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1 Introduction

One fundamental requirement for the development of artificial intelligence and intel-
ligent applications if a formalism for representing and reasoning about the knowledge
that is relevant for the application. To ensure correctness of the systems dealing with
this knowledge and the transference of knowledge between applications, it is important
that the knowledge representation formalisms have clear and well-understood semantics
that are free from any ambiguity.

Description Logics (DLs) [BCM+07] have arisen as logic-based knowledge representa-
tion (KR) formalisms tailored towards the representation of the conceptual knowledge
of the application domain. In DLs, the knowledge is typically encoded in a knowl-
edge base or ontology that stores knowledge about the relationships between concepts
(terminological knowledge) as well as information about some specific individuals (asser-
tional knowledge). These KR formalisms have been successfully used for representing
the knowledge of many real-life application domains, most notably within the bio-
medical fields. For instance, Snomed is an ontology for the standard use of medical
and clinical terms containing approximately half million axioms written in an inexpres-
sive DL [Spa00]. Perhaps the largest success of DLs to-date is the recommendation by
the W3C of the DL-based Web Ontology Language (OWL 2) and its profiles as the
standard representation languages for the Semantic Web [W3C09].

The rising popularity of DLs has led to more and larger ontologies being written using
these languages. This has in turn had the consequence of showcasing the limitations
of formalisms based on classical logic for representing the relevant knowledge of many
domains. In fact, it is not difficult to encounter concepts that are intrinsically vague, and
cannot be defined in any precise manner, and the knowledge provided by domain experts
often contains a degree of uncertainty, and can contradict other experts. Moreover, while
classical DLs treat all axioms from an ontology in the same way, some applications need
to distinguish additional properties of these axioms. For instance, some axioms may
have an access restriction, making them visible to only a few users; if an ontology
is built from the combination of different sources, a user may prefer to observe the
consequences from one source, or trust only those consequences that are backed up by
a set of different sources; alternatively, some combinations of axioms might have been
identified to be harmful during a debugging process, and need to be avoided.

To try to handle these and many other situations beyond classical logic, a plethora
of formalisms extending classical DLs have been introduced over the years. While they
differ greatly in their semantics and other properties, many of these formalisms share a
common syntactic backbone: ontologies are built from classical DL ontologies by adding
an annotation to each axiom. The differences between the formalisms are characterized
by the different interpretations that these annotations are given. Obviously, as the
overall goal is still to have an unambiguous knowledge representation formalism, these
annotations need to be associated with formal semantics. Our intention is to study the
properties, commonalities, and differences of annotated extensions of DLs.

As mentioned already, the semantics of the annotations can differ greatly, depending
on the intended application. However, we can in general classify all these approaches
into two general groups, depending on whether they modify the semantics of the under-
lying logic or just how axioms are handled together. We call them the semantic approach
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and the context-based approach to interpreting annotated ontologies, respectively.

In the semantic approach the annotated ontology is not interpreted by classical DL
semantics anymore. This is the approach usually taken for handling vagueness and
uncertainty [LS08, Str01a, Luk08, Jae94, NNS11], since the relations between concepts
and individuals cannot be characterized in a precise and absolute manner. For example,
some probabilistic logics introduce multiple-world semantics, in which the probability of
a consequence is given by the proportion of worlds that satisfy it [LS10,Luk08,KP13].
Another example are fuzzy DLs, in which individuals are not anymore either elements
of a concept or not, but rather are given an intermediate degree of membership that
expresses the imprecise nature of these concepts. Since the formalisms belonging to
this approach modify the semantics of the logical component, they need to be studied
independently. In this work we focus on formalisms for handling vague knowledge
based on mathematical fuzzy logic. We have thus studied the impact of extending DLs
with semantics based on different kinds of membership degrees. In our study we have
obtained a characterization of the limits of decidability, and the complexity of reasoning
in these logics.

In contrast to the semantic approach, in the context-based approach the semantics
of the underlying logic remains unchanged, but rather is the reasoning task that is
modified. Simply stated, the annotations define a class of relevant sub-ontologies, called
the contexts, and the reasoning task corresponds a computation on the annotations of
the contexts entailing a given consequence (in the classical sense). For example, in
the lattice-based context setting, the annotations are ordered via a distributive lattice
that expresses dependencies among axioms; specifically, if a context contains an axiom
α, then it must also contain all axioms with an annotation greater or equal to the
annotation of α. The main reasoning task in this case is to compute a so-called boundary
for a consequence c: a lattice element that summarizes all the contexts that entail c.
In the context-based approach the axioms have a different influence on the outcome
of the reasoning task. This is the approach usually taken for handling trust, privacy,
provenance, or debugging, among others [BP10a, BP10b, DSSS09, KPHS07, RGL+13].
We study different formalisms based on this approach, from axiom-pinpointing, where
the task is only to identify the sets of axioms responsible for a consequence to follow, to
a probabilistic DL capable of handling conditional dependencies between axioms. We
also study in detail the computational complexity of these formalisms when the logical
component is restricted to the light-weight DL EL.

This work focuses on just a few examples of the possible semantics that can be given
to annotated ontologies. Nonetheless, many of the lessons learned with these special
cases can be generalized or adapted to handle other relevant cases. Moreover, the
theoretical results developed during this work have already been used for constructing
practical reasoning tools that have shown good runtime behaviour, even when handling
very large ontologies.

After some preliminaries presented in the following section, this work provides an
overview on ten publications in which we have analysed the properties of different
formalisms for interpreting annotated ontologies. We first present our results in the
semantic approach, for which we have focused on variants of fuzzy DLs. First we focus
on fuzzy DLs with semantics based on t-norms defined over the standard interval [0, 1]
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of real numbers. In [BDP15], we study in detail the limits of decidability of reasoning
in these logics. In particular, we provide a range of inexpressive logics with undecid-
able reasoning problems, as well as tight complexity bounds for the identified class of
decidable logics. One case not covered in [BDP15] corresponds to the case of Gödel se-
mantics with an involutive negation constructor. In [BDP14] that reasoning in this logic
is also decidable in exponential time, using a novel automata-based technique. Finally,
in [BP13b] we provide the first results on the computational complexity of deciding
subsumption in fuzzy EL. These results show that the complexity typically increases
for this inexpressive DL.

To regain decidability, we restrict the semantics to allow only finitely many different
membership degrees, but allow them to be partially ordered within a lattice, rather than
keeping a total order as in the standard case. Using automata-based techniques, we show
in [BP13a] that the complexity of reasoning in these finitely-valued fuzzy logics is the
same as reasoning in the underlying classical DL. This holds true even if the TBox is
restricted to be acyclic, where the complexity usually decreases. In [BP14a] we combine
the results from the standard and the finitely-valued semantics to characterize the limits
of decidability when infinite lattices are used to describe the membership degrees. In
this setting, we characterize infinite families of lattices for which reasoning is decidable
and undecidable, respectively.

Section 5 summarizes the formalisms studied within the context-based approach. We
start by analysing the complexity of finding the axiomatic causes for a consequence
to follow from an ontology. This task, known as axiom-pinpointing, can be used as
an auxiliary step in any formalism using the context-based approach. For ontologies
written in EL, we show in [PS10b] that almost any reasoning task associated with
axiom-pinpointing becomes intractable. Although this does not imply intractability
of every context-based approach, it provides a good clue that tractability holds only
in very restricted cases. The ideas of axiom-pinpointing are generalized in [BKP12] to
consider dependencies between axioms. In essence, the annotations are assumed to form
a distributed lattice, and the use of an axiom annotated with an element ` automatically
implies that all axioms with an annotation larger or equal to ` must also be included.
This scenario can be used e.g., to control access to some axioms and their consequences.
In this work we developed effective algorithms for computing the so-called boundary
for a consequence, which summarizes all the labels that define sub-ontologies entailing
the consequence.

The work from [CP14a, CP14c] introduces a probabilistic DL in which it is easy to
specify conditional and logical dependencies between axioms. Much as for the lattice-
based contexts, the annotations are used to specify sets of axioms that must always
appear together, or that imply the presence of other axioms. However, these sets of
axioms are also associated to a probability distribution, described with the help of a
Bayesian network (BN). The reasoning task is to find the probability of observing any
context where a desired consequence holds. Although this Bayesian extension can be
defined in general for any DL, we study the computational complexity of reasoning in
Bayesian EL. With the help of a hypergraph that encodes all the possible derivations of
consequences from an ontology, we prove that the complexity of reasoning is governed by
the complexity of doing probabilistic inferences in the BN. We also show that reasoning
can be decoupled between the logical and the probabilistic components. This latter
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Table 1: Syntax and semantics of ALC constructors and abbreviations

Name Syntax Semantics

negation ¬C ∆I \ CI
conjunction C uD CI ∩DI
existential restriction ∃r.C {δ ∈ ∆I | ∃η ∈ CI .(δ, η) ∈ rI}

bottom ⊥ ∅
top > ∆I

disjunction C tD CI ∪DI
implication C → D (¬C)I ∪DI
value restriction ∀r.C {δ ∈ ∆I | ∀η ∈ ∆I .(δ, η) ∈ rI ⇒ η ∈ CI}

approach does not provide an optimal method in terms of complexity, but suggests an
easy way to implement a black-box based reasoner for this logic.

