
Axiom-Pinpointing in Desription Logisand BeyondDissertationzur Erlangung des akademishen GradesDoktor rerum naturalium (Dr. rer. nat.)vorgelegt an derTehnishen Universit�at DresdenFakult�at Informatikeingereiht vonM. S. Rafael Pe~naloza Nyssengeboren am 5. Juli 1981 in Mexiko-Stadtverteidigt am 14. August 2009
Gutahter:Prof. Dr.-Ing. Franz Baader,Tehnishe Universit�at DresdenProf. Ulrike Sattler,University of Manhester

Dresden, im Oktober 2009

Contents
1 Introdution 12 Logis and Deision Proedures 112.1 Desription Logis . 112.2 Linear Temporal Logi . 162.3 Tableau-Based Deision Algorithms . 182.3.1 Subsumption in HL with General TBoxes 182.3.2 Consisteny of ALC ABoxes . 192.3.3 Satis�ability of ALC Conepts with Ayli TBoxes 202.3.4 Satis�ability of ALC Conepts with General TBoxes 212.3.5 Satis�ability of ALC Conepts with SI-TBoxes 232.4 Automata-Based Deision Algorithms 252.4.1 Satis�ability of ALC Conepts with SI-TBoxes 272.4.2 Axiomati Satis�ability of LTL Formulae 293 Tableaux and Pinpointing 333.1 Basi Notions for Pinpointing . 343.2 Pinpointing in Ground Tableaux . 373.3 Pinpointing in General Tableaux . 424 A Class of Terminating Tableaux 554.1 Forest Tableaux . 554.2 Ordered Tableaux . 604.3 Bloking in Forest Tableaux . 655 Automata-based Pinpointing 755.1 Pinpointing Automata . 765.2 Computing the Behaviour of Weighted Automata 835.2.1 Computing the Behaviour of a WBA 845.2.2 The Behaviour of WLA . 945.2.3 The Behaviour of WGBA . 955.3 An Alternative Computation of the Behaviour 98i

6 Complexity Results 1036.1 Complexity of Pinpointing . 1046.1.1 MinA Complexity . 1046.1.2 MaNA Complexity . 1116.1.3 Pinpointing Complexity . 1166.2 Undeidability of Tableaux Termination 1186.2.1 Termination of Tableaux . 1186.2.2 Pinpointing Extensions of Terminating Tableaux 1217 Conlusions and Future Work 1257.1 A Chronial Summary . 1257.2 Future Work . 128Bibliography 131

To those who taught methe value of ontraditions.

AknowledgementsThis work was �nanially supported by the Deutshe Forshungsgemeinshaft (DFG)under grant GRK 446. In this respet, the author wishes to thank Prof. Dr. GerhardBrewka for the oportunity of working at the Graduiertenkolleg Wissensrepr�asentation.

Chapter 1IntrodutionExplanations are an essential omponent for the development of siene. Very roughly,sienti� progress an be divided into two steps, eah having a lose onnetion to adi�erent interpretation of the word explanation: �nding a theory that explains a set ofobservations, and explaining why a given fat an be dedued from a spei� theory.When onfronted with a set of observations, one an try to produe a generaltheory that explains them; in other words, one from whih all suh observations area onsequene. The adjetive general anteposed to the word theory is intended toexpress that this theory an be used to dedue not only the given observations, butalso additional, possibly previously unknown, fats. These additional fats allow forour theory to be tested, by designing experiments that on�rm or ontradit them.The theory beomes stronger with eah new observation that on�rms it, but themoment one ontraditing observation is found, the theory needs to be refuted andreplaed by a new one that aounts also for this observation.A refuted theory needs not be totally wrong; indeed, it is possible that only a minorportion of the whole theory is responsible for the ontradition between the deduedfats and the new observations. Instead of reating a new theory from srath, onean try to remove the wrong portions; that is, those from whih the ontraditedfats an be dedued, and then extend this theory to aount for all the observationsthat do not follow anymore from the redued theory. Finding the wrong portions ofthe theory an be seen as explaining the ontradited fats, within the ontext of thetheory.One famous example of this proess is the disovery by Johannes Kepler of theelliptial shape of planetary orbits, as desribed in his Astronomia Nova. Using thevery preise and methodi measurements of the position of the planet Mars made byTyho Brahe during his lifetime, Kepler found a displaement of up to eight minutes ofa degree with respet to the position predited by the astronomi theory of the time.Convined of the preision of the measurements, this admittedly small displaementprompted him to orret the theory. His �rst step onsisted on showing that a irularorbit was inompatible with Brahe's observations, thus distinguishing the hypothesisof irular planetary motion as the soure of the disparity between the theory andsaid observations. Keeping the rest of the astronomial theory intat (for instane,still assuming that the sun was a stationary body in spae around whih all planets1

2 CHAPTER 1. INTRODUCTIONtraveled) Kepler needed only to �nd a shape for planetary orbits that agreed with theset of observations he had. After trying with di�erent ovoid shapes, he �nally settledthat an ellipse with very low eentriity and the sun standing at one of its foi, bestdesribed the path followed by the planets. This disovery is nowadays known as hisFirst Law of planetary motion.It is perhaps worth notiing at this point that the term observation is being usedin a very loose manner that an express fatual observations, suh as the positionof Mars at a given moment in time, as well as more general theories. For instane,Isaa Newton's law of universal gravitation an be seen as a general theory explaining,among other observations, Galileo's law for free fall of bodies and Kepler's �rst twolaws of planetary motion.The importane of explanations in siene has been long known: it an be trakedbak at least as far as Aristotle's Posterior Analytis, with more reent examplesinluding Karl Popper [Pop35℄ and John Stuart Mill [Mil43℄. But it was only afterHempel and Oppenheim's logi-based theory of explanation [HO48℄ that the topireeived a wider interest and was treated in a formal and methodial manner. Thework by Hempel and Oppenheim fouses on the �rst kind of explanations desribedabove, whih is alled sienti� explanation in modern Philosophy of Siene: givenan observation E, a theory T explains E if E an be derived from T and there are nosuperuous elements in T ; in other words, if there is no subtheory T 0 of T from whihEan also be derived. In this ase, E is alled the explanandum and T the explanans.1What distinguishes [HO48℄ from previous studies on sienti� explanations is theagnisation of the need for a formal de�nition of the terms theory, observation, andderivation. To this end, the authors propose a language based on �rst-order logi, inwhih the explanandum and explanans need to be represented, yielding logi-basedformal semantis to the ideas of sienti� explanations: theories and observations aresets of formulae and formulae in this language, respetively, while derivation is givenby the standard notion of logial entailment.Soon, this theory of sienti� explanations began to be strongly ritiised due to itsexessive generality. It is interesting that most of these ritiisms were not aimed to theintuitive notion of sienti� explanation, but rather to the representational languageused in their formalisation. Paradigmati examples of this view are the trivialisationtheorems [EKM61℄. Roughly, these theorems show that given almost any arbitrarysentene E and theory T , it is possible to onstrut a theory T 0, derivable from Tthat works as an explanans for E. In words, what these results say is that whenonfronted with an observation, one an �rst onstrut any arbitrary theory, totallyunrelated with the given observation, and from it build an explanation satisfyingHempel and Oppenheim's notion. Several e�orts have been done to solve this problemby either restriting the representation language, or imposing additional onditions inthe set of formulae that form an explanans. Hempel himself spent twenty years �ne-tuning both, his representation language, and the notion of what is an aeptableexplanation [Hem65℄.In reality, the trivialisation theorems are less surprising than it might look at �rst1For a survey on the origins and �rst developments of sienti� explanation, see [Sal89, Sh96℄.

3sight. The language introdued in [HO48℄ is intended to solve two problems simulta-neously: knowledge disovery, and knowledge representation. As a onsequene, therepresentation language needs to be able to desribe any oneivable explanans for anyoneivable explanandum. We aim at a fairly less ambitious goal, where the knowl-edge disovery problem has been solved already; we will nonetheless rely on the samenotions of explanation, in dependeny with the knowledge representation formalismhosen.Knowledge representation deals with the problem of storing the knowledge of adomain in an eÆient and usable manner. The searh for a solution to this problemobtained speial attention from the seond half of the past entury as an importantmilestone for the area of Arti�ial Intelligene. In a nutshell, before a mahine isable to show any intelligent behaviour, it needs to have a mehanism for storing andmanipulating piees of knowledge. The stored knowledge is usually alled a knowledgebase or ontology. Rather than having a knowledge base expliitly stating every pieeof knowledge, one would prefer to be able to infer additional information that appearsimpliitly in this knowledge base. For instane, knowing that Albert is a Human,and that all Humans are Mammals, it should not be neessary to additionally expressthat Albert is a Mammal, as this is a diret onsequene of the other two piees ofknowledge. Our representation language should thus be aompanied by an infereneengine that allows the user to make suh fats expliit.Two early knowledge representation formalisms are Semanti Networks [Qui67℄,developed by Quillian, and Frames [Min81℄ introdued by Minsky. The main draw-bak of these formalisms is their lak of a formal semantis by whih the knowledgerepresented in them an be unambiguously interpreted. Hene, it was impossible toonstrut a system that ould infer knowledge from arbitrary knowledge bases. Asystem developed for working on suh ontologies required to make hoies regardingthe semantis of some of the onstrutors, whih made it usable only in the spei�appliation it was developed for. Desription Logis arised as a way to alleviate thisproblem, using some of the main ideas of Semanti Networks and Frames, but givingthem formal and easy to understand semantis.Desription Logis [BCM+03℄ are a family of logi-based knowledge representationformalisms with lear and well-de�ned semantis, built in most ases as sublanguagesof �rst-order logi. The family overs a wide range of expressivity levels, with theirorresponding trade-o� in omplexity. On the lower part of the expressivity saleis the desription logi EL whose relevant inferene problems are deidable in poly-nomial time [Baa03, Bra04b℄. This logi has been suessfully applied to representknowledge from the biologial and medial �elds [Sun09℄. A fairly more expressivedesription logi is SHOIN (D), the one behind the Web Ontology Language OWL,whih was seleted by the World Wide Web Consortium as the representation languagefor the Semanti Web [HPSvH03℄. Although the inferene problems for this logi turnout to be intratable, highly optimized reasoners have been shown to behave well inpratie [HST00, HS04℄.The existene of a formal (and reommended) language motivated people to startonstruting realisti ontologies and reasoning with them. Suessful stories rapidly

4 CHAPTER 1. INTRODUCTIONtriggered the proliferation of more and larger knowledge representation e�orts. As thesize of these knowledge bases rapidly inreases, the need of automati explanation andorretion tools beomes muh more obvious. Indeed, ontology development is, justas software development, an error-prone ativity. Sine large ontologies are typiallydeveloped by groups of experts, lashes in their individual views may aount for theexistene of errors. On the one hand, it is not unommon to �nd experts disagreeingin partiular aspets of the area being represented. Suh disagreements an easilyprovoke the insertion of ontraditory information to the knowledge base. On theother hand, even if all experts onur on the knowledge being modeled, they anstill dissent on the way it should be translated to the representation language. This isdeeply related to the problem of expertise: usually, experts in the domain �eld are notexperts in knowledge representation, and vie-versa. An ideal ontology developmentgroup should be pro�ient in both areas. Furthermore, with large ontologies it isusually hard to predit the whole e�et of a minor variation, whih an easily lead tounexpeted, if not neessarily erroneous, onsequenes. Finally, representation hoiesare sometimes made but not used uniformly or adequatedly along the whole ontology.In any of these ases, it is desirable to trak bak to the spei� portion of theknowledge base that is responsible for a given onsequene. In other words, we areinterested in �nding justi�ations: given a onsequene E of an ontology T , a portionT 0 of T justi�es E if E is a onsequene of T 0 and E is not a onsequene of anystrit portion of T 0. Obviously, for this de�nition to make any sense, one needs to beable to divide the full ontology in smaller parts. We will give the name axiom to theindivisible segments of the knowledge base. Notie that the de�nition of justi�ationorresponds exatly to the seond notion of explanation presented at the beginning ofthis hapter.Although �nding justi�ations by hand may be feasible for very small ontologies,performing this task without the help of an automated tool seems unrealisti onethe border of the hundreds of axioms has been rossed; muh more for ontologiesof the kind of Snomed CT [Spa05, SPSW01℄ whih has over 340 000 axioms. Theurrent version of Snomed CT lassi�es the amputation of a �nger as a suboneptof amputation of hand. In other words, aording to this ontology, someone who hasan amputated �nger has also su�ered the amputation of a hand.This erroneous infer-ene follows from only six axioms of the ontology, and is aused by an erroneous useof a representation shema developed for desribing the transitivity of some proper-ties [BS08℄.2A justi�ation distinguishes preisely those elements of an ontology that are re-sponsible for the derivation of a given onsequene E. If E is known to be erroneous,then justifying it means to detet the soures of this error; with this knowledge we anthen orret the ontology and get rid of E. But one should not forget that a singleonsequene may have more than one justi�ation in the given ontology. In orderto ensure that E is not a onsequene of the orreted ontology, one would have toaount for eah of these justi�ations. Alternatively, we an try to �nd a diagnose for2In fat, the same problem with transitivity presents itself in more than one example in SnomedCT; for instane, amputation of hand is also lassi�ed as a subonept of amputation of arm.

5E: a minimal portion of the ontology T suh that, if removed from T , E is no morea onsequene. Returning to our original example, Kepler diagnosed that the soureof the disparity between the theoretially-predited and the experimentally-found po-sitions of Mars was the assumption that planets follow a irular orbit. Removingthis assumption from the astronomial theory led to a theory without the unwanteddisparity. This theory, nonetheless, also was unable to predit the position of anyplanet at any time, nor even elipses or other important astronomial events. In theproess of removing an unwanted onsequene, we an easily get rid also of wantedonsequenes; hene the need for a diagnose to be minimal, ensuring this way thatthe pruning of the ontology produes as small a hange as possible.Realling the notion of sienti� explanation, one an easily on�rm that a jus-ti�ation for a onsequene E is in fat a sienti� explanation for E (seen as anexplanandum) where the sentenes of the explanans are restrited to belong to theoriginal ontology. Conversely, it is possible to see the onstrution of an ontology asthe result of knowledge disovery, in whih ase a sienti� explanation for E is in fata justi�ation for E over the newly generated ontology.3 Notie that neither notionof explanation really depends on the representation language used. This in partiularshows that, although muh e�ort has been set in disrediting and �xing Hempel andOppenheim's notion of sienti� explanation, along with the logi-based representa-tion language they use, it is not the language, nor the theory per se that ause themain problems of this approah, but rather the intermediate task of knowledge disov-ery, where any arbitrary set of sentenes an be used as an explanans. Any languagewith suÆient expressivity would be trivialisable under suh a general attempt forexplanations.With the advent of newer representation languages, the original language desribedat [HO48℄, as well as its improved versions, remains relevant not so muh as a knowl-edge representation formalism, but as a paradigm for the properties that a languagemust satisfy before a notion of explanation an be well de�ned over it. First, this lan-guage must be able to express two kinds of sentenes: axioms and onsequenes, havingformal semantis. Additionally, a notion of derivability of a onsequene from a set ofaxioms is neessary. Sine the de�nition of explanation requires a minimal portion ofthe ontology from whih the onsequene follows, derivability must be monotoni inthe sense that growing the knowledge base will only add more onsequenes withoutremoving any of the previously existent; otherwise, minimality makes no sense at all.Sine �rst order logi is monotoni, so is Hempel and Oppenheim's language, andthus is this ondition impliitly satis�ed; nonetheless, one we deide to work with adistint language, this ondition must be ensured. Finally, Hempel did realise thatnot every set of axioms an be onsidered a theory: it might be neessary to ensure aninternal oherene between the axioms used. The notion of oherene may obviously3A small, but important, distintion is in order. In sienti� explanation one will usually onsidera �xed bakground theory over whih the new theory is being built. Justi�ations, on the other hand,usually onsider eah axiom as refutable, in order to obtain the real soure for the dedution. Thisdesription of sienti� explanation is losely related to the idea of abdution in Arti�ial Intelligene.In this ase, knowledge disovery would try to �nd a set of plausible axioms, alled abduibles; atheory is then extended with a minimal set of abduibles to entail the observations.

6 CHAPTER 1. INTRODUCTIONhange between languages. Thus it is not only neessary to de�ne axioms in a spei�language but also whih sets of them are admissible as ontologies.A desirable property of any knowledge representation formalism is the ability ofimpliitly enoding some piees of knowledge that an then be summoned by an au-tomati proedure. In general, we want to have a way to know whether a spei�sentene is a onsequene of an ontology; in other words, we require a proedure thatdeides derivability. The answer that suh a proedure yields obviously depends onboth, the possible onsequene, and the ontology under onsideration.To aommodate a theory of explanations, we need to make some assumptions onthe theories and the notion of derivability used. First, we assume that any theory anbe divided in parts, eah of whih is itself a theory that an be used as an input forthe deision; in other words, a theory is omposed of subtheories. As said before, wegive to indivisible theories the name of axioms. Seond, we require derivability to bemonotonous; that is, if E is derivable from a theory T , then it is also derivable fromany supertheory of T . Minimal subtheories from whih an explanandum E is derivableare its explanans.In this work we aim to develop methods for automatially �nding justi�ations anddiagnoses for onsequenes of a theory. Instead of working diretly on the representa-tion language, we onsider derivability via a given deision proedure that is orretfor a monotone notion of derivability. Obviously, explanations depend on derivation,and thus indiretly also on the proedure used for deiding it. We will hene try totransform a given deision proedure into an explanation proedure whose outputs arenot yes or no, but an enoding of all its justi�ations or diagnoses.Deision proedures an take a wide variety of forms, and trying to enompassall of them in our theory of explanation would be a titani task. Hene, we fous ontwo prominent approahes: tableau-based and automata-based deision proedures.These two approahes have been widely used in desription logis, and other areas,where their distint omplexity and eÆieny properties have been exploited. But, al-though we will also use desription logis for motivating our ideas and de�nitions, theappliability of our framework is not limited to these partiular knowledge represen-tation formalisms. We will, for instane, also show its appliability to linear temporallogi (LTL).In a nutshell, tableau-based deision proedures start with some expliit knowledgetranslated from the input, and extend it with the appliation of rules depending onthe theory, deriving the fats that are impliitly enoded in the input. The deisiondepends on the expliit knowledge present one the exeution of the algorithm halts,by testing for so-alled lashes in the knowledge produed. Automata-based deisionproedures, on the other side, translate the input into an automaton A from whiha deision is made depending on whether the language aepted by A is empty ornot. The emptiness test of automata tries to disprove that this language is empty,but without atually building any element that would belong to it.It should be noted that in general tableau-based proedures an deide a widerrange of problems than their automata-based ounterparts. This follows from thelatter being limited to aepting languages of objets having a spei� shape, while

7the rule-based expansion of the former allows for a wider range of options. On theother hand, the arbitrary shape of strutures onstruted makes it harder to ensureeven that the proedure will ever terminate, and in some ases appropriate tehniquesare neessary to avoid in�nite expansions. This generality will fore us to look deeperinto tableau-based deisions and explanations, and ultimately restrit them to makesure that an answer will be found in �nite time.Struture of the WorkThis work is divided as follows. We �rst dediate Chapter 2 to the introdution ofdesription logis and the temporal logi LTL as well as their main deision problems,along with tableau-based and automata-based algorithms for solving them. Thesealgorithms will be used in the next three hapters to motivate our approah to au-tomated explanations. The hapter is meant as a pratial introdution to tableau-and automata-based deision proedures and their assoiated tehniques; as suh, thehapter summarises relevant portions of [BS01, BHP08, WVS83℄.Chapters 3 and 4 deal with the tableau-based approah. The former hapter for-malises �rst the notion of a tableau-based deision algorithm, what we all a generaltableau, that reeive as input an ontology and a sentene, and deide whether thesentene is derivable from the ontology. Our notion of general tableaux overs alsosome algorithms that are historially not onsidered to be tableau-like suh as res-olution [Rob65, Lei97℄, ongruene losure [NO07℄, and the subsumption algorithmfor the Desription Logi EL [BBL05℄. We then show how to hange these generaltableaux to obtain an algorithm that omputes an enoding of all explanations of theinput sentene within the input ontology. Our enoding will be through a so-alledpinpointing formula: a monotone Boolean formula whose minimal satisfying valua-tions have a one to one orrespondene with justi�ations. Finally, we show that ourapproah has problems with termination, in the sense that the algorithm proposedmay not be able to yield a pinpointing formula in �nite time.In the latter hapter we try to solve the problem of termination by taking from theideas of terminating tableaux used in desription logis, whih mainly exploit the tree-shape of the generated models. Termination is ahieved in two di�erent ways. First,we introdue a sub-lass of tableaux whose so-alled pinpointing extension alwaysterminates without the need of any speial stopping mehanism. Afterwards, wefous in formalising a notion of bloking: a method that allows us to detet yliomputations and aordingly stop the exeution of the algorithm without harmingits orretness. The introdution of bloking to the tableau framework fores us toadapt the pinpointing extention in an appropriate fashion. Thus, orretness needs tobe proved again for this variant setting. The ideas and results of these two hapterswere �rst published in [BP07, BP09℄.We then hange our attention in Chapter 5 to the automata-based approah. Givenan automaton deiding a property, we show how to onstrut a weighted automa-ton whose so-alled behaviour is a pinpointing formula. We then show a bottom-upmethod for omputing this behaviour in time polynomial on the size of the automaton.

8 CHAPTER 1. INTRODUCTIONThe results presented here were originally published in [Pe~n08, BP08℄ for the speialase of looping automata. Here we present an extended version that an deal withgeneralised B�uhi automata and a wider range of restritions.Before giving our onlusions and brief ideas for future work, we �nish in Chapter 6with an analysis of the omplexity of explanation divided in three parts: �rst we showthe omplexity of �nding justi�ations; then, we show analogous results for �ndingdiagnoses, and �nish the setion by showing that the pinpointing formula annot, ingeneral, be represented in spae polynomial on the size of the input ontology. Theseomplexity results extend those shown for justi�ations and laimed to hold also fordiagnoses in [BPS07a, BPS07b℄. We then return to the tableau-based approah toshow that it is impossible to fully haraterise the lass of all tableaux having aterminating pinpointing extension.Related WorkThe study of justi�ations in Desription Logis has only reently begun. To thebest of our knowledge, the �rst attempt to ompute the justi�ations for unwantedonsequenes of a DL ontology was done by Shlobah and Cornet. In [SC03℄, theauthors show that the standard tableau algorithm for the DL ALC [SS91℄ that deidessatis�ability w.r.t. so-alled unfoldable terminologies, an be extended with labelsthat keep trak of the axioms responsible for an assertion to be generated duringthe exeution of the algorithm.4 They also oin the term axiom pinpointing, whihwe ontinue to use, to desribe this task. Later on, Shlobah [Sh05℄ showed thatdiagnoses an be omputed from the set of all justi�ations by means of a Hitting Setomputation, following Reiter's Theory of Diagnoses [Rei87℄.The problem of �nding justi�ations and diagnoses in a DL knowledge base wasatually onsidered one deade earlier in a di�erent ontext. In [BH95℄, Baader andHollunder onsider the problem of extending DLs with default rules, whih they solveby introduing a labeled extension of the tableau-based onsisteny algorithm forALC w.r.t. ABoxes [Hol96℄. The two labeling approahes, namely [BH95℄ and [SC03℄,follow very similar ideas. Fatoring for the di�erent kinds of axioms onsidered, themain di�erene between the algorithms is the shape of the output: while the algorithmin [SC03℄ yields all the justi�ations diretly, the one by Baader and Hollunder outputsa monotone Boolean formula, from whih all the justi�ations an then be dedued.The two approahes have sine then been extended to allow for more expressivelanguages. On one hand, Shlobah and Cornet's method [SC03℄ was extended byParsia et al. [PSK05℄ to DLs using a wider variety of onstrutors. On the other, theideas of [BH95℄ were extended by Meyer et al. [LMP06℄ to the ase of ALC termi-nologies that use general onept inlusion axioms, whih are no longer unfoldable.In [HPS08℄ the idea is further extended to deal with portions of axioms, to allow fora more preise understanding of the auses of derivability. In reality, the use of theDL ALC in both of the original approahes [BH95, SC03℄ was intended to work as aprototype that ould be easily extended to other DLs with a tableau-based deision4In this ase, the unwanted onsequene was the unsatis�ability of a onept name.

9proedure. However, the extension in [LMP06℄ showed that some tehniques used intableau algorithms, suh as bloking, require speial attention when building theirlabeling extension to keep orretness. Our tableau-based approah to pinpointingtries to show how the same ideas an be applied in a more general setting.In our general approah we faed the problem of how to ensure that the pinpointingalgorithm will terminate in �nite time. This problem arises already for tableau-baseddeision proedures, and it is diretly inherited by their pinpointing extensions. Ageneral solution for deision algorithms was proposed in [ST08, ST07℄ in whih a ruleis added to the tableau and always eagerly applied. This solution is not satisfatoryfor us, as we want to allow any possible ordering for rule appliation in both, theoriginal tableau and its pinpointing extension.All the previously ited approahes belong to the ategory of glass-box methods, inwhih the deision algorithm needs to be tempered with to reate the algorithm thatoutputs all justi�ations. Sine modern DL reasoners [HM01, Hor98, SP04℄ use severaloptimizations that annot be applied to the labeling extension, reent researh has alsolooked at ways of omputing justi�ations using (unmodi�ed) reasoners as a subpro-edure. Most of these so-alled blak-box methods [BS08, KPHS07, SHCH07, Sun09℄use a variant of Reiter's Hitting Set algorithm [Rei87℄, while trying to minimize thesearh spae by either syntatial or semantial onditions. The blak-box approahhas the lear advantage of being able to use the most eÆient reasoner available with-out bigger implementation problems; however, this reasoner may need to be alled anexponential number of times before all justi�ations are found. Trying to ouple theadvantages of both glass-box and blak-box algorithms, a mixed approah has beenonsidered for the EL family of DLs. This mixed approah uses a glass-box methodto ompute a small (possibly non-minimal) set of axioms from where the onsequenestill follows, whih is later minimized using blak-box tehniques [Sun09℄.Although automata-based deision proedures have been widely used in the DLommunity [BHP08, BT01, CDGL99, CDGL02, LS00℄,5 there has been no prior at-tempt to onstrut a glass-box pinpointing algorithm based on the automata approah.For our automata-based pinpointing framework, we had to onstrut, and ompute theso-alled behaviour of, weighted automata on in�nite trees. Surprisingly, study on thearea of weighted automata on in�nite trees has only very reently begun, with its ori-gin at [DKR08, KL07℄. As a result of this, we needed to develop our own algorithm foromputing the behaviour of these automata. Sine the beginning of our work with au-tomata, a di�erent algorithm was developed independently by Droste et al. [DKR08℄.We will show that, when applied to pinpointing, the algorithm in [DKR08℄ is atuallyequivalent to a na��ve blak-box method.The problem of axiom pinpointing has arisen, usually with di�erent names, inseveral distint researh areas. The SAT ommunity has onsidered the problem ofomputing maximally satis�able and minimally unsatis�able subsets of a set of propo-sitional formulae. Solutions to this problem inlude blak-box approahes that alla SAT solver [BS05, LS05℄, as well as glass-box methods that extend a resolution-5Up to now, automata-based proedures are used mainly for proving theoretial results in DLs.However, reasoners based on an automata-based algorithm for the temporal logi LTL have beensuessfully used in pratie for Model Cheking [GO01, GPVW95, Hol97℄.

10 CHAPTER 1. INTRODUCTIONbased SAT solver [DDB98, ZM03℄. In Linear Programming, several people havebeen interested in �nding irreduible infeasible sets (IIS): minimal subsets of lin-ear restritions that have no solution. Several methods exist that ompute oneIIS [Chi97, CD91, TMJ96℄ using a blak-box method. To the best of our knowl-edge, there is no glass-box approah to solving this problem. A di�erent idea waspresented by Gleeson and Ryan [GR90℄, showing that there is a bijetion between theset of IIS and the optimal solutions of a dual linear programming problem. This ideawas later employed by Bruni [Bru05℄ to �nd all minimally unsatis�able subsets froma set of propositional formulae.Another area where omputing justi�ations has a speial interest is Satis�abilityModulo Theories (SMT) (see, for instane [ACGM04, BBC+05, GHN+04℄). SMTtries to �nd satisfying valuations of propositional formulae where eah propositionalvariable represents a restrition from a bakground theory. Modern SMT solvers use aglass-box approah to �nd a single (possibly non-minimal) oniting set of restritionsthat voids the urrent valuation in as short a time as possible [NOT06℄.Additionally from DLs, we use the temporal logi LTL to exemplify our automata-based approah. We view the onjunts of an LTL formula as axioms and the justi�-ations are minimal unsatis�able subformulae that allow us to understand the overallunsatis�ability of the original formula. Although this setting seems not to have beenonsidered for LTL before, it is losely related to the problem of omputing unsatis�-able ores that has appeared in the SAT ommunity [LS04℄.As it was readily mentioned, the task of �nding justi�ations losely resembles thatof abdution. Abdution uses a bakground theory and an additional set of axiomsalled abduibles. The reasoning task onsists in �nding minimal sets of abduiblesthat, when added to the bakground theory, entail a given query. Abdution hasbeen studied in several �elds, but of speial importane for this work is its applia-tion to propositional logi (for instane, de Kleer's ATMS [dK86a, dK86b, dK86℄),and in partiular the omplexity results that have been obtained for Horn formu-lae [EG95a, EM02℄. We will use a similar approah for several of our omplexityresults in Chapter 6. Reently, the problem of abdution has also been onsidered inthe DL EL [Bie08℄.It is important to notie that for really understanding a onsequene, omputingjusti�ations and diagnoses is usually insuÆient. Individual axioms may be alreadyhard to interpret, and the relationship between them far from obvious. In the formerase, one would like to highlight the spei� portions of the axiom that play a rolein the derivation of the onsequene [HPS08℄; in the latter, one an try to ombineseveral axioms in a single, easier to understand, new axiom also alled lemma [HPS09℄.

