishedly modal flavor:
the integration of the component logics is achieved by introducing additional modal
operators that, intuitively, allow to switch from one component logic to another. This
combination methodology is sufficiently “loose” so that decidability transfers in most
relevant cases from the component logics to the combination. To formally talk about
the combination of logics, we first need to define what a logic is. In [127], the no-
tion of a logic is identified with what we call an abstract description system (ADSs).
These systems are semi-algebraic descriptions of logics that capture modal logics, de-
scription logics, and even many first- and higher-order logics. Since ADSs are heavy
machinery whose definition is somewhat involved, in this summary we only introduce
&-connections using an example.

Suppose we want to develop a logic for a geographic information system about
Europe that contains both political and spatial information. For representing the po-
litical information, we use the description logic ALCO and for the spatial information,
we use the modal logic S4,. Both are introduced in the following.

ALCO is the extension of ALC (c.f. Section 3) obtained by introducing a set
of individual names N| as a new syntactic sort and allowing expressions {0}, with
o € Ny, as additional atomic concepts. Regarding the semantics, an interpretation 7 is
required to (additionally) assign to each individual name o € N; an element of € AZ.
Then, the semantics of the new atomic concepts is defined by setting {0} := {o*}.
Concepts of the form {0} are often called nominals and can be understood as concept
names whose extension is required to be a singleton, see Section 4.2.

S4,, uses the basic modal language as introduced in Definition 1, where the set of
programs is {7, u}. The semantics of S4,, is based on topological spaces as introduced in
Section 5.2: a topological structure is a triple (U, 1, V') such that (U,I) is a topological

48

de(p, q) —Ou(p A q)
ed(p,q): Oulp < q)
ec(p, q) Oulp N q) A =Ou(Ip A Iq)

po(p,q) 1 OQulIpAIq) AOu(IpA—q) AOu(Ig A —p)
tpp(p, @) Ou(-pV @) AOul@ A —~Iq) A Ou(=pAq)
ntpp(p,q) : Ou(—=pV Iq) A Ou(—p A q)

Figure 4: The RCCS8 relations in S4,

space and V' maps each propositional variable to a subset of U. Then, we inductively
extend the valuation V to complex formulas as follows:

Vi) = U\Vi(p)
V(eAy) = V(p)nV(y)
V(Bip) = LV(p))
V(Owe) = { U ifV(p)=U

otherwise

Note that the above implies V(0;¢) = C(V (¢)), where C is the topological closure
operator. In the following, we will use the symbol I for [J; and C for ;. To utilize S4,,
for spatial reasoning, we can describe the RCCS relations (as introduced in Section 5.2)
using formulas of S4,, as shown in Figure 4. In the figure, tppi and ntppi are omitted
since they are symmetric to tpp and ntpp. To ensure that propositional variables
identify regions that are regular closed sets, we can add the assertion OO0, (CIp = p)
for each propositional variable p.

We now integrate ALCO and S4, into a single logic ALCO-S4, using &-
connections. The following exposition is informal at times, please refer to [127] for
full details. The basic ideas of £-connections are (i) to interpret the component logics
in disjoint domains, (ii) to link these domains by means of connection relations, and
(iii) to introduce additional modal operators for the connection relations. The syntax
of ALCO-S4, comprises concepts for the ALCO part and formulas for the S4,, part as
distinct sorts. Formally, concepts and formulas of ALCO-S4,, are obtained by uniting
the concept and formula formation rules of the two component logics, and adding the
following:

e if p is a formula, the (se)y is a concept;
e if C is a concept, then (se)C' is a formula.

Here, se is a name for the only connection relation used in this example and stands
for spatial extension. A structure for ALCO-S4, is a triple (Z,T,r), where Z is an
ALCO interpretation, T' = (U, 1, V) a topological structure for S4,, and r C AZ x U
a connection relation. Intuitively, the set {x € U | (a,z) € r} describes the spatial
extension of the object a € AZ. The extension C7 of concepts C' and V(g) of formulas

49

 is then defined inductively using the same clauses as for ALCO and S4,, as well as
the following ones:

o ((se)p)t :={de Al |3xcU:(dz)crrzecV(p}
o V((se™)O):={xcU|3de Al :(d,z) crAd e C?}

Thus, (se)¢ behaves like a modal diamond on the relation 7, and (se™)C' behaves like
a modal diamond on the converse of r. In general, an £-connection can connect an
arbitrary number of logics using an arbitrary number of connection relations. The
intuitive meaning of the connection relation depends on the logics that it connects
and on the application.

Let us now indicate how to use ALCO-54, for constructing the geographic infor-
mation system about Europe. We start with formalizing political information in an
ALCO TBox. We take concept names Country, Treaty, etc., individual names EU,
Schengen_treaty, Spain, Luxembourg, UK, etc., and a role member, and then write
statements such as

{Luzembourg} T Imember-of.{ EU} M Imember-of.{Schengen_treaty}
{Iceland} T Tmember-of .{Schengen_treaty} M —~Imember-of { EU }
{France} C Country

{Schengen_treaty} C Treaty
Country I Jmember-of .{Schengen_treaty}

To capture the spatial knowledge about the countries and areas introduced in the
above TBox, we use the S4, part of ALCO-S4, together with the connection operators.
For example, we add the following three formulas:

eq({(se Y{EU}, (se™)({Portugal} U {Spain} U --- U {UK})
ec({se”){ France}, (se” Y{ Luxembourg})
ntpp((se™){ Luzembourg}, (se™)(Imember-of .{Schengen_Treaty}))

stating that the space occupied by the EU is the space occupied by its members, France
and Luxembourg have a common border, and if you cross the border of Luxembourg,
then you enter a member of the Schengen treaty. The propositional variables of S4,,
can be used to identify regions that have a geographic meaning, but not a political
one such as Sea and Mountains. Then, we could express that there are mountains in
Germany by writing

{Germany} C (se)Mountains.