The last paper considered studies an application of the context-based approach for
error-tolerant reasoning [LP14b]. The main idea is to exploit the techniques developed
for this approach to solve error-tolerant reasoning tasks more efficiently. This is achieved
by pre-computing all the repairs for an error in the ontology, and compiling them into
an annotated ontology. The methods developed for the lattice-based context setting
can be further optimized for handling this special case.

All the publications considered have appeared in top international conferences and
journals, and are highlighted using a bold font in the reference key.

2 Classical Description Logics

Description Logics (DLs) [BCM+07] are a family of knowledge representation formalisms
specifically designed for representing and reasoning about the knowledge of an appli-
cation domain in a structured and well-understood manner. The basic notions in any
DL are concepts, which correspond to unary predicates from first-order logic, and roles,
which are binary predicates. What differentiates different members of this family are the
constructors that can be used for building complex concepts and roles from atomic ones.
While many constructors, and hence many DLs, have been studied in the literature, for
simplicity we focus on the basic DL ALC and its sublogic EL.

2.1 ALC

Let NC and NR be two countable, disjoint sets of concept names and role names, respec-
tively. ALC-concepts are built from these concept and role names through the grammar
rule C ::= A | ¬C | C u C | ∃r.C, where A ∈ NC and r ∈ NR. The semantics of these
concepts is assigned through interpretations. An interpretation is a pair I = (∆I , ·I),
where ∆I is a non-empty set, called the domain, and ·I is an interpretation function
that maps every concept name A ∈ NC to a set AI ⊆ ∆I , and every role name r ∈ NR

to a binary relation rI ⊆ ∆I ×∆I . This function is extended to arbitrary concepts as
shown in the upper part of Table 1.
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In ALC it is customary to introduce abbreviations, which correspond to other typical
constructors in classical logic. These abbreviations are ⊥ := A u ¬A, for an arbitrary
A ∈ NC, > := ¬⊥, C tD := ¬(¬C u ¬D), C → D := ¬C tD, and ∀r.C := ¬(∃r.¬C).
Using the standard properties of set operations, it is easy to see that the semantics of
these abbreviations correspond to those shown in the lower part of Table 1.

The knowledge of an application domain is encoded in an ontology, which restricts
the class of interpretations that may be taken into account. Ontologies are divided
into a TBox, that expresses the relations between the different concepts (terminologi-
cal knowledge), and an ABox, containing instances of the different concepts and roles
(assertional knowledge). Formally, a TBox is a finite set of general concept inclusions
(GCIs) of the form C v D, where C and D are two concepts. The interpretation I
satisfies the GCI C v D iff CI ⊆ DI . I is a model of the TBox T , denoted by I |= T
iff I satisfies all the GCIs in T .

Let now NI be a countable set, which is disjoint from NC and NR. The elements of
NI are called individual names. For an interpretation I = (∆I , ·I), the notion of an
interpretation function is extended to map every individual name a ∈ NI to an element
aI ∈ ∆I . An ABox is a finite set of assertions that are of the form C(a) (concept
assertion) or r(a, b) (role assertion) where a, b ∈ NI, r ∈ NR, and C is a concept. The
interpretation I satisfies the concept assertion C(a) iff aI ∈ CI ; it satisfies the role
assertion r(a, b) iff (aI , bI) ∈ rI . I is a model of the ABox A (I |= A) iff I satisfies all
the assertions in A. An ontology is a pair O = (T ,A), where T is a TBox and A is an
ABox. The interpretation I is a model of O (I |= O) iff it is a model of both, T and
A. We use the term axiom to collectively refer to GCIs and assertions.

The main reasoning problem considered in this logic is ontology consistency; that
is, given an ontology O, decide whether there exists a model I of O. This problem is
important because all other standard reasoning problems can be polynomially reduced
to consistency [BCM+07]. Consider for example the problem of subsumption. Given a
TBox T and two concepts C,D, we say that C is subsumed by D w.r.t. T if CI ⊆ DI
holds in every model I of T . It is easy to see that C is subsumed by D w.r.t. T iff the
ontology (T , {(C u ¬D)(a)}) is inconsistent; i.e., if it is not possible to find an element
of the domain that belongs to C but not to D. The consistency problem in ALC is
ExpTime-complete [Sch91,DM00].

2.2 EL

The DL EL is a sublogic of ALC in which the only allowed constructors are top, con-
junction, and existential restriction. More formally, in EL, concepts are built through
the grammar rule C ::= A | > | C u C | ∃r.C, where A ∈ NC and r ∈ NR. Notice
that, although > was an abbreviation in ALC, it needs to be explicitly introduced in
EL since the negation constructor is disallowed. The notions of interpretation, ontol-
ogy, and model are restricted to EL in the obvious way. One important property of
this logic is that every EL ontology is consistent. Thus, when dealing with EL, one is
usually interested in deciding subsumption w.r.t. a TBox.

Concept subsumption w.r.t. an EL TBox can be decided in polynomial time using
a completion algorithm [BBL05]. First notice that it suffices to decide subsumption
between two concept names: for any two EL concepts C,D, C is subsumed by D w.r.t.
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Table 2: EL completion rules

If A′ v A and A v B in comp(T ), then add A′ v B to comp(T )

If A v A1, A v A2, and A1 uA2 v B in comp(T ), then add A v B to comp(T )

If A′ v A and A v ∃r.B in comp(T ), then add A′ v ∃r.B to comp(T )

If A′ v ∃r.B′, B′ v A, and ∃r.A v B in comp(T ), then add A′ v B to comp(T )

the TBox T iff A is subsumed by B w.r.t. T ∪ {A v C,D v B}, where A,B ∈ NC are
two concept names not occurring in T . The completion algorithm first transforms the
TBox T into normal form. A TBox is in normal form if all its GCIs have one of the
following shapes:

A v B, A1 uA2 v B, A v ∃r.B, or ∃r.A v B,

where A1, A2, A,B ∈ NC ∪ {>}, and r ∈ NR. Any EL TBox can be transformed to a
normalized one, which is equivalent w.r.t. the relevant subsumption relations, in linear
time. Let T ′ be the TBox obtained from the normalization of T . A partial logical
closure is computed through an iterative application of the completion rules from Table 2
starting with comp(T ) := T ′. For simplicity, we assume that the obvious tautologies
A v A and A v > belong to comp(T ) for all concept names appearing in T ′. To
ensure termination, these completion rules are only applied if they actually add a new
GCI to comp(T ). Since they can only add GCIs of a restricted shape to comp(T ),
only quadratically many rule applications (in |T ′|) are possible before the procedure
terminates. If comp(T ) is the TBox obtained from T after no more rules can be applied,
then for every two concept names A,B occurring in T we have that A is subsumed by
B w.r.t. T iff A v B ∈ comp(T ).

2.3 Annotated Ontologies

It has been extensively argued that classical logic in general, and classical DLs in par-
ticular, are not fully suited for representing all the facets of the knowledge within an
application domain. Depending on the scope of the ontology, it may be relevant to
extend it with some non-classical features.

In the bio-medical domains, knowledge is rarely precise and certain. For example,
when trying to describe a finding in a patient, it is not uncommon to encounter vague
terms like fast (as in fast growth) or high (as in high temperature), where it is impossible
to define a precise point where a temperature becomes high, or the growth-speed is fast.
On the other hand, measurements made for a finding, or the consequences of a treatment
typically have an associated uncertainty that arises from unobservable or unforeseen
factors. This has motivated the study of formalisms for handling vagueness [SKP07,
Str01a, SSP+07, MSS+12] and uncertainty [LS08, QJPD11, KP08, dFL08, LS10, Jae94,
Luk08] in ontologies.

Considering the Semantic Web, a large ontology might be obtained combining the
knowledge provided by different sources found over the web. As some of these sources
might be more trustworthy than others, it makes sense to try to order the axioms, and
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their consequences, by some preference relation. A user can then limit her views to
avoid consequences that she does not trust. Similarly, if some knowledge is restricted to
some users, one should disallow these users to access any implicit consequence of that
restricted knowledge.

Clearly, handling vagueness, uncertainty, preferences, or access restrictions, are just
four examples of desiderata of knowledge representation formalisms that have been
studied in the literature. For each of them, different methods need to be developed.
However, many of these approaches share a common syntactic approach: ontologies are
expressed using classical DL GCIs and assertions, extended with an annotation that
refers to the extension considered. Thus, for example, when dealing with uncertainty
an annotated GCI 〈A v B : p〉 with p ∈ [0, 1] may express the probability with which
the axiom holds, while for access control the label ` in 〈A v B : `〉 expresses the security
level required to access this GCI.

Formally, let Λ be a set, whose elements are called labels or annotations. A Λ-annota-
ted GCI is an expression of the form 〈C v D : λ〉, where C and D are two concepts
and λ ∈ Λ. A Λ-annotated TBox is a finite set of Λ-annotated GCIs. Analogously,
Λ-annotated concept and role assertions are of the form 〈C(a) : λ〉 and 〈r(a, b) : λ〉,
respectively. A Λ-annotated ABox is a finite set of Λ-annotated assertions, and a
Λ-annotated ontology is a pair O = (T ,A) where T is a Λ-annotated TBox and A is a
Λ-annotated ABox. When the set of annotations Λ is clear from the context, we will
often omit it, and speak of, e.g. an annotated ontology.