Chapter 2Logis and Deision ProeduresThe main goal of this hapter is to desribe, by means of examples, two of the mostprominent approahes to deiding properties in logi in general, and in partiular indesription logis; namely, tableau-based and automata-based deision proedures.Several logis will be used as a showase to shine light of the peuliarities of eah ofthese methods. First we introdue the main reasoning problems for members of thefamily of Desription Logis having di�erent expressivity, for whih we will presenttableau-based deision proedures. These will work as a basis from whih our gen-eral notions of tableaux (Chapter 3) and bloking (Chapter 4) will be onstruted.For the most expressive Desription Logi presented in this work, that is, ALC withSI TBoxes, we introdue also an automata-based deision proedure that relies onthe fat that this logi has the tree-model property by onstruting representationsof all the tree-shaped models. As an example of an automata-based deision proe-dure requiring additional aeptane onditions, we inlude the problem of deidingsatis�ability of Linear Temporal Logi formulae. The use of this logi to exemplifyour automata-based approah is further motivated by the fat that automata-baseddeision proedures have been suessfully applied in pratie for program veri�a-tion [Var96℄ or model heking.In the �rst two setions of this hapter we desribe the logis under onsideration:we �rst give a brief introdution to Desription Logis and their main reasoning prob-lems in Setion 2.1, followed by an introdution to Linear Temporal Logi. Then, inSetion 2.3, we present tableau-based deision algorithms for the problems relevant toDesription Logis. Finally, the automata-based deision proedures are desribed inSetion 2.4.2.1 Desription LogisDesription Logis (DLs) [BCM+03℄ are a family of logi-based knowledge represen-tation formalisms ommonly used to represent the knowledge of a given appliationdomain in a strutured manner whih is also easy to understand. The main featurerelating all the logis in this family is the use of onepts that intuitively desribeproperties held by individuals in a domain, and roles, or relations between two suh11

12 CHAPTER 2. LOGICS AND DECISION PROCEDURESindividuals. What di�erentiates one DL from another is the onstrutors it uses forgenerating omplex onepts and roles from a set of primitive ones, also alled onept-and role-names. The hoie of these onstrutors obviously has an impat not onlyon the expressivity of the logi, but also on the omplexity of its reasoning problems.The most basi onstrutors are the Boolean ones; that is, disjuntion, onjun-tion and negation { denoted as t;u, and :, respetively { with the same intendedmeaning as their propositional logi ounterparts. The quanti�ers 8 and 9 allow us tojump beyond the realm of propositional logi and reason about the relations betweenindividuals, eah satisfying a given property. The value restrition 8r:C is satis�edby eah individual x suh that, if x is related to another individual y via the roler, then y satis�es the onept C. Likewise, the existential restrition 9r:C desribesthe individuals that are related via r to some individual belonging to C. One anadditionally use the top > and the bottom ? onepts, that are satis�ed by all andnone individuals, respetively. The most basi DL using all of these onstrutors isALC, an aronym that stands for attributive language with omplements originallyintrodued in [SS91℄.De�nition 2.1 (Syntax of ALC). Let CN and RN be two disjoint sets of onept- androle-names, respetively. The set of ALC onept terms is the smallest set ontainingCN and suh that if C;D are two onept terms and r 2 RN is a role name, thenC uD;C tD;:C;9r:C and 8r:C are all onept terms.If it is lear from the ontext we will usually say ALC onept or even just oneptinstead of using the longer name \ALC onept term".Let us instantiate De�nition 2.1 with an example. When modeling the domain ofhuman evolution, one an desribe a desendant of an Homo ergaster with the onept9has-anestor:HErgaster, or a speies whose evolutionary desendants belong all to thegenus Homo using the onept 8has-desendant:Homo.In addition to the onstrutors used by this logi, several others have been on-sidered in the DL literature suh as (quali�ed or unquali�ed) number restritions,nominals, and role ompositions, among others (see [BCM+03℄). For the sope of thiswork we will fous on the DL ALC as well as on the logi HL, whih is the sub-logiof ALC that allows only for onjuntion and the top onept as a onstrutors. Themain deision problems for these two logis and di�erent sets of axioms will requirethe introdution of several distint tehniques for solving them. These tehniques willthen be formalised when de�ning general deision proedures and restritions in thefollowing hapters.Representing the knowledge of a domain may require the use of spei� individualsthat an at as instanes of onept terms. These individuals may reeive any namein the formal desription, but must be interpreted as elements of the domain. For thisreason, we will use an additional set IN of individual names disjoint from both CN andRN.Returning to our evolutionary example, we may introdue the individual nameLuy whose intuitive task is to represent the famous Australopitheus afarensis fossil.The importane of DLs as a knowledge representation formalism relies on their

2.1. DESCRIPTION LOGICS 13formal semantis based on interpretations that map all onept- and role-names tosets of individuals and sets of pairs of individuals of a spei� domain, respetively.De�nition 2.2 (Semantis of ALC). Let CN, RN and IN be pairwise disjoint setsof onept-, role- and individual names, respetively. An interpretation is a tuple ofthe form I = (�; �I), where � is a set, alled the domain of I, and �I is a funtionmapping every individual name a 2 IN to an element aI 2 �, every onept nameA 2 CN to a subset AI � � and every role name r 2 RN to a set of pairs rI � ���.The funtion �I is indutively extended to all onept terms as follows:� (C uD)I = CI \DI;� (C tD)I = CI [DI;� (:C)I = � n CI;� (9r:C)I = fd 2 � j there is an e suh that (d; e) 2 rI and e 2 CIg;� (8r:C)I = fd 2 � j for all e, if (d; e) 2 rI, then e 2 CIg.The domain knowledge is stored using a set of axioms that restrit the set of admis-sible interpretations by imposing onditions on the onepts (terminologial axioms),individuals (assertional axioms), or roles (role axioms). We distinguish two kinds ofterminologial axioms: onept de�nitions that, with some appropriate syntati re-stritions, help to de�ne maros or abbreviations of onept terms, and general oneptinlusion axioms that express an inlusion relation between two onepts.De�nition 2.3 (Terminologial axiom, (Ayli, General) TBox). A oneptde�nition is of the form A := C, where A 2 CN is a onept name and C is a oneptterm. A general onept inlusion axiom (or GCI for short) is an expression of theform C v D with C and D onept terms.An ayli TBox is a set T of onept de�nitions that satis�es the following on-ditions:� for every onept name A, there is at most one onept de�nition in T of theform A := C; and� there is no sequene of onept de�nitions A1 := C1; A2 := C2; : : : An := Cn suhthat for every 1 < j � n, Aj appears in Cj�1 and A1 appears in Cn.A general TBox is simply a set of GCIs.Intuitively, the onditions imposed on ayli TBoxes ensure that every oneptname is de�ned only one, and the right-hand-side of eah de�nition has no diretor indiret referene to its left-hand-side. General TBoxes are indeed more generalthan ayli ones, in the �rst plae beause eah onept de�nition A := C an berepresented with the GCIs A v C;C v A, and seond beause there is no restrition

14 CHAPTER 2. LOGICS AND DECISION PROCEDURESon the left-hand-side elements appearing on the right-hand-side onept term of aGCI.For example, we an de�ne our speies, Homo sapiens, in terms of its evolutionaryanestors and siblings using the onept de�nitionHSapiens := 9has-anestor:HHeidelburgensis u :HNeanderthalensis:6We an also express that Homo and Australopitheus are two disjoint genera, i.e., thatno individual an belong to both of them, with the GCI HomouAustralopitheus v ?.Notie that the restritions imposed in an ayli TBox ensure that eah oneptde�nition atually ats as a de�nition of the onept name appearing in its left-handside as an abbreviation of the (omplex) onept term in its right-hand side. Inpartiular, this means that ayli TBoxes do not add any expressive power to thelanguage. Nonetheless, they allow us to express omplex onept terms and reasonabout them in a more suint fashion [Neb90, Lut99℄.In some ases, restriting the onepts does not suÆe to fully represent the knowl-edge domain, and we want to speify some individuals as members of spei� oneptterms. For instane, in the evolutionary ontology we need to express that Luy is anAustralopitheus afarensis. This fat an be represented by the so-alled assertionalaxiom AAfarensis(Luy).De�nition 2.4 (Assertional axiom, ABox). An assertional axiom is an expressionof the form C(a), or r(a; b) where a; b 2 IN are individual names, C is a onept term,and r is a role name. A set of assertional axioms is alled an ABox.In the same way that we restrited the relations between onept terms by meansof terminologial axioms, we an limit the possible interpretations of the roles used intheir onstrution by imposing a set of role axioms. As in the ase of the onstrutorsfor onept terms, several distint role axioms have been onsidered in the literature[HS04, HKS05, HKS06℄. In the present work we will fous solely on axioms that foreroles to be transitive or inverses of eah other.De�nition 2.5 (Role axiom, SI-TBox). Let r; s 2 RN be two distint role names.The expressions trans(r) and inv(r; s) denote a transitivity- and inverse axiom, respe-tively. A role axiom is either a transitivity- or an inverse axiom.An (ayli, general) SI-TBox is a set S = T [R where T is an (ayli, general)TBox and R is a set of role axioms suh that every r 2 RN appears in at most oneinverse axiom.76Unfortunately, there is at the present no full onsensus on the evolutionary history of human-kind.The examples presented here show only one of the most aepted views, and are are intended only asillustrations for our de�nitions.7The DL ALC extended with transitive and inverse roles, alled SI in the DL literature, is usuallyde�ned in a di�erent manner, using an inverse onstrutor instead of axioms restriting the interpre-tation of the role. We deided to use the equivalent axiomati restrition sine an inorret use ofinverses may lead to unsatis�ability, and we want to be able to detet this ause when performingpinpointing.

2.1. DESCRIPTION LOGICS 15Syntax SemantisA := C AI = CIC v D CI � DIC(a) aI 2 CItrans(r) rI is transitiveinv(r; s) rI is the inverse of sIFigure 2.1: Semantis of axiomsOne again using the evolutionary ontology as an example, the role has-desendantshould be interpreted as being transitive, whih an be enfored by inluding theaxiom trans(has-desendant), and as being the inverse role of has-anestor, whih iseasily done with the introdution of the role axiom inv(has-anestor; has-desendant).When axioms are used, the semantis of ALC and HL onepts are restritedto onsider only those interpretations that satisfy the restritions imposed by thespei�ed axioms. Suh interpretations are alled models. In the presene of axioms,not all interpretations are taken into aount, but only those that model them. Inother words, only those interpretations that satisfy the semanti restritions imposedby the axioms, as summarized in Figure 2.1, are rendered relevant.De�nition 2.6 (Semantis of axioms). Given a set of axioms T , I is a model ofT i� for every axiom t 2 T , I satis�es the semantis of t as shown in Figure 2.1.The �rst question that an be asked of a set of axioms is whether it is onsistent;that is, whether it is possible to onstrut a model for it or not. This questionis typially interesting in the presene of assertional axioms sine we want to knowwhether some spei� individualsmay satisfy the restritions we are imposing on them.Additionally to onsisteny, two of the main deision problems that arise in DLs arethe satis�ability and subsumption problems. The satis�ability problem onsists inheking whether there exist a model for a given set of axioms that maps a givenonept term to a non-empty set. On the other hand, the subsumption problemheks whether every model interprets a onept as a subset of another onept. Amore formal de�nition follows.De�nition 2.7 (Consisteny, satis�ability, subsumption). Let T be a set ofaxioms and C;D two onept terms. We say that T is onsistent i� there is a modelof T . C is satis�able w.r.t. T i� there exists a model I of T suh that CI 6= ;. C issubsumed by D w.r.t. T (denoted C vT D) i� for every model I of T it holds thatCI � DI .It is worth notiing that, in the presene of the negation onstrutor, these lasttwo problems are polynomially reduible to eah other. On one hand, a onept Cis satis�able w.r.t. T i� C 6vT ?; onversely, C vT D i� C u :D is unsatis�ablew.r.t. T . For this reason, it suÆes to design an algorithm that deides any of thoseproblems in order to solve the other. In this work, we will fous on the satis�abilityproblem when dealing with the DL ALC. In the ase of the very inexpressive logi

16 CHAPTER 2. LOGICS AND DECISION PROCEDURESHL, there are no means for expressing negation, and hene all onepts desribed init are always satis�able. For that reason, we will fous on the subsumption problemwhen reasoning in this logi. It is also relevant to realise that deiding satis�abilityof a onept C w.r.t. a set of axioms T is equivalent to deiding onsisteny of the setT [fC(a)g where a is an individual name not appearing in T . Basially, sine C issatis�able w.r.t. T i� there is a model that maps C to a non-empty set, we an forethe interpretation of C to ontain a random element in the domain.Later on in this hapter we will desribe well known algorithms for solving sub-sumption of HL-onepts w.r.t. TBoxes, and satis�ability of ALC onepts w.r.t. tothe distint kinds of standard sets of axioms, with an emphasis on the haraterististhat are shared between them, and the spei� elements that di�erentiate eah par-tiular ase. Before that, we will introdue Linear Temporal Logi with its relevantdeision problem.2.2 Linear Temporal LogiLinear Temporal Logi (LTL) is an extension of Propositional Logi that allows rea-soning about temporal properties, where time is seen as disrete and linear [GPSS80,Pnu77℄. The syntax of this logi extends the usual propositional onstrutors withthe onstrutors next, denoted as, and until, denoted as U . Intuitively, the formula� expresses that the formula � must be true in the next point in time, while �U istrue if there is a moment in the future where is true, and � is true at every momentbetween the present and the one satisfying . We will now formalise these notions.De�nition 2.8 (Syntax of LTL). Let P be a set of propositional variables. The setof LTL formulae is the smallest set where� all propositional variables are LTL formulae;� if � and are LTL formulae, then so are :�; � ^ ;� and �U .The semantis of this logi use the notion of omputations, whih intuitively or-respond to interpretations, as de�ned for DLs, but where the domain is �xed to bethe set of natural numbers.De�nition 2.9 (Semantis of LTL). A omputation is a funtion � : N !P(P),where N represents the set of natural numbers. This funtion � is extended to LTLformulae as follows, for every i 2 N:� :� 2 �(i) i� � =2 �(i); � ^ 2 �(i) i� f�; g 2 �(i);� � 2 �(i) i� � 2 �(i+ 1); and� �U 2 �(i) i� there is a j � i suh that 2 �(j) and for all k; i � k < j itholds that � 2 �(k).

2.2. LINEAR TEMPORAL LOGIC 17An LTL formula � is satis�able if there is a omputation � suh that � 2 �(0).One is usually interested in deiding whether a given LTL formula is satis�ableor not. Sine the main goal of this work is related with reasoning with respet tosets of axioms, we will be interested in a variation of the satis�ability problem, whereLTL formulae are used as axioms. Given a set of LTL formulae R, we onsider theproblem of deiding whether the onjuntion of all formulae in R is satis�able or not.If this onjuntion is unsatis�able, pinpointing will allow us to detet the subsets offormulae, i.e., the onjunts, responsible for this. We will further assume that thereis a �xed onjunt that is always present. In summary, our problem reeives as inputa stati LTL formula � and a set of refutable LTL formulae R, and deides whetherthe onjuntion of all these formulae is satis�able or not. We now formally de�ne thisproblem, whih we will all axiomati satis�ability.De�nition 2.10 (Axiomati satis�ability). Let � be an LTL formula and R aset of LTL formulae. We say that � is axiomati satis�able w.r.t. R if there is aomputation � suh that R[f�g � �(0).8 In this ase, � is alled a omputation for(�;R).At the end of this hapter we will present a proedure based on B�uhi automatathat will allow us to orretly deide axiomati satis�ability of LTL formulae.Depending on the harateristis of the logi in use and the kind of axioms on-sidered, distint methods an be applied to solve its deision problems. In desriptionlogis, the two prominent approahes for deiding onsisteny, subsumption, or satis-�ability of onept terms are the tableau-based and the automata-based methods. Inthe ase of onsisteny or satis�ability of onept terms, the tableaux-based approahtries to onstrut a model in a top-down (usually non-deterministi) fashion, until themodel is �nished or it is lear that no adequate interpretation an exist. The modelsreated this way usually have an underlying tree-shape. For that reason, wheneverthe logi in onsideration does not have the �nite tree model property (as is the aseof ALC with general TBoxes) additional restritions need to be spei�ed to stop theexeution in �nite time while retaining the orretness of the method. As we will seelater in Setion 2.3, in these in�nite models it is possible to �nd a pattern that repeatsafter a �nite number of nodes. Thus, only �nite information is neessary to repro-due the in�nite model. The idea of stopping the exeution of the tableau one anappropriate pattern has been found reeives the name of bloking in the DL literature.The automata-based approah is usually more straightforward. The idea onsistsin onstruting an automaton that aepts exatly all those tree-shaped models. Thedeterministi and polynomial-time emptiness test on this automaton yields the desireddeision. In DLs, the runs aepted by suh an automaton are in fat in�nite treemodels, where every node represents an individual. The nodes are then labeled withthe onepts that they satisfy within the interpretation with the help of the transitionrelation of the automaton. The deision proedure for axiomati satis�ability of LTLformulae follows a similar idea, onstruting an automaton whose aepted runs onsist8Notie that this is equivalent to saying that � ^ V 2R is satis�able.

18 CHAPTER 2. LOGICS AND DECISION PROCEDURESon the omputations for the input. Given the nature of the until operator, whosesatis�ability an be delayed as muh as desired within the omputation, it is neessaryto use an aeptane ondition that ensures that this delay is not performed forever,but every until formulae is eventually satis�ed.2.3 Tableau-Based Deision AlgorithmsWe proeed now to present several deision proedures that exemplify the main ideasof tableaux briey mentioned above. We �rst present a deterministi algorithm thatdeides subsumption in HL with general TBoxes. This algorithm has the bene�ts ofbeing deterministi and running in polynomial time, and hene allowing us to detetthe inrease of omplexity aused by trying to explain the subsumptions that hold,ompared with merely deteting if they follow from the general TBox or not (see Chap-ter 6). We ontinue with a desription of the tableau-based algorithms for deidingonsisteny of ABoxes and then satis�ability of ALC onepts w.r.t. ayli, general,and SI-TBoxes inrementally: we re-use the onsisteny algorithm for ABoxes todeide satis�ability, by simply adding a series of expansion rules that deal with theaxioms being onsidered.The algorithm for HL is a speial ase of the subsumption algorithm for the DLEL that also runs in polynomial time [Baa03a, Baa03b℄.9 The other tableau meth-ods are well known algorithms. For a deeper desription, inluding more expressiveonstrutors not treated here, suh as number restritions and role hierarhies, andomplexity and run-time analysis of these methods, refer to [BS01℄.2.3.1 Subsumption in HL with General TBoxesReall that in HL, all onept terms onsist of onjuntions of onept names, andthus all GCIs in this logi are of the formA1 uA2 u : : : uAn v B1 uB2 u : : : uBmwhere n;m � 0 and eah Ai and Bi is a onept name in CN. Intuitively, an axiom ofthis form states that if a onept is subsumed by all the onepts A1 : : :An, then it isalso subsumed by eah and every one of the onepts B1 : : :Bm. Our algorithm williteratively make suh knowledge expliit based on the expliit subsumption relationsknown so far. This information will be stored in a set A of pairs of the form (A;B),where A and B are onept names, with the intended meaning that (A;B) is presentif and only if B subsumes A.The algorithm starts with the trivial knowledge stating that every onept nameappearing in the general TBox T is subsumed by itself; i.e., it initialises the set Awith A = f(A;A) j A 2 CN appears in T g, and then repeatedly applies the expansionrule hl that is shown in Figure 2.2.Obviously, in order to ensure termination of this expansion method, the rule hlshould only be applied if its appliation will result in a real expansion of the set A,9EL is the superlogi of HL that allows also for existential restritions.

2.3. TABLEAU-BASED DECISION ALGORITHMS 19hl if nui=1Ai v muj=1Bj 2 T and f(A;Ai) j 1 � i � ng � A, thenadd (A;Bj) to A for all 1 � j � m.Figure 2.2: Expansion rule for deiding subsumption in HLthat is, if there is at least one j suh that (A;Bj) =2 A. Otherwise, we ould loopinde�nitely applying the same rule one and again without ahieving any progress.Given this restrition, it is lear that the expansion rule is applied at most one foreah GCI and onept name in T . Thus, the algorithm �nishes in polynomial timemeasured on the size of the TBox. When no more pairs an be added to A by anappliation of this rule, it is the ase that (A;B) 2 A i� A vT B, for all oneptnames A;B appearing in T . As it was said before, this algorithm is in essene aspeial ase of the subsumption algorithm for EL. For a proof of orretness and itspolynomial exeution time, refer to [BBL05, Bra04a℄.2.3.2 Consisteny of ALC ABoxesWe move now beyond HL to the more expressive logi ALC, and onsider �rst theproblem of onsisteny of an ABox. This problem orresponds to deiding whetherthere is a model for a given set of assertional axioms. In order to solve it, we begin bystating all the restritions imposed by the axioms in the input and then expand thisknowledge aording to the semantis of the onstrutors used (see De�nition 2.2).When this expansion proess terminates, we either have a model (and hene the ABoxis onsistent) or there is an obvious ontradition. Atually, due to the presene ofdisjuntion, this proess has a (do not know) non-deterministi fator, and possiblyseveral model andidates would have to be tried. Eah model andidate will be rep-resented as a set Ai of assertions of the form C(a) or r(a; b), where C is a oneptterm, r is a role name, and a and b are individuals. In other words, we use ABoxesalso to represent (partial) models. To deal with the non-determinism, we onsider allthese ABoxes simultaneously, as elements of a setM, rather than only one at a time.This an be thought of as testing all the possible model andidates onurrently.The algorithm starts with the only model andidate onsisting of the input ABoxA0; that is, it initialisesM = fA0g. This set is then modi�ed by suessive applia-tions of the expansion rules shown in Figure 2.3, where a rule is applied to one set AinM at a time. These rules are applied until none of them an be applied anymore,extending the set M of model andidates. An ABox A 2 M is said to have a lashif there is an individual name x ourring in A and a onept name A suh thatfA(x);:A(x)g � A.This expansion proess is guaranteed to �nish after a �nite number of rule appli-ations, and when it does so, the resulting set M is suh that the original ABox A0is onsistent if and only if there is a model andidate A 2M that does not have anylash [BH91, Hol96℄.Reall, from the de�nition of satis�ability, that a onept is satis�able with respet

20 CHAPTER 2. LOGICS AND DECISION PROCEDURESalu if (C uD)(x) 2 A but fC(x);D(x)g 6� A, thenreplae A by A0 = A[fC(x);D(x)g.alt if (C tD)(x) 2 A but fC(x);D(x)g \ A = ;, thenreplae A by the two sets A0 = A[fC(x)g and A00 = A[fD(x)g.al8 if f(8r:C)(x); r(x; y)g � A but C(y) =2 A, thenreplae A by A0 = A[fC(y)g.al9 if (9r:C)(x) 2 A but there is no individual name zsuh that fr(x; z); C(z)g � A, thenreplae A by A0 = A[fC(y); r(x; y)g where y is anindividual name not ourring in A.Figure 2.3: Expansion rules for the tableau algorithm for onsisteny of ALC ABoxesal := if A(x) 2 A and A := C 2 T but C(x) =2 A, thenreplae A by A0 = A[fC(x)g.Figure 2.4: Rule al := for deiding satis�ability of ALC onepts w.r.t. ayli TBoxesto a given TBox if and only if there is a model that maps it to a non-empty set. Inother words, the onept C is satis�able w.r.t. T i� the ABox fC(a)g is onsistent(w.r.t. T), where a is an arbitrary individual name. If we onsider an empty TBox,then the onsisteny algorithm desribed in this subsetion would yield the desireddeision proedure. In general, nonetheless, we require to extend it to deal with theterminologial axioms. The following subsetions deal with this.2.3.3 Satis�ability of ALC Conepts with Ayli TBoxesAs notied before, ayli TBoxes work basially as abbreviations of more omplexonept terms and do not add to the expressivity of ALC. In fat, reasoning withrespet to an ayli TBox an be redued to reasoning with an empty TBox by aproess known as unfolding: replaing, for every onept de�nition A := C, everyourrene of the onept name A by its de�ned onept C. Unfortunately, thisredution may produe a onept that is exponential in the size of the original TBox(see [Neb90℄ for an example supporting this laim).In the DL ALC, one an avoid this exponential blow-up by only unfolding at themoments where it is neessary to explore deeper in a onept de�nition [Lut99℄. Thismethod, ommonly referred to as lazy unfolding an be easily implemented in ourtableau system for deiding satis�ability of ALC onept terms, by simply adding therule al := (shown in Figure 2.4) to the tableau for ABox onsisteny (Figure 2.3).The proedure works exatly in the same fashion as the one desribed in the pre-

2.3. TABLEAU-BASED DECISION ALGORITHMS 21alv if x is an individual name appearing in A but (:C tD)(x) =2 A, thenreplae A by A0 = A[f(:C tD)(x)g.Figure 2.5: Rule alv for reasoning with GCIsvious subsetion: it starts with the unique model andidate having only the assertionC(a) where C is the onept being tested for satis�ability and a an arbitrary indi-vidual name. It then repeatedly applies the expansion rules until none is appliableanymore. It an be easily shown that this proess �nishes after a �nite number ofrule appliations, at whih point it holds that C is satis�able if and only if there is amodel andidate that does not ontain any lash [Lut99℄.2.3.4 Satis�ability of ALC Conepts with General TBoxesWhen dealing with general onept inlusion axioms, we an no longer assume thatthe TBox de�nes abbreviations of more omplex onepts, whih means that the ideaof lazy unfolding is no longer appliable. It is thus neessary to implement a di�erentmethod that an deal with this kind of terminologies. An analysis of the semantisof the axioms that onstitute general TBoxes reveals that they express a restritionon the onepts to whih every individual name must belong. More learly, a GCI ofthe form C v D expresses that every individual that belongs to the onept C mustalso belong to D. We an also express this by foring every individual to either notbelong to C, or otherwise belong to D. In other words, for every individual namea, (:C t D)(a) must hold. The rule alv shown in Figure 2.5 implements this idea,foring every individual name used in the ABox working as a model andidate tosatisfy eah of the restritions imposed by the GCIs. These rules are applied in thesame fashion as in the previous subsetions, starting with only a model andidatestating the non-emptiness of the interpretation of the onept being tested. Moreformally, we begin with the set M = ffC(a)gg where C is the onept being testedfor satis�ability, and a an arbitrary individual name. We then apply the expansionrules in any order. Unfortunately, and ontrary to the previous methods presented sofar, appliation of this set of rules is not guaranteed to �nish after a �nite number ofsteps, as shown in the following example.Example 2.11. Consider the TBox T ontaining only one axiom T = fA v 9r:Ag. Ifwe want to test for satis�ability of the onept A, then the tableau algorithm desribedhere will start withM = fA0g, where A0 = fA(a0)g. At this point, only the rule alvis appliable to the only model andidate present in M. Its appliation replaes A0with A1 = A0 [f(:A t 9r:A)(a0)g. Again, only one rule is appliable, whih is thealt rule. Its appliation replaes A1 with the two sets A2 = A1 [f(9r:A)(a0)g andA02 = A1 [f:A(a0)g. Notie that no rule is appliable to A02, and that it ontainsa lash, namely A(a0);:A(a0). On the other hand, the rule al9 is appliable to A2whose appliation substitutes that model andidate with A3 = A2 [fr(a0; a1); A(a1)g.It is easy to see that the same sequene of rule appliations is possible, leading to amodel andidate having the assertion A(a2) where a2 is a new individual name, and

22 CHAPTER 2. LOGICS AND DECISION PROCEDURESa0 A;A t 9r:A;9r:Aa1 A;A t 9r:A;9r:Aa2 A;A t 9r:A;9r:Arrr...Figure 2.6: An in�nite model
a0 A;A t 9r:A;9r:Aa1 A;A t 9r:A;9r:ArrFigure 2.7: A �nite equivalent modelhene the same sequene of rule appliations is one again possible. This leads to anon-terminating sequene of rule appliations.From this example we know that the algorithm is not ensured to terminate af-ter a �nite number of rule appliations. Nonetheless, if we allowed the proess torun inde�nitely, we would notie that all the individuals used in the in�nite modelonstruted this way satisfy the same onepts (see Figure 2.6). In that sense, onean say that the algorithm has been trapped in a yle. Furthermore, we notie thatan in�nite expansion is only possible by the addition of new individual names; thatis, by the use of so-alled generating rules. In the present ase, the only generatingrule is al9. To regain termination, we need then to devie a mehanism that detetswhen the expansion has found a yle and then avoids generating new individuals byreusing the information of the yle. This mehanism is alled bloking in the DLliterature [BS01℄.The bloking mehanism for ALC w.r.t. general TBoxes is based on the individualnames used in the model andidate. We say that an individual name x is blokedby the individual name y if y appears in all the assertions in whih x appears; moreformally, if fD j D(x) 2 Ag � fD j D(y) 2 Ag. If an individual x is blokedby y, then the rule al9 is not applied when triggered by an assertion of the form9r:C(x). As the onepts satis�ed by a bloked node form a subset of those satis�edby the bloking node, this partiular instane reeives the name of subset bloking.Intuitively, a bloked individual x should be able to reuse the role suessors of yinstead for generating new ones that will have the same shape. In our example, weould have avoided generating the new individual a2 by simply reusing the suessora1 of a0 as the new suessor of a1 (see Figure 2.7).In order for this idea to work orretly, we need to restrit the set of individualnames that are able to blok a given individual. Basially, it is neessary to avoida situation in whih a pair of nodes are bloking eah other, whih would produean early termination of the algorithm that might destroy its soundness. For thealgorithm in hand, it is enough to fore the bloking node to be a predeessor ofthe bloked node. The in�nite tree-shaped model an be reovered from the modelobtained from bloking by an unraveling proess that reates new suessors for thosenodes pointing bakwards in the tree-like model. This tableau algorithm, with the useof subset bloking, is always terminating and deides satis�ability of a onept w.r.t.a general TBox in the same way as the one desribed in the previous setions: C is

2.3. TABLEAU-BASED DECISION ALGORITHMS 23al+ if f(8r:C)(x); r(x; y)g � A and trans(r) 2 Tbut (8r:C)(y) =2 A, thenreplae A by A0 = A[f(8r:C)(y)g.al� if f(8r:C)(y); s(x; y)g � A and finv(r; s); inv(s; r)g \ T 6= ;but C(x) =2 A, thenreplae A by A0 = A[fC(x)g.al� if f(8r:C)(y); s(x; y)g � A and finv(r; s); inv(s; r)g \ T 6= ; andftrans(r); trans(s)g \ T 6= ; but (8r:C)(x) =2 A, thenreplae A by A0 = A[f(8r:C)(x)g.Figure 2.8: Rules for dealing with transitivity and inverse axiomssatis�able if and only if the algorithm starting with ffC(a)gg yields a model andidatethat has no lash [BDS93℄.2.3.5 Satis�ability of ALC Conepts with SI-TBoxesOne we introdue inverse and transitivity axioms, the deision proedure beomesmore omplex. To deal with transitivity, it is helpful to notie that the only seman-tial inuene of these axioms on the onstrution of a model is with respet to theuniversal restritions. If r is a transitive role, then a universal restrition imposed inan individual x needs to be satis�ed not only by its diret r suessors, but also bytheir own r suessors and so on. Clearly, we an perform this task with the help of atableau rule. The rule al+ in Figure 2.8, analogous to the one introdued in [Hor98℄for dealing with transitive roles, shows exatly this behaviour.Inverse axioms need a similar approah. When an inverse axiom is present, therestritions may need to be propagated bakwards along the inverse roles. In otherwords, if we have r(x; y) and (8s:C)(y), where inv(r; s), then we should be able todedue C(x). Rule al�, shown in Figure 2.8, deals with this fat.One has to notie still that if a role is transitive, then its inverse must also be tran-sitive. For that reason, whenever a role appears both in a transitivity and an inverseaxiom, we should be able to ombine the propagation of universal restritions due totransitivity with the bakwards propagation due to inverses. Hene, we introdue therule al� to the tableaux algorithm dealing with this logi.Depending on whether we have an ayli or a general SI TBox, we need to usethe rule al := or alv, aordingly, in addition to the rules presented here to deal withthe rest of the axioms appearing in it. Obviously, the rules depited in Figure 2.3 arealso neessary.The presene of transitive axioms leads to a non-terminating tableau algorithm,even in the ase of ayli SI-TBoxes. Hene, we require an appropriate blokingondition that ensures termination after a �nite number of rule appliations. Unfor-tunately, due to inverse axioms, we annot use subset bloking as presented in theprevious subsetion. This is shown in the following example.