In [127], we show that if satisfiability is decidable in the component logics, then
satisfiability in the £-connection is also decidable. Applied to a TBox 7 of the example
E-connection ALCO-S4, from above, the algorithm developed in [127] attempts to
construct

e a set I of concept types (sets of concepts satisfying some Boolean closure con-
ditions),

50

e a set O of formula types (the analogue of concept types), and
e a relation r between concept types and formula types

such that ', ©, and r can be realized in a model (Z,T,r'), i.e., the set of (concept)
types occurring in 7 is exactly I, the set of (formula) types occurring in 7' is exactly
O, and 7’ connects an element of Z with an element of T' iff their types are connected
by 7. It is central to our algorithm that the realizability of I', ©, and r can be
reduced to deciding satisfiability in the component logics. The time complexity of the
resulting algorithm is one exponential higher than the time complexity of the decision
procedures for the component logics. We also show that, when £-connecting logics,
an increase in complexity cannot always be avoided. This is done by exhibiting an
ADS for which satisfiability is NP-complete, but whose £-connection with itself is
ExpPTIME-complete.

We then introduce several variations of the basic £-connection formalism, obtained
for example by

e allowing to apply the Boolean operators to link relations, thus introducing con-
nection operators such as ((r N7’) Ur")p, c.f. Section 4.3.

e adding counting capabilities to the link operators so that they can express “there
are at least/at most n instances connected via r and satisfying ¢”, c.f. Sections 3
and 4.2.

In the first case, we obtain transfer results for decidability that are as general as
in the basic case, though the proofs are considerably more involved. Here, we can
prove that our algorithm is optimal by giving a (natural) example of an ADS that
is NP-complete, but whose £-connection with itself is NExpPTIME-complete. In the
second case, the component logics have to satisfy certain conditions for decidability to
transfer. Intuitively, the problem is that, when counting on link relations is enabled,
cardinality statements can be “exported” from one component to another. We also
show that distributed description logics (DDLs), a formalism proposed in [38] for the
integration of ontologies, can be conceived as a special case of £-connections.

o1

References

1]

2]

[10]

[11]

[12]

S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

M. Adler and N. Immerman. An n! lower bound on formula size. ACM Trans-
actions on Computational Logic, 4(3):296-314, 2003.

L. Afanasiev, P. Blackburn, I. Dimitriou, B. Gaiffe, E. Goris, M. Maarx, and
M. de Rijke. PDL for ordered trees. Journal of Applied Non-Classical Logic,
15(2):115-135, 2005.

F. Afrati, C. H. Papadimitriou, and G. Papageorgiou. The synthesis of commu-
nication protocols. Algorithmica, 3(3):451-472, 1988.

M. Aiello and J. van Benthem. A modal walk through space. Journal of Applied
Non-Classical Logics, 12(3-4):319-364, 2002.

M. Aiello, J. van Benthem, and G. Bezhanishvili. Reasoning about space: The
modal way. Journal of Logic and Computation, 13(6):889-920, 2003.

N. Alechina, S. Demri, and M. de Rijke. A modal perspective on path con-
straints. Journal of Logic and Computation, 13(6):939-956, 2003.

R. Alur, T. Feder, and T. Henzinger. The benefits of relaxing punctuality.
Journal of the ACM, 43:116-146, 1996.

R. Alur and T. Henzinger. Logics and models of real time: a survey. In Real
Time: Theory and Practice, Lecture Notes in Computer Science, pages 74-106,
Berlin, 1992. Springer-Verlag.

R. Alur and T. Henzinger. A really temporal logic. Journal of the ACM, 41:181—
204, 1994.

R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic.
Journal of the ACM, 49(5):672-713, 2002.

H. Andréka, I. Németi, and 1. Sain. Handbook of Philosophical Logic, volume 2,
chapter Algebraic Logic, pages 133-247. Kluwer Academic Publishers, second
edition, 2001.

H. Andréka, J. van Benthem, and I. Németi. Modal languages and bounded
fragments of predicate logic. Journal of Philosophical Logic, 27(3):217-274, 1998.

F. Baader. Augmenting concept languages by transitive closure of roles: An
alternative to terminological cycles. In Proceedings of the Twelfth International
Joint Conference on Artificial Intelligence (IJCAI-91), pages 446-451, Sydney,
Australia, 1991.

52

[15]

[16]

[19]

[20]

[21]

[22]

F. Baader. Using automata theory for characterizing the semantics of termino-
logical cycles. Annals of Mathematics and Artificial Intelligence, 18(2—4):175—
219, 1996.

F. Baader, S. Brandt, and C. Lutz. Pushing the £L envelope. In Proceedings of
the Nineteenth International Joint Conference on Artificial Intelligence (IJCAI-
05), pages 364-369. Morgan Kaufmann, 2005.

F. Baader and C. Lutz. Description logic. In J. van Benthem, P. Blackburn,
and F. Wolter, editors, Handbook of Modal Logic. Elsevier. To appear.

F. Baader, C. Lutz, H. Sturm, and F. Wolter. Fusions of description logics and
abstract description systems. Journal of Artificial Intelligence Research (JAIR),
16:1-58, 2002.

F. Baader, C. Lutz, and B. Suntisrivaraporn. Is tractable reasoning in extensions
of the description logic £L useful in practice? In Proceedings of the Methods for
Modalities Workshop (M4M-05), Berlin, Germany, 2005.

F. Baader, D. L. McGuiness, D. Nardi, and P. Patel-Schneider. The Description
Logic Handbook: Theory, implementation and applications. Cambridge Univer-
sity Press, 2003.

F. Baader and U. Sattler. Tableau algorithms for description logics. In R. Dyck-
hoff, editor, Proceedings of the International Conference on Automated Reason-
ing with Tableaux and Related Methods (Tableauz 2000), volume 1847 of Lecture
Notes in Artificial Intelligence, pages 1-18. Springer-Verlag, 2000.

A. Baltag, L. S. Moss, and S. Solecki. The logic of public announcements
and common knowledge for distributed applications (extended abstract). In
1. Gilboa, editor, Theoretical Aspects of Reasoning about Knowledge: Proceed-
ings of the Seventh Conference (TARK 1998), pages 43-56. Morgan Kaufmann,
1998.

S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F.
Patel-Schner, and L. A. Stein. OWL web ontology language reference. W3C
Recommendation, 2004.

M. Ben-Ari, J. Y. Halpern, and A. Pnueli. Deterministic propositional dynamic
logic: Finite models, complexity, and completeness. Journal of Computer and
System Sciences, 25(3):402-417, 1982.