Each formalism interprets these annotations in a different manner. We classify the
different methods for interpreting them in two main approaches: the semantic and the
context-based approach. In a nutshell, the semantic approach is characterized by a
change in the semantics of the underlying logic. For example, as explained in Section 3,
in fuzzy description logics the interpretation of a concept is not anymore a subset of
the domain ∆I , but rather a function from ∆I to a set of membership degrees. In the
context-based approach, the semantics of the underlying logic does not change. In this
case, the labels in the axioms are used to divide the ontology into sub-ontologies (also
called contexts). The information of the contexts entailing a given consequence is then
combined according to the specific formalism used. In the case of access control, each
context corresponds to a privacy level of the axioms. By combining all the contexts
that can derive a consequence, we obtain the privacy level of that consequence; that is,
the access rights that a user must have in order to observe this consequence. We cover
these general approaches, and some of their instances, in more detail in the following
sections.

As mentioned before, throughout this work we will focus mainly on the two DLs
ALC and EL. The specific properties of these logics will be necessary for some of our
results. The latter is especially true when considering the complexity of reasoning in
annotated extensions of EL. However, many other DLs exist, which use other concept
constructors. Most of our results from Section 4 can be extended to these DLs, and
any other ontology language with a monotonic entailment relation without any major
changes.
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3 The Semantic Approach

The first approach that we consider for reasoning with annotated ontologies is the
semantic approach. In this approach, the semantics of the underlying logical formalism
is modified to handle the required non-classical extensions.

The semantic approach is most commonly used for handling vagueness and uncer-
tainty, for example in fuzzy or probabilistic extensions of DLs [LS08]. In the former
case, concepts and roles are interpreted as fuzzy sets and fuzzy binary relations, re-
spectively. Thus, the whole notions of interpretations and models need to be adapted
accordingly. In the latter case, typically the notion of an interpretation does not change,
but rather the conditions under which an interpretation is a model of the ontology. This
can depend on e.g. the proportion of elements of the domain that satisfy a property, if
statistical probabilities are used, or a probability distribution over several interpreta-
tions in the case of subjective probabilities [KP13]. This is also the approach used for
some possibilistic DLs [QJPD11,Hol95].

For the rest of this section we focus on fuzzy DLs only. One of the characterizing
factors that defines a fuzzy DL is the set of membership degrees that defines its seman-
tics. First, we show that for fuzzy DLs defined over the standard chain [0, 1], deciding
consistency of an ontology is undecidable, even for very restricted logics. Afterwards,
we show that if only finitely many membership degrees are used, then the problem is
decidable, and for expressive logics not harder than classical reasoning. This holds even
if the membership degrees are not arranged in a total order, but in a lattice. At the
end of the section we provide conditions that ensure decidability of fuzzy DLs based on
infinite lattices.

3.1 Fuzzy Description Logics

Fuzzy description logics (FDLs) extend classical DLs by allowing a more fine-grained
membership relation of elements to concepts and roles. In these logics, the elements
of the interpretation domain belong to a concept to some degree, which is typically a
number in the interval [0, 1]. Following the ideas from mathematical fuzzy logic [Háj01],
the constructors are interpreted using a t-norm and its associated operators [KMP00].

A t-norm is an associative, commutative, and monotonic (on both arguments) binary
operator ⊗ : [0, 1]× [0, 1]→ [0, 1] that has neutral element 1. It is a continuous t-norm
if it is continuous as a function. For the rest of this section, we will only consider
continuous t-norms, and will call them simply t-norms for brevity. The t-norm operator
is used in mathematical fuzzy logic to interpret the conjunction.

Every continuous t-norm ⊗ defines a unique residuum operator ⇒ that satisfies, for
all x, y, z ∈ [0, 1], that x ⊗ y ≤ z iff y ≤ (x ⇒ z). This operator can be defined by
x ⇒ y = sup{z ∈ [0, 1] | x ⊗ z ≤ y}. The residuum is used to generalize the logical
implication to fuzzy logics. With this residuum, we can define the residual negation
	 given by 	x := x ⇒ 0 for all x ∈ [0, 1]. As suggested by its name, 	 is used as a
generalization of logical negation. To interpret disjunctions, we use the t-conorm ⊕ of
the t-norm ⊗, which is defined by x⊕ y := 1− ((1− x)⊗ (1− y)). In some cases, it is
useful to consider also the involutive negation operator defined by ∼x := 1 − x for all
x ∈ [0, 1]. Notice that the involutive negation is not expressible in terms of the other
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Table 3: Gödel,  Lukasiewicz, and product t-norms and their operators

Name x⊗ y x⊕ y x⇒ y 	x

Gödel (G) min{x, y} max{x, y}

{
1 if x ≤ y
y otherwise

{
1 if x = 0

0 otherwise

 Lukasiewicz ( L) max{x+ y − 1, 0} min{x+ y, 1} min{1− x+ y, 1} 1− x

product (Π) x · y x+ y − x · y

{
1 if x ≤ y
y/x otherwise

{
1 if x = 0

0 otherwise

operators introduced above.

The three main t-norms are known as the Gödel (G),  Lukasiewicz ( L), and product
(Π) t-norms. These t-norms and their associated operators are listed in Table 3. These
t-norms are fundamental in the sense that all other continuous t-norms are isomorphic
to ordinal sums of copies of these three t-norms; for details see [KMP00, MS57]. Of
particular importance are those t-norms whose ordinal sum description has one initial
component that is isomorphic to the  Lukasiewicz t-norm. These t-norms are said to
start with  Lukasiewicz. Notice that in the  Lukasiewicz t-norm, the residual and the
involutive negation coincide. One consequence of this fact is that, for every t-norm that
starts with  Lukasiewicz, the residual negation also behaves as an involutive operator
in some closed subinterval [0, p] ⊆ [0, 1]. A t-norm contains  Lukasiewicz if at least one
of the components in its ordinal sum decomposition is isomorphic to the  Lukasiewicz
t-norm.

Given a t-norm ⊗, an element x ∈ (0, 1] is a zero-divisor of ⊗ iff there exists some
y ∈ (0, 1] such that x⊗y = 0. From the three fundamental t-norms, it is easy to see that
only the  Lukasiewicz t-norm has zero-divisors. In fact, every x ∈ (0, 1) is a zero-divisor
of this t-norm. Moreover, it can be shown that a t-norm has zero-divisors iff it starts
with  Lukasiewicz. Another relevant property is idempotency. An element x ∈ [0, 1] is
idempotent w.r.t. ⊗ iff x⊗ x = x. The t-norm ⊗ is called idempotent iff every element
x ∈ [0, 1] is idempotent w.r.t. ⊗. There exists only one idempotent t-norm, namely the
Gödel t-norm.

Since many of the standard dualities between logical constructors do not hold for
fuzzy logics, the family of fuzzy DLs is larger than those of classical DLs. In particular,
many different languages can be considered as a fuzzy extension of the classical ALC,
depending on the class of constructors allowed. We introduce the fuzzy DL ⊗-IALC,
which allows all the constructors expressible in classical ALC and then describe some
of its sublogics. To avoid unnecessary repetitions, we will define all notions only for the
larger logic; they are restricted to the different sublogics in the obvious way.

A fuzzy DL is characterized by two components: the t-norm ⊗ used for defining its
semantics, and the class of constructors allowed for building complex concepts. In the
following, let ⊗ be an arbitrary, but fixed, continuous t-norm. In ⊗-IALC, concepts
are built through the grammar rule

C ::= A | > | ⊥ | �C | ¬C | C u C | C → C | ∃r.C | ∀r.C,
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Table 4: Constructors of some relevant fuzzy DLs

Name > u ∃ ∀ ⊥ → � ¬

EL X X X

NEL X X X (X) X

ELC X X X (X) X

IAL X X X X X X (X)

ALC X X X X (X) X

Table 5: Semantics of fuzzy DL constructors

>I(δ) := 1

⊥I(δ) := 0

(�C)I(δ) := 	 CI(δ)
(¬C)I(δ) := ∼CI(δ)

(C uD)I(δ) := CI(δ)⊗DI(δ)
(C → D)I(δ) := CI(δ)⇒ DI(δ)

(∃r.C)I(δ) := sup
η∈∆I

(
rI(δ, η)⊗ CI(η)

)
(∀r.C)I(δ) := inf

η∈∆I

(
rI(δ, η)⇒ CI(η)

)

where A ∈ NC and r ∈ NR. Different sublogics are created by restricting the set of
constructors allowed as shown in Table 4. In the table, a checkmark Xexpresses that
the constructor is allowed in the respective logic; if it appears within parenthesis (X),
then it can be expressed as an abbreviation from other constructors in the same logic;
i.e., it does not need to be introduced explicitly. An ontology from the logic ⊗-IALC is
simply a (0, 1]-annotated ontology, where concepts are allowed to use all the constructors
from IALC.

A fuzzy interpretation is a pair I = (∆I , ·I), where ∆I is a non-empty set called the
domain, and ·I is the interpretation function that maps every individual name a ∈ NI

to an element aI ∈ ∆I , every concept name A ∈ NC to a function AI : ∆I → [0, 1]
(known as a fuzzy set), and every role name r ∈ NR to a function rI : ∆I ×∆I → [0, 1]
(fuzzy binary relation). Intuitively, the fuzzy interpretation provides a membership
degree of every element of the domain to belong to each concept name; the higher the
degree, the more this element belongs to the concept, with 0 and 1 corresponding to
the classical membership degrees. Similarly, the degree associated to a pair of elements
in the interpretation of a role name r expresses how much these elements are related
via r.