24 CHAPTER 2. LOGICS AND DECISION PROCEDURESx A(x); (8r::B)(x)y (8r:8r::B)(y);B(y)z A(z)ss xy B(y)z A(z)w (8r:8r::B)(w)
sssrrFigure 2.9: Failure of subset bloking with SI-TBoxesExample 2.12 (Failure of subset bloking). Consider the situation shown in theleft part of Figure 2.9, where we are testing for satis�ability of the onept A w.r.t.the general SI-TBox T = fA v 9s:(8r:8r::B uB u 9s:A); inv(r; s)g. For brevity, the�gure does not show all the onepts obtained by appliation of the alv rule and thesubsequent expansion by alt and alu rules. If we onsider subset bloking, then thenode z is bloked by the root node x. This means that the existential rule al9 is notapplied, and hene the expansion stops on this model andidate without generating newindividuals. This ABox ontains no lash, whih means that the tableau proedure willaept A as satis�able. But this answer is not orret.Sine the individual z satis�es A, it must also satisfy, due to the GCI in T , theonept 9s:8r:8r::B; that is, it must have an s suessor suh that every two-stepr suessor satis�es :B. Sine r and s are inverses of eah other, a two-step spredeessor must satisfy that restrition; hene, every s predeessor of z must do that.See the right side of Figure 2.9, where the dashed arrows represent the r suessorsobtained by the inverse axiom. This means that y must satisfy :B, but the ABoxontains already B(y), whih leads us to a lash in the model andidate.The reason why the proedure was unable to detet the lash was that the node zwas not allowed to reeive the information that it should satisfy the onept 8r::B,whih would be populated upwards by its suessor node w through appliations ofthe rule al�. This early bloking problem an be properly solved for this tableauproedure by simply enforing a stronger ondition for bloking, in whih the blokedindividual must satisfy exatly the same onepts as the individual bloking it. Moreformally, x is bloked by y i� fD j D(x) 2 Ag = fD j D(y) 2 Ag. This is known asequality bloking [HS99℄.One should notie that equality bloking an also be applied to the tableau algo-rithm for satis�ability w.r.t. general TBoxes. Sine the ondition required for blokingis a stronger one, using it would mean that bloking will ome later, and hene onemight atually lose in eÆieny within an implementation of the method; nonetheless,it would still be sound and omplete. It is for this reason that later on, when weformalise the notion of bloking for general tableaux in Chapter 4, we will fous onlyon equality bloking.

2.4. AUTOMATA-BASED DECISION ALGORITHMS 252.4 Automata-Based Deision AlgorithmsA di�erent approah for onstruting a deision proedure is to use automata to testwhether there is a model of the TBox that maps the onept to a non-empty set. Givena logi that has the tree model property, that is, there is a model for an ontology ifand only if there is a tree shaped model for the same, the idea is to onstrut a treeautomaton whose aepted language orresponds exatly to those tree-shaped modelswhere the root satis�es the onept being tested. Thus, the language aepted by thisautomaton is empty if and only if the onept is unsatis�able.Before desribing how this idea is applied to ALC w.r.t. SI-TBoxes and LTL,we need to present some basi onepts of automata theory. We are interested intree automata that work on in�nite trees. Intuitively, these automata try to label aninput (in�nite) tree in suh a way that the labeling satis�es the automata aeptaneondition (see De�nition 2.13). If suh a labeling is possible, then the tree is aepted;otherwise it is rejeted. Furthermore, when automata are used to deide a property,it is usually suÆient to use unlabeled trees as inputs. This means that, given a �xedarity (i.e., branhing fator) k, there is only one suh input tree; thus, the languageaepted by one of these automata will be either empty or ontain the only unlabeledk-ary tree.Given a positive integer k we use K to denote the set f1; : : : ; kg. We identify thenodes of the input trees by means of words in K� in the usual way: the root node isidenti�ed by the empty word ", and the i-th suessor of a node u is identi�ed by uifor 1 � i � k. The unique unlabeled in�nite tree of arity k is represented by the setof all its nodes, namely K�. As said before, an automaton tries to label the input treein an appropriate manner. Whenever we are speaking of labeled trees, we will refer tothe label of the node u 2 K� in the tree r by r(u), and in the same fashion we representan in�nite tree r labeled with elements from a set Q as a mapping r : K� ! Q. Wewill also use the abbreviation ��!r(u) to denote the tuple ��!r(u) = (r(u); r(u1); : : : ; r(uk)).Additionally, we need the onept of a path in this tree. A path is a subset p � K�suh that " 2 p and for every u 2 p there is exatly one i; 1 � i � k with ui 2 p.De�nition 2.13 ((Generalised) B�uhi tree automaton). A generalised B�uhitree automaton for arity k is a tuple (Q;�; I; F1; : : : ; Fn), where Q is a �nite set ofstates, � � Qk+1 is the transition relation, I � Q is the set of initial states, andF1; : : : ; Fn � Q are the sets of �nal states. A generalised B�uhi tree automaton isalled B�uhi automaton if it has only one set of �nal states; i.e., if n = 1. It is alledlooping tree automaton if n = 0.A run of a generalised B�uhi automaton on the unlabeled tree K� is a labeled k-arytree r : K� ! Q suh that ��!r(u) 2 � for all u 2 K�. This run is suessful if forevery path p and every i; 1 � i � n, there are in�nitely many nodes u 2 p suh thatr(u) 2 Fi.When using automata as deision proedures, one is usually interested in solvingthe emptiness problem, whih onsists in deiding whether the language aepted bythe automaton is empty or not.

26 CHAPTER 2. LOGICS AND DECISION PROCEDURESDe�nition 2.14 (Emptiness problem). The emptiness problem for generalisedB�uhi tree automata for arity k is the problem of deiding whether a given suh au-tomaton has a suessful run r suh that r(") 2 I or not.Although a diret algorithm for deiding the emptiness of a generalised B�uhiautomaton is skethed in [VW84℄, no proof of orretness is presented there and in thejournal version of that paper [VW86℄, the idea is simpli�ed by presenting a redutionto the emptiness problem for B�uhi automata. In Chapter 5, we will follow a similarapproah for omputing the so-alled behaviour of weighted B�uhi automata. First,we will show how to ompute the behaviour of weighted B�uhi automata. Later, wewill introdue a polynomial redution from weighted generalised B�uhi automata toweighted B�uhi automata that preserves the behaviour. Our algorithm for omputingthe behaviour of weighted B�uhi automata generalises the well-known ideas employedto deide the emptiness problem in the unweighted ase.The emptiness problem for B�uhi automata an be deided in time polynomialin the size of the automaton [Rab70, VW86℄. The deision proedure onstrutsthe set of all states that annot our as labels in any suessful run; we will allthese states bad states. We an try to disprove that a state is bad by attempting toonstrut a �nite partial run where every path ends in a �nal state. Every state forwhih this onstrution fails is learly bad, but there may be bad states for whih thisonstrution sueeds. The reason is that some of the �nal states reahed by the �niterun may themselves bad. Thus, in order to ompute all bad states we must iteratethis proess, where in the next iteration the partial run is required to reah �nal statesthat are not already known to be bad. Notie, however, that the onstrution of a�nite partial run ending in non-bad �nal states an itself be realized by an iterativeproedure. Hene, the deision proedure for the emptiness problem uses two nestediterations. In the inner loop, we try to onstrut a �nite partial run �nishing in (non-bad) �nal states for every state. In the outer loop, we use the result of the inneriteration to update the set of (known) bad states, and then re-start the inner iterationwith this new information.Let us all the states for whih there is a �nite partial run �nishing in non-bad�nal states adequate. First, any state q 2 Q for whih there is a transition leading toonly non-bad �nal states is learly adequate. Then, every state for whih there is atransition leading only to states that are either (i) �nal and not bad or (ii) alreadyknown to be adequate is also adequate. Obviously, during this iteration, the set ofadequate states beomes stable after at most jQj iterations. The outer loop then addsall the states that were found not to be adequate to the set of bad states. The set ofbad states maintained in this outer iteration beomes stable after at most jQj steps.This yields an emptiness test that runs in time polynomial in the number of states (see[VW86℄ for details). In the ase of looping automata, this method an be simpli�edto a single bottom-up iteration [BT01℄.In the following subsetions, we will show how we an use automata, and in par-tiular the emptiness test just skethed, to deide satis�ability of ALC onept termsw.r.t. SI-TBoxes, as well as axiomati satis�ability of LTL formulae.

2.4. AUTOMATA-BASED DECISION ALGORITHMS 272.4.1 Satis�ability of ALC Conepts with SI-TBoxesThe automata-based approah for deiding satis�ability of an ALC onept term w.r.t.a general SI-TBox is based on the fat that a onept is satis�able i� it has a so-alled Hintikka tree, whih is basially a tree model where every node is labeled withthe onept terms to whih it belongs. Given a onept C and an SI-TBox, we willonstrut a looping tree automaton whose suessful runs orrespond exatly to theHintikka trees.In order to simplify the notation, we assume that every onept term is presentedin negation normal form (NNF); that is, negation appears only in front of oneptnames. This assumption has no impat in the generality of the method as every ALConept term an be transformed into NNF in linear time using the de Morgan laws,duality of quanti�ers and elimination of double negations. We will denote the NNFof a onept term C as nnf(C) and nnf(:C) as vC. Given an ALC onept term Cand a general SI-TBox T , we will use the abbreviation sub(C;T) to denote the setontaining all the subonepts of C as well as of the onept vD tE for D v E 2 T .The automaton we onstrut for deiding satis�ability of onepts w.r.t. generalSI-TBoxes will have so-alled Hintikka sets as states. Hintikka sets ontain as ele-ments subonepts of the input onept and TBox, as well as information about thetransitivity of ertain roles. For this, we will additionally use rol(C;T) to denote theset of all role names appearing in C or in T .De�nition 2.15 (SI-Hintikka set). A set H � sub(C;T) [rol(C;T) is alled anSI-Hintikka set for (C;T) if the following three onditions are satis�ed:(i) if D uE 2 H, then fD;Eg � H;(ii) if D tE 2 H, then fD;Eg \H 6= ;; and(iii) there is no onept name A 2 CN suh that fA;:Ag � H.An SI-Hintikka set H is ompatible with the GCI D v E 2 T i� either H = ;or vD t E 2 H. It is ompatible with the transitivity axiom trans(r) 2 T i� H = ;or r 2 H. Finally, H is ompatible with the inverse axiom inv(r; s) 2 T i� it holdsthat r 2 H if and only if s 2 H.The arity k of the input aepted by our automaton is given by the number ofexistential restritions, i.e., onept terms of the form 9r:D, present in sub(C;T).For the transition relation, it will be important to know whih suessor in the treeorresponds to whih existential restrition being satis�ed; for that reason, we �x anarbitrary bijetion ' : f9r:D j 9r:D 2 sub(C;T)g ! K. A Hintikka tree is a k-ary treelabeled with Hintikka sets that satis�es additional ompatibility onditions dealingwith the existential- and value restritions appearing in its node labels. To obtain fullk-ary trees, we will add dummy nodes labeled with the empty set (whih is itself anSI-Hintikka set, and ompatible with every axiom) where appropriate.De�nition 2.16 (Hintikka ondition). The tuple (H0;H1; : : : ;Hk) of Hintikka setsfor (C;T) satis�es the Hintikka ondition i� the following two onditions hold for everyexistential restrition 9r:D 2 sub(C;T):

28 CHAPTER 2. LOGICS AND DECISION PROCEDURES� if 9r:D 2 H0, then H'(9r:D) ontains D as well as every E for whih there is avalue restrition 8r:E 2 H0; if, additionally, r 2 H0, then also 8r:E belongs toH'(9r:D) for all value restrition 8r:E 2 H0; and� if 9r:D =2 H0, then H'(9r:D) = ;.A tuple satisfying the SI-Hintikka ondition is alled ompatible with the GCID v E 2 T (respetively ompatible with the transitivity axiom trans(r) 2 T) if allits omponents are ompatible with D v E (ompatible with trans(r), respetively). Itis ompatible with the inverse axiom inv(r; r0) 2 T if all its omponents are ompatiblewith inv(r; r0) and the following holds for all s 2 fr; r0g and s� 2 fr; r0gnfsg: for every8s:F 2 H'(9s�:D), the set H0 ontains F and additionally 8s:F if s 2 H0.A tuple of SI-Hintikka sets that satis�es the SI-Hintikka ondition is ompatiblewith a general SI-TBox T if it is ompatible with every axiom t 2 T .We an now formally de�ne Hintikka trees.De�nition 2.17 (Hintikka tree). A Hintikka tree for (C;T) is a k-ary tree Hlabeled with Hintikka sets for (C;T) suh that C 2 H(") and for every node u 2 K�the tuple ���!H(u) is ompatible with T .The following result shows that testing for satis�ability of a onept C w.r.t.an SI-TBox T is equivalent to deiding the existene of an SI-Hintikka tree for(C;T). This lemma an be shown by a simple adaptation of the arguments presentedpreviously in [BHP07, BHP08℄.Lemma 2.18. A onept C is satis�able w.r.t. a general SI-TBox T i� there is aHintikka tree for (C;T).Given this lemma, we now know that it is enough to onstrut an automaton whosesuessful runs orrespond to suh Hintikka trees. We an then test for satis�abilityof the onept w.r.t. a SI-TBox by performing an emptiness test on this automaton.In this ase, a looping automaton suÆes for deiding the property.De�nition 2.19 (Automaton AsatC;T). Let C be an ALC onept term, T a gen-eral SI-TBox and k the number of existential restritions in sub(C;T). The loopingautomaton AsatC;T is given by AsatC;T = (Q;�; I) where� Q is the set of all Hintikka sets for (C;T);� � is the set of all tuples (H0;H1; : : : ;Hk) 2 Qk+1 that satisfy the Hintikkaondition and are ompatible with T ; and� I = fH 2 Q j C 2 Hg.As expeted, the suessful runs of this automaton where the root is labeled withan element of I orrespond exatly to SI-Hintikka trees for (C;T). This yields thefollowing result [BHP08℄.

2.4. AUTOMATA-BASED DECISION ALGORITHMS 29Theorem 2.20. Let C be an ALC onept term and T an SI-TBox. The automatonAsatC;T has a suessful run r with r(") 2 I i� C is satis�able w.r.t. T .This theorem shows that the emptiness test skethed before an be used as adeision proedure for satis�ability of ALC onept terms w.r.t. SI-TBoxes. The au-tomation AC;T is a looping automaton, that is, it makes no use of the B�uhi aeptaneondition on runs. The automata onstrution we will show in the next subsetion fordeiding axiomati satis�ability of LTL formulae requires these aeptane onditionsfor orretness.2.4.2 Axiomati Satis�ability of LTL FormulaeIn order to deide axiomati satis�ability of LTL formulae, we will onstrut an au-tomaton whose suessful runs orrespond to omputations for the input. Notie thata omputation � : N ! P(P) an be seen also as a unary tree, that is, a tree whereevery node has exatly one suessor. More preisely, eah node represents one pointin time and the suessor relation in this tree is given by the standard ordering ofnatural numbers. Thus, the automaton we onstrut will have the unique unlabeledunary tree as input. The states of this automaton will be sets of LTL formulae, whihintuitively represent the set of all formulae that are satis�ed at a given point in time.In that sense, these states orrespond to the Hintikka sets de�ned in the previoussubsetion. Notie nonetheless that this orrespondene will not be preise sine forLTL we will follow the ideas of previous automata onstrutions (e.g. [WVS83℄), andhene will not assume that the formulae are in negation normal form. Given an LTLformula � and a set of LTL formulae R, we de�ne the losure of (�;R) as the set of allsubformulae of � and R, and their negations, where double negations are anelled.This set is denoted by l(�;R).The states of our automaton are so-alled elementary sets of formulae, whih playthe role of the Hintikka sets of the previous subsetion; that is, they are maximal andonsistent sets of subformulae in l(�;R).De�nition 2.21 (Elementary set). A set H � l(�;R) is alled an elementary setfor (�;R) if it satis�es the following onditions:� :� 2 H i� � =2 H;� � ^ 2 H i� f�; g � H;� 2 H implies �U 2 H;� if �U 2 H and =2 H, then � 2 HAs we have said before, the automaton for satis�ability of LTL formulae will takeunary trees as inputs; i.e., its runs will be in�nite words over the set of states. Thetransition relation is thus binary. This transition relation makes sure that the temporaloperators are adequately propagated to the suessor nodes; for instane, if we have a

30 CHAPTER 2. LOGICS AND DECISION PROCEDURESnext formula in the label of a node, then its suessor node must ontain . Thisis formalised by the following de�nition.De�nition 2.22 (Compatible). A tuple (H;H 0) of elementary sets is alled om-patible i� it satis�es the following onditions:� for all 2 l(�;R), 2 H i� 2 H 0; and� for all 1U 2 2 l(�;R), 1U 2 2 H i� either (i) 2 2 H or (ii) 1 2 H and 1U 2 2 H 0.The runs of our automaton will be sequenes of elementary sets where eah twoonseutive ones form a ompatible tuple. In ontrast to the ase for SI, the preseneof a run of this automaton does not imply the existene of a omputation. The reasonis that one an delay the satisfation of an until formula inde�nitely; that is, everynode in the run may have the formula 1U 2 while none has 2, violating this waythe last ondition in the de�nition of a omputation for the input (see De�nition 2.9).In order to rule out these kinds of runs and make sure that eah until formula iseventually satis�ed, we will impose a generalised B�uhi ondition whih introdues aset of �nal states for eah until formula in l(�;R). Intuitively, eah suh set of �nalstates is in harge of enforing the eventual satisfation of one spei� until formula.De�nition 2.23 (Automaton Asat�;R). Let � and R be an LTL formula and a setof LTL formulae, respetively, and let �1U 1; : : : ; �nU n be all the until formulae inl(�;R). The generalised B�uhi automaton Asat�;R := (Q;�; I; F1; : : : ; Fn) is given by� Q is the set of all elementary sets for (�;R);� � onsists of all ompatible pairs (H;H 0) 2 Q�Q;� I := fH 2 Q j R [f�g � Hg;� for 1 � i � n; Fi := fH 2 Q j i 2 H or �iU i =2 Hg.The suessful runs of this automaton whose root is labelled with an initial stateorrespond to the omputations for the input (�;R). From this, we obtain the follow-ing result [WVS83℄.Theorem 2.24. Let � be an LTL formula and R a set of LTL formulae. The au-tomaton Asat�;R has a suessful run r with r(") 2 I i� � is axiomati satis�able w.r.t.R. From this theorem it follows that axiomati satis�ability of LTL formulae an bedeided by an emptiness test on the automaton Asat�;R.In this hapter we have desribed several previously known algorithms for reason-ing in di�erent logis, starting from the fairly inexpressive HL all the way up to the

2.4. AUTOMATA-BASED DECISION ALGORITHMS 31inlusion of more omplex onstrutors and axioms restriting the interpretations foronepts and roles in DLs. We then left the DL family to inlude also the temporaloperators for LTL.Broadly, we showed the main harateristis of two di�erent approahes for on-struting deision proedures. On one hand, the tableau-based method, that tries toonstrut a model while keeping the restritions imposed by the axioms (inluded asexpansion rules). On the other hand is the automata-based approah that tries toonstrut an automaton for whih an emptiness test leads to a orret deision.The partiular instanes of deision proedures presented in this hapter will helpus formalise the notions of general tableau algorithms (in Chapter 3) and so-alledaxiomati automata (in Chapter 5), respetively. We will then show how eah ofthese deision proedures an be modi�ed to obtain what is alled a pinpointingproedure; intuitively, one that will allow us to dedue how the presene of ertainaxioms inuenes the property being tested. The output of a pinpointing proedurewill be the so-alled pinpointing formula, from whih all explanations and diagnosesan be inferred.

32 CHAPTER 2. LOGICS AND DECISION PROCEDURES

Chapter 3Tableaux and PinpointingThe previous hapter introdued proedures that allow us to deide if a property,suh as subsumption or satis�ability of onept names, follows from a set of axioms.The sets of axioms used ould take very di�erent shapes; namely, onept de�nitions,assertional axioms, or GCIs, in the ase of DLs, or LTL formulae. The deisionproedures we presented ame in two avours: the tableau-like and the automata-based proedures. It is the goal of this work to show how to extend them in suh away that, one a deision is made, we are able to justify it by retrieving those axiomsthat are relevant for the obtained answer. The approah followed in this work onsistson �nding a monotone Boolean formula, whih we all pinpointing formula, from whihthe desired sets of axioms an be dedued. The present and following hapters willdeal with the tableau-like methods, while we delay the treatment of automata-basedproedures until Chapter 5.Before we an begin with the task of extending any kind of algorithm, we needto formally desribe the problem that we are trying to solve; namely, the propertiesthat should be satis�ed by the pinpointing formula. This in turn will require a formalde�nition of the kinds of properties that the original proedures deide. All thesenotions are introdued in Setion 3.1.Afterwards, we proeed to desribe extensions of tableau-like deision proeduresthat ompute the desired pinpointing formula. In order to improve understanding,this is done in two steps. We �rst fous in the speial ase of ground tableaux of whihthe subsumption algorithm of Setion 2.3.1 is an instane. We then generalise all thenotions and results to what we all general tableaux in Setion 3.3. This notion en-ompasses the proedures desribed in Setions 2.3.2 and 2.3.3, but is not able to dealwith bloking onditions as desribed in the last two setions of the previous hap-ter. The pinpointing extensions of general tableaux are shown to orretly ompute apinpointing formula whenever they terminate.The extension presented in this hapter follows the ideas introdued by Baader andHollunder in [BH95℄. There, the onsisteny algorithm for ALC ABoxes is extendedby a labelling tehnique that ultimately omputes a pinpointing formula. A similarapproah was followed by Shlobah and Cornet [SC03℄ for onept unsatis�abilitywith respet to so-alled unfoldable ALC terminologies. The main di�erene between33

34 CHAPTER 3. TABLEAUX AND PINPOINTINGBaader and Hollunder's approah and that by Shlobah and Cornet is that the lattertries to �nd the sets of axioms that are relevant to unsatis�ability diretly, ratherthan by using the intermediary pinpointing formula as done in the former approah.In reality, the result obtained using the method in [SC03℄ an be seen as a pinpointingformula written in disjuntive normal form. Although these ideas have been extendedto inlude additional onstrutors or use di�erent kinds of axioms (see, for instane,[PSK05, MLBP06℄), eah of these extensions has been made to work spei�ally forthe language being studied. Nonetheless, exept for the ase dealing with bloking[LMP06℄ that needs speial attention, they all follow the same basi ideas.Unfortunately, as shown at the end of this hapter, there is no warranty thatthe extended algorithm will stop after a �nite number of steps, even if the originaltableau does. This fat is speially relevant sine none of the papers ited so far dealswith termination of the extensions they present. Atually, termination is usuallydisregarded as trivially following from the same auses of termination of the originaltableau, giving no further insight into whih these auses are in reality. It will be thetask of Chapter 4 to introdue a framework where both, tableaux and their pinpointingextensions, are guaranteed to terminate. It is in that hapter too that we will introduethe notion of bloking for general tableaux and their pinpointing extensions.3.1 Basi Notions for PinpointingWe begin this setion by de�ning the general form of the inputs for the deision algo-rithms used along this work. These inputs, alled axiomatised inputs, onsist of twoparts. Intuitively, one part orresponds to a knowledge base, that is, a set of axiomspossibly restrited to satisfy additional internal restritions, and the other expressesthe instane of the inferene problem that needs to be tested against this knowledgebase. The internal restritions in the set of axioms are neessary for modelling e.g.ayli- or SI-TBoxes, where not every set of axioms is allowed. Indeed, ayliTBoxes require every onept name to appear at most one in the left-hand-side of aonept de�nition, and SI-TBoxes are restrited to allow the use of eah role namein at most one inverse axioms. But notie that in both ases, if a set of axioms isallowed to be used as a knowledge base, then any of its subsets is also allowed. In ourgeneral approah we keep this property.The onsequenes in whih we are interested need to satisfy a monotoniity re-strition in the sense that adding axioms to the knowledge base an only make moreonsequenes true, but not falsify any that already follows from the original set ofaxioms. A property is merely a set of axiomatised inputs, and the deision prob-lem assoiated with suh property onsist on deiding, for a given axiomatised input,whether it belongs to the set or not. A property that models onsequenes satisfyingthe monotoniity restrition stated above will be alled onsequene property.De�nition 3.1 (Axiomatised input, -property). Let I be a set, alled the setof inputs, T be a set, alled the set of axioms, and let Padmis (T) � Pfin(T) be aset of �nite subsets of T. Padmis (T) is alled admissible if T 2 Padmis (T) impliesT 0 2Padmis(T) for all T 0 � T . An axiomatised input for I and Padmis (T) is of the

3.1. BASIC NOTIONS FOR PINPOINTING 35form (I;T) where I 2 I and T 2Padmis (T).A onsequene property (or -property for short) is a set P � I�Padmis (T) suhthat (I;T) 2 P implies (I;T 0) 2 P for every T 0 2Padmis(T) with T 0 � T .The idea behind -properties on axiomatised inputs is to model onsequene re-lations in logi, i.e., the -property P holds if the input I \follows" from the axiomsin T . The monotoniity requirement on -properties orresponds to the fat that wewant to restrit the attention to onsequene relations indued by monotoni logis.In fat, for non-monotoni logis, looking at minimal sets of axioms that have a givenonsequene does not make muh sense.To illustrate De�nition 3.1, onsider the set NC of onept names. Assume thatI is the set of ordered pairs NC � NC and that T onsists of all HL-GCIs over theseonept names. Then the following is a -property aording to the above de�nition:P := f((C;D);T) j C vT Dg: This property represents subsumption w.r.t. generalHL-TBoxes. As a onrete example, onsider � := ((A;B);T) where T onsists ofthe following GCIs:ax1: A v C; ax2: A v D; ax3: D v C; ax4: C uD v B (3.1)It is easy to see that � 2 P. Note that De�nition 3.1 is general enough to aptureother variants of the example above, for instane, where I0 onsist of tuples of theform (C;D; T1) 2 I �Pfin(T) and the -property is de�ned asP 0 := f((C;D; T1);T2) j C vT1[T2 Dg:For example, if we take the axiomatised input �0 := ((A;B; fax3; ax4g); fax1; ax2g),then �0 2 P 0.Due to the monotoniity of -properties, it may well be that some axioms areirrelevant for deduing a onsequene. If we are interested in justifying suh a onse-quene, we would need to get rid of all those irrelevant axioms and present a minimalknowledge base from whih the onsequene still follows. If, on the ontrary, the on-sequene is deteted as an error, we might want to remove only enough axioms to getrid of it but not more, sine that might also remove some desired onsequenes.De�nition 3.2 (MinA,MaNA). Given an axiomatised input � = (I;T) and a -property P, a set of axioms S � T is alled a minimal axiom set (MinA) for � w.r.t.P if (I;S) 2 P and (I;S 0) =2 P for every S 0 � S. Dually, a set of axioms S � T isalled a maximal non-axiom set (MaNA) for � w.r.t. P if (I;S) =2 P and (I;S 0) 2 Pfor every T � S 0 � S. The set of all MinAs (MaNAs) for � w.r.t. P will be denotedas MINP(�) (MAXP(�)).Note that the notions of MinA and MaNA are only interesting in the ase where� 2 P. In fat, otherwise the monotoniity property satis�ed by P implies thatMINP(�) = ; and MAXP(�) = fT g. In the above example, where we have � 2 P, itis easy to see that MINP(�) = ffax1; ax2; ax4g; fax2; ax3; ax4gg. In the variant of theexample where only subsets of fax1; ax2g an be taken, we have MINP 0(�0) = ffax2gg.