B. Bennett. Modal logics for qualitative spatial reasoning. Journal of the Interest
Group in Pure and Applied Logic, 4(1), 1997.

B. Bennett, A. G. Cohn, F. Wolter, and M. Zakharyaschev. Multi-dimensional
modal logic as a framework for spatio-temporal reasoning. Applied Intelligence,
17(3):239-251, 2002.

93

[27]

28]

B. Bérard and C. Picaronny. Accepting zeno words: A way toward timed re-
finements. Acta Informaticae, 37(1):45-81, 2000.

D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella. Au-
tomatic composition of e-services that export their behavior. In Proceedings of
the 1st International Conference on Service Oriented Computing (ICSOC 2003),
volume 2910 of Lecture Notes in Computer Science, pages 43-58. Springer, 2003.

R. Berger. The undecidability of the dominoe problem. Memoirs of the American
Mathematical Society, 66, 1966.

O. Bernholtz, M. Y. Vardi, and P. Wolper. An automata—theoretic approach
to branching-time model checking. In D. L. Dill, editor, Proceedings of the 6th
International Conference on Computer—Aided Verification (CAV’94), volume
818 of Lecture Notes in Computer Science, pages 142-155. Springer, 1994.

P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University
Press, 2001.

M. Bojanczyk. The finite graph problem for two-way alternating automata.
Theoretical Computer Science, 3(298):511-528, 2003.

P. A. Bonatti, A. Murano, C. Lutz, and M. Vardi. Complexity of enriched
p-calculi. In 33rd International Colloguium on Automata, Languages and Pro-
gramming (ICALP 2006). Submitted.

P. A. Bonatti and A. Peron. On the undecidability of logics with converse,
nominals, recursion and counting. Artificial Intelligence, 158(1):75-96, 2004.

E. Borger, E. Gradel, and Y. Gurevich. The Classical Decision Problem. Per-
spectives in Mathematical Logic. Springer-Verlag, 1997.

A. Borgida. On the relative expressiveness of description logics and predicate
logics. Artificial Intelligence, 82(1-2):353-367, 1996.

A. Borgida and P. F. Patel-Schneider. A semantics and complete algorithm for
subsumption in the classic description logic. Journal of Artificial Intelligence
Research, pages 277-308, 1994.

A. Borgida and L. Serafini. Distributed description logics: Assimilating infor-
mation from peer sources. Journal of Data Semantics, 1:153-184, 2003.

R. J. Brachman and J. G. Schmolze. An overview of the KL-ONE knowledge
representation system. Cognitive Science, 9:171-216, 1985.

J. Bradfield and C. Stirling. Modal logics and p-calculi: an introduction. In
J. A. Bergstra, A. Ponse, and S. A. Smolka, editors, Handbook of Process Algebra,
pages 293-330. Elsevier, 2001.

54

[41]

[48]

[49]

[50]

[51]

S. Brandt. Polynomial time reasoning in a description logic with existential
restrictions, GCI axioms, and—what else? In R. L. de Mantaras and L. Saitta,
editors, Proceedings of the 16th Furopean Conference on Artificial Intelligence
(ECAI-2004), pages 298-302. IOS Press, 2004.

T. Braiiner and S. Ghilardi. First-order modal logic. In J. van Benthem,
P. Blackburn, and F. Wolter, editors, Handbook of Modal Logic. Elsevier. To
appear.

G. Brewka, J. Dix, and K. Konolige. Nonmonotonic Reasoning: An Overview,
volume 73. CSLI Publications, 1997.

R. A. Bull. That all normal extensions of S4.3 have the finite model property.
Zeitschrift fir Mathematische Logik und Grundlagen der Mathematik, 12:341—
344, 1966.

R. M. Burstall. Program proving as hand simulation with a little induction. In
International congress of the International Federation for Information Process-
ing (IFIP ’7}), pages 308-312, 1974.

D. Calvanese. Finite model reasoning in description logics. In Proceedings of the
Fifth International Conference on the Principles of Knowledge Representation
and Reasoning (KR’96), pages 292-303. Morgan Kaufmann Publishers, 1996.

D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability of query
containment under constraints. In Proceedings of the 17th ACM SIGACT
SIGMOD SIGART Symposium on Principles of Database Systems (PODS’98),
pages 149-158, 1998.

D. Calvanese, G. De Giacomo, and M. Lenzerini. Reasoning in expressive de-
scription logics with fixpoints based on automata on infinite trees. In Proceedings
of the 16th International Joint Conference on Artificial Intelligence (IJCAI’99),
1999.

D. Calvanese, M. Lenzerini, and D. Nardi. Description logics for conceptual
data modeling. In J. Chomicki and G. Saake, editors, Logics for Databases and
Information Systems, pages 229-263. Kluwer Academic Publisher, 1998.

A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of the
ACM, 28(1):114-133, 1981.

E. Clarke and E. Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. In Proceedings of the Workshop on Logic
of Programs, volume 131 of Lecture Notes in Computer Science, pages 52-71.
Springer-Verlag, 1981.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transactions
on Programming Languages and Systems, 8(2):244-263, 1986.

55

[53]

[54]

[55]

[64]

[65]

E. M. Clarke and H. Schlingloff. Model checking. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume II, chapter 24,
pages 1635—1790. Elsevier Science, 2001.

J. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT
Press, 1999.

A. G. Cohn. Modal and non modal qualitative spatial logics. In F. D. Anger,
H. M. Guesgen, and J. van Benthem, editors, Proceedings of the Workshop on
Spatial and Temporal Reasoning. IJCAI-93, IJCAI-93, 1993.

R. Cote, D. Rothwell, J. Palotay, R. Beckett, and L. Brochu. The systematized
nomenclature of human and veterinary medicine. Technical report, SNOMED
International, Northfield, IL: College of American Pathologists, 1993.

R. Danecki. Nondeterministic propositional dynamic logic with intersection is
decidable. In A. Skowron, editor, Proceedings of the Fifth Symposium on Com-
putation Theory, volume 208 of Lecture Notes in Computer Science, pages 3453,
Zaboréw, Poland, Dec. 1984. Springer.

G. De Giacomo and M. Lenzerini. PDL-based framework for reasoning about ac-
tions. In Proceedings of the 4th Congress of the Italian Association for Artificial
Intelligence (AI*IA’95), volume 992, pages 103-114. Springer, 1995.