The interpretation function is extended to complex concepts inductively using the
operators associated to the t-norm ⊗ as described in Table 5 for every δ ∈ ∆I . No-
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tice that the semantics of existential and value restrictions require the computation of
suprema and infima over the possibly infinite domain. To avoid issues with such an
infinite computation, it is customary to restrict reasoning to a special class of so-called
witnessed interpretations [BS09, Háj05]. The interpretation I is witnessed if for every
concept C, role name r, and δ ∈ ∆I there exist η, η′ ∈ ∆I such that

(∃r.C)I(δ) = rI(δ, η)⊗ CI(η), and

(∀r.C)I(δ) = rI(δ, η′)⇒ CI(η′).

This means that the suprema and infima in the semantics of existential and value restric-
tions are actually maxima and minima, respectively. Without this restriction, the value
of (∃r.C)I(δ) might, e.g. be 1 without x actually having a single r-successor with degree
1 that belongs to C with degree 1. Such a behaviour is usually unwanted in DLs, where
an existential restriction is intended to express the existence of an adequate successor.
Unless explicitly mentioned otherwise, we consider only witnessed interpretations for
the rest of this section.

The witnessed interpretation I = (∆I , ·I) satisfies the annotated GCI 〈C v D : p〉 if
for all δ ∈ ∆I , it holds that CI(δ) ⇒ DI(δ) ≥ p. It satisfies the annotated assertion
〈C(a) : p〉 (respectively 〈r(a, b) : p〉) if CI(aI) ≥ p (resp., rI(aI , bI) ≥ p). It is a model
of the ontology O if it satisfies all the axioms in O. An ontology is consistent if it has
a model.

The first doubts of the decidability of ontology consistency in fuzzy DLs, when GCIs
are included, arose after it was shown that the existing reasoning procedures were incor-
rect [BBS11]. Up to that point, existing (usually tableau-based) reasoning algorithms
produced a finite model of the ontology [BS07, BS09, SB07]. The work from [BBS11]
proved that, if GCIs are allowed, then one can build a consistent ontology that has
no finite models; such ontologies would be classified as inconsistent by the methods
mentioned above. This triggered the work in [BP11a], where it is shown that ontology
consistency is undecidable in a slight extension of Π-ALC. The quest for the limits of de-
cidability in fuzzy DLs continued for a couple of years, where undecidability was shown
for a growing class of languages [BP11a,BP11b,BP11c,CS13]. Overall, the main culprit
for undecidability turns out to be the existence of an involutive operator. Indeed, if ⊗ is
a t-norm that starts with  Lukasiewicz, then ontology consistency is undecidable already
in ⊗-NEL which, in addition to the constructors from EL, allows only the residual nega-
tion �. If instead of the residual negation the involutive negation is used, i.e., in the
logic ⊗-ELC, then undecidability arises for any non-idempotent t-norm. As discussed
before, this shows undecidability for all except one continuous t-norm, where the Gödel
t-norm is the only remaining case.

Rather than proving all these undecidability results independently, a general proof
method was proposed in [BP12b]. This general method abstracts the ideas used in pre-
vious undecidability proofs and characterizes a series of simple properties that, together,
yield a reduction from the Post correspondence problem [Pos46]. Thus, these properties
yield sufficient conditions for the consistency problem to be undecidable. The frame-
work was further extended in [BDP15] and instantiated to obtain the undecidability
results described above, among others.

Conversely, it was shown that the problem becomes decidable if the involutive oper-
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Figure 1: The model I1 of the G-ALC ontology O1

ators are excluded. More precisely, for any t-norm ⊗ that does not have zero-divisors
(i.e., does not start with  Lukasiewicz), ontology consistency in ⊗-IAL is decidable in
exponential time [BDP12]. In fact, the result from that paper is much stronger than this
complexity result. It is shown that to decide consistency of a ⊗-IAL ontology it suf-
fices to check consistency of the classical ALC ontology obtained from removing all the
annotations from the axioms. These, and many other decidability and undecidability
results results are presented in full detail in [BDP15]. In particular, the decidability re-
sults are extended to the much more expressive DL SROIQ, which extends IALC with
several additional concept constructors, as well as axioms restricting the interpretations
of roles.

One important case not covered in [BDP15] is the decidability of consistency in fuzzy
DLs under Gödel semantics that include the involutive negation as a constructor. Since
the Gödel t-norm is idempotent, it was largely believed that reasoning in G-IALC could
be restricted to finitely many membership degrees, which means that it is decidable (see
Section 3.2). This property was originally shown by Straccia [Str98,Str01b]. However,
the proof relies on a different semantics, called the Zadeh semantics, where the impli-
cation x ⇒ y is not interpreted as the Gödel residuum, but rather as max{1 − x, y}.
Motivated by this result, following papers using the Gödel semantics directly restricted
the membership degrees to a finite set [BDGRS09,BDGRS12].

It turns out that restricting reasoning to a finite set of membership degrees does affect
the expressivity of the logic. Consider for example the G-ALC ontology O1 = (T1,A1)
where T1 = {〈∀r.A v A : 1〉 , 〈∃r.> v A : 1〉} andA1 = {〈¬A(a) : 0.5〉}. This ontology is
consistent; the interpretation I1 = (N, ·I1) with aI := 1, AI1(n) := rI1(n, n+ 1) := 1

n+1

for all n ∈ N, and rI1(n,m) := 0 if m 6= n+1 (see Figure 1) is a model of O1. However, it
can be seen that every model I of T1 that uses only finitely many different membership
degrees is such that AI(n) = 1 for all n ∈ N. The main reason for this behaviour
arises from the properties of the Gödel residuum, where x ⇒ y is either 1, if x ≤ y or
y otherwise. The first GCI in T1 ensures that for every δ ∈ ∆I there must exist an
η ∈ ∆I such that rI(δ, η) ⇒ AI(η) ≤ AI(δ). If AI(δ) < 1 for some δ, then this will
produce an infinite sequence of successors with strictly decreasing membership degrees,
but always greater than 0. But if only finitely many membership degrees are allowed,
such a chain can never be produced. In particular, this means that a finitely-valued
model I of T1 cannot be a model of A1. Thus, O1 is inconsistent whenever reasoning
is restricted to finitely-valued interpretations.

To decide consistency of G-IALC ontologies, a new reasoning procedure needed to be
devised. The main insight required is that for building a model of a G-IALC ontology,
the specific membership degrees used are not as relevant as the order among them.
For example, if we change the interpretation function of the model I1 described above
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to any mapping that satisfies AI1(n + 1) < rI1(n, n + 1) ≤ AI1(n) for all n ∈ N,
then we would still obtain a model of O1. Thus, rather than trying to build a model
directly, one can try to produce an abstract representation of a family of models, where
only the order of the membership degrees of the different elements is explicitly stated.
Moreover, it suffices to consider only forest-shaped models, where the order is local;
that is, for each element of the domain, it suffices to express the relationship among the
membership degrees to the different concepts at that element and those at its (only)
direct predecessor in the forest. If all these local orders can be satisfied, then the density
of the real numbers guarantees that at least one model can be built from it. Notice that
although infinitely many degrees might be necessary to actually construct the model,
only finitely many local orders are relevant.

Putting all these insights together, it is possible construct an automaton that verifies
that such a well-structured forest-shaped model can be built, by performing linearly
many emptiness tests. This automaton has exponentially many states, measured in
the size of the input ontology. Thus G-IALC ontology consistency is decidable in
exponential time, matching the complexity of classical ALC. In [BDP14] this idea is
taken one step further. There it is shown that the exponential upper bound still holds
even if ABoxes are extended to allow for arbitrary order assertions. Order assertions
are of the form 〈α ./ γ〉, where α is a concept or role assertion, γ is an assertion or a
constant in [0, 1], and ./ ∈ {>,<,=,≥,≤}. The semantics of order assertions is the
obvious one.

Overall, the results presented in the two papers [BDP15,BDP14] provide a full clas-
sification of the limits of decidability of ontology consistency for fuzzy extensions of
the DL ALC, over the standard chain [0, 1]. Some of these results have been further
strengthened. As mentioned above, in the case of t-norms without zero-divisors, decid-
ability has been shown for the more expressive ⊗-SROIQ, using a similar technique.
For t-norms that start with  Lukasiewicz, conversely, undecidability holds even if all the
axioms are annotated with the constant 1; i.e., undecidability is not a consequence of
the annotations, but rather of the extended semantics. Finally, it is known that using
the Gödel t-norm does not increase the complexity of reasoning even in inexpressive
sub-logics like EL [MSS+12], and FL0 with cyclic TBoxes [BLP14].

If we consider other fuzzy extensions of EL, the picture is less clear. The first at-
tempt to study the complexity of subsumption in ⊗-EL under any t-norm that is not
idempotent appeared in [BP13b]. In it, it is shown that for any t-norm ⊗ that contains
at least one  Lukasiewicz component, this problem is coNP-hard. On the other hand, a
variant of the problem in which the goal is only to decide whether subsumption holds
to some positive degree exhibits a dichotomy similar to the one found for consistency
in more expressive fuzzy DLs: the problem is polynomial for all t-norms without zero
divisors, and coNP-hard for all other t-norms. Unfortunately, matching upper bounds
have not been found yet. In fact, it is conjectured that general subsumption is at least
ExpTime-hard for t-norms that contain  Lukasiewicz.