36 CHAPTER 3. TABLEAUX AND PINPOINTINGThe set MAXP(�) an be obtained from MINP(�) by omputing the minimal hittingsets of MINP(�), and then omplementing these sets [SC03, LS05℄. A set S � T is ahitting set of MINP(�) if it has a nonempty intersetion with every element of MINP(�),and is a minimal hitting set if no strit subset of S is itself a hitting set. In ourexample, the minimal hitting sets of MINP(�) are fax1; ax3g; fax2g; fax4g; and thusMAXP(�) = ffax2; ax4g; fax1; ax3; ax4g; fax1; ax2; ax3gg. The intuition behind thisredutions is that, to get a set of axioms that does not have the onsequene, we mustremove from T at least one axiom for every MinA, and thus the minimal hitting setsgive us the minimal sets to be removed.The redution we have just skethed shows that it is enough to design an algorithmfor omputing all MinAs, sine the MaNAs an then be obtained by a hitting setomputation. It should be noted, however, that this redution is not polynomial:there may be exponentially many hitting sets of a given olletion of sets, and evendeiding whether suh a olletion has a hitting set of ardinality � n is already anNP-omplete problem [GJ79℄. Also note that there is a similar redution involvinghitting sets for omputing the MinAs from all MaNAs.Instead of omputing MinAs or MaNAs, one an also ompute the pinpointingformula.10 To de�ne the pinpointing formula, we assume that every axiom t 2 T islabeled with a unique propositional variable, whih we denote as lab(t). Let lab(T)be the set of all propositional variables labeling an axiom in T . A monotone Booleanformula over lab(T) is a Boolean formula using (some of) the variables in lab(T) andonly the onnetives onjuntion and disjuntion. We further assume that the formula>, whih is always evaluated as true, is a monotone Boolean formula. As usual, weidentify a propositional valuation with the set of propositional variables it makes true.For a valuation V � lab(T), let TV := ft 2 T j lab(t) 2 Vg.De�nition 3.3 (Pinpointing formula). Given a -property P and an axiomatisedinput � = (I;T), a monotone Boolean formula � over lab(T) is alled a pinpointingformula for P and � if the following holds for every valuation V � lab(T): (I;TV) 2 Pi� V satis�es �.In our example, we an take lab(T) = fax1; : : : ; ax4g as the set of propositionalvariables. It is easy to see that (ax1 _ ax3) ^ ax2 ^ ax4 is a pinpointing formula for Pand �.Valuations have a natural partial order by means of set inlusion, whih allowsus to speak about minimal and maximal valuations. The following is an immediateonsequene of the de�nition of a pinpointing formula [BH95℄.Lemma 3.4. Let P be a -property, � = (I;T) an axiomatised input, and � a pin-pointing formula for P and �. ThenMINP(�) = fTV j V is a minimal valuation satisfying �gMAXP(�) = fTV j V is a maximal valuation falsifying �g10This orresponds to what was alled the lash formula in [BH95℄. Here, we distinguish betweenthe pinpointing formula, whih an be de�ned independently of a tableau algorithm, and the lashformula, whih is indued by a run of a spei� tableau algorithm.

3.2. PINPOINTING IN GROUND TABLEAUX 37This lemma shows that it is enough to design an algorithm for omputing a pin-pointing formula to obtain all MinAs and MaNAs. However, like the previous redu-tion for omputing MAXP(�) from MINP(�), the redution suggested by the lemma isnot polynomial. For example, to obtain MINP(�) from �, one an bring � into disjun-tive normal form and then remove disjunts implying other disjunts. It is well-knownthat this an ause an exponential blowup. Conversely, however, the set MINP(�) andiretly be translated into the pinpointing formula_S2MINP(�) ŝ2S lab(s): (3.2)Returning to our example, the pinpointing formula obtained in this fashion fromMINP(�) = ffax1; ax2; ax4g; fax2; ax3; ax4gg is (ax1 ^ ax2 ^ ax4) _ (ax2 ^ ax3 ^ ax4);whih is equivalent to the pinpointing formula we had diretly omputed.3.2 Pinpointing in Ground TableauxBefore desribing how general tableau-based algorithms an be extended to proe-dures that ompute a pinpointing formula, we show how this is done in a restritedase that we will all ground tableaux. This ase is still interesting by itself, sine itenompasses several deision proedures, suh as the subsumption algorithm for HLor the ongruene losure algorithm [NO07℄. The proofs of all the results presentedin this setion will be delayed to the more general statements of Setion 3.3.De�nition 3.5 (Ground tableau). Let I be a set of inputs and Padmis(T) anadmissible set of sets of elements in T. A ground tableau for I and Padmis (T) is atuple S = (�; �S ;R; C) where� � is a set alled a signature;� �S is a funtion, alled the initial funtion, that maps every I 2 I and everyt 2 T to a �nite subset of �;� R is a set of rules of the form (B0;S) ! B where B0 and B are �nite subsetsof � and S is a �nite set of axioms;� C is a set of �nite subsets of �, alled lashes.A ground tableau deides a property with the help of so-alled S-states that in-tuitively ontain all the knowledge that has been dedued during the exeution ofthe method. An S-state is a pair S = (A; T) where A is a �nite subset of � andT 2 Padmis (T) is an admissible set of axioms. In this ase, we all A and T theassertion- and axiom-omponent of S, respetively. The elements of A are also alledassertions. The deision proedure begins with the initial state (I;T)S that depends

38 CHAPTER 3. TABLEAUX AND PINPOINTINGon the axiomatised input (I;T) given to the algorithm. This state is found extendingthe initial funtion �S as follows:(I;T)S = (IS [[t2T tS ;T):Consider for example the proedure for deiding subsumption of HL oneptsdesribed in Setion 2.3.1. This algorithm stores all the information needed to makethe deision in a set of pairs of the form (A;B), where A;B are onept names. Wean thus onsider its signature to be formed by all suh pairs. That algorithm beginswith all the trivial knowledge stating that every onept appearing in the input setof axioms is subsumed by itself. We an do this by �xing the initial funtion to mapevery axiom t of the form nui=1Ai v muj=1Bj to the settS = f(Ai;Ai) j 1 � i � ng [f(Bj ;Bj) j 1 � j � mg:Now, sine we want this proedure to work for every subsumption relation we desireto test, and the deision made by suh ground tableaux relies only on the informationstored in its states, we need a way to speify whih spei� subsumption relation isthe one we are urrently trying to deide. For this reason, we extend the signature toalso inlude assertions of the form A v? B with A;B onept names. The preseneof an assertion of this kind spei�es the request for deiding the subsumption of Aby B. If we onsider the enoding of these inputs as presented in Page 35, then theinitial funtion must map every input of the form (A;B) asking for a subsumptiontest to the set ontaining the orresponding assertion A v? B. More preisely, if wetake the axiomatised input � = ((A;B);T), where T ontains the axioms in (3.1),then the initial funtion produes the S-state�S = (fA v? B; (A;A); (B;B); (C;C); (D;D)g; T):The rules inR are used then to iteratively extend the �rst omponent of an S-stateS depending exlusively on the assertions and axioms appearing in S. Returning tothe subsumption proedure, the rule hl spei�es, intuitively, that whenever we knowthat a onept name A is subsumed by all the Ais, and the onjuntion of those Aisis subsumed by the onjuntion of some Bjs by means of an axiom in T , then wean dedue that A is also subsumed by eah of the Bj , and we an thus extend ourexpliit knowledge aordingly. More onretely, sine the S-state �S desribed aboveontains the assertion (A;A) and the axiom A v D, a rule appliation would add theassertion (A;D) to it. That rule an be rewritten in a tableau-like shape as follows:hl : (f(A;Ai) j 1 � i � ng; f nui=1Ai v muj=1Bjg)! f(A;Bj) j 1 � j � mg:The following de�nition formalises this behaviour.

3.2. PINPOINTING IN GROUND TABLEAUX 39De�nition 3.6 (Rule appliation). Given an S-state S = (A; T), and a ruleR : (B0;S)! B we say that R is appliable to S if the following three onditions aresatis�ed: (i) S � T , (ii) B0 � A, and (iii) B 6� A.If the rule R is appliable to the S-state S = (A; T), then the appliation of R toS yields the new S-state (A [B; T). If S0 is obtained from S by the appliation ofthe rule R, then we write S !R S0 or simply S !S S0 if it is not relevant whih ofthe rules of the tableau S was applied.As usual, we denote the reexive-transitive losure of !S by ��!S . The rules areapplied to the S-state until it beomes saturated; that is, until no rule an be appliedanymore. At that point, we an use the set of lashes to deide the property: theaxiomatised input is aepted (in other words, belongs to the property deided by thealgorithm) if and only if it ontains an element of C. Returning to subsumption of HLonept names, A is subsumed by B w.r.t. T i� the saturated S-state found in thisway ontains the pair (A;B). Thus, in our tableau setting, the set of lashes onsistsof all sets of the form f(A;B);A v? Bg, where A;B are onept names.De�nition 3.7 (Saturated state, lash). An S-state S = (A; T) is alled saturatedi� there is no S0 suh that S!S S0. It ontains a lash i� there is a set C 2 C suhthat C � A.For a ground tableau to orretly deide a -property it needs �rst to be a ter-minating proedure and seond to adequately �nd a lash in the state found aftertermination, as expressed in the following de�nition.De�nition 3.8 (Corretness). Let P be a -property on axiomatised inputs for Iand Padmis(T), and S a ground tableau for I and Padmis (T). We say that S isorret for P if the following holds for every axiomatised input � = (I;T) for I and
Padmis (T):1. S terminates on �; that is, there exists no in�nite hain of rule appliationsS0 !S S1 !S : : : starting with S0 = �S.2. For every hain of rule appliations S0 ��!S Sn suh that S0 = �S and Sn issaturated, we have � 2 P i� Sn ontains a lash.The seond ondition for orretness given in this de�nition might seem like astrong restrition, sine it fores the algorithm to yield the same result regardlessof the order in whih rules are applied, making it suÆient to test only one suhorder to deide the property. Atually, the fat that the order in whih rules areapplied is irrelevant for the presene or absene of a lash is hardoded in our notionof ground tableau, as shown in the next proposition. This means that although theorder in whih rules are applied an be seen as a soure of non-determinism, it is ofthe do-not-are kind, and hene we need not worry about it.

40 CHAPTER 3. TABLEAUX AND PINPOINTINGProposition 3.9. Let � be an axiomatised input and S0 = �S. If S and S0 aresaturated S-states suh that S0 ��!S S and S0 ��!S S0, then S ontains a lash i� S0ontains a lash.A orret tableau an be used to deide whether a given axiomatised input belongsto a property or not. We proeed now to show how it an be extended to an algorithmthat omputes a pinpointing formula. Reall the assumption made for the de�nition ofthe pinpointing formula that every axiom t 2 T is labeled with a unique propositionalvariable lab(t), and the set of all propositional variables labeling an axiom in T isdenoted by lab(T).Given an axiomatised input � = (I;T), the modi�ed algorithm also works on setsof S-states, but now every assertion a ourring in the �rst omponent of an S-stateis equipped with a label lab(a), whih is a monotone Boolean formula over lab(T). Weall suh S-states labeled S-states. Intuitively, the label of an assertion expresses theaxioms that are neessary to produe it. Thus, in the initial S-state (A; T) = (I;T)S ,an assertion a 2 A is labeled with > if a 2 IS and with Wft2T ja2tSg lab(t) otherwise.The intuition of these labels is that, if a 2 IS, then the assertion a will be produedby the tableaux algorithm, regardless of the axioms inluded in the input. Otherwise,the label expresses whih axioms are the responsible for its appearane in the initialstate.For instane, onsider again our tableau for subsumption w.r.t. HL TBoxes andthe axiomatised input � = ((A;B);T), where T has only the axioms in (3.1). Theinitial funtion maps � to the S-state having the following set of labeled assertions:11fA v? B>; (A;A)ax1_ax2 ; (B;B)ax4 ; (C;C)ax1_ax3_ax4 ; (D;D)ax2_ax3g: (3.3)The de�nition of rule appliation must also take the labels of assertions and axiomsinto aount. Let A be a set of labeled assertions and a monotone Boolean formula.We say that the (unlabeled) assertion a is -insertable into A if either (i) a =2 A,or (ii) a 2 A, with lab(a) = �, but 6j= �. Given a set B of assertions and a setA of labeled assertions, the set of -insertable elements of B into A is de�ned asins (B;A) := fb 2 B j b is -insertable into Ag.12 By -inserting these insertableelements into A, we obtain the new set of labeled assertions given by:A d B := A [ins (B;A);where eah assertion a 2 A n ins (B;A) keeps its old label lab(a), eah assertion inins (B;A) n A gets label , and eah assertion b 2 A \ ins (B;A) gets the new label _ lab(b).De�nition 3.10 (Pinpointing rule appliation). Let S = (A; T) be a labeled S-state and R : (B0;S) ! B a rule. R is pinpointing appliable to S if (i) S � T ,(ii) B0 � A, and (iii) ins (B;A) 6= ;, where := Vb2B0 lab(b) ^Vs2S lab(s).11For simpliity, we sometimes represent the labels of assertions by means of supersripts; i.e., if ais an assertion, then a� denotes the labeled assertion where lab(a) = �.12Notie here that the set B ontains unlabeled assertions. This is onsistent with the fat thatrules of a tableau use only unlabeled assertions; the labels are treated by a modi�ed rule appliation.

3.2. PINPOINTING IN GROUND TABLEAUX 41Given a labeled S-state S = (A; T) to whih the rule R is pinpointing appliable,the pinpointing appliation of R to S yields the new S-state (A d B; T), where theformula is de�ned as above.If S0 is obtained from S by the pinpointing appliation of the rule R, then we writeS!Rpin S0, or simply S!Spin S0 if it is not relevant whih of the rules of the tableauS was applied. A labeled S-state S is pinpointing saturated if there is no S0 suhthat S!Spin S0.Returning to our example, we show how pinpointing rule appliations modify thelabeled state �S in (3.3). The assertion (A;A) along with axiom ax2 an trigger therule hl in order to add the assertion (A;D) to this state, with the label (ax1_ax2)^ax2.For the sake of readability, we will simplify this formula. Hene, lab((A;D)) = ax2.This newly generated assertion an now be used in ombination with axiom ax3 toadd the assertion (A;C), whih will have as label the onjuntion of lab((A;D))and ax3; i.e., lab((A;C)) = ax2 ^ ax3. Notie now that the assertion (A;A) analso trigger a rule appliation by means of axiom ax1. Sine this rule appliationwould only add the assertion (A;C) that is already present in the urrent S-state,it would be disallowed in the original tableau sense. However, sine this shows analternate way to obtain the same assertion, it needs to be allowed by pinpointing ruleappliation, as is the ase beause (ax1 _ ax2) ^ ax1 6j= lab((A;C)). When the rule ispinpointing applied, no assertion is added to the set, but the label of (A;C) is hangedto ((ax1 _ ax2) ^ ax1) _ (ax2 ^ ax3), or, equivalently, ax1 _ (ax2 ^ ax3). Finally, theassertions (A;C) and (A;D) an be used along axiom ax4 to introdue the assertion(A;B), whose label is given by lab((A;C)) ^ lab((A;D)) ^ ax4; that is,(ax1 _ (ax2 ^ ax3)) ^ ax2 ^ ax4:Reall now that the original tableau deides the property by verifying the preseneof a lash. In the subsumption example, the lash onsists of the set of assertionsfA v? B; (A;B)g. The onjuntion of the labels of both assertions tells us whihaxioms are neessary for the lash to exist. In this ase, the so-alled lash formula is>^ (ax1 _ (ax2 ^ ax3))^ ax2 ^ ax4. Clearly, it is equivalent to the pinpointing formula(ax1 _ ax3)^ ax2 ^ ax4 that was presented in Setion 3.1. In general, onsider a hainof pinpointing rule appliations S0 !Spin : : : !Spin Sn suh that S0 = �S for anaxiomatised input � and Sn is pinpointing saturated. The label of an assertion in Snexpresses whih axioms are needed to obtain this assertion. A lash in Sn dependson the joint presene of ertain assertions. Thus, we de�ne the label of the lash asthe onjuntion of the labels of these assertions. Sine it is enough to have just onelash in Sn, the labels of di�erent lashes in this state are ombined disjuntively.De�nition 3.11 (Clash set, lash formula). Let S = (A; T) be a labeled S-stateand A0 � A. Then A0 is a lash set in S if A0 2 C. The label of this lash set is A0 := Va2A0 lab(a).Let S be a labeled S-state. The lash formula indued by S is de�ned as S := _A0 lash set inS A0 :

42 CHAPTER 3. TABLEAUX AND PINPOINTING
Reall that, given a set T of labeled axioms, a propositional valuation V induesthe subset TV := ft 2 T j lab(t) 2 Vg of T . Similarly, for a set A of labeled assertions,the valuation V indues the subset AV := fa 2 A j V satis�es lab(a)g. Given a labeledS-state S = (A; T) we de�ne its V-projetion as V(S) := (AV ;TV). The followinglemma is an easy onsequene of the de�nition of the lash formula:Lemma 3.12. Let S be a labeled S-state and V a propositional valuation. Then wehave that V satis�es S i� V(S) ontains a lash.There is also a lose onnetion between pinpointing saturatedness of a labeledS-state and saturatedness of its projetion:Lemma 3.13. Let S be a labeled S-state and V a propositional valuation. If S ispinpointing saturated, then V(S) is saturated.Given a tableau that is orret for a property P, its pinpointing extension is orretin the sense that the lash formula indued by the pinpointing saturated set omputedby a terminating hain of pinpointing rule appliations is indeed a pinpointing formulafor P and the axiomatised input.Theorem 3.14 (Corretness of pinpointing). Let P be a -property on axioma-tised inputs for I and Padmis (T), and S a orret tableau for P. Then the followingholds for every axiomatised input � = (I;T) for I and Padmis (T):For every hain of rule appliations S0 !Spin : : : !Spin Sn suh thatS0 = �S and Sn is pinpointing saturated, the lash formula Sn induedby Sn is a pinpointing formula for P and �.In this setion we have de�ned ground tableaux and shown how eah of them an beextended into an algorithm that omputes a pinpointing formula for a given propertyand axiomatised input. While this framework suÆes to deal with the very inexpres-sive logi HL, it laks the expressivity for dealing with two phenomena that appearalready in the algorithm for deiding onsisteny of ALC ABoxes (Setion 2.3.2);namely, non-determinism, and assertions with an internal struture. The next se-tion extends the ideas of ground tableaux, de�ning a more general notion that ansuessfully deal with these phenomena.3.3 Pinpointing in General TableauxIn this setion we follow the same path of Setion 3.2: we �rst formalise the notionof a tableau-like deision proedure, and then show how it an be modi�ed to obtainan algorithm that omputes a pinpointing formula. The struture of these two stepsfollows the same main ideas used in the previous setion, but in a more general settingthat an deal both with non-deterministi rules, and with assertions having an inter-nal struture. For this part, we will use the algorithm desribed in Setion 2.3.2, in

3.3. PINPOINTING IN GENERAL TABLEAUX 43whih both phenomena appear, as an intuitive basis for the notions that will be intro-dued. Notie, nonetheless, that the -property deided by that algorithm is atuallyinonsisteny; analogously, in the algorithms presented in Setions 2.3.3 to 2.3.5 wewill be interested in unsatis�ability of onepts.With respet to non-determinism, onsider the rule alt shown in Figure 2.3.When our model andidate ontains a onept of the form C t D, then we need tohoose (do-not-know) non-deterministially whih of the disjunts to use to extendit. In order to represent this, the rules in a general tableau will have on the right-hand side a �nite set of sets of assertions, rather than simply a set of assertions as inthe previous setion. More formally, a rule is of the form (B0;S) ! fB1; : : : ; Bmg,where B0; B1; : : : ; Bm are �nite sets of assertions and S is a �nite set of axioms. Thus,ignoring for the moment the variables, the alt rule ould be represented in this settingas alt : (fC tDg; ;)! ffCg; fDgg:Instead of dealing only with S-states, the deision algorithm will operate over setsof S-states, where the appliation of a rule R substitutes one of these S-states withas many S-states as there are elements in the right-hand side of R. Basially, eahS-state in the set represents one of the non-deterministi options that needs to beveri�ed. For instane, if we have the singleton set f(fC tDg; ;)g, an appliation ofthe rule alt will lead to the set f(fC t D;Cg; ;), (fC t D;Dg; ;)g, where the �rstelement expresses the path where the onept C is seleted to be satis�ed, and theseond, that in whih D is the satis�ed onept.Regarding the struture of assertions, notie the tableaux-based algorithms forALC use as assertions not merely onept terms, but have individuals assoiated withthem; i.e., the assertions have the form C(a) or r(a; b), with C a onept name, r a rolename and a; b two individuals. In general, we have strutured assertions of the formP (a1; : : : ; ak), where P is a k-ary prediate and a1; : : : ; ak are onstants. Naturally itis not neessary to de�ne a rule for eah spei� onstant; we instead allow variablesto at as plaeholders for them.Furthermore, rules should be able to reate new onstants. For example, onsiderthe rule al9 appearing also in Figure 2.3. The appliation of this rule requires usto reate a new individual name. Suh a rule will be written in the general tableauxsetting as al9 : (f(9r:C)(x)g; ;) ! ffr(x; y); C(y)gg:In order to apply this rule to an S-state, we need to appropriately replae the variablesin the left-hand side by onstants. The variable y is what will be alled a freshvariable; that is, one that appears only on the right-hand side of a rule. Fresh variablesare replaed by onstants that do not appear in the S-state to whih the rule isbeing applied. In order to avoid that suh a rule is applied inde�nitely, reating newindividuals with eah appliation, the appliability ondition needs to be modi�ed tohek whether it is possible to replae the fresh variables by old onstants to obtainassertions in the urrent S-state.We begin by formalising all these notions. In the following we will use V and Dto denote ountably in�nite sets whose elements are alled variables; and onstants,

44 CHAPTER 3. TABLEAUX AND PINPOINTINGrespetively. A signature � is a set of prediate symbols, where eah prediate P 2 �is assoiated to a (�xed) arity. A �-assertion is of the form P (a1; : : : ; an), where P 2 �is a prediate of arity n and a1; : : : ; an are onstants from D. Likewise, a �-patternis of the form P (x1; : : : ; xn) where P 2 � is an n-ary prediate and x1; : : : ; xn 2 V.Whenever the signature is lear from the ontext, we will often use it impliitly andsimply say pattern or assertion. Given a set A of assertions, we will use the expressionons(A) to denote the set of onstants appearing in A. In the same fashion, var(B)denotes the set of variables that appear in a set B of patterns.A substitution is a mapping � : V ! D, where V � V is a �nite set of variables.In this ase we say that � is a substitution on V . If B is a set of patterns suh thatvar(B) � V , then B� denotes the set of assertions obtained from B by replaing eahvariable by its image under �. If � is a substitution on V and � a substitution on V 0suh that V � V 0 and �(x) = �(x) for all x 2 V , then we say that � extends �.We are ready now to desribe the notion of general tableaux, whih generalisesthe ideas of ground tableaux presented in the previous setion by allowing non-deterministi rules and strutured assertions.De�nition 3.15 (General tableau). Let I be a set of inputs and Padmis(T) anadmissible set of sets of elements in T. A general tableau for I and Padmis (T) is atuple S = (�; �S ;R; C) where� � is a signature;� �S is a funtion that maps every I 2 I to a �nite set of �nite sets of �-assertionsand every t 2 T to a �nite set of �-assertions;� R is a set of rules of the form (B0;S) ! fB1; : : : ; Bmg where B0; : : : ; Bm are�nite sets of �-patterns and S is a �nite set of axioms;� C is a set of �nite sets of �-patterns, alled lashes.As for ground tableaux, we extend the funtion �S to axiomatised inputs by setting(I;T)S = f(A [[t2T tS ;T) j A 2 ISg:Notie that in this ase, given an axiomatised input � = (I;T), �S does not de�ne asingle S-state, but rather a whole set of them. Intuitively, eah set represents a non-deterministi hoie for the algorithm to begin to iterate with. In order to deide aproperty aÆrmatively, eah of these sets needs to produe a lash. We need to extendthe notion of a rule appliation too. In this ase, we annot just extend the onlyS-state; instead, rules modify the urrent set of S-states M. Eah rule appliationselets an S-state S fromM and replaes it by �nitely many new S-states S1; : : : ;Smthat extend the �rst omponent of S.

3.3. PINPOINTING IN GENERAL TABLEAUX 45De�nition 3.16 (Rule appliation). Suppose we have an S-state S = (A; T), arule R : (B0;S)! fB1; : : : ; Bmg 2 R and a substitution � on var(B0). We say that Ris appliable to S with � if the following three onditions are satis�ed: (i) S � T , (ii)B0� � A, and (iii) for every i; 1 � i � m and every substitution �0 on var(B0 [Bi)extending � it holds that Bi�0 6� A.Given a set of S-states M, an S-state S = (A; T) 2 M and a rule R, if R isappliable to S with substitution �, then the appliation of R to S with � inM yieldsthe new set of S-states M0 = (M n fSg) [f(A [Bi�;T) j 1 � i � mg, where �is a substitution on the variables appearing in R that extends � and maps the freshvariables of R to distint new onstants; i.e., onstants that do not appear in A.IfM0 is obtained fromM by the appliation of the rule R, then we writeM!RM0or simply M!S M0 if it is not relevant whih rule of the tableau S is applied.The onditions of appliability ensure that the same rule R annot be applied in-de�nitely using the same substitution �, but it may well be the ase that the newadded onstants trigger repeated rule appliations, yielding a non-terminating proe-dure. Let us for a moment assume that this is not the ase, and we an reah a set ofS-states where no rule an be applied. When no rules are appliable toM, we hekfor lashes in eah of the states belonging toM. The deision made by the algorithmwill depend on the presene or absene of these lashes.De�nition 3.17 (Saturated, lash). The set of S-states M is alled saturated ifthere is no M0 suh that M!S M0.The S-state S = (A; T) ontains a lash if there is a set of patterns C 2 C and asubstitution � on var(C) suh that C� � A; the set of S-states M is full of lashes ifeah of its elements ontains a lash.To deide whether a property holds, we need to hek at the saturated set of S-states reahed by the appliation of the tableaux rules. In Setion 2.3.2, we see thatthe input ABox is inonsistent if and only if all the states in this set ontain a lash.The same ondition appears in the subsequent setion, for deiding unsatis�ability ofa onept with respet to an ayli TBox. Thus, in a general tableau, we will saythat the axiomati input belongs to a property if after �nitely many rule appliationswe reah a saturated set of states that is full of lashes.De�nition 3.18 (Corretness). Let P be a -property on axiomatised inputs forI and Padmis (T), and S a general tableau for I and Padmis (T). We say that S isorret for P if the following holds for every axiomatised input � = (I;T) for I and
Padmis (T):1. S terminates on �; that is, there exists no in�nite hain of rule appliationsM0 !S M1 !S : : : starting with M0 = �S.2. For every hain of rule appliations M0 ��!S Mn suh that M0 = �S and Mnis saturated, we have � 2 P i�Mn is full of lashes.