S. Demri and D. Nowak. Reasoning about transfinite sequences (extended ab-
stract). In D. A. Peled and Y.-K. Tsay, editors, Proceedings of the 3rd In-
ternational Symposium on Automated Technology for Verification and Analysis
(ATVA’05), volume 3707 of Lecture Notes in Computer Science, pages 248-262.
Springer, 2005.

F. M. Donini, B. Hollunder, M. Lenzerini, A. M. Spaccamela, D. Nardi, and
W. Nutt. The complexity of existential quantification in concept languages.
Artificial Intelligence, 2-3:309-327, 1992.

F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of concept
languages. Information and Computation, 134(1):1-58, 1997.

M. J. Egenhofer and R. G. Golledge, editors. Spatial and Temporal Reasoning
in Geographic Information Systems. Oxford University Press, 1998.

E. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science. Volume B, pages 995-1072. North-Holland,
Amsterdam, 1990.

E. Emerson, A. Mok, A. Sistla, and J. Srinivasan. Quantitative temporal rea-
soning. Real-Time Systems, 4:331 — 352, 1992.

E. A. Emerson and J. Y. Halpern. Decision procedures and expressiveness in the
temporal logic of branching time. In STOC ’82: Proceedings of the fourteenth

56

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

annual ACM symposium on Theory of computing, pages 169-180. ACM Press,
1982.

E. A. Emerson and J. Y. Halpern. “Sometimes” and “not never” revisited: on
branching versus linear time temporal logic. Journal of the ACM, 33(1):151-178,
1986.

E. A. Emerson and C. S. Jutla. The complexity of tree automata and logics of
programs. In Proceedings of the 29th Annual IEEE Symposium on Foundations
of Computer Science, FOCS’88, pages 328-337. IEEE, 1988.

E. A. Emerson and C.-L. Lei. Modalities for model checking: Branching time
strikes back. In B. K. Reid, editor, Conference Record of the 12th Annual ACM
Symposium on Principles of Programming Languages, pages 84—96. ACM Press,
1985.

K. Etessami, M. Y. Vardi, and T. Wilke. First-order logic with two variables
and unary temporal logic. Information and Computation, 179(2):279-295, 2002.

R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning About Knowl-
edge. MIT Press, 1995.

L. Farinas Del Cerro and E. Orlowska. DAL-a logic for data analysis. Theoretical
Computer Science, 36(2-3):251-264, 1985.

M. Fattorosi-Barnaba and F. de Caro. Graded modalities 1. Studia Logica,
44:197-221, 1985.

K. Fine. In so many possible worlds. Notre Dame Journal of Formal Logic,
13:516-520, 1972.

M. J. Fischer and R. E. Ladner. Propositional modal logic of programs. In Con-
ference record of the ninth annual ACM Symposium on Theory of Computing,
pages 286—294. ACM Press, 1977.

M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular programs.
Journal of Computer and System Sciences, 18:194-211, 1979.

M. Fiirer. The computational complexity of the unconstrained limited domino
problem (with implications for logical decision problems). In Logic and Ma-
chines: Decision problems and complexity, pages 312-319. Springer-Verlag, 1984.

D. Gabbay. Expressive functional completeness in tense logic. In U. Moénnich,
editor, Aspects of Philosophical Logic, pages 91-117. Reidel, Dordrecht, 1981.

D. M. Gabbay. Fibring Logics, volume 38 of Ozford Logic Guides. Oxford
University Press, 1999.

D. M. Gabbay, I. M. Hodkinson, and M. A. Reynolds. Temporal Logic: Mathe-
matical Foundations and Computational Aspects, Volume 1. Oxford University
Press, Logic Guides 28, 1994.

o7

[80]

[81]

[84]

[85]

[86]

[90]

[91]

[92]

[93]

D. M. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-Dimensional
Modal Logics: Theory and Applications. Number 148 in Studies in Logic and
the Foundations of Mathematics. Elsevier, 2003.

D. Gabelaia, R. Kontchakov, A. Kurucz, F. Wolter, and M. Zakharyaschev.
Combining spatial and temporal logics: Expressiveness vs. complexity. Journal
of Artificial Intelligence Research, 23:167-243, 2005.

G. Gargov and S. Passy. A note on Boolean modal logic. In D. Skordev, editor,
Mathematical Logic and Applications, pages 253-263. Plenum Press, 1987.

G. Gargov, S. Passy, and T. Tinchev. Modal environment for Boolean spec-
ulations. In D. Skordev, editor, Mathematical Logic and Applications, pages
253-263, New York, USA, 1987. Plenum Press.

J. Gerbrandy. Bisimulations on Planet Kripke. ILLC Dissertation Series, Ams-
terdam, 1999.

S. Ghilardi, C. Lutz, and F. Wolter. Did I damage my ontology? A case for
conservative extensions in description logics. In Proceedings of the Tenth Inter-

national Conference on Principles of Knowledge Representation and Reasoning
(KR’06), 2006.

G. D. Giacomo and M. Lenzerini. Boosting the correspondence between de-
scription logics and propositional dynamic logics. In Proceedings of the Twelfth
National Conference on Artificial Intelligence (AAAI’94). Volume 1, pages 205—
212. AAAI Press, 1994.

E. Giunchiglia, A. Tacchella, and F. Giunchiglia. SAT-based decision procedures
for classical modal logics. Journal of Automated Reasoning, 28(2):143-171, 2002.

K. Godel. Eine Interpretation des intuitionistischen Aussagenkalkiils. Ergebnisse
eines mathematischen Kolloquiums, pages 39—40, 1933.

V. Goranko. Completeness and incompleteness in the bimodal base L(R, —R).
In Proceedings of the Conference on Mathematical Logic “Heyting ‘887, Chaika,
Bulgaria. Plenum Press, 1987.

V. Goranko. Modal definability in enriched languages. Notre Dame Journal of
Formal Logic, 31(1):81-105, 1990.

V. Goranko and S. Passy. Using the universal modality: Gains and questions.
Journal of Logic and Computation, 2(1):5-30, 1992.

V. Goranko and G. van Drimmelen. Decidability and complete axiomatization of
the alternating-time temporal logic. Theoretical Computer Science. To appear.