3.2 Finitely Valued Semantics

A different restriction that can be used for regaining decidability of ontology consistency
is to consider only finitely many membership degrees in the semantics of the logic.
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Rather than simply restricting to a finite subset of the interval [0, 1], we allow for the
membership degrees to be partially ordered, forming a lattice. In order to interpret the
different constructors, the lattice needs to be extended with two operators, forming a
so-called residuated lattice [DK93,GJKO07].

A residuated lattice is an algebraic structure (L,∨,∧,0,1,⊗,⇒) over the carrier set
L, where (L,∨,∧,0,1) is a bounded lattice with minimum element 0 and maximum 1,
⊗ is a monotonic, associative and commutative binary operator on L that has 1 as unit
(called t-norm), and ⇒ is a binary operator, called residuum, such that `1 ⊗ `2 ≤ `3 iff
`2 ≤ `1 ⇒ `3 holds for all `1, `2, `3 ∈ L. As in the previous section, the t-norm ⊗ is used
to interpret conjunction and the residuum interprets the implication. The interpretation
of other constructors, such as the residual negation, is obtained from these operators
in an analogous manner. To interpret the involutive negation, we need to further
extend the residuated lattice with a (De Morgan) negation, which is an involutive and
antitonic unary operator ∼ that satisfies the De Morgan laws ∼(`1 ∨ `2) = ∼`1 ∧ ∼`2
and ∼(`1 ∧ `2) = ∼`1 ∨ ∼`2 for all `1, `2 ∈ L.

Given a finite De Morgan residuated lattice L, an L-IALC ontology is simply an
L-annotated ontology where concepts are built using all the constructors from IALC.
The semantics of this logic is defined as in the previous section, except that the range
of the interpretations is now restricted to the set L, rather than the interval [0, 1]. More
precisely, an interpretation is a pair I = (∆I , ·I), where ∆I is a non-empty set and ·I
is the interpretation function that maps every a ∈ NI to an element aI ∈ ∆I , every
A ∈ NC to a function AI : ∆I → L and every r ∈ NR to a function rI : ∆I ×∆I → L.
This interpretation is extended to arbitrary concepts as in the previous section, where
⊗, ⇒, and ∼ are now the t-norm, residuum, and De Morgan negation of the lattice L,
respectively.

If L is a finite total order, then every L-IALC ontology O can be transformed into
an equi-consistent classical ontology from the DL ALCH [Str04].1 The idea is to create,
for every concept name A appearing in O, finitely many (classical) concept names of
the form A≥` that intuitively contain all the elements of the domain that belong to A
with a degree at least `, and analogously r` for role names. Using the properties of the
specific t-norm and residuum defined for L, the annotated axioms in O can be simi-
larly translated into classical axioms expressing the relations between the membership
degrees of the original finitely valued concepts. Since consistency of ALCH ontologies
is decidable in exponential time, this yields a decidable reasoning method for consis-
tency of L-IALC ontologies, on finite total orders. Unfortunately this translation, as
described in several papers [BS11, BS13, BDGRS09], produces an exponential blow-up
on the size of the ontology. Thus, this approach yields a double-exponential decision
procedure for consistency of L-IALC ontologies, which leaves a gap when compared to
the ExpTime complexity of classical ALC.

A direct reasoning procedure that avoids this exponential blow-up was originally
proposed in [BP11d]. This procedure extends the automata-based decision procedure
of ALC [LS00] to handle the finitely valued semantics. The main idea of the automata-
based method is to construct an automaton that accepts some well-structured forest-
shaped models of the ontology. More precisely, it is shown that an L-IALC ontology

1ALCH is an extension of ALC that can also express inclusions between roles [BCM+07].
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O is consistent if and only if it has a model formed of a set of (potentially infinite)
trees whose roots may be arbitrarily interconnected, and these roots are exactly the
interpretations of the individual names appearing in O. To decide consistency, one can
guess the interpretation of the roots, and use an automaton on infinite trees to verify
that the corresponding tree-shaped interpretations can be built from the guessed roots.
Then, the ontology is consistent if and only if the language accepted by this automaton
initialized on every root node is not empty.

For simplicity, suppose that O is of the form (T , {〈C0(a) : `〉}), where C0 is an IALC
concept and ` ∈ L; that is, the ABox consists of only one concept assertion. We denote
as sub(O) the set of all subconcepts that appear in O. A Hintikka function is a mapping
H : sub(O)→ L that is consistent with the semantics of the propositional constructors;
e.g. H(C u D) = H(C) ⊗ H(D) for all concepts C u D ∈ sub(O), and such that, for
every GCI 〈C v D : `〉 ∈ T , it holds that H(C) ⇒ H(D) ≥ `. Intuitively, a Hintikka
function can be seen as a possible interpretation for all the relevant concepts at some
element of the domain, which satisfies the TBox T . The successors in the tree are
used to satisfy the existential and value restrictions. Informally, for every existential
restriction ∃r.C ∈ sub(O), we create one successor that will witness this restriction.
If a node is labelled with a Hintikka function H and its corresponding successor is
labelled with the Hintikka function H ′, then these nodes satisfy the Hintikka condition
if H(∃r.C) = H ′(r)⊗H ′(C). It then holds that O is consistent iff there is an infinite tree
where all the nodes are labelled with Hintikka functions, and each successor relation
satisfies the Hintikka condition. To build an automaton that accepts such trees, it
suffices to use the Hintikka functions as states, and the Hintikka condition to define the
appropriate transition relation.

The automata-based method was later generalized to handle all the constructors in
the expressive DL SHI [BP13a]. Since the size of the automaton is exponential in the
size of the ontology O, and emptiness of an automaton can be decided in polynomial
time in its size, overall this yields an exponential time procedure for deciding consis-
tency of L-SHI ontologies, and hence also of L-IALC ontologies. Beyond these tight
complexity bounds, the automata-based approach is also helpful for understanding the
complexity of deciding consistency, if the form of the ontology is restricted. For exam-
ple, following the ideas originally introduced in [BHP08] for classical DLs, it is shown
that the complexity decreases to PSpace in L-IALC and some of its extensions, if the
TBox is acyclic [BP13a,BP14b].

Although optimal in terms of complexity, automata-based methods are usually im-
practical, as they exhibit a very bad best-case behaviour. In fact, as the exponentially-
large automaton needs to be constructed first, the best-case and the worst-case be-
haviour of this approach coincide. To alleviate this problem, a tableaux-based algo-
rithm was proposed in [BP12a, BP14a]. As usual in tableaux-based approaches, this
algorithm tries to produce a model of the ontology by decomposing complex concepts
into their subconcepts, until only concept names and role names remain, from which
an interpretation can be built. Unfortunately, this algorithm still requires major op-
timization techniques before it can be used in practice, as nearly every decomposition
rule requires a non-deterministic choice.
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3.3 Infinite Lattices

When considering finitely valued semantics, there was no need to restrict to a total order
among the membership degrees, but rather allowed these degrees to be ordered within a
lattice. Then, one natural question is whether the decidability results from Section 3.1
also hold for infinite lattices and, more generally, where do the limits of decidability lie
for fuzzy DLs with semantics based on infinitely-many membership degrees organized
as a lattice.

To generalize the finitely valued semantics introduced in the previous section to in-
finite lattices, we weaken the restrictions on L to require only a complete De Morgan
residuated lattice. It is easy to see that every continuous t-norm over [0, 1] with its
residuum yields one such lattice, and that every finite lattice is also complete. Hence,
this setting generalizes the formalisms presented in the previous sections. In particu-
lar, all the undecidability results from Section 3.1 hold for semantics based on infinite
lattices, too.

Recall that ontology consistency in ⊗-IAL is decidable iff the t-norm ⊗ has no zero-
divisors. However, if the involutive negation constructor is allowed, decidability holds
only for the Gödel t-norm. Although for the case of infinite lattices, such a direct
characterization of decidability is not possible, some of the techniques developed before
can be used to provide partial answers [BP14a].

In terms of decidability, it is shown that if L has no zero-divisors, then consistency
of L-IAL ontologies is decidable in exponential time. This is shown generalizing the
method for ⊗-IAL, in which the problem was reduced in linear time to consistency
of a classical ALC ontology. As before, the reduction simply removes all the annota-
tions from the fuzzy ontology. It is then shown that this simplification is consistency-
preserving.

Undecidability, on the other hand, is not a direct consequence of the presence of zero-
divisors. In fact, the work in [BP14a] characterizes an uncountable family of lattices
with finitely many zero-divisors for which L-IAL ontology consistency is decidable.
Conversely, there are also uncountably many lattices with only one zero-divisor for
which the problem is undecidable. Thus, the existence or absence of zero-divisors is not
sufficient for predicting decidability of lattice-based fuzzy DLs.

This concludes our study on fuzzy DLs and the semantic approach for reasoning with
annotated ontologies. In the next section we switch our attention to the context-based
approach.

4 The Context-based Approach

In the context-based approach, the annotations associated to the ontology axioms have
the main purpose of dividing the ontology in relevant subontologies. Reasoning consists
then on computing a property of all such subontologies that entail a given consequence,
in the classical sense. In this setting, it is then relevant to be able to identify the
axioms that are responsible for a consequence to follow. This task, known as axiom-
pinpointing, can also be seen as a special case of the context-based approach, where
every subontology is relevant for the task.
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We first give a brief introduction to axiom-pinpointing and provide relevant complex-
ity results for the cases of ALC and EL. Afterwards, we introduce a general context-
based approach for the case in which the annotations are well-structured in a distributive
lattice. In the end we show how this approach can be used for error-tolerant reasoning
and reasoning with conditionally dependent probabilistic axioms.