46 CHAPTER 3. TABLEAUX AND PINPOINTINGIt is easy to see that ground tableaux are indeed a speial ase of general tableaux,in whih the signature ontains only nullary prediates and all the rules are determin-isti; that is, they have a singleton set on their right-hand side. Even in the moregeneral setting of this setion, we an show a result analogous to Proposition 3.9 stat-ing that the rule appliation order is irrelevant to the deision made by the tableau.Proposition 3.19. Let � be an axiomatised input and M0 = �S. If M and M0 aresaturated sets of S-states suh that M0 ��!S M and M0 ��!S M0, then M is full oflashes i�M0 is full of lashes.This proposition atually follows diretly from Lemma 3.31, and hene we delayits proof until there. A diret proof of the proposition would be almost idential tothat presented for Lemma 3.31.Given a general tableau S = (�; �S ;R; C) that is orret of a property P, we showhow the algorithm for deiding P indued by S an be modi�ed into an algorithm thatomputes a pinpointing formula for P. As in the ground ase, the modi�ed algorithmworks in a fashion similar to the original tableau, based on S-states, but now everyassertion a ourring in the assertion omponent of an S-state is equipped with a labellab(a) whih is a monotone Boolean formula over lab(T).The assertions appearing in an initial state are labeled in the same way as in theprevious setion; that is, given an initial S-state (A; T) 2 (I;T)S , an assertion a 2 Ais labeled with > if a 2 IS and with Wft2T ja2tSg lab(t) otherwise.De�nition 3.20 (Pinpointing rule appliation). Assume there is a labeled S-stateS = (A; T), a rule R : (B0;S)! fB1; : : : ; Bmg, and a substitution � on var(B0). Thisrule is pinpointing appliable to S with � if the following onditions hold: (i) S � T ,(ii) B0� � A, and (iii) for every i; 1 � i � m, and every substitution �0 on var(B0[Bi)extending � we have ins (Bi�0; A) 6= ;, where = ^b2B0 lab(b�) ^ ŝ2S lab(s): (3.4)Given a set of labeled S-statesM and a labeled S-state S = (A; T) 2M to whihthe rule R is pinpointing appliable with substitution �, the pinpointing appliation ofR to S with � inM yields the new set of labeled statesM0 = (Mn fSg) [f(A d Bi�;T) j 1 � i � mg;where the formula is de�ned as in Equation (3.4) and � is a substitution on thevariables ourring in R that extends � and maps the fresh variables of R to distintnew onstants.If M0 is obtained from M by the pinpointing appliation of R, then we writeM !Rpin M0, or simply M !Spin M0 if the rule applied is not relevant. A setof labeled S-states M is alled pinpointing saturated if there is no M0 suh thatM!Spin M0.Consider a hain of pinpointing rule appliations M0 !Spin : : : !Spin Mn suhthat M0 = �S for an axiomatised input � and Mn is pinpointing saturated. The

3.3. PINPOINTING IN GENERAL TABLEAUX 47label of an assertion inMn expresses whih axioms are needed to obtain said assertion.Thus, we de�ne the label of a lash as the onjuntion of the labels of all the assertionsappearing in it. Sine it is enough to have just one lash per S-state S, the labelsof di�erent lashes in S are ombined disjuntively. Finally, sine we need a lashin every S-state of Mn, the formulae obtained from the single S-states are againonjoined.De�nition 3.21 (Clash set, lash formula). Let S = (A; T) be a labeled S-stateand A0 � A. Then A0 is a lash set in S if there is a lash C 2 C and a substitution �on var(C) suh that A0 = C�. The label of this lash set is given by A0 = Va2A0 lab(a).LetM = fS1; : : : ;Sng be a set of labeled S-states. The lash formula indued byM is de�ned as M = n̂i=1 _A0 lash set in Si A0In the previous setion we de�ned the V-projetion of a labeled S-state S = (A; T)as V(S) = (AV ;TV). We now extend this notion to sets of S-statesM in the obviousway: V(M) = fV(S) j S 2Mg.Lemma 3.22. LetM be a �nite set of labeled S-states and V a propositional valuation.Then V satis�es M i� V(M) is full of lashes.Proof. We will prove the if diretion �rst. For that, assume that V(M) is full oflashes. We know then that for every S-state Si 2 M the projetion V(Si) ontainsa lash. Thus, for every i there is a lash set Ai in Si suh that lab(a) is satis�ed by Vfor every assertion a 2 Ai. This means that V satis�es Ai , and hene V also satis�esthe formula _A0 lash set in Si A0 :Sine this is true for every Si 2 M, the valuation V satis�es also the lash formula M.Conversely, assume for the only if diretion that V(M) is not full of lashes; i.e.,there exists a Si 2 M suh that V(Si) does not ontain a lash. For this to happenit must be the ase that for every lash set A0 2 Si there is an assertion a 2 A0 suhthat V does not satisfy lab(a). Consequently, V does not satisfy the label A0 of anyof the lash sets A0 in Si, and thus this valuation annot satisfy the disjuntion ofsuh labels. This shows that V does not satisfy the lash formula.There is also a lose onnetion between the pinpointing saturatedness of a set oflabeled S-states and the saturatedness of its projetion.Lemma 3.23. LetM be a �nite set of labeled S-states and V a propositional valuation.IfM is pinpointing saturated, then V(M) is saturated.

48 CHAPTER 3. TABLEAUX AND PINPOINTINGProof. Suppose that V(M) is not saturated; in other words, that there is an S-stateS = (A; T) 2 M and a rule R : (B0;S) ! fB1; : : : ; Bmg suh that R is appliable toV(S) with substitution �. We will show that R is pinpointing appliable to S withthe same substitution �, and heneM is not pinpointing saturated.By De�nition 3.6, sine R is appliable to V(S) with substitution �, we know that(i) S � TV , (ii) B0� � AV , and (iii) for every i; 1 � i � m and every substitution�0 on var(B0 [Bi) extending �, it holds that Bi�0 6� AV . Sine S � TV � T andB0� � AV � A, the �rst two onditions of the de�nition of pinpointing appliabilityof rules (De�nition 3.20) are satis�ed. We need now only to show that the thirdondition is also satis�ed. Consider an arbitrary but �xed i and a substitution �0 onvar(B0 [Bi) extending �. We must show that ins (Bi�0; A) 6= ;, where = ^b2B0 lab(b�) ^ ŝ2S lab(s):Notie that S � TV and B0� � AV imply that V satis�es . Sine Bi�0 6� AV , theremust exist a b 2 Bi suh that b�0 =2 AV . This means that either b�0 =2 A or V doesnot satisfy lab(b�0). In the �rst ase, b�0 is learly -insertable into A; in the seond,it holds that 6j= lab(b�0) sine V satis�es , and thus b�0 is again -insertable intoA. Hene, ins (Bi�0; A) 6= ;, whih implies that R is pinpointing appliable to S withsubstitution �.Given a tableau that is orret for a property P, its pinpointing extension is orretin the sense that the lash formula indued by the pinpointing saturated set omputedby a terminating hain of pinpointing rule appliations is indeed a pinpointing formulafor P and the input.Theorem 3.24. Let P be a -property on axiomatised inputs over I and Padmis (T),and S a orret tableau for P. Then, for every axiomatised input � = (I;T) over Iand Padmis (T) it holds thatFor every hain of rule appliations M0 !Spin : : : !Spin Mn suh thatM0 = �S andMn is pinpointing saturated, the lash formula Mn induedbyMn is a pinpointing formula for P and �.We will prove this theorem by projeting hains of pinpointing rule appliationsto hains of tableau rule appliations as in De�nition 3.16. Unfortunately suh aprojetion annot be done in a straightforward manner sine in general a pinpointingrule appliationM!Spin M0 does not imply that V(M) !S V(M0). There are twopossible reasons for this. First, it ould be the ase that the assertions and axioms towhih the pinpointing rule was applied inM are not present in the projetion V(M)beause V does not satisfy their labels. In that ase, it holds that V(M) = V(M0),although M 6= M0. The seond reason is that a pinpointing rule appliation of arule may hange the projetion (that is, V(M) 6= V(M0)), but this hange does notorrespond to the appliation of the rule to V(M). For example, onsider the rule al9and assume that we have an S-state ontaining the assertions (9r:C)(a) with label ax1and r(a; b); C(b) with label ax2. Clearly, the rule al9 is pinpointing appliable, and

3.3. PINPOINTING IN GENERAL TABLEAUX 49its appliation adds the new assertions r(a;); C() both labeled with ax1, where is anew onstant. Suppose now that V is a valuation that makes ax1 and ax2 true. Thenthe V-projetion of the S-state ontains the three assertions (9r:C)(a); r(a; b); C(b).Thus, the existential rule is not appliable, whih means that no new individual an be introdued. To overome the seond reason, we de�ne a modi�ed version ofrule appliation in whih the third ondition for appliability from De�nition 3.16 isremoved.De�nition 3.25 (Modi�ed rule appliation). Given a S-state S = (A; T), arule R : (B0;S) ! fB1; : : : ; Bmg, and a substitution � on var(B0), we say that R ism-appliable to S with � if (i) S � T , and (ii) B0� � A. In this ase, we writeM !Sm M0 if S 2 M and M0 = (Mn fSg) [f(A [Bi�;T) j 1 � i � mg, where� is a substitution on the variables ourring in R that extends � and maps the freshvariables of R to distint new onstants.Modi�ed rule appliations are losely related to the \regular" rule appliations aspresented in Setion 3.3 on one side, and to pinpointing rule appliations on the other.In the following lemma, the term saturated refers to saturatedness with respet to!S ,as introdued in De�nition 3.16.Lemma 3.26. Let � = (I;T) be an axiomatised input and M0 = �S.1. Assume that M0 ��!S M and M0 ��!Sm M0 where M and M0 are saturated�nite sets of S-states. Then M is full of lashes i�M0 is full of lashes.2. Assume that M and M0 are �nite sets of labeled S-states, and V a proposi-tional valuation. Then M !Spin M0 implies that either V(M) !Sm V(M0)or V(M) = V(M0). In partiular, this shows that M0 ��!Spin M impliesV(M0) ��!Sm V(M).Proof. The �rst statement of this lemma is a diret onsequene of Lemma 3.31 thatwill be proved later in this setion, and so we fous this proof only on the seondstatement.Assume that M !Spin M0; that is, there is an S-state S = (A; T) 2 M and arule R : (B0;S)! fB1; : : : ; Bmg suh that R is pinpointing appliable to S with somesubstitution � and M0 = (M n fSg) [f(A d Bi�;T) j 1 � i � mg where � and are as in the de�nition of pinpointing appliation (De�nition 3.20). Take an S-stateSi = (A d Bi�;T) 2 M0 that was added by the appliation of R. By the de�nitionof -insertion, we know that (i) every assertion a 2 An ins (Bi�;A) keeps its old labellab(a), (ii) eah newly added assertion in ins (Bi�;A) n A gets as label, and (iii)every assertion b 2 A \ ins (Bi�;A) modi�es its label to _ lab(b). We will make aase analysis, depending on whether V satis�es the formula or not.If V satis�es , then it holds that (Ad Bi�)V = AV[Bi� sine the label of eah ofthe newly added assertions and eah of the old assertions that got their label modi�edis implied by and hene also satis�ed by V. This shows that V(M) !Sm V(M0)sine the onditions of m-appliability follow diretly from the fat that V satis�es .

50 CHAPTER 3. TABLEAUX AND PINPOINTINGConsider now the ase where V does not satisfy . In this ase we have that(A d Bi�)V = AV sine the label of every newly added assertion is and hene notsatis�ed by V, while the disjuntion with modifying the labels of the assertions inA\Bi� does not hange the evaluation of the new labels under V. It thus holds thatV(M) = V(M0).If we have an axiomatised input � = (I;T) and a sequene of rule appliationsM0 ��!Spin Mn where M0 = �S and Mn is pinpointing saturated, we want to showthat the lash formula = Mn is in fat a pinpointing formula. This follows easilyfrom the following two lemmas.Lemma 3.27. If (I;TV) 2 P then V satis�es .Proof. Let N0 = (I;TV)S . Sine S is a orret tableau, S must terminate on everyinput, and hene there exists a saturated set of S-states N suh that N0 ��!S N . Bythe same de�nition of orretness of S and the fat that (I;TV) 2 P, we know thatN is full of lashes. By Part 2 of Lemma 3.26, we know thatM0 ��!Spin Mn impliesV(M0) ��!Sm V(Mn). Additionally, we know V(M0) = N0, and by Lemma 3.23 thatV(Mn) is saturated. Thus, using 1 of Lemma 3.26 and the fat that N is full oflashes, we an dedue that V(Mn) is also full of lashes. But then, by Lemma 3.22we know that V satis�es = Mn .Lemma 3.28. If V satis�es then (I;TV) 2 P.Proof. Consider as in the previous lemma a hain of rule appliations of the formN0 ��!S N where N0 = (I;TV)S and N is saturated. As S is a orret tableau for P,in order to show that (I;TV) 2 P, it suÆes to prove that N is full of lashes. Asin the proof of the previous lemma, we have that V(M0) ��!Sm V(Mn);V(M0) = N0,and V(Mn) is saturated. Sine V satis�es , by Lemma 3.22 we know that V(Mn) isfull of lashes. By 1 of Lemma 3.26 this implies that N is also full of lashes.We have now ompleted the proof of Theorem 3.24, exept for the �rst statementin Lemma 3.26. Before proving this result, we will introdue the notion of a substate.Intuitively, an S-state S is a substate of an S-state S0 if every assertion and axiomin S appears also in S0. However, we want to have a more general notion by allowingdi�erent onstants to be used in the S-states as long as one an �nd a renaming ofthe onstants in S into the ones in S0 suh that the desired inlusion between theirsets of assertions holds.De�nition 3.29 (Substate). The S-state S = (A; T) is a substate of S0 = (A0;T 0),denoted as S � S0 i� T � T 0 and there is a renaming funtion f : ons(A)! ons(A0)suh that if P (a1; : : : ; ak) 2 A, then P (f(a1); : : : ; f(ak)) 2 A0.One important thing to notie is that if we have a pair of S-states S = (A; T) andS0 = (A0;T 0) suh that S � S0, then the following property holds: if there is a set Bof patterns and a substitution � on var(B) suh that B� � A, then the substitution�0 = � Æ f , where f is the renaming funtion that yields S � S0, satis�es B�0 � A0.In partiular, this fat implies that S0 ontains a lash whenever S does.

3.3. PINPOINTING IN GENERAL TABLEAUX 51Lemma 3.30. Let N and N0 be sets of S-states, where N0 is saturated, and letS 2 N and S0 2 N0. If S � S0, then for every N !Rm N 0 there is S0 2 N 0 suhthat S0 � S0.Proof. If N 0 is obtained by the appliation of R to an S-state di�erent from S inN , then S 2 N 0 and thus nothing needs to be shown. Suppose then that the ruleR : (B0;S) ! fB1; : : : ; Bmg is applied to S with some substitution � to obtain N 0,and let S = (A; T) and S0 = (A0;T0). Sine S � S0, it holds that S � T � T0and that there is a substitution �0 on var(B0) suh that B0�0 � A0. This all meansthat onditions (i) and (ii) from the de�nition of rule appliability are satis�ed forS0, R and �0. Sine N0 is saturated, R annot be appliable to S0 with �0, and heneondition (iii) annot hold. This means that there must exist an i; 1 � i � m and asubstitution % on var(B0 [Bi) extending �0 suh that Bi% � A0.On the other hand, a substitution � extending � was used to onstrut the newset N 0 of S-states through the appliation of the rule R to S. Let S0 = (A[Bi�;T).Sine � maps the fresh variables of R to distint new onstants, we an extend therenaming funtion f to f 0 : ons(A [Bi�)! ons(A0) by setting f 0(�(x)) = %(x) forevery fresh variable x of R appearing in Bi. This de�nes a omplete renaming funtionf 0 for the onstants in A [Bi� and by de�nition this funtion satis�es � Æ f 0 = %.We show now that S0 � S0 by means of the new renaming funtion f 0. LetP (a1; : : : ; ak) 2 A [Bi�. If this assertion belongs to A, then, sine S � S0 with therenaming funtion f , it holds that P (f 0(a1); : : : ; f 0(ak)) = P (f(a1); : : : ; f(ak)) 2 A0.If P (a1; : : : ; ak) 2 Bi�, then P (a1; : : : ; ak) = P (�(x1); : : : ; �(xk)) for some variablesx1; : : : ; xk 2 var(B0 [Bi). But sine � Æ f 0 = %, we haveP (f 0(a1); : : : ; f 0(ak)) = P (%(x1); : : : ; %(xk)) 2 Bi% � A0;whih ompletes the proof that S0 � S0.The following lemma generalises the �rst part of Lemma 3.26.Lemma 3.31. Let � be an axiomatised input and M0 = �S. If M and M0 aresaturated sets of S-states suh thatM0 ��!Sm M andM0 ��!Sm M0, thenM is full oflashes i�M0 is full of lashes.Proof. Reall that the appliation of a rule to a set of S-states removes one of theseS-states and adds a �nite number of S-states that extend the removed one. Thus, forevery S-state S 2M0 there is an S-state S0 2M0 suh that S0 � S.Consider the hain of (modi�ed) rule appliationsM0 !Sm M1 !Sm : : :!Sm Mn =Mthat leads fromM0 toM. SineM0 is saturated, we an use Lemma 3.30 to deduethat for every S 2 M0 there is an S-state S1 2 M1 suh that S1 � S. By iteratingthis argument, we obtain that, for every S 2 M0 there is an element Sn 2 M suhthat Sn � S.Assume now thatM is full of lashes; that is, every S-state inM ontains a lashand take an arbitrary S 2 M0. We must show that S ontains a lash. As shown in

52 CHAPTER 3. TABLEAUX AND PINPOINTINGthe previous paragraph, there is an element Sn 2 M suh that Sn � S. The fatthat Sn ontains a lash implies that S ontains also a lash. This �nishes the proofof the only if diretion. A symmetri argument an be used to prove the onversediretion.When proving the orretness of the pinpointing extension of a tableau, we onsideronly terminating hains of pinpointing rule appliations. Unfortunately, although aorret tableau needs to be terminating, this property not neessarily transfer to itspinpointing extension. The reason for this is that a rule may be pinpointing appliablein ases where it is not appliable in the normal sense, as disussed before. Even ifwe restrit ourselves to deterministi rules, the problem still appears, as shown in thefollowing example.Example 3.32. Consider the tableau S with the following three rules13R1 : (fP (x)g; fax1g)! fr(y; y; y); Q1(y); Q2(y)g;R2 : (fP (x)g; fax2g)! fr(y; y; y); Q1(y); Q2(y)g;R3 : (fQ1(x); Q2(y)g; ;) ! fr(x; y; z); Q1(y); Q2(z)g;where the funtion �S maps every input I 2 I to the set fP (a)g and every axiom fromT = fax1; ax2g to the empty set, with Padmis (T) = P(T). For any axiomatised input� = (I;T), we have �S = (fP (a)g;T). Depending on the axioms appearing in T ,the rules R1 and/or R2 may be appliable to this S-state, but R3 is not. Notie thatR1 and R2 have the same right-hand side, and thus the appliation of any of them to�S leads to the same S-state modulo the hosen new onstant name introdued for thefresh variable y. Suppose we apply one of these rules and introdue the new onstantb. The resulting S-state is S = (A; T) whereA = fP (a); Q1(b); Q2(b); r(b; b; b)g:No rule is then appliable to S. In fat, in order to apply any of the rules R1;R2,the only way to satisfy Condition (ii) from the de�nition of rule appliation (De�-nition 3.6) is to use a substitution that maps the variable x to the onstant a. Byextending this substitution to map y to the onstant b, Condition (iii) from the samede�nition is violated sine the assertions Q1(b); Q2(b) and r(b; b; b) already appear inS, after being introdued by the �rst rule appliation. To satisfy Condition (ii) for ruleR3, we must hoose the substitution � that maps both variables x and y to the onstantb. If we extend � to map z to the same onstant b we then violate Condition (iii).This all shows that S indeed terminates on every axiomatised input; in fat, at mostone rule is appliable before reahing a saturated S-state.However, it is possible to onstrut an in�nite hain of pinpointing rule appliationsstarting with �S = (fP (a)g; fax1; ax2g), where lab(P (a)) = >. We an �rst apply ruleR1 to obtain the S-state S desribed above, where all the assertion, with the exeptionof P (a), are labeled with ax1. At this point, rule R2 is pinpointing appliable sine,13Sine all the rules are deterministi and hene there will always be only one S-state, we expressonly this state, instead of the set ontaining it.

3.3. PINPOINTING IN GENERAL TABLEAUX 53although there is an extension of the substitution under whih all the assertions existalready in S, these assertions are labeled with the formula ax1, whih is not impliedby ax2. The pinpointing appliation of R2 to S adds the assertions Q1(); Q2() andr(; ;) all with label ax2. It is now possible to apply the rule R3 to the resultingS-state S0 with the substitution � mapping the variables x and y to the onstants band , respetively. Sine the S-state S0 does not ontain any assertion of the formr(b; ;), Condition (iii) annot be violated. This rule appliation adds the assertionsr(b; ; d); Q2(d) with label ax1 ^ ax2. It is easy to see that the rule R3 an be nowrepeatedly applied, produing this way a non-terminating hain of pinpointing ruleappliations.This example shows that the termination of a tableau S does not neessarily implythe termination of its pinpointing extension, even for the restrited ase of tableauxhaving only deterministi rules. In Chapter 6 we will show that it is in general unde-idable whether the pinpointing extension of a tableau is terminating. Nonetheless,we an still searh for lasses of tableaux that have terminating extensions. Moreover,as shown in Setions 2.3.4 and 2.3.5, some tableau algorithms atually require addi-tional tehniques to ensure termination, and those tehniques need to be adapted topinpointing extensions as well in order to preserve orretness. The next hapter dealswith termination of pinpointing extensions in both fronts. First it introdues a lassof terminating tableaux whose pinpointing extensions are always terminating. After-wards, it de�nes a general notion of bloking, taking as model the notion of equalitybloking from Setion 2.3.5, and shows how it an be extended to produe a orretand terminating pinpointing proedure.

54 CHAPTER 3. TABLEAUX AND PINPOINTING

Chapter 4A Class of Terminating TableauxThe pinpointing extension of general tableaux presented in the previous hapter re-quires a relaxation of the rule-appliability onditions to ensure that all possible waysin whih a property an be dedued are deteted in a single exeution. Example 3.32shows that these relaxed appliability onditions may lead to a non-terminating pro-edure. This undesired behaviour may arise even in restrited senarios, as when onlydeterministi rules are allowed. Sine we are interested in desribing a terminatingproedure, we turn our attention to the auses of termination of known tableau al-gorithms, aiming towards a framework that not only ensures the termination of theoriginal tableau algorithms, but also transfers this result to their pinpointing exten-sions.We identify tableaux that generate tree-like S-states as good andidates for termi-nation. On one side, if we are able to bound the breadth and depth of these S-states,there will be no way an in�nite hain of rule appliations an be generated. On theother, even if we are unable to bound the depth of these trees, we an reuse the ideasof bloking to avoid generating an in�nite tree. The tree-like struture is importantfor bloking for two reasons: �rst, we need a notion of nodes to have one blokinganother, and seond, the tree shape yields a natural ordering that allows us to forbidmutual bloking by two nodes, whih would lead to an inorret proedure. Atually,we allow for a slightly more general senario, in what we will all forest tableaux.These tableaux, whih are formally de�ned in Setion 4.1, may produe several treesthat \grow" from an arbitrary graph-like struture. Using this notion, we �rst presentadditional onditions that bound the growth of the trees generated by these tableaux,and show that they suÆe for ensuring termination in Setion 4.2. Finally, in Se-tion 4.3, we introdue a general notion of bloking analogous to equivalene blokingintrodued in Chapter 2, and show how it an be used to ensure an answer in �nitetime.4.1 Forest TableauxOne of the reasons why tableau algorithms for ertain DLs terminate is that they reatea tree-like struture for whih the out-degree and the depth of the tree are bounded55

56 CHAPTER 4. A CLASS OF TERMINATING TABLEAUXby a funtion of the size of the input formula. The nodes of these trees are labeled,but the input determines a �nite number of possible labels. A typial example is thetableau-based deision proedure for satis�ability of ALC-onepts (see Chapter 2).This algorithm generates sets of assertions of the form r(a; b) and C(a), where r isa role and C is an ALC-onept desription. The tree struture is indued by roleassertions, and the nodes are labeled by sets of onepts, i.e., node a is labeled withfC1; : : : ; Cng if C1(a); : : : ; Cn(a) are all the onept assertions involving a. The mainreasons why the algorithm terminates are:� the depth of the tree struture is bounded by the size n of the input, i.e., themaximal length m of hains r1(a0; a1); r2(a1; a2); : : : ; rm(am�1; am) in a set ofassertions generated by the algorithm is bounded by n;� the out-degree of the tree struture is bounded by n , i.e., the maximal numbermof assertions r1(a0; a1); r2(a0; a2); : : : ; rm(a0; am) in a set of assertions generatedby the algorithm is bounded by n;� for every assertion C(a) ourring in a set of assertions generated by the algo-rithm, C is a sub-desription of the input onept desription.If we look at the algorithm that deides onsisteny of ALC-ABoxes (Setion 2.3.2)then things are a bit more ompliated: rather than a single tree one obtains a forest,more preisely, several trees growing out of the input ABox. But these trees satisfythe restritions mentioned above, whih is enough to show termination.Basially, we want to formalise this reason for termination within the generalframework of tableaux introdued in the previous hapter. However, to be as generalas possible, we do not want to restrit assertions to be built from unary prediates(onepts) and binary prediates (roles) only. For this reason, we allow for prediatesof arbitrary arity, but restrit our assertions suh that states (i.e., sets of assertions)indue graph-like strutures. This general approah allows us to model, among others,the tableaux deision algorithm for the n-ary DL GF1� introdued in [LST99℄.In order to have a graph-like struture, we must be able to distinguish betweennodes and edges. For this reason, we now assume that the signature � is partitionedinto the sets � and �, where eah prediate name P 2 � is equipped with an arityn, while every prediate name r 2 � is equipped with a double arity 0 < m < n.Stritly speaking, the arity of r 2 � is n; however, the �rst m argument positions aregrouped together, as are the last n�m. Intuitively, the elements of � orrespond toDL onepts and form the nodes of the graph-like struture, whereas the elements of� orrespond to DL roles and indue the edges.If a pattern/assertion p starts with a prediate from � (�), we say that p is a�-pattern/assertion (�-pattern/assertion), and write p 2 b� (p 2 b�). In our ALCexample, the set � onsists of all ALC-onepts, whih have arity 1, and � onsistsof all role names, whih have double arity 1; 2. For the rest of this hapter, assertionsand patterns in b� will be denoted using apital letters (P;Q;R; : : :), and those in b�using lower-ase letters (r; s; t; : : :). Given a prediate p 2 � with double arity m;n,the sets of parents and desendants of the pattern r = p(x1; : : : ; xm; xm+1; : : : ; xn) aregiven by �r = fx1; : : : ; xmg and �!r = fxm+1; : : : ; xng, respetively.

4.1. FOREST TABLEAUX 57In the di�erent tableau algorithms presented in Chapter 2 for deiding propertiesin ALC, the nodes of the trees are de�ned by the onstants ourring in the set ofassertions, and the onept assertions give rise to the labels of these nodes. In thegeneral ase, nodes are not single onstants, but rather sets of assertions built over aonneted set of onstants.De�nition 4.1 (Conneted). Let B be a set of �-patterns (�-assertions), andx; y 2 var(B) (a; b 2 ons(B)). We say that x and y (a and b) are B-onneted,denoted as x �B y (a �B b), if there are variables x0; x1; : : : ; xn 2 var(B) (onstantsa0; a1; : : : ; an 2 ons(B)) and patterns P1; : : : ; Pn 2 B \ b� (respetively assertionsP1; : : : ; Pn 2 B\ b�) suh that x = x0; y = xn (a = a0; b = an) and for every 1 � i � nit holds that fxi�1; xig � var(Pi) (fai�1; aig � ons(Pi)).We say that B is onneted if, for every x; y 2 var(B) (a; b 2 ons(B)), we havex �B y (a �B b).Conneted sets of assertions an be viewed as bundles that join the onstantsontained in them. Nodes will be formed by maximal onneted sets of assertionsfrom b�. An assertion from b� will be treated as a (direted) edge that onnets a nodeontaining its parent onstants with a node ontaining its desendant onstants.De�nition 4.2 (Graph struture). Let B be a set of assertions. A maximal on-neted subset N � B \ b� is alled a node in B. An assertion r 2 B \ b� is alledan edge in B if there are two nodes N1 and N2 in B suh that �r � ons(N1) andons(N2) � �!r . In this ase, we say that r onnets N1 to N2.The set B is a graph struture if every r 2 B \ b� is an edge. If B is a graphstruture, the orresponding B-graph GB ontains one vertex vN for every node N ,and an edge (vN ; vM) if there is an edge onneting N to M .The notion of a graph struture and of the orresponding graph an be extended tostates S = (B; T) in the obvious way: S is a graph struture if B is one, and in thisase GS := GB.If a set of assertionsB is a graph struture, then the set of nodes forms a partition ofB\b�, and eah of its elements either belongs to a node or is a (direted) edge. Observe,however, that an edge r 2 b� may onnet a node with more than one suessor node.For example, onsider the set of assertions B = fP (a); Q(b); R(); r(a; b;)g whereP;Q;R 2 � are unary, and r 2 � has double arity 1; 3. This set forms a graphstruture onsisting of the nodes N1 := P (a); N2 := Q(b); N3 := R() and the edger(a; b;). This single edge onnets N1 to both N2 and N3. GB is then the graph(fv1; v2; v3g; f(v1; v2); (v1; v3)g). This will reate no problem in our proofs, but mustbe kept in mind when dealing with graph-strutures and their orresponding graphs.Reall that the tableau-based deision proedure for onsisteny of ALC-ABoxes(Setion 2.3.2) starts with an ABox, whih an be viewed as a graph, but then extendsthis ABox by trees that grow out of the nodes of this graph. The following de�nitionintrodues forest tableaux, whih show a similar behavior, but are based on the moregeneral notion of a graph struture introdued above.