E. Gradel. On the restraining power of guards. Journal of Symbolic Logic,
64:1719-1742, 1999.

58

[94]

[95]

[96]

[99]

[100]

[101]

[102]

103]

[104]

[105]

[106]

[107]

[108]

E. Griadel. Why are modal logics so robustly decidable? Bulletin of the European
Association for Theoretical Computer Science, 68:90-103, 1999.

E. Gradel, P. Kolaitis, and M. Vardi. On the Decision Problem for Two-Variable
First-Order Logic. Bulletin of Symbolic Logic, 3:53-69, 1997.

E. Gradel, M. Otto, and E. Rosen. Two-Variable Logic with Counting is Decid-
able. In Proceedings of Twelfth IEEE Symposium on Logic in Computer Science
(LICS’97), 1997.

E. Gradel, M. Otto, and E. Rosen. Undecidability results on two-variable logics.
In 14th Annual Symposium on Theoretical Aspects of Computer Science, volume

1200 of Lecture Notes in Computer Science, pages 249-260. Springer Verlag,
1997.

E. Gréadel and I. Walukiewicz. Guarded Fixed Point Logic. In Proceedings of
Fourteenth IEEE Symposium on Logic in Computer Science (LICS’99), pages
45-54, 1999.

N. Guarino. Formal ontologies and information systems. In Proceedings of
FOIS’ 1998, pages 3—-15. IOS Press, 1998.

Y. Gurevich. Feasible functions. London Mathematical Society Newsletter,
(206):6-7, 1993.

Y. Gurevich. The value, if any, of decidability. Bulletin of the EATCS, 55, 1995.

V. Haarslev and R. Moller. RACER system description. In R. Goré, A. Leitsch,
and T. Nipkow, editors, Proceedings of the First International Joint Conference
on Automated Reasoning (IJCAR’01), number 2083 in Lecture Notes in Artifical
Intelligence, pages 701-705. Springer-Verlag, 2001.

J. Y. Halpern and R. Fagin. Modelling knowledge and action in distributed
systems. Distributed Computing, 3(4):159-177, 1989.

J. Y. Halpern, R. Harper, N. Immerman, P. G. Kolaitis, M. Y. Vardi, and
V. Vianu. On the unusual effectiveness of logic in computer science. The Bulletin
of Symbolic Logic, 7(2):213-236, June 2001.

M. R. Hansen, P. K. Pandya, and Z. Chaochen. Finite divergence. Theoretical
Computer Science, 138(1):113-139, 1995.

D. Harel. Dynamic logic. In D. M. Gabbay and F. Guenthner, editors, Handbook
of Philosophical Logic, Volume II, pages 496-604. D. Reidel Publishers, 1984.

D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.

L. Henkin, J. D. Monk, and A. Tarski. Cylindric Algebras, Part I. North-
Holland, Amsterdam, 1971.

99

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]
[117]

[118]
[119]

[120]

[121]

[122]

[123]

M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.
Journal of the ACM, 32(1):137-161, 1985.

A. Heyting. Die formalen Reglen der intuitionistischen Logik. Sitzungsberichete
der Preussischen Akademie der Wissenschaften, Physikalische-Mathematische
Klasse, pages 42-56, 1930.

J. Hintikka. Time and Necessity: Studies in Aristotle’s Theory of Modality.
Oxford University Press, 1973.

Y. Hirshfeld and A. Rabinovich. Logics for real time: Decidability and complex-
ity. Fundamenta Informaticae, 62:1-28, 2004.

W. Hoek and M. Wooldridge. Time, knowledge, and cooperation: Alternating-
time temporal epistemic logic and its applications. Studia Logica, 75(1):125-157,
2003.

I. Horrocks. Using an expressive description logic: Fact or fiction? In Pro-
ceedings of the Sixth International Conference on the Principles of Knowledge
Representation and Reasoning (KR98), pages 636—647, 1998.

I. L. Humberstone. Inaccessible worlds. Notre Dame Journal of Formal Logic,
24(3):346-352, 1983.

N. Immerman. Descriptive Complexity. Springer-Verlag, 1999.

D. Janin and I. Walukiewicz. On the expressive completeness of the proposi-
tional mu-calculus with respect to monadic second order logic. In U. Montanari
and V. Sassone, editors, CONCUR ’96: Concurrency Theory, 7th International
Conference, volume 1119 of Lecture Notes in Computer Science, pages 263-277.
Springer-Verlag, 1996.

H. Kamp. On tense logic and the theory of order. PhD thesis, UCLA, 1968.

Y. Kazakov and H. de Nivelle. Subsumption of concepts in FLj for (cyclic)
terminologies with respect to descriptive semantics is PSpace-complete. In E. F.
Diego Calvanese, Giuseppe De Giacomo, editor, Proceedings of the Interna-
tional Workshop in Description Logics 2003 (DL2003), number 81 in CEUR-WS
(http://ceur-ws.org/), 2003.

D. Knuth. The Art of Computer Programming, volume 1. Addison-Wesley, 1968.

K. Konolige. On the relation between default and autoepistemic logic. Artificial
Intelligence, 35(3):343-382, 1988.

D. Kozen. Results on the propositional p-calculus. Theoretical Computer Sci-
ence, 27(1):333-354, 1983.

M. Kracht and F. Wolter. Properties of independently axiomatizable bimodal
logics. The Journal of Symbolic Logic, 56(4):1469-1485, 1991.

60

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]
[133]
[134]

[135]

[136]

[137]

[138]

S. A. Kripke. Semantic considerations on modal logic. Acta Philosophica Fen-
nica, 24:83-94, 1963.

S. A. Kripke. Semantical analysis of modal logic 1. Zeitschrift fiir Mathematische
Logik und Grundlagen der Mathematik, 9:67-96, 1963.

O. Kupferman, U. Sattler, and M. Y. Vardi. The complexity of the graded
mu-calculus. In Proceedings of the Conference on Automated Deduction, volume
2392 of Lecture Notes in Artificial Intelligence. Springer Verlag, 2002.

O. Kutz, C. Lutz, F. Wolter, and M. Zakharyaschev. £-connections of abstract
description systems. Artificial Intelligence, 156(1):1-73, 2004.