4.1 Axiom-Pinpointing

Axiom-pinpointing is the task of identifying the axioms that are responsible for a con-
sequence to follow [SC03, KPHS07, BPS07]. More precisely, given an ontology O, and
a consequence c (e.g., a subsumption relation between two concept names, or inconsis-
tency), in axiom-pinpointing we are interested in finding all the subsets of O that entail
this consequence c. Since we consider only monotonic consequences, it suffices to find
only the minimal such sets; all supersets of these will also entail the consequence. In
this section we will abuse of the notation and consider O simply as a set of axioms,
without distinguishing between the TBox and the ABox.

Formally, a MinA for a consequence c w.r.t. an ontology O is a subset M ⊆ O
such that M entails c, and every strict subset M′ ⊂ M does not entail c. MinAs
have also been called justifications and MUPS in the literature [KPHS07, SC03]. The
main task of axiom-pinpointing is to identify all the MinAs for a given consequence.
These MinAs can be expressed as a family of subontologies, or compactly represented
by a so-called pinpointing formula. Let every axiom in O be annotated by a unique
propositional variable. For a subset O′ ⊆ O, let ann(O′) be the set of annotations of
the axioms in O′. A propositional formula φ is called a pinpointing formula if for every
subontology O′ it holds that O′ entails c iff ann(O′) entails φ. The set of all MinAs can
be seen as a pinpointing formula in disjunctive normal form: each MinA corresponds
to the conjunction of the variables that annotates it. However, other more compact
representations are possible.

Since each MinA is a subset of the ontology, there are at most exponentially many
of them. Moreover, verifying whether a given subontology M is a MinA requires only
a linear number of entailment tests: verify first that M entails c, and for every axiom
α ∈ M check that M\ {α} does not entail c. Recall that standard reasoning in ALC
is ExpTime-complete. Then, all the MinAs for a consequence w.r.t. an ALC ontology
can be computed in exponential time. More generally, for any expressive logic where
reasoning is at least exponential, axiom-pinpointing is exactly as hard as standard
reasoning. For less expressive logics, like EL where standard reasoning is polynomial,
the simple procedure described above produces an exponential blow-up in terms of
complexity. In these cases, it is important to search for more effective axiom-pinpointing
techniques.

To understand the impact in the complexity that is caused by the computation of
MinAs, we have studied the complexity of axiom-pinpointing in EL. In this way, we
can abstract from the cost of deciding whether an ontology entails the consequence, as
in this logic this steps is polynomial. The complexity of axiom-pinpointing in EL was
studied in detail in [PS10b]. In general, the conclusion obtained from that work is that
finding all the MinAs is a hard task in computational complexity terms, even for this
light-weight logic.
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Perhaps the most relevant hardness result presented in [PS10b] is that deciding
whether a set of MinAs is complete (i.e., contains all the MinAs) is coNP-complete.
More precisely, given a set M of MinAs for c w.r.t. O, deciding whether there exists
an additional MinA M /∈M is an NP-complete problem. A direct consequence of this
result is that all MinAs cannot be enumerated in output polynomial time; that is, in
time that is polynomial in the size of the ontology and the number of MinAs. That is,
there exist consequences that have polynomially many MinAs, but computing them all
requires superpolynomial time (unless PTime = NP).

As a motivation for the context-based approach, we have mentioned handling prefer-
ences. Suppose that we provide a total order among the axioms in O that corresponds
to their preference. We might then be interested in finding the most preferred MinA.
If the preferrence between MinAs is defined using the lexicographical ordering, then
deciding whether a given MinA is the most preferred one is also a coNP-complete
problem. These and many other complexity results are presented in detail in [PS10b].
One important thing to notice is that hardness arises in some special cases of EL already.
A similar systematic analysis of the complexity of axiom-pinpointing in the family of
DL-Lite description logics is presented in [PS10a].

It can be seen that most of the complexity results for axiom-pinpointing are negative,
in the sense that they show that these tasks cannot be solved in polynomial time. On
the positive side, it has been shown that a compact representation of the pinpointing for-
mula can be built in polynomial time, using automata-based techniques [Pen09,Pen10].
This compact representation can be exploited by some formalisms in the context-based
approach.

As mentioned before, axiom-pinpointing forms the bases for the context-based ap-
proach for interpreting annotation. We now present a general framework for context-
based reasoning in which the annotations are ordered in a lattice.

4.2 Lattice-based Contexts

When considering axiom-pinpointing, we assume that every axiom is independent from
all others in the sense that it can appear or be removed from an ontology without
affecting the presence of any other axiom. However, for many applications it is necessary
to handle some dependencies between axioms. For example, in the case of access control,
a user that has access to one axiom at a security level, also has access to all other
axioms at that level, and at any other less-restricted level. It thus makes sense to use
the annotations to specify these dependencies.

We consider an L-annotated ontology O, where L is an arbitrary, but fixed, finite
distributive lattice. Each annotation ` ∈ L defines a subontology O`, called the context
of `, that contains all the axioms whose annotation is greater or equal to ` w.r.t. the
lattice L. That is, O` := {α ∈ O | ann(α) ≥ `}. Intuitively, the order in the lattice
expresses a dependency between the axioms: two axioms with the same annotation must
always occur together, and if an axiom α is chosen, then all axioms with an annotation
larger than or equal to that of α must also be included. In the access control scenario,
the elements of L describe different security levels. The larger elements correspond to
a more public access (everyone has access to them), while lower elements describe more
private or sensible knowledge. As the elements are ordered through a lattice, some of
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them might be incomparable.

The main reasoning task in this setting is to compute the contexts from which a
consequence follows; e.g., the security clearance a user must possess to be able to
observe the consequence. By definition, if ` ≤ `′, then O`′ ⊆ O`. Thus, it suffices
to find only the maximal annotations w.r.t. L, whose corresponding context entails
the consequence. Similarly to axiom-pinpointing, one could enumerate all such labels,
which could potentially be as many as the width of L. Instead, in [BKP12] we propose
to compute only one annotation that expresses all these contexts. More precisely, given
a consequence c, we want to compute an annotation b(c) ∈ L (called the boundary of
c) such that for every ` ∈ L, O` entails c iff ` ≤ b(c). Unfortunately, such a boundary
may not exist in general. To solve this issue, one can restrict the class of contexts to
the ontologies O` where ` is a join prime element of L; i.e., for every two elements
m,n ∈ L, if ` ≤ m ∨ n, then ` ≤ m or ` ≤ n. Under this restriction, it is shown that
the boundary always exists and is unique.

Notice that axiom-pinpointing is a special case of this setting, where L is the set of all
monotone propositional formulas over the variables in ann(O), modulo logical equiva-
lence. In this case, the join prime elements are exactly the conjunctions of propositional
variables, which can be seen as subsets of O. Moreover, the pinpointing formula and
the boundary in this lattice coincide.

To compute the boundary, it is possible to use a black-box algorithm that makes
repeated calls to a standard reasoner. This method would require in the worst case
exponentially many calls to the reasoner, which as for axiom pinpointing, means that
for expressive logics the complexity of computing the boundary is not greater than
the complexity of standard reasoning. Exploiting the properties of the lattice, the
computation of the boundary can be optimized in two ways. First, when trying to find
one context that entails the consequence, one can ignore all axioms that would require
the context to grow beyond the currently known boundary. Second, every time the
boundary b(c) is updated, every context O` with ` ≤ b(c) can be removed from the
search space as they are already known to entail c. To achieve this, one can remove
from O all axioms whose annotation is less than or equal to b(c). These optimizations,
together with a state-of-the-art standard reasoner, have been shown to behave well in
practice, even for large ontologies.

Even with all these optimizations, this black-box algorithm may still need exponential
time to compute the boundary w.r.t. an EL ontology. Adapting the automata-based
methods, it is possible to prove that the boundary is still computable in polynomial time
for this logic. Notice, however, that the assumption of the lattice being distributive is
fundamental for this polynomial upper bound to hold. In fact, if the set of annotations is
a lattice, but not distributive, then the automata-based approach yields only a PSpace
upper bound for the complexity of computing the boundary, assuming that the lattice
operations are easily computable [LP14a].

So far in this section, the annotations in the axioms are used to identify different sets
of axioms, and the main task is to idenfity which of these sets entail a given consequence.
In the current setting, the lattice was used to express a membership dependency between
the axioms. We now extend this idea to express a probabilistic dependency among the
elements of the ontology.
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Figure 2: A simple Bayesian network over the variables {x, y, z}.

4.3 Bayesian Description Logics

While many different probabilistic variants of description logics exist, in most of them
it is hard, if not impossible, to express (conditional) probabilistic dependencies between
the different axioms in the ontology. Much like in Section 4.2, Bayesian description logics
use annotations to divide the ontology into subsets of axioms, which are called contexts.
The probabilistic component of the logic is given through a Bayesian network, which
expresses the joint probability distribution of the contexts in a compact way [Dar09].
From this joint distribution, the conditional dependencies between the contexts, and
hence the probability of a consequence, can also be computed.