58 CHAPTER 4. A CLASS OF TERMINATING TABLEAUXDe�nition 4.3 (Forest tableau). The tableau S = (�; �S ;R; C) is alled a foresttableau if for every axiomatised input � and every S 2 �S, the state S is a graphstruture, every lash C 2 C is a onneted subset of b�, and the following onditionshold for every rule (B0;S)! fB1; : : : ; Bmg and every 1 � i � m:1. for every �-pattern r 2 B0 \ b�, there exists a �-pattern P 2 B0 \ b� suh that �r � var(P) or �!r � var(P).2. for every �-pattern r 2 Bi \ b�, there exists a �-pattern P 2 B0 \ b� suh that �r � var(P).3. for every �-pattern r 2 Bi \ b�, we have �!r \ var(B0) = ;.4. if r; s 2 Bi \ b� are distint patterns, then �!r \�!s = ;.5. for every �-pattern P 2 Bi \ b�, either(i) there is a �-pattern r 2 (B0 [Bi)\ b� suh that var(P) � �!r or var(P) � �r ,or(ii) there is a Q 2 B0 \ b� with var(P) � var(Q).6. if B0 \ b� 6= ;, then Bi \ b� = ;.7. B0 \ b� is onneted.A few intuitive explanations for these onditions are in order. Condition 1 ensuresthat every edge triggering a rule appliation is onneted to a node, whih may beeither a parent or a desendant node of this edge. Condition 2 makes sure that forevery newly introdued edge, a parent node was present before the rule is applied.This implies that a rule appliation annot add new predeessors to a node, and thatnewly introdued nodes are not disonneted from the rest of the graph struture.Both of these properties are vital for obtaining forest-like strutures. Condition 3states that every newly generated edge has only new onstants in its desendant set.In other words, new edges annot onnet old nodes, but only generate new nodesas desendant. Condition 4 ensures that, even if several edges are added by a singlerule appliation, these edges onnet di�erent nodes with the parent node, avoidingthis way that a node is onneted by multiple edges to a parent node. Condition 5makes sure that we always have a onneted graph. It states that, whenever a non-edgeassertion is added, it must either belong to an old node, or belong to a desendant nodeadded by the reation of a new edge within the same rule appliation. Condition 6states that the addition of new edges must only depend on the assertions belonging tothe parent nodes, but never on the presene of other edges. In partiular, this ensuresthat eah desendant is reated independently from its siblings, as long this is done indistint rule appliations. Finally, Condition 7 ensures that the non-edge assertionstriggering a rule appliation all belong to the same node.The di�erent (disjuntive) options stated in Conditions 1 and 5(i) require an ad-ditional explanation. They allow the tableau rules to propagate information not just

4.1. FOREST TABLEAUX 59to suessor nodes, but also to predeessor nodes in the trees. The main reason forinluding this possibility in our framework is that it makes it general enough to dealwith onstrutors suh as inverse roles in DLs, and hene model SI-TBoxes. Theprie to pay for this deision is twofold: on the one side, more ases must be analysedin the proofs. On the other, the weaker version of bloking, subset bloking, will notsuÆe to yield a orret terminating algorithm (see Example 2.12) and we will have touse an analogous to equivalene bloking. Notie nonetheless that if the use of subsetbloking leads to a orret deision proedure, using instead equivalene bloking willstill yield a orret answer, though its eÆieny may be ompromised as the yleswill take longer to be deteted.Although this de�nition may seem to omplex at �rst sight, all the onditions areloal for eah rule and only impose restritions on their syntati form; thus, they anbe easily veri�ed to determine whether a given tableau belongs to the lass of foresttableaux or not.The following lemma shows that the S-states of a forest tableau form graph stru-tures in whih every node is onneted to an initial node via a series of edges. Weshow that it is atually the ase even for modi�ed rule appliations, sine we want touse it also for the pinpointing extensions. Its proof is idential to that of Lemma 4.7,by simply deleting every referene to the ordering relation used there. To avoid afutile repetition of the lengthy proof, we do not present this proof here, but delay itto the following setion.Lemma 4.4. Let S be a forest tableau, � an axiomatised input, S0 !Sm S1 !Sm � � �a sequene of modi�ed rule appliations, and S0 2 �S. Then, for every Si = (Ai;T)and P 2 Ai \ b�, either ons(P) � ons(A0) or there are r 2 Ai \ b� and Q 2 Ai \ b�suh that �r � ons(Q), and ons(P) � �!r .In fat, due to Conditions 3 and 4 of De�nition 4.3, we an dedue that the rdesribed by this lemma is unique for every given P . Thus, the S-states of a foresttableau form indeed a forest struture as desribed before.Clearly, just ensuring that all states generated by a tableau have a forest-likestruture is not suÆient to yield termination. We must also ensure that the trees inthe forest annot grow inde�nitely (i.e., that the overall number of nodes that an begenerated is bounded), and that the same is true for the nodes (i.e., that the numberof assertions making up a single node is bounded). To bound the number of possibleassertions, we restrit the set of prediate names that an be used; this restrited setis alled a over.De�nition 4.5 (Cover). Let S = (�; �S ;R; C) be a tableau and T a set of axioms.A set
 � � is alled a T -over if, for every rule R : (B0;S) ! fB1; : : : ; Bng suhthat S � T and B0 ontains only prediates from
, the sets Bi for i = 1; :::; n alsoontain only prediates from
.The tableau S is overed if, for every axiomatised input � = (I;T), there is a�nite T -over
� suh that every S-state in �S ontains only prediates from
�.Given suh a overed tableau, every state that an be reahed from an initial statein �S by applying rules from S ontains only prediates from
�. We will see that

60 CHAPTER 4. A CLASS OF TERMINATING TABLEAUXthis ensures that nodes annot grow inde�nitely.To prevent the trees from growing inde�nitely (i.e., to bound the number of nodes),it is enough to enfore �nite branhing and �nite paths in the trees. Finite branhingatually already follows from the onditions we have stated so far. Hene, we needonly to make sure that paths annot get inde�nitely long. The next setion showshow a partial order an be used to ensure this.4.2 Ordered TableauxTo bound the length of paths, we additionally require the prediates ourring in rulesto be dereasing w.r.t. a given partial order, in suh a way that nodes farther awayfrom the root will have smaller prediates than their predeessors. Given a stritpartial order < on prediates, we extend it to patterns (assertions) by de�ning P < Qif the prediate of the pattern (assertion) P is smaller than the prediate of the pattern(assertion) Q.De�nition 4.6 (Ordered tableaux). A overed tableau S is alled an orderedtableau if, for every axiomatised input �, there is a strit partial ordering <� onthe prediate names in
�\� suh that, for every rule (B0;S)! fB1; : : : ; Bng, every1 � i � n, and every P 2 B0 \ b� and Q 2 Bi \ b�, we have Q <� P .For example, the tableau-based deision proedure for onsisteny of ALC-ABoxesis an ordered tableau. It is overed sine rule appliation only adds onept assertionsC(a) (role assertions r(a; b)) where C is a sub-desription of a onept desriptionourring in the input ABox A0 (where r is a role ourring in the input ABox A0).Thus one an take the set of sub-desriptions of onept desriptions ourring inA0 together with the roles ourring in A0 as a over. In addition, rule appliationonly adds onept assertions that either have a smaller role-depth (i.e., nesting ofexistential and value-restritions) than the one that triggered it, or are suboneptsof it. Thus, ordering onept desriptions by their role-depth and by the suboneptrelation yields the desired partial order.Ordered tableaux have the property that, if applied to an axiomatised input �,none of the trees in the generated forest an have a depth greater than the ardinalityof the over
�. This easily follows from the next lemma.Lemma 4.7. Let S be an ordered forest tableau, � an axiomatised input, S0 2 �S,and S0 !Sm S1 !Sm � � � a sequene of modi�ed rule appliations. Then, for everySi = (Ai;T) and P 2 Ai \ b�, either ons(P) � ons(A0) or there are r 2 Ai \ b� andQ 2 Ai \ b� suh that �r � ons(Q), ons(P) � �!r , and P <� Q.Proof. The proof is by indution on i. For S0 the result is trivial. Suppose now thatit holds for Si, and that the rule R : (B0;S) ! fB1; : : : ; Bng is applied to Si toobtain Si+1 = (Ai+1;T), where Ai+1 = Ai [Bj� for some substitution � and somej; 1 � j � n. Let P 2 Ai+1 \ b�. If P 2 Ai, then by the indution hypothesis and thefat that Ai � Ai+1, the result holds. Otherwise, P was added by the appliation of

4.2. ORDERED TABLEAUX 61R. By Condition 5 of De�nition 4.3, we have either (i) an r 2 (B0 [Bj)� \ b� withons(P) � �!r or ons(P) � �r , or (ii) there is a Q 2 B0�\ b� with ons(P) � ons(Q).We will analyse Case (ii) �rst. Sine the rule was applied with substitution �,we have B0� � Ai, and thus Q 2 Ai \ b�. Sine S is ordered, we also know thatP <� Q. By the indution hypothesis, either ons(Q) � ons(A0), or �r � ons(Q0),ons(Q) � �!r , and Q <� Q0 for assertions r;Q0 2 Ai. In both ases, transitivity of <�and of � yield the desired result.We fous now on Case (i). Suppose �rst that ons(P) � �!r . If r 2 Bj�, then byCondition 2 of De�nition 4.3, there is a Q 2 B0� � Ai suh that �r � ons(Q). SineS is ordered, we also have P <� Q, whih ompletes the proof for the ase whereons(P) � �!r and r 2 Bj�.Next, we onsider the ase where ons(P) � �!r and r 2 B0�. Then, by Condition 1of De�nition 4.3, there must exist a Q 2 B0� suh that �r � ons(Q) or �!r � ons(Q).In the former ase, the proof is analogous to the one for the �rst part of this ase. Inthe latter ase, we have ons(P) � �!r � ons(Q), whih is an instane of Case (ii).Finally, suppose that ons(P) � �r . We an assume without loss of generalitythat there is no Q 2 B0� \ b� suh that ons(P) � ons(Q). In fat, if it existed, wewould be in Case (ii) analysed above. Consequently, r annot belong to Bi� sine thiswould violate Condition 2 of De�nition 4.3. Hene, r 2 B0� and there must exist aQ 2 B0� \ b� suh that �r � ons(Q) or �!r � ons(Q).In the �rst ase, we have ons(P) � �r � ons(Q), whih brings us bak to Case (ii)analysed above. In the other ase, we know that P <� Q and Q 2 Ai. Thus, by theindution hypothesis, the statement of the lemma holds for Q.If ons(Q) � ons(A0), then|due to our assumption in this ase stating that�!r � ons(Q)|we also have �!r � ons(A0). This means that r was not added by anyprevious rule appliation as otherwise this would violate Condition 3 of De�nition 4.3.Thus, r must have been already present in A0, whih implies �r � ons(A0). Sineons(P) � �r , it also holds that ons(P) � ons(A0).Now, assume that ons(Q) 6� ons(A0). By the indution hypothesis, there exists 2 Ai \ b� and R 2 Ai \ b� suh that �s � ons(R); ons(Q) � �!s , and Q <� R.Sine ons(Q) 6� ons(A0), we know that Q and s were added by a (previous) ruleappliation. We laim that r = s. In fat, we have ; 6= �!r � ons(Q) � �!s . Ifwe had r 6= s, then this would violate Condition 3 or 4 of De�nition 4.3, whereCondition 3 overs the ase where r and s are introdued by di�erent rule appliations,and Condition 4 overs the ase where these two assertions are added by the samerule appliation.Overall, we thus know that ons(P) � �r � ons(R) and P <� R. Sine R 2 Ai,by the indution hypothesis, we have one again that either ons(R) � ons(A0) orthere exist r0 2 Ai \ b� and Q0 2 Ai \ b� suh that �r0 � ons(Q0); ons(R) � �!r0 , andR <� Q0. In both ases, the fat that ons(P) � ons(R) and P <� R, together withthe transitivity of � and <�, yields the desired result.Notie that in this proof, the existene of the stated assertions r and Q does notdepend on the fat that the tableau is ordered, or even overed. Those restritions

62 CHAPTER 4. A CLASS OF TERMINATING TABLEAUXare only used for showing that indeed there is a dereasing sequene of prediates ineah Si. Hene, removing all referenes to this ordering yields a proof for Lemma 4.4.An easy onsequene of Lemma 4.7 is that a path onsisting of m new edges in astate generated by rule appliations from a state in �S implies a dereasing sequenew.r.t. <� of the same length. Consequently, the length of suh paths is bounded bythe number of prediate symbols ourring in the �nite over
�.Proposition 4.8. Let S0 ��!Sm S where S0 = (A0;T) 2 �S and S = (A; T). Supposethat A ontains edges r1; : : : ; rm and nodes N0; : : : ; Nm suh that for all i; 1 � i � m,ri =2 A0 and ri onnets Ni�1 with Ni. Then, there exist assertions Q1; : : : ; Qm 2 Asuh that Q1 >� Q2 >� : : : >� Qm.Proof. Sine ri onnets Ni�1 with Ni for i = 1; : : : ;m, we know by De�nition 4.2 that �ri � ons(Ni�1) and ons(Ni) � �!ri . This implies that �ri � ��!ri�1 for all i; 1 < i � m.For eah of the edges ri we have assumed that it is new, i.e., ri =2 A0. Thus, rimust have been added by some rule appliation. Condition 3 of De�nition 4.3 entailsthen that, for every 1 � i � m, �!ri \ ons(A0) = ;, and thus, for every 1 < i � m italso holds that �ri \ ons(A0) = ;, as �ri � ��!ri�1.Sine rm was added by a rule appliation, by Condition 2 of De�nition 4.3, theremust be an assertion Qm 2 A\ b� suh that �rm � ons(Qm). Hene, it is the ase thatons(Qm) 6� ons(A0). By Lemma 4.7, there exist r 2 A \ b� and Qm�1 2 A \ b� suhthat �r � ons(Qm�1); ons(Qm) � �!r , and Qm <� Qm�1. We have �rm � ���!rm�1 and �rm � ons(Qm) � �!r , whih implies that ���!rm�1 \�!r 6= ;. However, Conditions 3 and 4of De�nition 4.3 ensure that distint assertions in b� n A0 must have disjoint sets ofdesendants. Thus, we know that r = rm�1.We an now apply the same argument to rm�1 and Qm�1 and obtain an assertionQm�2 suh that ���rm�2 � ons(Qm�2); ons(Qm�1) � ���!rm�2, and Qm�1 <� Qm�2. Byiterating this argument, we thus obtain the desired desending hain of assertionsQ1 >� Q2 >� : : : >� Qm.The following two remarks will be useful in the proof of the main theorem of thissetion. First, reall that Condition 7 of De�nition 4.3 ensures that the assertionsfrom b� triggering a rule appliation all belong to the same node.Seond, given a new node N (i.e., one that was not present in the initial state)and an assertion P 2 N , Lemma 4.7 yields an edge r suh that ons(P) � �!r . Sinedistint edges have disjoint sets of desendants (Condition 4 of De�nition 4.3) anyother assertion in Q 2 N also satis�es ons(Q) � �!r . This shows that the onstantsourring in a node all belong to the desendant set of the edge whose introdutionreated the node.We are now ready to show termination of the pinpointing extension of any orderedforest tableaux.Theorem 4.9. If S is an ordered forest tableau, then its pinpointing extension ter-minates on every input.Proof. Suppose that there is an input � = (I;T) for whih there is an in�nite sequeneof pinpointing rule appliations S0 !Spin S1 !Spin : : :, with S0 2 �S . Sine S is a

4.2. ORDERED TABLEAUX 63overed tableau, there is a �nite T -over
� suh that, for all i � 0, the assertionsin Si use only prediate symbols from
�. As noted above, for every node there isa �xed �nite set of onstants that an our in the assertions of this node. This setis either the set of onstants ourring in S0 (for an old node) or it onsists of thedesendants in the unique edge whose introdution reated the node (for a new node).Together with the fat that the T -over
� is �nite, this restrits the assertions thatan our in the node to a �xed �nite set. Eah of these assertion may repeatedly haveits label modi�ed by appliations of the pinpointing rules. However, every appliationof a rule makes the label more general in the sense that the new monotone Booleanformula has more models than the previous one. Sine these formulae are built overa �nite set of propositional variables, this an happen only �nitely often. The sameargument shows that the label of a given edge an be hanged only �nitely often.Hene, to get a non-terminating sequene of rule appliations, in�nitely many newnodes must be added. By Conditions 5 and 2 of De�nition 4.3, eah newly added nodeN is reated as suessor of an existing node w.r.t. a unique edge r 2 b� suh that theonstants in N are new onstants ontained in �!r . If in�nitely many new nodes arereated, then either there is a node that obtains in�nitely many diret suessors, oran in�nite hain of nodes is reated, where eah is a suessor of the previous one.Proposition 4.8 implies that the latter ase annot our. In fat, given nodesN0; N1; : : : ; Nm and edges r1; : : : ; rm suh that, for all i; 1 � i � m, ri onnetsNi�1 to Ni, Proposition 4.8 yields a sequene of assertions Q1; : : : ; Qm 2 b� suh thatQ1 >� Q2 >� : : : >� Qm. However, the length of suh a desending sequene isbounded by the ardinality of the �nite T -over
�. Thus, it is not possible that anin�nite path is reated by a sequene of rule appliations.Now, onsider the �rst ase, i.e., assume that there is a node N for whih in�nitelymany suessors are reated. However, the onstants in N are from a �xed �nite setof onstants C, and the prediate symbols that an our in the applied rules mustall belong to the �nite T -over
�. Thus, up to variable renaming, there are only�nitely many rules that an be applied to N , and there are only �nitely many ways ofreplaing the variables in the left-hand side of rules by onstants from C. The freshvariables in the right-hand side are always replaed by distint new onstants. Thus,for a �xed rule and a �xed substitution � replaing the variables in the left-hand side ofthis rules by onstants from C, the assertions introdued by two di�erent appliationsof this rule using � only di�er by a renaming of these new onstants. By the waypinpointing rule appliability is de�ned, suh renamed variants an only be added aslong as their labels are not equivalent. But there are only �nitely many labels upto equivalene. Thus, N an in fat obtain only a �nite number of suessors. This�nishes the proof that the pinpointing extension of an ordered forest tableau alwaysterminates.Note that termination of the pinpointing extension implies termination of theoriginal tableau. In fat, a non-terminating sequene of rule appliations for theoriginal tableau an easily be transformed into a non-terminating sequene of ruleappliations for its pinpointing extension.Corollary 4.10. An ordered forest tableau terminates on every input.

64 CHAPTER 4. A CLASS OF TERMINATING TABLEAUXThe de�nition of forest tableaux imposes quite a number of restritions to besatis�ed. Thus, it is natural to ask whether all these restritions are indeed neessary.The answer is yes: if any of these restritions is removed, then Theorem 4.9 no longerholds. In fat, it is possible to onstrut tableaux satisfying all other properties thatdo not terminate. More interesting perhaps is that there are terminating tableauxsatisfying all other properties whose pinpointing extensions do not terminate. Here,we illustrate this fat with one example, where we remove Condition 6 of De�nition 4.3.Examples for the other onditions an be built in a similar way.Example 4.11. Consider the tableau S that has the following four rules:R1 : (fP (x)g; fax1g)! ffR(x); Q1(x)gg;R2 : (fP (x)g; fax2g)! ffR(x); Q2(x)gg;R3 : (fR(x)g; ;) ! ffr(x; y)g; fQ1(x)g; fQ2(x)gg;R4 : (fP (x); r(x; y)g; ;) ! ffT (y); r(x; z)gg;and where the funtion �S maps every input I 2 I to the singleton set ffP (a)gg, andeah axiom in T = fax1; ax2g to the empty set.It is easy to verify that S with the ordering T < Q2 < Q1 < R < P satis�es allthe onditions of an ordered forest tableau, exept for Condition 6 of De�nition 4.3violated by the rule R4.For any axiomatised input � = (I;T), we have �S = f(fP (a)g;T)g, and thusneither R3 nor R4 is appliable to �S. Depending on whih axioms are ontained inT , the rules R1 and/or R2 may be appliable. However, their appliation introduesQ1(a) or Q2(a) into the set of assertions, and thus the non-deterministi rule R3is not appliable. Obviously, R4 beomes appliable only after R3 has been applied.Consequently, S terminates on every axiomatised input �.It is possible, however, to onstrut an in�nite hain of pinpointing rule applia-tions starting with �S = f(fP (a)g; fax1; ax2g)g where lab(P (a)) = >. In fat, wean �rst apply the rule R1. This adds the assertions R(a) and Q1(a), both with la-bel ax1. An appliation of the rule R2 adds the assertion Q2(a) with label ax2, andmodi�es the label of the assertion R(a) to lab(R(a)) = ax1 _ ax2. At this point, wehave reahed an S-state S ontaining the assertions P (a), R(a), Q1(a), Q2(a) withlabels lab(P (a)) = >, lab(R(a)) = ax1 _ ax2, lab(Q1(a)) = ax1, and lab(Q2(a)) = ax2.The rule R3 is pinpointing appliable to this S-state. Indeed, although both Q1(a)and Q2(a) are ontained in the assertion set of S, their labels are not implied bylab(R(a)). The appliation of R3 to S replaes S by three new S-states. One of thesenew S-states ontains the assertion r(a; b) for a new onstant b. At this point, ruleR4 beomes appliable. Its appliation adds the assertions T (b) and r(a;) for a newonstant . Sine there is no assertion of the form T (), R4 beomes again appliable,and its appliation adds a new onstant d within an assertion r(a; d). It is easy to seethat we an now ontinue applying rule R4 inde�nitely.Finding a non-terminating tableau is an easier task. If we onsider the tableau thathas only the rule R4 and where every input I 2 I is mapped to ffP (a); r(a; b)gg, then

4.3. BLOCKING IN FOREST TABLEAUX 65this yields an example of a non-terminating tableau that satis�es all the onditions ofan ordered forest tableau, exept for Condition 6.4.3 Bloking in Forest TableauxThe ordered forest tableaux introdued in the previous setion an be used to modeltableau-based algorithms that try to generate a �nite tree- or forest-shaped model. Inthe presene of so-alled general onept inlusion axioms (GCIs) or transitive roles,DLs lose the �nite tree/forest model property, and thus these algorithms need nolonger terminate. Termination an be regained, however, by bloking the appliationof generating rules, i.e., rules that generate new nodes, in ase that the node to whihthe rule is supposed to be applied has a predeessor node that has the same assertions.A saturated and lash-free tableau an then be unraveled into an in�nite tree/forestmodel (see, e.g., [HS99℄).In order to illustrate our general model of tableaux with bloking, we onsidera non-terminating forest tableau that an be made terminating by bloking. Notethat the usual tableau-based algorithm for unsatis�ability of ALC onepts w.r.t. SI-TBoxes shows a similar behavior (see Setion 2.3.5).Example 4.12. Consider a forest tableau S with the following three (deterministi)rules R1 : (fC(x)g; ;) ! ffr(x; y);D(y)gg;R2 : (fD(x)g; ;) ! ffr(x; y); C(y)gg;R3 : (fC(x); r(y; x)g; ;) ! ff:D(y)gg;and the lash fD(x);:D(x)g. In addition, we assume that the funtion �S maps everyinput I 2 I to the singleton set ffC(a0)gg and eah axiom in T to the empty set.It is easy to see that S does not terminate sine it an produe an in�nite hain ofassertions of the form C(a0); r(a0; a1);D(a1); r(a1; a2); C(a2); : : :. If we apply rule R1followed by R2 to �S = f(fC(a0)g; ;)g, then we obtain the S-state (A; ;) onsisting ofthe assertions A := fC(a0); r(a0; a1);D(a1); r(a1; a2); C(a2)g. At this point, blokingshould prevent the appliation of R1 to the node a2:14 it is the repeated appliation ofR1 that auses the generation of the above in�nite hain of assertions. The reason whyR1 an be bloked is that the node a2 ontains the same assertions as its predeessor a0:both have an assertion for C (see Figure 4.1). Note, however, that the appliation ofR3 to a2, whih adds the assertion :D(a1), should still be possible. In fat, otherwisethe lash ould not be deteted. After rule R3 has been applied to this S-state, we reahthe S-state (A [f:D(a1)g; ;) depited in Figure 4.2, where the only appliable ruleis R1, whih is however bloked. Thus, the bloking variant of the tableau terminateswith this bloking-saturated state.The di�erene between the rules R1 and R3 that makes the latter appliable whilethe former is bloked is that an appliation of R1 adds new onstants. Only this kind of14Sine in this forest tableau the elements of � are all unary, nodes are uniquely identi�ed byonstants.

66 CHAPTER 4. A CLASS OF TERMINATING TABLEAUXa0 Ca1 Da2 CrrFigure 4.1: Rule R1 is bloked
a0 Ca1 D;:Da2 CrrFigure 4.2: Bloking-saturated S-staterules will be bloked, while non-generating rules will always be appliable, regardlessof the relationships between the nodes at the S-state.Before we an formalise our notion of tableaux with bloking, we need to introduesome notation. In the following we always assume that we have a forest tableau S.Given an input �, any S-state that an be generated from �S by the appliations ofthe rules of S is alled an S-state for �. We now assume that all the S-states that weonsider are S-state for some input.The rule (B0;S) ! fB1; : : : ; Bmg is alled generating if there is an i; 1 � i � m,suh that Bi \ b� 6= ;. Note that the de�nition of forest tableaux implies that, ifsuh a generating rule is appliable with substitution � in state S, then S ontainsa (unique) node N suh that B0� � N . We an thus talk about the node to whih agenerating rule is appliable and/or applied. Given an S-state S for the input �, anode N in S is new if it has been generated by the appliation of a generating rule.Note that this is the ase i� ons(N)\ ons(�S) = ;. Only new nodes will be allowedto be bloked.Given two nodes N;N 0, we say that they ontain the same assertions (writtenN � N 0) if there is a bijetion f : ons(N) ! ons(N 0) suh that P (a1; : : : ; an) 2 Ni� P (f(a1); : : : ; f(an)) 2 N 0.De�nition 4.13 (Bloking). Given a forest tableau S, and an axiomatised input �,let S be an S-state for �. The bloking relation � between nodes of S is de�ned asfollows:N1 �N2 i� N1 � N2; N2 is a predeessor of N1; and N1 is a new node.The node N is bloked if either there is a node N 0 suh that N � N 0, or the parentnode of N is bloked. A non-generating rule is �-appliable if it is appliable in thesense of De�nition 3.16; a generating rule is �-appliable if it is appliable and thenode N to whih it is appliable is not bloked.For sets of S-states M;M0 (S-states S;S0) we write M !/S M0 (S !/S S0) ifM !S M0 (S !S S0) using a rule that is �-appliable. The set of S-states M is

�-saturated if there is no M0 suh that M!/S M0.In Figures 4.1 and 4.2 the node a2 is bloked by the node a0, whih we representwith an un�lled irle. The notion of orretness of bloking tableaux is analogous tothe one for general tableaux from the previous hapter.

4.3. BLOCKING IN FOREST TABLEAUX 67De�nition 4.14 (Corretness). Let P be a -property on axiomatised inputs for Iand Padmis(T), and S a forest tableau for I and Padmis (T). Then S is �-orret forP if it terminates and is sound and omplete with respet to �-appliation, i.e., thefollowing two onditions hold for every axiomatised input � = (I;T):1. there is no in�nite hain of rule appliations �S =M0 !/S M1 !/S : : :;2. for every hain of rule appliations �S =M0 !/S : : : !/S Mn suh that Mn is
�-saturated we have that � 2 P i� Mn is full of lashes.In the DL literature, di�erent forms of bloking have been used. The variantthat we model here is usually alled equality bloking [HS99℄ sine it requires thatthe bloked and the bloking nodes have the same set of assertions. In subset bloking[BBH96℄, it is only required that the bloking node has all the assertions of the blokednode, but not neessarily vie versa. Our reason for using equality bloking ratherthan subset bloking is that it is more appropriate for DLs with inverse roles, and ournotion of forest tableaux an model tableau-based algorithms for DLs with inverseroles. DLs that have both inverse roles and number restritions require more omplexnotions of bloking, suh as pair-wise bloking [HST00℄, that look not just at one nodebut at a node and its neighbors. Sine our urrent notion of tableaux does not apturerules that an identify distint onstants to represent the same individual, as used intableau-based algorithms for DLs with number restritions [HB91℄, we have deidednot to model pair-wise bloking.The notion of bloking introdued in De�nition 4.13 ensures that every overed for-est tableau terminates with respet to �-appliation on all inputs. Instead of showingthis diretly, we will prove that this is the ase even for its pinpointing extension. But�rst, we must adapt the notion of bloking to the pinpointing extension. Obviously,this notion must take the labels of assertions into aount as well.Given an input �, any S-state that an be generated from �S by the applia-tions of the rules of the pinpointing extension of S is alled a labeled S-state for�. Nodes of suh a labeled S-state will be alled labeled nodes. Given two suhlabeled nodes N;N 0, we say that they ontain the same labeled assertions (writtenN �pin N 0) if there is a bijetion f : ons(N)! ons(N 0) suh that P (a1; : : : ; an) 2 Ni� P (f(a1); : : : ; f(an)) 2 N 0, and the labels of these assertions, lab(P (a1; : : : ; an)) andlab(P (f(a1); : : : ; f(an))) are (propositionally) equivalent.De�nition 4.15 (Pinpointing bloking). Given a forest tableau S, and an ax-iomatised input �, let S be a labeled S-state for �. The bloking relation �pin betweenlabeled nodes of S is de�ned as follows:N1 �pin N2 i� N1 �pin N2; N2 is a predeessor of N1; and N1 is a new node.The node N is pinpointing bloked if either there is a node N 0 suh that N �pin N 0,or the parent node of N is pinpointing bloked.We de�ne the notions �pin-appliable and �pin-appliation as well as !/Spin and

�pin-saturated in the obvious way.

68 CHAPTER 4. A CLASS OF TERMINATING TABLEAUXOur approah for proving termination of the pinpointing extension of a overedforest tableau with respet to �pin-appliation is similar to the one employed forshowing that ordered forest tableaux always terminate. Equipped with Lemma 4.4,we an prove the desired termination result.Theorem 4.16. Let S be a overed forest tableau. Then the pinpointing extension ofS terminates with respet to �pin-appliation on every input.Proof. Suppose that there is an input � = (I;T) for whih there is an in�nite sequeneof pinpointing rule appliations S0 !Spin S1 !Spin � � � , where S0 2 �S . Sine S is aovered tableau, there is a �nite T -over
� suh that the assertions in Si use onlyprediate symbols from
�, for every i � 0. As already noted, every node has a �xed�nite set of onstants that an appear in its assertions. By Lemma 4.4, this set iseither the set of onstants ourring in S0 (for an old node) or the desendants in theunique edge by whih the node was reated (for a new node). Sine the T -over is�nite, the assertions that an our in a given node form a �nite set. Eah of theseassertions may repeatedly have its label modi�ed by pinpointing rule appliations;however, every pinpointing rule appliation produes a more general label, in thesense that the new monotone Boolean formula has more models than the previousone. Sine these formulas are built over a �nite set of propositional variables, this anhappen only �nitely often. Analogously, the label of a given edge an be hanged only�nitely often.Hene, to produe a non-terminating sequene of rule appliations, in�nitely manynew nodes must be added. Conditions 5 and 2 of De�nition 4.3 ensure that every newlyadded node N is reated as a suessor of an existing node with a unique edge r 2 b�onneting them, and all the onstants in N are new onstants appearing in �!r . Ifin�nitely many new nodes are reated, then either there is a node with in�nitelymany diret suessors, or an in�nite hain of nodes, eah one being a suessor of theprevious, is reated. The �rst ase an be treated as in the proof of Theorem 4.9.Thus, we onentrate on the seond ase. The number of onstants ourring ina new node is bounded by the largest arity of a prediate name r 2 b�. Taking intoaount that there are also only �nitely many possible labels, this implies that therean only be �nitely many di�erent labeled nodes, up to onstant renaming. Then, forevery hain of nodes N0; N1; : : : ; Nm that is suÆiently long (i.e., where m is largerthan the maximal number of labeled nodes that are di�erent up to onstant renaming),there must exist 1 � k < ` � m suh that Nk �pin N`, and thus N` is pinpointingbloked by Nk. Consequently, all the nodes Nr for r > ` are pinpointing bloked,whih in partiular means that Nm annot get a suessor node. Thus, the seondase is not possible either, whih ompletes the proof of the theorem.As in the ase of ordered tableaux, termination of the pinpointing extension alsoimplies termination of the original tableau, as stated by the following orollary.Corollary 4.17. Let S be a overed forest tableau. Then S terminates with respetto �-appliation on every input.