O. Kutz, F. Wolter, H. Sturm, N.-Y. Suzuki, and M. Zakharyaschev. Logics of
metric spaces. ACM Trans. Comput. Log, 4(2):260-294, 2003.

O. Kutz, F. Wolter, and M. Zakharyaschev. Connecting abstract description
systems. In Proceedings of the Eighth International Conference on Principles
of Knowledge Representation and Reasoning (KR2002), pages 215-226. Morgan
Kaufmann, 2002.

M. Lange. A lower complexity bound for propositional dynamic logic with inter-
section. In R. A. Schmidt, I. Pratt-Hartmann, M. Reynolds, and H. Wansing,
editors, Advances in Modal Logic Volume 5. King’s College Publications, 2005.

M. Lange and C. Lutz. 2-EXPTIME lower bounds for propositional dynamic logics
with intersection. Journal of Symbolic Logic, 70(5):1072-1086, 2005.

C. I. Lewis. A survey of symbolic logic. Berkeley University Press, 1918.
C. I. Lewis and C. H. Langford. Symbolic Logic. Dover, 1932.
L. Libkin. FElements of Finite Model Theory. Springer Verlag, 2004.

P. Longley, M. Goodchild, D. Maguire, and D. Rhind. Geographic Information
Systems and Science. Wiley and sons, 2001.

C. Lutz. PDL with intersection and converse is decidable. In C.-H. L. Ong, ed-
itor, Computer Science Logic (CSL’05), volume 3634 of Lecture Notes in Com-
puter Science, pages 413—-427. Springer-Verlag, 2005.

C. Lutz. Complexity and succinctness of public announcement logic. In Pro-
ceedings of the Fifth International Joint Conference on Autonomous Agents and
Multiagent Systems, 2006.

C. Lutz and U. Sattler. Mary likes all cats. In F. Baader and U. Sattler,
editors, Proceedings of the 2000 International Workshop in Description Logics
(DL2000), number 33 in CEUR-WS (http://ceur-ws.org/), pages 213-226, 2000.

61

[139)]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

C. Lutz and U. Sattler. The complexity of reasoning with boolean modal logics.
In F. Wolter, H. Wansing, M. de Rijke, and M. Zakharyaschev, editors, Advances
in Modal Logics Volume 8. CSLI Publications, Stanford, CA, USA, 2001.

C. Lutz, U. Sattler, and L. Tendera. The complexity of finite model reasoning in
description logics. In Proceedings of the 19th Conference on Automated Deduc-
tion (CADE-19), Lecture Notes in Artificial Intelligence, pages 60-74. Springer
Verlag, 2003.

C. Lutz, U. Sattler, and L. Tendera. The complexity of finite model reasoning
in description logics. Information and Computation, 199:132-171, 2005.

C. Lutz, U. Sattler, and F. Wolter. Modal logic and the two-variable fragment.
In L. Fribourg, editor, Computer Science Logic, number 2142 in Lecture Notes
in Computer Science, pages 247-261. Springer-Verlag, 2001.

C. Lutz, D. Walther, and F. Wolter. Quantitative temporal logics: PSPACE and
below. In Proceedings of the Thirteenth International Symposium on Tempo-
ral Representation and Reasoning (TIME-05), pages 138-146. IEEE Computer
Society Press.

C. Lutz and F. Wolter. Modal logics of topological relations. In R. Schmidt,
I. Pratt-Hartmann, M. Reynolds, and H. Wansing, editors, Advances in Modal
Logic (AiML’04), pages 249-263, 2004.

C. Lutz and F. Wolter. Modal logics of topological relations. Logical Methods
in Computer Science, 2005. Submitted.

E. Mally. Grundgesetze des Sollens: Elemente der Logik des Willens. Leuschner
und Lubensky, Universitats-Buchhandlung, 1926.

M. Marx and M. Reynolds. Undecidability of compass logic. Journal of Logic
and Computation, 9(6), 1999.

M. Marx and Y. Venema. Multi-Dimensional Modal Logic. Kluwer Academic
Publishers, 1997.

F. Massacci. Decision procedures for expressive description logics with role in-
tersection, composition and converse. In B. Nebel, editor, Proceedings of the sev-
enteenth International Conference on Artificial Intelligence (IJCAI-01), pages
193-198. Morgan Kaufmann, Aug. 4-10 2001.

J. McKinsey. A solution of the decision problem for the lewis systems S2 and
S4, with an application to topology. Journal of Symbolic Logic, 6(4):117-134,
1941.

J. McKinsey and A. Tarski. The algebra of topology. Annals of Mathematics,
45(1):141-191, 1944.

62

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

M. Minsky. A framework for representating knowledge. In P. H. Winston, editor,
The Psychology of Computer Vision, pages 211-277. McGraw-Hill, New York,
USA, 1975.

M.O. Rabin. Decidability of second-order theories and automata on infinite
trees. Transactions of the American Mathematical Society, 141:1-35, 1969.

R. C. Moore. Possible-world semantics for autoepistemic logic. In Proceedings
of the 1st International Workshop on Nonmonotonic Reasoning, pages 344-354,
1984.

B. Nebel. Computational complexity of terminological reasoning in BACK.
Artificial Intelligence, 34(3):371-383, 1988.

B. Nebel. Terminological reasoning is inherently intractable. Artificial Intelli-
gence, 43:235-249, 1990.

W. Nutt. On the translation of qualitative spatial reasoning problems into
modal logics. In W. Burgard, T. Christaller, and A. B. Cremers, editors, KI-99:
Advances in Artificial Intelligence, volume 1701 of Lecture Notes in Artificial
Intelligence, pages 113—-124. Springer-Verlag, 1999.

I. Orlov. The calculus of compatibility of propositions. Mathematics of the
USSR, 35:263-286, 1928.

L. Pacholski, W. Szwast, and L. Tendera. Complexity results for first-order two-
variable logic with counting. SIAM Journal on Computing, 29(4):1083-1117,
Aug. 2000.

G. Pan, U. Sattler, and M. Y. Vardi. BDD-based decision procedures for K. In
Proceedings of the Conference on Automated Deduction, volume 2392 of Lecture
Notes in Artificial Intelligence. Springer Verlag, 2002.