A Bayesian network (BN) is a pair B = (G,Φ), where G = (V,E) is a directed acyclic
graph (DAG), whose nodes represent Boolean random variables, and Φ is a family of
conditional probability distributions containing one distribution PB(x | π(x)) of x given
its parents π(x) for every x ∈ V . In this case, we say that B is a BN over V . The
DAG G is a graphical representation of a set of conditional independence assumptions:
every node from V is independent from its non-descendants, given its parents. Under
this assumption, the joint probability distribution (JPD) of V defined by B is obtained
through the chain rule PB(V ) =

∏
x∈V PB(x | π(x)). Figure 2 depicts a simple BN

over V = {x, y, z}. This BN expresses, for instance, that the probability of observing
variable y given that x was not observed is P (y | ¬x) = 0.5.

Given a finite set of Boolean variables V , let con(V ) be the set of all consistent sets
of literals from V . The elements of con(V ) are called contexts. A Bayesian knowledge
base (KB) is a pair K = (O,B), where O is a con(V )-annotated ontology and B is a BN
over V . The main idea behind this logic is that the ontology expresses knowledge that
is certain to hold, in different contexts. Since the elements of V are random variables,
the precise context, and hence also its consequences, have an associated uncertainty,
expressed by the BN.

Every context κ ∈ con(V ) defines a subontology of O that contains all axioms that
must be true in this context; more precisely, Oκ := {α ∈ O | ann(α) ⊆ κ}. We can
see a valuation V of the variables in V as the set of all literals that it maps to true;
hence valuations are also contexts from con(V ). Thus, in particular we consider the
subontologies OV , where V is a valuation of the variables in V .

In Bayesian DLs, we are interested in computing the probability of a consequence
to hold. That is, given a consequence c, we want to compute the probability PK(c) of
observing some context κ such that Oκ entails c. It can be shown that it suffices to
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Figure 3: Proof structure of O2.

deduce the set of all valuations that entail the consequence. The desired probability is
then the sum of the probabilities of these valuations, given by the BN B. More precisely,
PK(c) =

∑
OV |=c PB(V) [CP14a].

Notice that the set of all propositional formulas over V forms a distributive lattice
with the order induced by formula entailment. Moreover, the set of all valuations of
the variables in V correspond to the join prime elements of this lattice. Hence, we can
use the approach described in Section 4.2 to obtain a boundary for c w.r.t. O in this
lattice. This boundary b(c) has the property that for every valuation V, V |= b(c) if and
only if OV |= c. The probability computation then reduces to adding the probabilities
of all valuations that entail b(c). Since there are potentially exponentially many such
valuations, this approach runs in exponential time even if the entailment test at the
underlying logic is tractable.

For the Bayesian extension of the light-weight DL EL, the computation of the prob-
ability of an entailment can be improved by adapting the completion algorithm. The
main idea is to use the completion algorithm to encode the logical entailment test into
a Bayesian network of size polynomial on |O|. The probability PK(c) can then be com-
puted using standard probabilistic inferences over this BN. The reduction is based on
the so-called proof structure of O. Essentially, the proof structure of O is a directed
hyper-graph whose nodes are elements of the set comp(O) and whose hyper-edges ex-
press all the possible rule applications that can be performed within comp(O). For
example, if {A v B,B v C,A v C} ∈ comp(O), then the proof structure will contain
a directed hyper-edge from {A v B,B v C} to A v C, expressing that from the two
former axioms the latter is derived by a rule application. Figure 3 depicts the proof
structure of the ontology

O2 := {〈A v B : {x, y}〉 , 〈B v ∃r.B : {¬z}〉 , 〈A v ∃r.B : {¬x}〉 , 〈∃r.B v C : {y}〉},

where the original axioms are surrounded by a grey box. This hyper-graph can be used
to find all the MinAs for a subsumption relation. These MinAs correspond exactly to all
the minimal sets of axioms that can reach the given consequence in the proof structure.
Notice that the proof structure contains more information than what is obtained by
the completion algorithm alone; in particular, it stores all the possible causes for each
entailed consequence, while the completion algorithm can preserve at most one. In this
section, we are not interested in finding the MinAs for a consequence, but rather in the
probability of observing one of them.

To obtain the probability of a consequence appearing in the proof structure w.r.t. a
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Figure 4: DAG of the BN obtained from K2.

KB K = (O,B), we combine the original BN B with the proof structure to obtain a new
BN expressing the probabilistic information of all the consequences of O. Notice that
the proof structure may be cyclic. Thus, as a first step we need to unravel this proof
structure into an acyclic hyper-graph. Recall that each hyper-edge represents a possible
rule application in the completion algorithm; moreover, every possible derivation of any
element in comp(O) can be obtained after at most |comp(O)| rule applications. Thus,
unraveling the proof structure to at most depth |comp(O)| suffices for guaranteeing
that all the relevant information for deriving each implicit consequence is preserved.
This acyclic hyper-graph is then transformed into a DAG by combining together all the
hyper-edges that share the same head. A simple conditional probability table is used
to guarantee that the parents of this head node are combined in the right way. All the
details are explained in [CP14c].

Consider for example the KB K2 = (O2,B2), where B2 is the BN shown in Figure 2.
Notice that the proof structure of O2 is already acyclic, so there is no need of unravel-
ing it. The graphical component of the BN obtained by the reduction sketched above
appears in Figure 4. Notice that using this transformation directly may lead to some
nodes in the DAG having many parents, as is the case of the node A v C in Figure 4,
which has four parents. Since the conditional probability tables of a BN grow expo-
nentially on the maximum number of parents of the nodes in its DAG, this might yield
an exponential blow-up in the reduction. Fortunately, this blow-up can be avoided by
introducing polynomially many auxiliary nodes in such a way that all the nodes that
did not belong to the original BN are guaranteed to have at most two parents in the
final DAG. Hence, the size of the conditional probability tables is bounded by the size
of the tables of the BN from the KB [CP14c].

Let BK be the BN obtained from the KB K = (O,B) through this process, and c
a consequence of O. It then holds that PK(c) = PBK(xc), where xc is the node in BK
that corresponds to the consequence c. Since the size of BK is polynomial on the size
of O and B, this yields a polynomial-time reduction from the problem of computing
the probability of a consequence to probabilistic inferences in a BN. We can use this
reduction to find tight complexity bounds for this and other related reasoning problems
in the Bayesian extension of EL.

As a last example of the context-based approach we now look at the problem of
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extracting meaningful consequences from an ontology that is known to contain errors.

4.4 Error-Tolerant Reasoning

The success of DLs as knowledge representation formalisms has meant that more and
larger ontologies are being built for representing various knowledge domains. To build
these ontologies, domain experts and ontology experts have to interact to formalize the
relevant knowledge of the area. Due to misunderstandings between the domain expert
and the ontology editor, disagreements between experts, or incorrect translations of
notions into the logical knowledge (among many other causes), ontology development
and maintenance are very prone to errors. As ontologies get larger, understanding and
correcting these errors becomes harder. Moreover, well-managed ontologies usually have
long version-publishing cycles. For example, new versions of Snomed are published only
twice per year; this means that one should expect to wait at least one year before an
error is corrected.

The goal of an ontology is not only to represent the knowledge of a domain, but also
to be able to reason with this knowledge and extract meaningful consequences from
it. When an ontology is found to be erroneous, one cannot expect all the applications
based on this ontology to stop working and wait until all the errors are corrected. On
the other hand, it would be very bad practice to simply ignore the known error and
continue using the ontology as if it was correct. The goal of error-tolerant reasoning
is to extract meaningful consequences from an ontology while avoiding all the known
errors.

A special case of error-tolerant reasoning has been studied previously in the form of
inconsistency-tolerant reasoning [ABC99,Ber11,BR13,Ros11]. In that setting, the only
error considered is the inconsistency of the ontology, and this error is always assumed to
be caused by incorrect assertions in the ABox; that is, the TBox is considered to always
be correct. We generalize this idea to allow other kinds of errors. For example, an EL
ontology is always consistent, but it might entail an unwanted subsumption relation.
Moreover, we do not expect the TBox to be necessarily correct; the error might be
caused by some of the terminological axioms of the ontology.

Error-tolerant reasoning is based on the notion of a repair: a maximal sub-ontology
that does not entail a consequence. More formally, a repair for a consequence c w.r.t.
the ontology O is a subset R ⊆ O such that R does not entail c, and every strict
superset R ⊂ R′ ⊆ O entails it. Repairs are the dual notion to MinAs introduced in
Section 4.1. In fact, it is well known that the set of all MinAs can be computed from
all the repairs and vice versa [LS05, SC03]. However, this computation might require
super-polynomial time [FK96]. We use the expression R(O, c) to denote the set of all
repairs for c w.r.t. O.

Many different error-tolerant reasoning tasks can be defined, depending on the in-
tended application, and the desired properties of the answers. We study the three most
common ones, known as brave, cautious, and IAR entailments. Suppose that c is an
erroneous consequence of O. A consequence d is bravely entailed by O w.r.t. c if there
exists a repair R ∈ R(O, c) that entails d. In other words, d is a brave entailment if
it possible to remove the error c from O in such a way that d still holds. This kind
of entailments is useful e.g., when trying to understand the relationship between dif-
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ferent consequences from an ontology. Notice, however, that brave entailments are not
logically closed; it is possible, for example, that A v B and B v C are both brave
entailments, while A v C is not. Thus, one must be careful when considering this
notion of error-tolerant reasoning.