4.3. BLOCKING IN FOREST TABLEAUX 69

� �r1 r2r3r4 r5

r1 r2r3 r1 r3 r2Figure 4.3: Example of folding of an S-stateIt is worth notiing here that the tableau from Example 4.11 is also an instaneof terminating tableaux whose pinpointing extension does not terminate, even whenusing bloking. This is the ase sine, for this partiular example, the violation ofCondition 6 of De�nition 4.3 leads to a node that has in�nitely many diret suessors,hene produing an in�nite tree, even though its depth is �nitely bounded.We have seen that bloking an be used to regain termination of non-terminatingovered forest tableaux, and that this is also the ase for the pinpointing extension.However, sine bloking prevents the appliation of rules that would be appliablein the normal sense, the proof of orretness of the pinpointing extension given inSetion 3.3 does not apply diretly to the pinpointing extension of tableaux withbloking. A new proof is hene neessary.Our proof of orretness will rely on the notion of the folded version of an S-state,whih is obtained by removing all bloked nodes and adding new edges. Let S bea forest tableau and S = (A; T) an S-state for an input �. Then S is a forest-struture, i.e., it is a graph-struture onsisting of a set of tree-like strutures growingout of the original graph-struture indued by the input. If we remove all the blokednodes that are desendants of other bloked nodes, we obtain a new forest-strutureS0 = (A0;T) in whih bloked nodes appear only as leafs in the trees. For every pairof nodes N1 and N2 in S0, if N1 is bloked by N2, then we know that N1 � N2, andhene there is a bijetion f : ons(N1) ! ons(N2) suh that P (a1; : : : ; an) 2 N1 i�P (f(a1); : : : ; f(an)) 2 N2. We modify the edge with destination N1 (i.e., the uniqueassertion r(�r ;�!r) 2 b�\A0 with ons(N1) � �!r) to r(�r ; f(�!r)) and then remove N1.15Sine f(�!r) ontains only onstants from N2, this new edge points to N2, i.e., to thenode that bloks N1. By applying this modi�ation for all the remaining blokednodes, we obtain the folded version of S, whih we denote by S	. If M is a setof S-states, then its folded version is M	 = fS	 j S 2 Mg. Figure 4.3 shows theproess of folding an S-state. The tree in the left shows the tree shape of an S-state,where the two nodes marked as
 are bloked by the root node, and the nodes markedas � are bloked sine their parent node is bloked. When we remove the latter ones,we obtain a tree where only leafs have bloked nodes (enter). Finally, these blokednodes are removed, and the previous edges leading to them are modi�ed to lead tothe root node that was bloking them, represented as dashed ars on the right-mostgraph.Let us illustrate folding of S-states in a more onrete way, using the tableau ofExample 4.12. We have seen there that rule appliation an be used to obtain the15We denote as f(�!r) the tuple obtained by applying the funtion f to eah element of �!r .

70 CHAPTER 4. A CLASS OF TERMINATING TABLEAUX
�-saturated S-state S = (A; T) whereA = fC(a0); r(a0; a1);D(a1);:D(a1); r(a1; a2); C(a2)g:The folded version of this S-state does not ontain the onstant a2 (sine the blokednode fC(a2)g has been removed), but it makes up for this by an edge from a1 to a0;in other words, S	 = (A	;T) with A	 = fC(a0); r(a0; a1);D(a1);:D(a1); r(a1; a0)g.The next lemma will allow us to reuse some of the results shown in Setion 3.3,by relating �-saturatedness of a state to \normal" saturatedness of the orrespondingfolded state.Lemma 4.18. If S is �-saturated, then S	 is saturated.Proof. Let S = (A; T);S	 = (A	;T) and R : (B0;S)! fB1; : : : ; Bmg be appliableto S	 with substitution �. Assume �rst that R is a generating rule, and let N bethe node in A	 to whih this rule is applied, i.e., B0� � N � A	. Sine foldingnever modi�es any nodes in the graph struture, exept from removing some, N isalso a node in S, i.e., B0� � N � A. As S is �-saturated, R is not �-appliable to it.This means that either N is bloked, or there is a substitution � extending � suh thatBi� � A for some i; 1 � i � m. Sine folding removes all bloked nodes and N belongsto A	, the �rst ase annot our; thus, the seond option must be the ase. We anthen onstrut a substitution �0 extending � suh that Bi�0 � A	 as follows: for everyx 2 Smj=0 var(Bj), if �(x) is a onstant in a non-bloked node of A, then we de�ne�0(x) := �(x); if �(x) belongs to a node N1 bloked by some non-bloked node N2,then in partiular N1 � N2, and thus there exists a bijetion f : ons(N1)! ons(N2)suh that P (a1; : : : ; an) 2 N1 i� P (f(a1); : : : ; f(an)) 2 N2 ; in this ase, we de�ne�0(x) = f(�(x)). Beause these bijetions are also used when de�ning the foldedstate, it is easy to see that Bi�0 � A	 indeed holds. This ontradits our assumptionthat R is appliable to S	 with substitution �.Suppose now that R is a non-generating rule. If B0� � A, sine �-appliabilityoinides with regular appliability for non-generating rules, the proof is analogous tothe one for the previous ase. Thus, we an assume w.l.o.g. that B0� 6� A. Then,B0� must ontain edges r that were added by the folding proess; these edges are ofthe form r = p(�r ; fr(�!r)) where fr is the bijetion ensuring equivalene between thebloked and the bloking nodes, and there are orresponding edges in A that havebloked nodes as destinations. Using the bijetions fr to rename onstants, we ande�ne a substitution �0 suh that B0�0 � A. Note that this inlusion depends onour use of equality bloking. In fat, an assertion P� 2 B0� may be an assertion ina bloking node N , whose onstants are renamed in �0 suh that they belong to anode N 0 bloked by N . Thus, we need to know that all the assertions ourring inthe bloking node also our (appropriately renamed) in the bloked node. This isguaranteed by our de�nition of �.SineS is �-saturated, R is not appliable to S with substitution �0, whih impliesthat there must exist an i; 1 � i � m suh that Bi�0 � A. We laim that Bi� � A	.This is an easy onsequene of the fats that (i) the assertions of non-bloked nodes inA are ontained also in A	; and (ii) the assertions of bloked nodes in A are ontained

4.3. BLOCKING IN FOREST TABLEAUX 71in a renamed variant in the bloking node (i.e., the node to whih the edge leading tothe bloked node has been redireted).As we did for the ase without bloking in Setion 3.3, we will use projetions oflabeled S-states to show the orretness of the pinpointing extension. The next lemmastates a lose onnetion between pinpointing �-saturatedness of a set of labeled S-states and �-saturatedness of its projetion.Lemma 4.19. LetM be a �nite set of labeled S-states and V a propositional valuation.IfM is pinpointing �-saturated, then V(M) is �-saturated.Proof. Suppose that there is an S-state S = (A; T) 2 M and a rule of the formR : (B0;S)! fB1; : : : ; Bmg suh that R is �-appliable to V(S) with substitution �.For non-generating rules, appliability and �-appliability oinide. Consequently, ifR in non-generating, then we an re-use the proof of Lemma 3.13, whih shows theresult for the ase without bloking.Thus, assume that R is a generating rule. We have that S � TV ; B0� � AV , forevery i; 1 � i � m and every substitution �0 on var(B0[Bi) extending �, it holds thatBi�0 6� AV , and the node N 0 in V(S) to whih the rule is applied is not bloked.We will show now that R is pinpointing �-appliable to S with the same sub-stitution �. Sine S � TV � T and B0� � AV � A, the �rst two onditions ofpinpointing appliability are satis�ed. For the third ondition, onsider an i and asubstitution �0 on var(B0 [Bi) extending �. We must show that ins(Bi�0; A) 6= ;where = Vb2B0 lab(b�) ^Vs2S lab(s). Note that S � TV and B0� � AV imply thatV satis�es . Sine Bi�0 6� AV , there is a b 2 Bi suh that b�0 =2 AV . Thus b�0 =2 A orV does not satisfy lab(b�0). In the �rst ase, b�0 is learly -insertable into A. In theseond ase, 6j= lab(b�0) sine V satis�es , and thus b�0 is again -insertable intoA. We have shown up to now that R is pinpointing appliable to S with the substi-tution �. It remains to show that the node N � A to whih this rule is appliable(i.e., the node satisfying B0� � N � A) is not pinpointing bloked. If N is not anew node, then it annot be bloked. Thus, we an restrit the attention to the asewhere N is a new node. Sine B0� � AV , we have B0� � NV . Thus, the node N 0 inV(S) to whih the rule R is applied is a subset of NV .16 We know that this node isnot bloked. Also note that, sine this node belongs to V(S), the sequene of edges inS that leads to the node N is also ontained in V(S) and leads to this node. In fat,the label of an edge is always implied by the labels of assertions ourring in nodes oras edges below this edge.Assume that N is pinpointing bloked. We onentrate on the ase where there isa predeessor node M of N suh that M �pin N . (The ase where the parent node ofN is bloked an be redued to this ase by onsidering, instead of N , the (unique)predeessor node N 0 of N that is bloked, but whose parent node is not bloked.) Thede�nition of the relation �pin implies that there is a bijetion f suh that, for everyassertion P (a1; : : : ; an) 2 N 0 � NV the assertion P (f(a1); : : : ; f(an)) 2MV . The fatthat the assertions in N 0 are onneted implies that their f -images in MV are also16Note that onnetedness of N need not imply onnetedness of NV � N .

72 CHAPTER 4. A CLASS OF TERMINATING TABLEAUXonneted, and thus they belong to a node M 0 � MV . This shows, however, that N 0is bloked by M 0, whih is a ontradition.Notie that ifM!/S M0, then it is also the ase thatM!S M0, and analogouslyfor pinpointing rule appliation: ifM!/Spin M0, thenM!Spin M0. This, along with(2) of Lemma 3.26, shows that M !/Spin M0 implies that either V(M) !Sm V(M0)or V(M) = V(M0). In partiular,M0 ��!/Spin M implies V(M0) ��!Sm V(M).One last observation before proeeding to the proof of orretness of the pinpoint-ing extension is that the order in whih rules are applied has no inuene on the resultof a bloking tableau.Lemma 4.20. Let � be an axiomatised input, andM0 = �S. If there areM andM0suh that M0 ��!S M and M0 ��!S M0 and M;M0 are both �-saturated, then M isfull of lashes i� M0 is also full of lashes.Proof. For every S-state S 2 M0, there is an S-state S0 2 M0 suh that S0 � S,where the orresponding onstant renaming funtion is the identity. Reall that foldingonly hanges assertions involving bloked nodes, and that only new nodes an bebloked. Consequently, we also have S0 � S	. Sine S	 is saturated by Lemma 4.18,Lemma 3.30 thus yields an S-state S0 2M suh that S0 � S	.Now, assume thatM is full of lashes, i.e., every element ofM ontains a lash. Toshow thatM0 is full of lashes, onsider S 2 M0. Then there is an element S0 2 Msuh that S0 � S	. Sine M is full of lashes, S0 ontains a lash, and thus S	also ontains a lash. Sine S	 is obtained from S by removing bloked nodes andhanging some edges, and sine lashes onsider only single nodes, this implies thatS also ontains a lash.The other diretion an be shown analogously.Theorem 4.21 (Corretness of pinpointing with bloking). Let S be a foresttableau for I and Padmis (T) that is �-orret for the -property P. Then the followingholds for every axiomatised input � = (I;T) over I and Padmis(T):For every hain of rule appliations M0 !/Spin : : : !/Spin Mn suh thatM0 = �S and Mn is pinpointing �-saturated, the lash formula Mnindued by Mn is a pinpointing formula for P and �.Proof. Let � = (I;T) be an axiomatised input, and assume that �S =M0 ��!/Spin MnwithMn pinpointing �-saturated. To show that Mn is a pinpointing formula for P,we have to show that, for every propositional valuation V, it holds that (I;TV) 2 Pi� V satis�es Mn .Let N0 = (I;TV)S . Sine S terminates w.r.t. �-appliation, there is a �-saturatedset N suh that N0 ��!/S N . Also, sine M0 ��!/Spin Mn, it must be the ase thatV(M0) ��!Sm V(Mn). Additionally, V(M0) = N0 and also V(Mn) is �-saturated.Thus, Lemma 4.20 yields that N is full of lashes i� V(Mn) is full of lashes. Bythe �-orretness of S for P, we have then that (I;TV) 2 P i� N is full of lashes i�V(Mn) is full of lashes i� V satis�es Mn (Lemma 3.12).

4.3. BLOCKING IN FOREST TABLEAUX 73Our notion of �-orretness expliitly requires termination w.r.t. �-appliation.For overed forest tableaux we have seen that this ondition is always satis�ed.Corollary 4.22. Let S be a overed forest tableau for I and Padmis(T) that is soundand omplete w.r.t. �-appliation, i.e., for every hain of rule appliations of the formM0 !/S : : :!/S Mn suh thatM0 = �S andMn is �-saturated we have that � 2 P i�Mn is full of lashes. Then the following holds for every axiomatised input � = (I;T)over I and Padmis (T):1. There is no in�nite hain of rule appliations �S =M0 !/Spin M1 !/Spin : : :;2. For every hain of rule appliations �S = M0 !/Spin : : : !/Spin Mn suh thatMn is pinpointing �-saturated, the lash formula Mn indued by Mn is apinpointing formula for P and �.In this hapter we presented some restritions that fore a tableau to produestates that have a forest-like struture. If we additionally bound the set of prediatenames that an be used in the onstrution of states to be �nite, we obtain foreststrutures with �nite branhing. In order to ensure termination, we require also thatthe strutures have a �nite depth. We showed two ways to ahieve this. The �rstone is by obtaining a partial ordering on the prediate names suh that every ruleappliation produes only smaller assertions. The seond method onsists on hangingthe appliability onditions of rules in order to implement a bloking mehanism. Thebloking mehanism used in this work follows the ideas of what is alled equalitybloking in the DL literature, as it is triggered only if the bloking- and bloked-nodeshave both equivalent assertions. The approah followed learly shows that blokingimposes additional diÆulties for de�ning the pinpointing extension, and for provingits orretness.In the following hapter we will leave behind the tableau-based approah towardsdeiding a property and fous on another prominent method; namely, the automata-based approah. We will show that it is possible to �nd a pinpointing formula fora property that is deided by a so-alled axiomati automaton. Furthermore, sinedeisions in this method are based on an emptiness test that an be performed in �nitetime, we do not have to deal with the termination problems presented by the tableauxapproah. Perhaps more interesting is that the extension for �nding a pinpointingformula is also terminating, and atually requires only polynomial time on the size ofthe original automaton.

74 CHAPTER 4. A CLASS OF TERMINATING TABLEAUX

Chapter 5Automata-based PinpointingIn this hapter we leave behind the tableau-based approah and fous on automata-based deision proedures. In a nutshell, we will show that if we an deide a propertyP with an automata-based method, then we an also ompute a pinpointing formulafor P. As an additional advantage, we will show that the omputation of this pin-pointing formula an be done in time polynomial in the size of the automaton thatdeides P.The automata-based approah di�ers from the tableau-based in the way the dei-sions are made. Intuitively, we an think of the rule appliation in general tableauxas an attempt to build a model that veri�es (or falsi�es) the property being tested;on the other hand, the iterative emptiness test used by the automata-based approahan be seen as an attempt to prove the (non-)existene of suh a model, withoutatually building it. In other words, tableau-based deision proedures an be seenas onstrutive proofs of the fat that the given axiomatised input belongs to theproperty, as opposed to the non-onstrutive proofs obtained by means of automata.Consider for instane unsatis�ability of ALC onept terms w.r.t. SI-TBoxes. Anaxiomati input (C;T) belongs to this -property if and only if there is no model I ofthe TBox T suh that CI 6= ;. The tableau-based deision proedure tries to falsifythis ondition by foring an interpretation to map the onept term C to a non-emptyset, and then expanding it to satisfy all the onditions required from a model. Onlyif this onstrution terminates without �nding a ontradition is the input rejeted(see Setion 2.3.5). The automata-based deision proedure for the same -propertyredues the problem to deiding the existene of a run of a looping automaton whoseroot is labeled with an initial state. But the emptiness test does not try to onstrutsuh a run; instead, it �nds the set of all states that an serve as root for runs of theautomaton, and ompares it with the set of initial states (see Setion 2.4.1). At nopoint of this proess is the atual onstrution of a run attempted.While a non-onstrutive approah is ertainly enough for deiding a property,where we want only to test whether a model exists, it is not ompletely obvioushow these ideas an generalise to the omputation of a pinpointing formula, or ingeneral MinAs and MaNAs for the axiomatised input and deided property. Basially,with a onstrutive approah we an also highlight the spei� steps that need tobe exeuted for adding a spei� piee to the model, as we did in the pinpointing75

76 CHAPTER 5. AUTOMATA-BASED PINPOINTINGextension of general tableaux (Chapter 3). Having a non-onstrutive proof disallowsthe appliation of this method. It is in that respet that this hapter introdues anovel idea, showing that not only onstrutive deision proedures an be extended tolabeling methods that ultimately ompute a pinpointing formula. Our approah makesthe assumptions that individual axioms have an inuene in the onstrution of theautomaton that is independent of the presene or absene of other axioms, and thatwe an represent this inuene by restriting the transition relation and initial statesfrom a weaker automaton. Although these assumptions learly a�et the generalityof the method, we believe that they are reasonable, and still allow for deiding andpinpointing several -properties of interest.The hapter is divided as follows. We �rst show how any automaton deiding a-property an be transformed into a weighted automaton whose so-alled behaviourorresponds to the pinpointing formula. We then present an iterative proedure foromputing the behaviour of weighted automata over any �nite distributive lattie; theautomaton used for pinpointing being a speial ase overed by this algorithm. Duringthe development of our work, an alternative algorithm for omputing the behaviourof weighted tree automata working on in�nite trees was independently developed in[DKR08℄. We devote the last setion of this hapter to a omparison of the twoalgorithms, with a speial emphasis on their appliation to pinpointing.5.1 Pinpointing AutomataAs mentioned already in repeated opportunities, automata an also be used to de-ide properties in DLs and other logis. In the ase of the algorithm presented inSetion 2.4.1, the -property under onsideration is unsatis�ability of a onept termw.r.t. a general SI-TBox. Likewise, in Setion 2.4.2, we deide the -property ofaxiomati unsatis�ability of LTL formulae. The deision proedures onsisted onperforming an emptiness test on the automaton AsatC;T (see De�nition 2.19) or Asat�;R(De�nition 2.23). The property under onsideration holds if and only if the automatonhas no suessful run whose root is labeled with an initial state.Contrary to the tableau-based approah presented in Chapter 3, the axioms arenot used expliitly for deiding the property, but are only impliit in the onstrutionof the automaton. For instane, the TBox is used to de�ne the transition relation ofthe automaton AsatC;T by restriting the set of usable transitions to only those that wereompatible with it. In the automaton Asat�;R, the LTL formulae in the set R restritthe set of initial states. If the axiomatised input belongs to the property being deidedby suh an automaton, it is impossible to distinguish the axioms that are relevant forthis fat from those that are superuous, and thus, the only possible way to omputethe set of MinAs and MaNAs is by trial and error, onstruting one automaton foreah possible subset of axioms and performing the emptiness test on it.In general, the automata-based approah for deiding a property P onsists ontranslating eah axiomatised input � = (I;T) into an automaton A� suh that � 2 Pif and only if A� has no suessful runs. Sine we want to �nd out how the axiomsrelate to eah other with respet to the -property under onsideration, we need to

5.1. PINPOINTING AUTOMATA 77know how the absene of some of the axioms in T would inuene the onstrutionof the automaton. We thus assume that for every T 0 � T , the automaton A(I;T 0) anbe onstruted from A� by appropriately restriting its set of transitions and initialstates. To this end we will employ two so-alled restriting funtions.De�nition 5.1 (Restriting funtions, restrited automaton). Let A be thegeneralised B�uhi automaton A = (Q;�; I; F1; : : : ; Fn) for arity k and � = (I;T) anaxiomatised input. The funtions �res : T ! P(Qk+1) and Ires : T ! P(Q) arealled a transition restriting funtion and an initial restriting funtion, respetively.We extend these restriting funtions to be appliable over sets of axioms as follows:�res(T 0) := \t2T 0�res(t) andIres(T 0) := \t2T 0 Ires(t):If T 0 � T , then the T 0-restrited subautomaton of A w.r.t. �res and Ires is thegeneralised B�uhi automaton AjT 0 de�ned asAjT 0 := (Q;� \�res(T 0); I \ Ires(T 0); F1; : : : ; Fn):We will give the name of axiomati automata to generalised B�uhi tree automataequipped with a transition- and an initial-restriting funtion.De�nition 5.2 (Axiomati automaton). Let A = (Q;�; I; F1; : : : ; Fn) be a gener-alised B�uhi automaton for arity k, � = (I;T) an axiomatised input, and the funtions�res : T ! P(Qk+1) and Ires : T ! P(Q) a transition and an initial restritingfuntion, respetively. The tuple (A;�res; Ires) is alled an axiomati automaton for�. An axiomati automaton is onsidered orret for a property P if the restritedsubautomata deide P for the axiomatised input orresponding to eah subset ofaxioms.De�nition 5.3 (Corretness). Given a -property P, (A;�res; Ires) is orret for� w.r.t. P if for every T 0 � T it is the ase that (I;T 0) 2 P i� the restrited subau-tomaton AjT 0 has no suessful run r suh that r(") 2 I \ Ires(T 0).Consider again the automaton AsatC;T de�ned in Setion 2.4.1. This automatonorretly deides unsatis�ability w.r.t. general SI-TBoxes but still lak appropriaterestriting funtions, a neessary ondition in the de�nition of axiomati automata.It is easy to notie that the only plae where the axioms inuene the onstrutionof this automaton is in the transition relation �, whih is de�ned as the set of alltuples in Qk+1 that satisfy the Hintikka ondition and are ompatible with all the

78 CHAPTER 5. AUTOMATA-BASED PINPOINTINGaxioms in T . Thus, we an alternatively remove the seond ondition in the de�nitionof this transition relation, that is, the ondition of ompatibility with the TBox, andobtain the same intended behaviour through the transition restriting funtion. Sinein this ase the axioms do not inuene the set of initial states, we an set the funtionIresC;T as the onstant funtion Q; i.e., the funtion that maps every axiom in T tothe set of all states Q.De�nition 5.4 (Axiomati automaton for SI). Let C be a onept term, Ta general SI-TBox and k the number of existential restritions in sub(C;T). Theaxiomati automaton (AC;T ;�resC;T ; IresC;T) has as its �rst omponent the loopingautomaton AC;T = (Q;�; I) where� Q is the set of all Hintikka sets for (C;T);� � is the set of all tuples (H0;H1; : : : ;Hk) 2 Qk+1 satisfying the Hintikka ondi-tion; and� I = fH 2 Q j C 2 Hg.The transition restriting funtion �resC;T maps eah axiom t 2 T to the set of alltuples in � that are ompatible with t. The initial restriting funtion IresC;T mapseah axiom t 2 T to the set Q.One an see that for T 0 � T , the T 0-restrited subautomaton of AC;T is exatlythe automaton AsatC;T 0 . Thus, this onstrution yields a orret axiomati automatonfor unsatis�ability of ALC onept terms w.r.t. SI-TBoxes.Theorem 5.5. Let C be an ALC onept term and T a general SI-TBox. The ax-iomati automaton (AC;T ;�resC;T ; IresC;T) is orret for (C;T) w.r.t. unsatis�ability.To obtain an axiomati automaton for axiomati unsatis�ability of LTL formulae,we an follow a similar idea. Notie that, in this ase, the axioms have no impat onthe transition relation of the automaton Asat�;R, but rather in the set of initial states.Thus, we an weaken the de�nition of Asat�;R suh that its set of initial states is nowgiven by all elementary sets that ontain the stati formula �. Sine we do not wantaxioms to a�et the transition relation of the restrited automaton, we set, for every 2 R, the transition restriting funtion �res�;R() = �. The initial restritingfuntion Ires�;R then maps every LTL formula 2 R to the set of elementary setsontaining .De�nition 5.6 (Axiomati automaton for LTL). Let � and R be an LTL formulaand a set of LTL formulae, respetively, and let �1U 1; : : : ; �nU n be all the untilformulae in l(�;R). The axiomati automaton (A�;R;�res�;R; Ires�;R) has as its�rst omponent the generalised B�uhi automaton A�;R := (Q;�; I; F1; : : : ; Fn), where� Q is the set of all elementary sets for (�;R);� � onsists of all ompatible pairs (H;H 0) 2 Q�Q;

5.1. PINPOINTING AUTOMATA 79� I := fH 2 Q j � 2 Hg;� Fi := fH 2 Q j i 2 H or �iU i =2 Hg.For every 2 R, the transition restriting and initial restriting funtions are givenby �res�;R() := � and Ires�;R() := fH 2 Q j 2 Hg, respetively.Clearly, for every R0 � R, the R0-restrited subautomaton of A�;R is equivalentto the automaton Asat�;R0 . This means that the axiomati automaton onstruted thisway is orret for (�;R) w.r.t. axiomati unsatis�ability.Theorem 5.7. Let � and R be an LTL formula and a set of LTL formulae, respe-tively. The axiomati automaton (A�;R;�res�;R; Ires�;R) is orret for (�;R) w.r.t.axiomati unsatis�ability.Given an axiomati automaton that orretly deides a -property, we will on-strut a weighted automaton whose so-alled behaviour orresponds to the pinpoint-ing formula for this property. Weighted automata do not merely aept or rejetan input tree, but rather assign a value to it; these values ome from a distributivelattie [Gr�a98℄.De�nition 5.8 (Distributive lattie). A distributive lattie is a partially orderedset (S;�S) suh that in�ma and suprema of arbitrary �nite subsets of S always existand distribute over eah other. The distributive lattie (S;�S) is alled �nite if itsarrier set S is �nite.As we will see next, any weighted automaton uses as weights only �nitely manyelements of the underlying distributive lattie. Sine �nitely generated distributivelatties are �nite [Gr�a98℄, the losure of this set under the lattie operations in�mumand supremum yields a �nite distributive lattie. For this reason, we will in thefollowing assume without loss of generality that the weights of our weighted B�uhiautomaton ome from a �nite distributive lattie (S;�S).For the rest of this hapter, we will often simply use the arrier set S to denotethe distributive lattie (S;�S). The in�mum (supremum) of a subset T � S will bedenoted byNt2T t (Lt2T t). We will often ompute the in�mum (supremum)Ni2I ti(Li2I ti) over an in�nite set of indies I. However, the �niteness of the lattie and theidempoteny of the operators in�mum and supremum ensure that the sets over whihthe operators are atually applied are �nite, and hene in�mum and supremum arewell-de�ned in this ase. For the in�mum (supremum) of two elements, we will alsouse the in�x notation; i.e., write t1
 t2 (t1 � t2) to denote the in�mum (supremum)of the set ft1; t2g. The least element of S (i.e., the in�mum of the whole set S) willbe denoted by 0, and the greatest element (i.e., the supremum of the whole set S) bythe symbol 1.It should be noted that our assumption that the weights ome from a �nite dis-tributive lattie is stronger than the one usually enountered in the literature onweighted automata. In fat, for automata working on �nite trees, it is suÆient toassume that the weights ome from a so-alled semiring [Sei94℄. In order to have a

80 CHAPTER 5. AUTOMATA-BASED PINPOINTINGwell-de�ned behaviour also for weighted automata working on in�nite objets, theexistene of in�nite produts and sums is required [DR06, Rah07℄. The additionalproperties imposed by our requirement to have a �nite distributive lattie (in parti-ular, the idempoteny of produt and sum) will be used to show that we an atuallyompute the behaviour of our weighted B�uhi automata (see Setion 5.2).17 Sine ourmain goal in the use of weighted automata is to ompute a pinpointing formula, thesestronger assumption will not be problemati. As we will see later, the weights used foromputing this formula atually belong to a �nitely generated free distributive lattie.De�nition 5.9 (Weighted B�uhi automaton). Let S be a �nite distributive lattie.A weighted generalised B�uhi automaton (WGBA) over S for arity k is a tuple of theform A = (Q; in;wt; F1; : : : ; Fn) where:� Q is a �nite set of states,� in : Q! S is the initial distribution,� wt : Qk+1 ! S assigns weights to transitions, and� F1; : : : ; Fn � Q are the sets of �nal states.A WGBA is alled weighted B�uhi automaton (WBA) if n = 1 and weighted loopingautomaton (WLA) if n = 0.A run of a WGBA A is a labeled tree r : K� ! Q. The weight of this runis wt(r) = Nu2K� wt(��!r(u)). This run is suessful if for every path p and everyi; 1 � i � n, there are in�nitely many nodes u 2 p suh that r(u) 2 Fi. Let suAdenote the set of all suessful runs of A. The behaviour of the automaton A iskAk := Mr2suA in(r("))
 wt(r):
For example, the Boolean semiring B = (f0; 1g;^;_; 1; 0) is a �nite distributivelattie, where the partial order is de�ned as 1 �B 0. Note that we have de�ned 1 to besmaller than 0, and thus in this ontext onjuntion yields the supremum (i.e., is the\addition" �) and disjuntion yields the in�mum (i.e., is the \produt"
). Likewise,1 is the least element 0, and 0 is the greatest element 1. Any generalised B�uhitree automaton A = (Q;�; I; F1; : : : ; Fn) an easily be transformed into a WGBAAw on B suh that the behaviour of Aw is 0 i� A has a suessful run. In Aw, theinitial distribution maps initial states to 0 and all other states to 1; a tuple in Qk+1reeives weight 0 if it belongs to �, and weight 1 otherwise. We will now see that thisautomaton behaves just as it was previously laimed.17Alternatively to the idempoteny assumption, one an try to ensure onvergene of these in�nitaryoperators with the help of a so-alled disounting funtion [DK06, Man08, DSV08℄. Sine we wantaxioms to have the same inuene over the result, regardless on where in the model they are used, wewill not follow these ideas.