J. A. Plaza. Logics of public communications. In M. L. Emrich, M. Pfeifer,
M. Hadzikadic, and Z. M. Ras, editors, Proceedings of the 4th International
Symposium on Methodologies for Intelligent Systems, pages 201-216, 1989.

A. Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEFE
Symposium on the Foundations of Computer Science (FOCS-77), pages 46-57.
IEEE Computer Society Press, 1977.

V. R. Pratt. Models of program logics. In Proceedings of the Twentieth Annual
Symposium on Foundations of Computer Science, San Juan, Puerto Rico, 1979.

V. R. Pratt. A decidable mu-calculus: Preliminary report. In Proceedings of the
22nd Annual IEEE Symposium on Foundations of Computer Science, FOCS’81,
pages 421-427. IEEE, 1981.

I. Pratt-Hartmann. A topological constraint language with component counting,.
Journal of Applied Non-Classical Logics, 12(3-4):441-467, 2002.

63

[166]

167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175)

176

[177]

[178]

I. Pratt-Hartmann. Complexity of the two-variable fragment with counting
quantifiers. Journal of Logic, Language, and Information, 14(3):369-395, 2005.

A. N. Prior. Past, present and future. Oxford University Press, 1967.

M. R. Quillian. Semantic memory. In M. Minsky, editor, Semantic Information
Processing, pages 227-270. MIT Press, 1968.

W. Rautenberg. Der Verband der normalen verzweigten Modallogiken. Math.
Zeitschrift, 156:123-140, 1977.

A. Rector and I. Horrocks. Experience building a large, re-usable medical on-
tology using a description logic with transitivity and concept inclusions. In
Proceedings of the Workshop on Ontological Engineering, AAAI Spring Sympo-
sium (AAAI’97). AAAI Press, 1997.

Reynolds and Zakharyaschev. On the products of linear modal logics. Journal
of Logic and Computation, 11:909-931, 2001.

M. Reynolds. The complexity of the temporal logic over the reals. Manuscript,
currently under submission.

H. Sahlqvist. Completeness and correspondence in the first and second order
semantics for modal logic. In S. Kanger, editor, Proceedings of the Third Scan-
dinavian Logic Symposium, pages 110-143. North-Holland, 1975.

U. Sattler. Description logics for ontologies. Habilitation thesis, Institute of
Theoretical Computer Science, TU Dresden, 2003.

U. Sattler and M. Vardi. The hybrid p-calculus. In R. Goré, A. Leitsch, and
T. Nipkow, editors, Proceedings of the First International Joint Conference on
Automated Reasoning (IJCAR 2001), number 2083 in Lecture Notes in Artifical
Intelligence, pages 76-91. Springer-Verlag, 2001.

K. Schild. Terminological cycles and the propositional p-calculus. In P. T. Jon
Doyle, Erik Sandewall, editor, Proceedings of the Fourth International Confer-
ence on Principles of Knowledge Representation and Reasoning (KR’94), pages
509-520. Morgan Kaufmann, 1994.

K. D. Schild. A correspondence theory for terminological logics: Preliminary
report. In J. Mylopoulos and R. Reiter, editors, Proceedings of the Twelfth
International Joint Conference on Artificial Intelligence (IJCAI-91), pages 466—
471. Morgan Kaufmann, 1991.

K. D. Schild. Combining terminological logics with tense logic. In M. Filgueiras
and L. Damas, editors, Progress in Artificial Intelligence — 6th Portuguese Con-
ference on Artificial Intelligence, EPIA’93, volume 727 of Lecture Notes in Ar-
tificial Intelligence, pages 105-120. Springer-Verlag, 1993.

64

[179]

[180]

[181]

182]

[183]

[184]

[185]

[186]

187

[188]

[189)

[190]

[191]

[192]

193]

P. Schobbens, J. Raskin, and T. Henzinger. Axioms for real-time logics. Theo-
retical Computer Science, 274:151-182, 2002.

A. Schrijver. Theory of Linear and Integer Programming. Wiley, Chichester,
UK, 1986.

A. P. Sistla and E. M. Clarke. Complexity of propositional temporal logics.
Journal of the ACM, 32:733-749, 1985.

A. P. Sistla and L. D. Zuck. Reasoning in a restricted temporal logic. Information
and Computation, 102(2):167-195, 1993.

K. Spackman, K. Campbell, and R. Cote. SNOMED RT: A reference terminol-
ogy for health care. Journal of the American Medical Informatics Association,
pages 640-644, 1997. Fall Symposium Supplement.

O. Stock, editor. Spatial and Temporal Reasoning. Kluwer Academic Publishers,
Dordrecht, Holland, 1997.

L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time.
In ACM Symposium on Theory of Computing (STOC "78), pages 1-9. ACM
Press, 1973.

R. S. Streett. Propositional dynamic logic of looping and converse is elementarily
decidable. Information and Control, 54(1-2):121-141, 1982.

The Gene Ontology Consortium. Gene Ontology: Tool for the unification of
biology. Nature Genetics, 25:25-29, 2000.

J. van Benthem. Logics for information update. In J. van Benthem, editor,
Proceedings of TARK-VIII, pages 51-88. Morgan Kaufmann, 2001.

J. van Benthem, J. van Eijck, and B. Kooi. Logics of communication and change.
Unpublished Manuscript.

J. F. A. K. van Benthem. Modal Logic and Classical Logic. Bibliopolis, Naples,
Ttaly, 1983.

W. van der Hoek and M. de Rijke. Counting objects. Journal of Logic and
Computation, 5(3):325-345, 1995.

H. van Ditmarsch, W. van der Hoek, and B. Kooi. Dynamic epistemic logic
with assignment. In F. Dignum, V. Dignum, S. Koenig, S. Kraus, M. Singh,
and M. Wooldridge, editors, Proceedings of AAMAS 2005 (Fourth International
Joint Conference on Autonomous Agents and Multi-Agent Systems), pages 141—
148. ACM Inc., 2005.

H. van Ditmarsch, W. van der Hoek, and B. Kooi. Public announcements and
belief expansion. In R. Schmidt, I. Pratt-Hartmann, M. Reynolds, and H. Wans-
ing, editors, Advances in Modal Logic, Volume 5, pages 335-346. King’s College
Publications, 2005.