A stronger notion is that of cautious entailments. We say that d is cautiously entailed
by O w.r.t. c if every repairR ∈ R(O, c) entails d; that is, if d can still be derived regard-
less of the repair chosen to remove the error c. Cautious entailments are guaranteed to
hold after the process of removing the error c. Thus, they are not affected by the causes
of the error, and can be thought to be correct. Finally, an IAR entailment is one that
follows from the intersection of all the repairs for c w.r.t. O. This notion of entailment
was originally introduced in [LLR+10] to regain tractability in inconsistency-tolerant
reasoning for an inexpressive DL. It is easy to see that every IAR entailment is also
a cautious entailment, and every cautious entailment is also brave, but the converse
implications do not hold in general. In contrast to brave entailments, cautious and IAR
entailment are also closed under logical deduction.

We have shown that these three kinds of reasoning tasks are unfeasible already for EL.
Moreover, cautious and brave entailments cannot be decided in time polynomial on the
size of the ontology and the number of repairs. This means that even if the consequence
c has only polynomially many repairs, one would still need super-polynomial time to
decide whether d is bravely or cautiously entailed [LP14b].

In order to solve these reasoning problems efficiently, we propose to compile the
information about all the repairs into an annotated ontology. The idea is that each
repair corresponds to one context in this annotated ontology. The set of contexts that
entail the consequence d (that is, the boundary of d w.r.t. this annotated ontology) can
be easily used to determine whether d is bravely or cautiously entailed. Moreover, IAR
entailments can be easily decided through standard reasoning over the sub-ontology
composed of those axioms that belong to all contexts. Thus, the main idea proposed
for improving the reasoning time for error-tolerant tasks is to reduce the problem to
one similar to the lattice-based contexts described in Section 4.2. Notice, however, that
the maximality condition in the notion of repairs guarantees that no repair is a subset
of another. Thus, in this case, the lattice obtained has a simplified shape that can be
exploited for further optimizations of the reasoning tools.

Obviously, the compilation step, in which all the repairs need to be computed in
advance, may be a computationally expensive one. Under the assumption that many
different error-tolerant reasoning queries are made over a single erroneous ontology, the
cost of this computation is soon compensated by the effort saved at each individual
error-tolerant reasoning task. Moreover, the compilation can be made off-line, saving
the users some waiting time to get answers to their entailment tests. An additional
benefit of this approach is that it can be exploited for improving the ontology update
process [Thu15].

With this we conclude the section on the context-based approach for reasoning with
annotated ontologies. While the reasoning problems described throughout this section
are very different, they are all based on the basic task of identifying the contexts that
entail a given consequence. Clearly, the list of reasoning problems that belong to the
context-based approach is not complete, and one can think of many other problems that
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can be described using this idea. Many of the methods that have been developed for the
special cases presented in this section can be generalized to solve also other reasoning
tasks that follow the context-based approach. One remaining task for future work is
to describe a general framework that can be used to identify the methods that can be
used in specific circumstances.

5 Conclusions

As description logics become better understood and a more popular choice for modelling
the knowledge used by practical applications, the limitations of basing these formalisms
in classical logic become more apparent. The knowledge expressed in an ontology often
needs to be extended with additional information that affects how this knowledge is
treated. Examples of such additional information include the origin, or age of an axioms,
but also a degree of trust, or the level of certainty that one has that the axiom is correct,
to name just a few of the many possible.

One of the main causes for the success of DLs as knowledge representation languages is
their formal and well-understood semantics. It is thus important that the annotations
are given also a precise meaning that guarantees that the annotated ontology is not
ambiguous. Clearly, the meaning of the annotations depends on what they are intended
to represent (e.g., provenance, time, probabilities, etc.), which makes it impossible to
provide one general semantics for annotated ontologies. Rather than attempting such
a task, we have characterized all the different approaches for interpreting annotations
into two large classes. In a nutshell, the difference between these classes is whether they
modify the underlying logical formalism, or require additional work to be done on top
of standard logical reasoning.

The semantic approach refers to all those formalisms in which the logical formalism is
affected. As part of this approach, we studied thoroughly the case of fuzzy description
logics. These logics change the semantics of classical DLs by interpreting concepts and
roles as fuzzy sets and binary relations, respectively, as opposed to classical sets and
relations. As the computational properties of these logics were not well-understood,
our work focused on characterizing the family of fuzzy DLs with decidable reasoning
problems, and finding tight complexity bounds for them. Briefly, we showed that these
logics become easily undecidable, but in the decidable cases, the complexity is typi-
cally not affected by the change in semantics. To the best of our knowledge, the only
exception to this rule found so far is the finitely valued EL, in which concept subsump-
tion is decidable, but coNP-hard [BCP14]. We conjecture that this problem is in fact
ExpTime-complete.

In contrast, in the context-based approach the semantics of the logic remain un-
changed, but the reasoning problem is modified. In this setting, the annotations are used
to define a class of sub-ontologies, called contexts. The reasoning tasks is to identify,
and in some cases make computations over the class of all the sub-ontologies that entail
(in the classical sense) a given consequence. Within the context-based approach, we
have studied several formalisms and applications, including axiom-pinpointing, access-
control, a variant of probabilistic knowledge representation, and error-tolerant reason-
ing. While they may seem very different at first sight, they all share as a core reasoning
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task the need of finding contexts that entail a consequence. The main differences be-
tween these formalisms are how the different contexts are defined, and the additional
computation required once these have been identified. Many of the methods that we
have developed can be adapted to other interpretations of the contexts without mayor
changes.

It is worth noting that, although the two approaches might appear to be very differ-
ent, the distinction between them is not always clear. For example, we have classified
Bayesian DLs as part of the context-based approach because reasoning corresponds to
finding the probability (defined externally through a Bayesian network) of the boundary
of a consequence. However, the original definition of these logics uses a multiple-world
semantics that would situate them as part of the semantic approach [CP14b]. Con-
versely, fuzzy DLs are an obvious choice for the semantic approach; their semantics
require a different interpretation of concepts and roles. Still, for some cases based on
the finitely-valued Gödel or Zadeh semantics it is possible to equivalently define these
logics using the context-based approach [FP12]. A similar behaviour had been previ-
ously observed for possibilistic extensions of DLs [Hol95].

One important feature of the context-based approach as a whole is that it divides the
knowledge into two separated components: the logical component, which is in charge
of detecting which contexts entail the consequence, and the annotation component,
that performs additional computations over these contexts. Due to this separation, the
methods developed for one formalism using this approach can usually be adapted to
other formalisms in the same approach. This does not mean, however, that it suffices
to study only one formalism to solve all the others. The best solutions are developed
exploiting the properties of the logical and the annotation components simultaneously,
as shown in Sections 4.2 and 4.3. Another advantage of the separation between the
logical and the annotation component is that the ideas developed do not apply to
DLs only. Indeed, the main assumption required throughout Section 4 is that there
is a monotone entailment relation between ontologies and consequences; that is, if the
ontology O entails c, then every superset of O must also entail c. For any ontological
language satisfying this condition, the different annotated extensions can be defined
and treated accordingly.

Unfortunately, the methods developed for a formalism in the semantic-approach can-
not typically be adapted to others in the same approach. This is caused by the fact that
the newly introduced semantics can greatly differ from each other. An obvious example
is that the reasoning methods developed for finitely-valued fuzzy DLs in Section 3.2
cannot work for their infinitely valued counterparts, as the latter have been shown to
be undecidable (Section 3.1). Thus, in this approach, new reasoning techniques need to
be developed for each defined formalism.

Any study of the different ways in which annotation ontologies can be interpreted
is necessarily incomplete. There will always exist new ways to interpret and use the
annotations associated to the axioms. As such, this work is not intended to be a
comprehensive view on all the known semantics for annotations, but rather to provide
a deeper view into the properties of some of the cases that have been recently studied.
We expect that the lessons learned during this study will be helpful for the study of
future formalisms.

While the results presented here are mainly theoretical, first efforts regarding imple-
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mentation of tools for reasoning in these logics have already been made. A query answer-
ing tool for finitely-valued fuzzy DLs was presented in [MPT14,MT14]. Many different
tools have been implemented for axiom-pinpointing [Sun08,SV09,Lud14,KPHS07] and
reasoning with lattice-ordered contexts [BKP12]. A tool for performing error-tolerant
reasoning through the compilation approach was presented in [LP14b]. Finally, a pro-
totypical implementation of the algorithms for reasoning in the Bayesian extension of
EL is currently under development.

Among the many possible paths for future work, it is worth mentioning the com-
bination of logics. The work on Bayesian DLs from Section 4.3 suggests an approach
for combining an arbitrary monotonic logic (in this case a DL) with an extension of
propositional logic (here, probabilistic logic). In this combination, the two components
are detached, and the overall complexity of reasoning is bounded by the most expensive
of the components. If this intuition holds in general, then it can be used to produce
combined logics satisfying some desirable properties.
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[BP11b] Franz Baader and Rafael Peñaloza. GCIs make reasoning in fuzzy DL with
the product t-norm undecidable. In Riccardo Rosati, Sebastian Rudolph,
and Michael Zakharyaschev, editors, Proceedings of the 2011 International
Workshop in Description Logics (DL2011), volume 745 of CEUR Workshop
Proceedings, pages 37–47, 2011.

[BP11c] Franz Baader and Rafael Peñaloza. On the undecidability of fuzzy descrip-
tion logics with GCIs and product t-norm. In Cesare Tinelli and Viorica
Sofronie-Stokkermans, editors, Proceedings of the 8th International Sym-
posium on Frontiers of Combining Systems (FroCoS’11), volume 6989 of
Lecture Notes in Computer Science, pages 55–70. Springer, 2011.
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