65

[194]

195

[196]

[197]

198

[199]

200]

[201]

[202]

203]

[204]

[205]

H. van Ditmarsch, W. van der Hoek, and B. Kooi. Dynamic Epistemic Logic.
Kluwer academic publishers, to appear.

G. van Drimmelen. Satisfiability in alternating-time temporal logic. In Proceed-
ings of the 18th IEEE Symposium on Logic in Computer Science (LICS 2003).
TEEE Computer Society, 2003.

M. Y. Vardi. A temporal fixpoint calculus. In Conference Record of the 15th
Annual ACM Symposium on Principles of Programming Languages, pages 250—
259, 1988.

M. Y. Vardi. Alternating automata and program verification. In J. van Leeuwen,
editor, Computer Science Today, volume 1000 of Lecture Notes in Computer
Science, pages 471-485. Springer-Verlag, 1995.

M. Y. Vardi. Why is modal logic so robustly decidable? In N. Immerman and
P. G. Kolaitis, editors, Descriptive Complexity and Finite Models, volume 31 of
DIMACS: Series in Discrete Mathematics and Theoretical Computer Science.
American Mathematical Society, 1997.

M. Y. Vardi. Reasoning about the past with two-way automata. In K. G. Larsen,
S. Skyum, and G. Winskel, editors, Proceedings of the 25th International Collo-
quium on Automata, Languages and Programming, ICALP’98, volume 1443 of
Lecture Notes in Computer Science, pages 628—641. Springer-Verlag, 1998.

M. Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logic of
programs. Journal of Computer and System Sciences, 32:183-221, 1986.

Y. Venema. Many-Dimensional Modal Logic. PhD thesis, Faculteit Wiskunde
en Informatica, Universiteit van Amsterdam, Sept. 1991.

I. A. Vetsikas and B. Selman. A principled study of the design tradeoffs for au-
tonomous trading agents. In Proceedings of the Second international joint con-
ference on Autonomous Agents and Multi-Agent Systems (AAMAS’06), pages
473-480, 2003.

D. Walther. ATEL with common and distributed knowledge is exptime-
complete. In Proceedings of the Fourth Workshop on Methods for Modalities
(M4M-4), Humbolt University, Berlin, 2005.

D. Walther, C. Lutz, F. Wolter, and M. Wooldridge. ATL satisfiability is indeed
EXPTIME-complete. Journal of Logic and Computation, 2005. Accepted for
publication.

T. Wilke. CTL™ is exponentially more succinct than CTL. In C. Pandu, Ran-
gan, V. Raman, and R. Ramanujam, editors, Proceedings of the 19th Confer-
ence on Foundations of Software Technology and Theoretical Computer Science,
FSTTCS 99, volume 1738 of Lecture Notes in Computer Science, pages 110-121.
Springer Verlag, 19909.

66

[206] P. Wolper. Temporal logic can be more expressive. Information and Control,
56:72-99, 1983.

[207] F. Wolter. The structure of lattices of subframe logics. Annals of Pure and
Applied Logic, 86(1):47-100, 1997.

[208] G. H. v. Wright. An Essay in Modal Logic. North-Holland, Amsterdam, 1951.

67

[127]

[131]

[136]

[137]

[139)]

[141]

[142]

[143]

Eingereichte Arbeiten

F. Baader, S. Brandt, and C. Lutz. Pushing the £L£ envelope. In Proceed-
ings of the Nineteenth International Joint Conference on Artificial Intelligence
(IJCAI’05), pages 364-369. Morgan-Kaufmann Publishers, 2005.

P. A. Bonatti, A. Murano, C. Lutz, and M. Vardi. Complexity of enriched
p-calculi. Submitted to the 38rd International Colloquium on Automata, Lan-
guages and Programming (ICALP’06).

S. Ghilardi, C. Lutz, and F. Wolter. Did I damage my ontology? A case for
conservative extensions in description logics. In Proceedings of the Tenth Inter-
national Conference on Principles of Knowledge Representation and Reasoning

(KR’06), 2006.

0. Kutz, C. Lutz, F. Wolter, and M. Zakharyaschev. E-connections of abstract
description systems. Artificial Intelligence, 156(1):1-73, 2004.

M. Lange and C. Lutz. 2-EXPTIME lower bounds for propositional dynamic
logics with intersection. Journal of Symbolic Logic, 70(5):1072-1086, 2005.

C. Lutz. PDL with intersection and converse is decidable. In C.-H. L. Ong,
editor, Computer Science Logic (CSL’05), number 3634 in Lecture Notes in
Computer Science, pages 413-427. Springer-Verlag, 2005. Extended version to
be submitted to the Journal of Symbolic Logic.

C. Lutz. Complexity and succinctness of public announcement logic. In Pro-
ceedings of the Fifth International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS’06), 2006.

C. Lutz and U. Sattler. The complexity of reasoning with Boolean modal logics.
In F. Wolter, H. Wansing, M. de Rijke, and M. Zakharyaschev, editors, Advances
in Modal Logics Volume 3. CSLI Publications, Stanford, CA, USA, 2001.

C. Lutz, U. Sattler, and L. Tendera. The complexity of finite model reasoning
in description logics. Information and Computation, 199:132-171, 2005.

C. Lutz, U. Sattler, and F. Wolter. Modal logic and the two-variable fragment. In
L. Fribourg, editor, Computer Science Logic (CSL’01), number 2142 in Lecture
Notes in Computer Science, pages 247-261. Springer-Verlag, 2001.

C. Lutz, D. Walther, and F. Wolter. Quantitative temporal logics: PSPACE and
below. In Proceedings of the Thirteenth International Symposium on Tempo-
ral Representation and Reasoning (TIME’05), pages 138-146. IEEE Computer
Society Press. Extended version submitted to Information and Computation.

[144] C. Lutz and F. Wolter. Modal logics of topological relations. In R. Schmidt,
I. Pratt-Hartmann, M. Reynolds, and H. Wansing, editors, Advances in Modal
Logic (AiML’04), pages 249-263, 2004. Extended version submitted to Logical
Methods in Computer Science.

[204] D. Walther, C. Lutz, F. Wolter, and M. Wooldridge. ATL satisfiability is in-
deed EXPTIME-complete. Accepted for publication in the Journal of Logic and
Computation.