5.1. PINPOINTING AUTOMATA 81The emptiness test for B�uhi automata skethed in Setion 2.4 an be adaptedsuh that it omputes the behaviour of Aw as follows. We will onstrut a funtionbad : Q ! f0; 1g suh that bad(q) = 1 i� q is a bad state. The outer iteration ofthe algorithm will update this funtion at every step. In the beginning, no state isknown to be bad, and thus we start the iteration with bad0(q) = 0 for all q 2 Q. Nowassume that the funtion badi : Q ! f0; 1g, for i � 0, has already been omputed.For the next step of the iteration, we all the inner loop to update the set of adequatestates. In this loop, we are going to ompute the funtion adqi : Q ! f0; 1g. Here,adqi(q) = 1 means that q is not an adequate state, i.e., that it is not possible toonstrut a run with q at the root where eah path reahes at least one �nal state.At the beginning we know nothing about the adequate states, so we set adqi0(q) = 1for all q 2 Q. Assume that we have already omputed adqin : Q ! f0; 1g. To knowwhether a state should beome adequate in the next step, we need to hek for eahtransition starting from this state whether the �nal states reahed by the transitionare non-bad, and the non-�nal states are already known to be adequate. Thus, wehaveadqin+1(q) = ^(q;q1;:::;qk)2Qk+1 wt(q; q1; : : : ; qk) _ _qj =2F adqin(qj) _ _qj2F badi(qj): (5.1)The funtion adqi is the limit of this inner iteration, whih is reahed after at mostjQj steps. With this funtion, we de�nebadi+1(q) = badi(q) _ adqi(q):The funtion bad is the limit of this outer iteration, whih is also reahed after atmost jQj steps. This omputation of the funtion bad by two nested iterations basi-ally simulates the omputation of all bad states in the emptiness test for B�uhi treeautomata that we skethed in Setion 2.4. It is thus easy to show that bad(q) = 1 i�q is a bad state, i.e., annot our as a label in a suessful run of A.Given the de�nition of Aw, it is easy to see that a run r : K� ! Q of Aw hasweight 0 i� it is a run of A that starts with an initial state of A. Consequently, A hasa suessful run that starts with an initial state i�kAwk = ^r2suAw in(r(")) _ wt(r) = 0:Putting these observations together, we thus have: the behaviour of Aw is 0 i� Ahas a suessful run that starts with an initial state i� there is an initial state q (i.e.,in(q) = 0) that is not bad (i.e., bad(q) = 0). This shows that the behaviour of Awis given by Vq2Q in(q) _ bad(q). Later, we will see that the behaviour of a WBA analways be omputed by suh a proedure with two nested iterations.Starting from a orret axiomati automaton, we an onstrut a weighted au-tomaton whose behaviour orresponds exatly to a pinpointing formula. Obviously,the semiring used by this automaton needs to have monotoni Boolean formulae aselements. We use the T -Boolean semiring. Reall that every axiom in T is labeled

82 CHAPTER 5. AUTOMATA-BASED PINPOINTINGwith a unique propositional variable, and lab(T) represents the set of all the labels ofelements in T . The T -Boolean semiring is given by B T = (B̂ (T);^;_;>;?), whereB̂ (T) is the quotient set of all monotoni Boolean formulae over lab(T) by the propo-sitional equivalene relation; in other words, two propositionally equivalent formulaeorrespond to the same element in B̂ (T). This semiring is indeed a distributive lattie,where the partial order is de�ned as � � i� ! � is a valid propositional formula.Furthermore, as T is a �nite set of axioms, this lattie is also �nite: it orresponds tothe free distributive lattie over the generators lab(T). Note that, similar to the aseof the Boolean semiring B de�ned above, onjuntion is the semiring addition (i.e.,yields the supremum �) and disjuntion is the semiring multipliation (i.e., yields thein�mum
). Likewise, > is the least element 0 and ? is the greatest element 1.De�nition 5.10 (Pinpointing automaton). Let (A;�res; Ires) be an axiomatiautomaton for the axiomatised input � = (I;T), with A = (Q;�; I; F1; : : : ; Fn). Theviolating funtions �vio : Qk+1 ! B T and Ivio : Q! B T are given by�vio(q0; q1; : : : ; qk) := _ft2T j(q0;q1;:::;qk)=2�res(t)g lab(t); andIvio(q) := _ft2T jq=2Ires(t)g lab(t):The pinpointing automaton indued by (A;�res; Ires) w.r.t. T is the WGBA(A;�res; Ires)pin over B T , given by (A;�res; Ires)pin = (Q; in;wt; F1; : : : ; Fn), wherein(q) = (Ivio(q) if q 2 I> otherwise;wt(q; q1; : : : ; qk) = (�vio(q; q1; : : : ; qk) if (q; q1; : : : ; qk) 2 �> otherwise.Let r be a tree labeled with elements of Q. It is easy to see that if r orresponds toa run of the automaton A, then its weight when seen as a run of (A;�res; Ires)pin iswt(r) = Wu2K� �vio(��!r(u)); on the ontrary ase, its weight is wt(r) = >. Intuitively,the violating funtion �vio expresses whih axioms are not satis�ed { or \violated" {by a given transition. The weight of a run aumulates then all the axioms violated byany of the transitions appearing as labels in this run. Additionally, the funtion Iviorepresents the axioms that are violated by the initial state of the run. Thus, removingall the axioms appearing in these two formulae would yield a subset of axioms thatare not violated by this run. This means that, if the run is suessful and the root islabeled with an initial state, due to orretness, the property does not hold anymoreafter the removal of those axioms. But di�erent runs may lead to di�erent sets ofaxioms that need to be removed, and hene we need the onjuntion of all of them toobtain a pinpointing formula.

5.2. COMPUTING THE BEHAVIOUR OF WEIGHTED AUTOMATA 83Theorem 5.11. Let P be a -property, and � = (I;T) an axiomatised input. Ifthe axiomati automaton (A;�res; Ires) is orret for � w.r.t. P, then the behaviourk(A;�res; Ires)pink is a pinpointing formula for � w.r.t. P.Proof. We need to show that, for every valuation V � lab(T), it holds that V satis�esk(A;�res; Ires)pink i� (I;TV) 2 P. Let V � lab(T) be an arbitrary valuation.Suppose �rst that (I;TV) =2 P. Sine (A;�res; Ires) is orret for � w.r.t. P,there must be a suessful run r of AjTV with r(") 2 I \ Ires(TV). Consequently,��!r(u) 2 �res(TV) holds for every u 2 K�, and thus V annot satisfy �vio(��!r(u)), forany u 2 K�. Sine r is a suessful run of AjTV , it is also a suessful run of A, whihimplies wt(r) = Wu2K��vio(��!r(u)). Thus, V does not satisfy wt(r). Sine r(") 2 I, weknow that in(r(")) = Ivio(r(")); additionally, r(") 2 Ires(TV) implies that V does notsatisfy Ivio(r(")). Thus, V does not satisfy in(r(")) _ wt(r). But then V also annotsatisfy the onjuntive formula Vr2su in(r(")) _ wt(r) = k(A;�res; Ires)pink.Conversely, if V does not satisfy k(A;�res; Ires)pink = Vr2su in(r("))_wt(r), thenthere must exist a suessful run r suh that V does not satisfy in(r(")) _wt(r). Thisimplies that r(") 2 I\Ires(TV) and that ��!r(u) 2 �res(TV) for all u 2 K�. Consequently,r is a suessful run of AjTV with r(") 2 I \ Ires(TV), whih shows (I;TV) =2 P, by theorretness of the axiomati automaton.This theorem shows that it suÆes to ompute the behaviour of the pinpoint-ing automaton (A;�res; Ires)pin indued by an axiomati automaton (A;�res; Ires)in order to obtain a pinpointing formula for the property deided by (A;�res; Ires).When we began this work, we were unable to �nd any algorithm for omputing thebehaviour of weighted automata in the literature and hene had to develop our own,whih generalises the ideas used in the iterative emptiness test of unweighted au-tomata (Setion 2.4). During the development of our work, an alternative algorithmfor omputing the behaviour of weighted tree automata working on in�nite trees hasindependently been developed in [DKR08℄. It turns out, however, that using this al-gorithm in our pinpointing appliation basially yields a so-alled blak-box approahfor pinpointing, in whih the set of all MinAs is obtained by testing for emptinessof the restrited subautomaton de�ned by eah subset of axioms. The pinpointingformula in disjuntive normal form is then obtained from this set as desribed by theExpression 3.2 in page 37. Instead, our algorithm tries to ompute the pinpointingformula within a time bound proportional to the one required for a single emptinesstest. We desribe this in more detail in the following setions.5.2 Computing the Behaviour of Weighted AutomataIn this setion, we �rst show how the behaviour of a weighted B�uhi automatonover a �nite distributive lattie an be omputed by two nested iterations. We thenshow how, if we restrit the disourse to WLAs, the proedure an be simpli�ed toa single bottom-up iteration. Afterwards, we prove that for every WGBA one anonstrut in polynomial time a WBA having the same behaviour, thus obtaining amethod for omputing the behaviour of WGBAs also in polynomial time. This latter

84 CHAPTER 5. AUTOMATA-BASED PINPOINTINGredution follows the ideas that have previously been used for the ase of unweightedautomata [VW86℄.5.2.1 Computing the Behaviour of a WBABy de�nition, the behaviour of a weighted B�uhi automaton is the addition of theweights of all suessful runs, whih themselves onsist of the produt of the weightsof all transitions that they ontain, multiplied by the initial distribution of their rootlabels. Trying to apply this de�nition diretly to the omputation of the behaviourwill unavoidably lead to failure given the potentially in�nite number of suessful runsand the in�nite size of eah of them. To overome this problem, we will generalisethe iterative algorithm for deiding emptiness of B�uhi automata that was skethed inSetion 2.4 and produe a method that omputes the behaviour in a similar fashion.To introdue the ideas, we will onsider a B�uhi automaton as a WBA over theBoolean semiring as desribed in page 80. The two iterations desribed there, namelythe one that omputes the funtions adqi (Equation 5.1) and the one that omputesthe funtion bad, will be generalised to monotone operators that an be applied toarbitrary �nite distributive latties.For the remaining of this setion we will assume that we have an arbitrary but�xed WBA A = (Q; in;wt; F) over the �nite distributive lattie S. We will show thatA indues a monotone operator Q : SQ ! SQ, where SQ is the set of all mappingsfrom Q to S, and that the behaviour of A an easily be obtained from the greatest�xpoint of this operator. The partial order �S an be transferred to SQ in the usualway, by applying it omponent-wise: if �; �0 2 SQ, then (�� �0)(q) = �(q)� �0(q) forall q 2 Q. It is easy to see that (SQ;�SQ) is again a �nite distributive lattie. We willuse
 and � also to denote the in�mum and supremum in SQ. The least (respetivelygreatest) element of SQ is the funtion e0 (respetively e1) that maps every q 2 Q to 0(respetively 1).To de�ne this operator Q, we will follow the same ideas skethed for the emptinesstest. Intuitively, an appliation of this operator orresponds to one iteration in theomputation of the funtion bad. In the unweighted ase, at eah of these steps, weperformed an inner iteration to ompute the auxiliary funtion adq. Analogously,in order to de�ne the operator Q we need �rst to introdue an auxiliary operatorO : SQ ! SQ. We will fous �rst on this operator O, whih will also be shown tobe monotone. The funtion adq used in the unweighted ase atually depends onknowledge of the bad states that have been omputed so far; this dependeny extendsto the weighted ase, in order to allow a orret iteration of operator Q (see page 89).Thus, we atually de�ne one operator Of for eah f 2 SQ. Following the idea ofEquation (5.1), the operator Of is de�ned as follows for every � 2 SQ and q 2 Q:Of (�)(q) = M(q;q1;:::;qk)2Qk+1 wt(q; q1; : : : ; qk)
 kOj=1 stepf (�)(qj); (5.2)

5.2. COMPUTING THE BEHAVIOUR OF WEIGHTED AUTOMATA 85where stepf (�)(q) = (f(q) if q 2 F�(q) otherwise.In the inner iteration of the emptiness test, the funtion adqi is omputed byapplying Equation 5.1 to a previously omputed funtion adqin until this proess sta-bilizes; that is, until a �xpoint has been found. This iteration is initialized with thefuntion adqi0 that maps every state to 1. Sine 1 is the least element of the lattieB , the funtion adqi0 is the least element of the lattie SQ. Thus, the limit of thisiteration, i.e., the funtion adqi, is in fat the least �xpoint of the operator de�nedby Equation 5.1 on the lattie SQ. With the help of the next lemma, we will showthat the same idea holds in the operators Of ; that is, that one an ompute its least�xpoint by �nitely many appliations of the operator over the in�mum of the lattieSQ.Lemma 5.12. For every f 2 SQ the operator Of is monotone, i.e., � �SQ �0 impliesOf (�) �SQ Of (�0).Proof. Let �; �0 2 SQ be suh that � �SQ �0. This implies also stepf (�) �SQ stepf (�0).Thus, we have for every q 2 Q:Of (�)(q) = M(q;q1;:::;qk)2Qk+1 wt(q; q1; : : : ; qk)
 kOj=1 stepf (�)(qj)�S M(q;q1;:::;qk)2Qk+1 wt(q; q1; : : : ; qk)
 kOj=1 stepf (�0)(qj) = Of (�0):Sine we know that SQ is �nite, this in partiular means that the operator Of isontinuous. By Tarski's �xpoint theorem [Tar55℄, this implies that the least �xpoint(lfp) of Of isLn�0Onf (e0). Finiteness of SQ yields that this lfp is reahed after �nitelymany iterations; more preisely, there exists a smallest m; 0 � m � jSjjQj suh thatOmf (e0) = Om+1f (e0), and for this m we have Ln�0Onf (e0) = Omf (e0). This gives us abound on the number of iterations that is exponential in the size of the automaton.We will later show (see Theorem 5.18) that it is possible to improve this bound to apolynomial number of iterations, measured in the number of states.Reall our intuition for the auxiliary operator that is trying to �nd the adequatestates. These states are those from whih it is possible to onstrut a �nite partialrun that �nishes in �nal states that are not known to be bad. In the general ase,the operators O will help in omputing the weights of all suh runs, whih in the endwill allow us to help the weights of all suessful runs, and hene the behaviour of theautomaton. Next, we give a formal de�nition of the notion of a �nite partial run.De�nition 5.13 (Finite run). A �nite tree is a �nite set t � K� that is losedunder pre�xes and suh that, if ui 2 t for some u 2 K� and i 2 K, then for all

86 CHAPTER 5. AUTOMATA-BASED PINPOINTINGj; 1 � j � k; uj 2 t. A node u 2 t is alled a leaf if there is no j; 1 � j � k suh thatuj 2 t. The set of all leaf nodes of a tree t is denoted by lnode(t). The depth of a�nite tree t is the length of the largest word in t.A �nite run is a mapping r : t ! Q, where t is a �nite tree. Given suh a run,leaf(r) denotes the set of all states appearing as labels of a leaf.We denote as runs1 the set of all runs r of depth at least 1 suh that for everynode u 6= ", r(u) 2 F if and only if u is a leaf. Additionally, runs�n1 denotes the setof all runs in runs1 having depth at most n. For a state q 2 Q, we de�ne the setsruns1(q) = fr 2 runs1 j r(") = qg; analogously runs�n1 (q) = fr 2 runs�n1 j r(") = qg.The weight of a �nite run r : t! Q is wt(r) =Nu2tnlnode(t) wt(��!r(u)).When we are looking for the states that are adequate, we are atually trying toonstrut a run in runs1 that starts with eah state. Reall from our intuition thatwe �rst all adequate any state q having a transition starting with it and leadingonly to �nal states. This ondition is analogous to having a �nite run (of depth 1)in runs1(q). We then all adequate any other state p that has a transition leading toadequate or �nal states; i.e., to non-�nal states having a run in runs1 starting withthem, or to �nal states. Conatenating this transition with the runs in runs1, weobtain a new run in runs1(p). This image is nonetheless inomplete, sine we are notreally interested in any �nite run �nishing in �nal states, but only those whose leafnodes have labels that are not bad. We an see this as multiplying the weight of thisrun by the funtion bad applied to eah of the states labeling a leaf node. In thegeneral ase, onsider a given funtion f : Q! S. We de�ne the f -weight of a run ras wtf (r) = wt(r)
Nq2leaf(r) f(q).We will show that the lfp of the operator Of yields the addition of the f -weightsof all runs in runs1(q) for every state q 2 Q with the help of the following lemma.Lemma 5.14. For all n � 0 and all q 2 Q, Onf (e0)(q) =Lr2runs�n1 (q) wtf (r).Proof. The proof is by indution on n. For n = 0, the result follows from the fat thatruns�01 = ;, and heneLr2runs�01 (q) wtf (r) = 0 = e0(q) = Onf (e0)(q).Assume now that the identity holds for n. Given a tuple (q1; : : : ; qk) 2 Qk, leti1; : : : ; il be all the indies suh that qij =2 F for all j; 1 � j � l and il+1; : : : ; ik thoseindies suh that qij 2 F for all j; l + 1 � j � k. Appliation of the de�nitions of theoperators Of and stepf , respetively, yieldsOn+1f (e0)(q) = M(q1;:::;qk)2Qk wt(q; q1; : : : ; qk)
 kOj=1 stepf (Onf (e0))(qj)= M(q1;:::;qk)2Qk wt(q; q1; : : : ; qk)
 lOj=1 Onf (e0)(qij)
 kOj=l+1 f(qij)If 1 � j � l, then we will abbreviate runs�n1 (qij) as rnnj and leaf(rj) as lfj . In addition,

5.2. COMPUTING THE BEHAVIOUR OF WEIGHTED AUTOMATA 87we use the symbol F as an abbreviation for the produtNkj=l+1 f(qij). We then haveOn+1f (e0)(q) = M(q1;:::;qk)2Qk wt(q; q1; : : : ; qk)
 (lOj=1 Mrj2rnnj wtf (rj))
 F (5.3)= M(q1;:::;qk)2Qk wt(q; q1; : : : ; qk)
 (Mr12rnn1 ;:::;rl2rnnl lOj=1 wtf (rj))
 F (5.4)
= M(q1;:::;qk)2Qk wt(q; q1; : : : ; qk)
 (Mr12rnn1 ;:::;rl2rnnl lOj=1 wt(rj)
Op2lfj f(p))
 F(5.5)= M(q1;:::;qk)2Qk Mr12rnn1 ;:::;rl2rnnl wt(q; q1; : : : ; qk)
Oqj =2F wt(rj)
Op2lfj f(p)
 F (5.6)= Mr2runs�n+11 (q)wt(r)
 Op2leaf(r) f(p) (5.7)= Mr2runs�n+11 (q)wtf (r):Equation (5.3) applies the indution hypothesis. Identity (5.4) uses the fat that SQis a distributive lattie, whih allows us to move the addition out of the produt,while (5.5) uses the de�nition of f -weight. Identity (5.6) uses again the distributivityto multiply wt(q; q1; : : : ; qk) inside the addition. Finally, Identity (5.7) simpli�es thetwo sums by onstruting a run of larger depth. Instead of onsidering �rst thetransition (q; q1; : : : ; qk) and then runs of depth up to n starting with eah qij , wesimply take the orresponding run of depth n + 1 starting at q. This run labels theroot with q and the suessor node i with qi. If qi is a �nal state, then it remains as aleaf, otherwise, below the node i we have the former run starting with qi. Thus, theset of leafs of this larger run is the union of the sets of leafs of the runs rjs and theset of those qis that are �nal states. The last identity merely applies the de�nition off -weight again.The next theorem shows the relation between the f -weights of the runs in runs1and the least �xpoint of the operator Of .Theorem 5.15. Let f 2 SQ and assume that �0 is the lfp of the operator Of . Then,for every q 2 Q, �0(q) =Lr2runs1(q) wtf (r).Proof. By Lemma 5.14 we know thatMn�0Onf (e0)(q) = Mn�0 Mr2runs�n1 (q)wtf (r)= Mr2runs1(q)wtf (r):

88 CHAPTER 5. AUTOMATA-BASED PINPOINTINGTarski's �xpoint theorem states that the least �xpoint of Of is Ln�0Onf (e0), whihompletes the proof of the theorem.Before desribing how the operators Of help in the omputation of the behaviourof a weighted automaton, it is worth showing that the number of times it needs to beapplied before reahing its lfp is bounded by the number of states of the automaton.The notion of m-�nalising automata will be useful for this.De�nition 5.16 (m-�nalising). A WBA is m-�nalising if for every funtion f 2 SQand every partial run r in runs1(q) there is a partial run sr in runs�m1 (q) suh thatwtf (r) �S wtf (sr).We will �rst show that every WBA is m-�nalising for any m grater to the numberof non-�nal states plus one, i.e. jQnF j+1. Afterwards we will show how this propertyyields a bound on the number of iterations needed to reah the least �xpoint of Of .Theorem 5.17. Let A be a WBA with less than m� 1 non-�nal states. Then A ism-�nalising.Proof. Let f 2 SQ and onsider a run r 2 runs1(q). If r 2 runs�m1 (q), then we anonsider sr = r, and hene there is nothing to prove.Otherwise, if r =2 runs�m1 (q), then there must be a path in the tree of length greaterthan m. As r 2 runs1, in this path there is only one non-root node, namely the leafnode, that is labeled with a �nal state. Thus, there are at least m� 1 nodes labeledwith non-�nal states. Sine there are less than m di�erent non-�nal states, there mustbe two non-root nodes u 6= v in this path suh that r(u) = r(v). Sine these nodesare in the same path, we an assume w.l.o.g. that v = uv0 for some v0 2 K� n f"g. Wede�ne a new run s as follows: for every node w if there is no w0 for whih w = uw0, sets(w) := r(w), otherwise (that is, if w = uw0 for some w0) then set s(uw0) := s(vw0).This onstrution de�nes an injetive funtion g from the nodes of s to the nodes of rsuh that, for every node w of s, we have s(w) = r(g(w)). Notie that this funtion isnot surjetive, sine there is no w suh that g(w) = u. Thus, s has less nodes than r.Additionally, s is in runs1(q). Furthermore, every transition in s is also a transitionin r and for every w 2 leaf(s); g(w) 2 leaf(r). This implies that wtf (r) �S wtf (s). Ifs is still not in runs�m1 , then we an repeat the same proess to produe a smaller runs0 with a smaller f -weight, until we �nd one that is in runs�m1 .We proeed now to show that if we have an m-�nalising WBA, then the lfp isfound after at most m appliations of the operator Of to the least element e0. Due toTheorem 5.17, this in partiular shows that one needs polynomial time, measured onthe number of states of A to ompute this lfp.Theorem 5.18. If A is m-�nalising, then Omf (e0) is the lfp of Of .Proof. Let �0 be the lfp of Of . We know that �0 is the supremum of fOnf (e0) j n � 0g;thus, it is suÆient to show that Omf (e0)(q) � �0(q) for all q 2 Q. By Theorem 5.15,we know that �0(q) =Lr2runs1(q) wtf (r). Sine A ism-�nalising, we an replae every

5.2. COMPUTING THE BEHAVIOUR OF WEIGHTED AUTOMATA 89r 2 runs1(q) by the orresponding sr 2 runs�m1 (q), obtaining a greater element in thelattie. Thus, �0(q) �S Mr2runs1(q)wtf (sr)�S Ms2runs�m1 (q)wtf (s) = Omf (e0)(q);whih proves our laim.The last two theorems tell us that, in order to ompute the lfp of an operatorOf , it suÆes to apply this operator jQ n F j + 2 times. Sine eah of the iterationsteps also requires only polynomial time, measured as a funtion of the number ofstates Q, we know that the omputation of the lfp needs overall polynomial time inthe number of states. This bound is independent of the lattie used. As mentionedbefore, this bound greatly improves the trivial one obtained from the �niteness of SQthat is exponential in the number of states of the automaton and also depends on thesize of the lattie S.We fous now on the outer iteration of the algorithm. For this we will de�ne anoperator Q that will allow us to ompute the behaviour of A. This operator worksin a similar fashion as the iterative omputation of all bad states. Reall that in saidonstrution, the set of bad states was updated to inlude all the states that weredeteted not to be adequate. In our general ase, we have used the operator O as ananalogous of the omputation of adequate states. At eah step of the outer iterationfor omputing the funtion bad, we ompute a funtion adqi that orresponds to theleast �xpoint of the operator from Equation 5.1. This funtion adqi was then used toupdate the knowledge of the bad states. Following the same approah, we de�ne theoperator Q as follows: for all � 2 SQQ(�) := lfp(O�);where lfp represents the least �xpoint.We show �rst that the operator Q is also monotone and, due to the �niteness ofSQ, its greatest �xpoint an be omputed by a repeated appliation of the operatorto the greatest element of the lattie SQ.Lemma 5.19. The operator Q is monotone.Proof. Let �; �0 2 SQ suh that � �SQ �0. Notie �rst that, for every run r 2 runs1,this implies that wt�(r) �S wt�0(r). From this we obtain, for every q 2 Q,Q(�)(q) = lfp(O�)(q)= Mr2runs1(q)wt�(r) (5.8)�S Mr2runs1(q)wt�0(r)= lfp(O�0)(q) (5.9)= Q(�0(q);

90 CHAPTER 5. AUTOMATA-BASED PINPOINTINGwhere Identities (5.8) and (5.9) follow from Theorem 5.15 and the inequality is aonsequene of the remark at the beginning of this proof.Again, �niteness of SQ implies that the operator Q is atually ontinuous, andthus Tarski's �xpoint theorem says that Q has Nn�0Qn(e1) as its greatest �xpoint(gfp). It remains to show how this gfp an be used to ompute the behaviour of a givenWBA. Let suA(q) denote the set of all suessful runs of A whose root is labelledwith q. Consider the funtion �k 2 SQ where �k(q) :=Lr2suA(q) wt(r). Given thisfuntion, we an obtain the behaviour of the WBA A as follows:Lemma 5.20. kAk =Lq2Q in(q)
 �k(q).As it turns out, the funtion �k is in fat the greatest �xpoint of Q. In orderto prove this laim, we will introdue some additional notation. We will use theexpression runsn, for n � 1, to denote the set of all �nite runs suh that every pathfrom the root to a leaf has exatly n non-root nodes labeled with a �nal state, the lastof whih is the leaf.Given a run r 2 runsn, its preamble is the unique �nite run s 2 runs1 suh that,for every node u, if s(u) is de�ned, then s(u) = r(u). We will denote the preambleof r by pre(r). Notie that if r 2 runsn, for n � 1, then its preamble always exists,and an be onstruted as follows: �rst set pre(r)(") = r(") and pre(r)(i) = r(i) forall i; 1 � i � k. Then, for every node u for whih pre(r)(u) is de�ned, if r(u) 2 F ,then u is a leaf of pre(r); otherwise, set pre(r)(ui) = r(ui) for all i; 1 � i � k. Thisonstrution �nishes sine, in every path, we must �nd at least one �nal state, whihwill beome a leaf in pre(r); thus, it is also the ase that pre(r) 2 runs1.For a (�nite) run r and a node u in r, we will denote the subrun of r starting atu as rju. More formally, rju is the run suh that, for every v 2 K�, if r(uv) is de�ned,then rju(v) = r(uv).The following lemma relates the number of times n that the operator Q has beenapplied to the greatest element e1 of SQ to the weights of the runs in runsn.Lemma 5.21. For all n > 0 and q 2 Q it holds thatQn(e1)(q) = Mr2runsn(q)wt(r):Proof. We prove this fat also by indution on n. For n = 1 the result is a diretonsequene of Theorem 5.15. Assume now that it holds for n. From Theorem 5.15we know that Qn+1(e1)(q) = lfp(OQn(e1))(q) = Mr2runs1(q)wtQn(e1)(r):Using �rst the de�nition of f -weights and then the indution hypothesis, we obtainQn+1(e1)(q) = Mr2runs1(q)wt(r)
 Op2leaf(r)Qn(e1)(p)= Mr2runs1(q)wt(r)
 Op2leaf(r) Ms2runsn(p)wt(s):

5.2. COMPUTING THE BEHAVIOUR OF WEIGHTED AUTOMATA 91From this equation it then follows thatQn+1(e1)(q) = Mr2runs1(q)wt(r)
 Ou2lnode(r) Ms2runsn(r(u))wt(s) (5.10)= Mr2runs1(q)wt(r)
 Mft2runsn+1(q)jpre(t)=rg Ou2lnode(r)wt(tju) (5.11)= Mr2runs1(q) Mft2runsn+1(q)jpre(t)=rgwt(r)
 Ou2lnode(r)wt(tju) (5.12)= Mr2runs1(q) Mft2runsn+1(q)jpre(t)=rgwt(t) (5.13)= Ms2runsn+1(q)wt(s): (5.14)Identity (5.10) hanges the indies to run over the set of leaf nodes, rather than by thestates that label them; the idempoteny of the operators � and
 implies that thishange does not alter the result. For Identity (5.11) we use the distributivity of thelattie. The de�nition of distributivity says that, in order to exhange the operators� and
, the now external addition needs to range over all funtions mapping nodesu 2 lnode(r) to runs s 2 runsn(r(u)). We notie that eah funtion of this kind,together with the run r 2 runs1(q), de�nes exatly one �nite run t 2 runsn+1(q). Wethus use this t to represent the funtion. Identity (5.12) is an easy onsequene ofdistributivity. For Identity (5.13), we then use the fat that a run in runsn+1 anbe seen as its preamble (in runs1) onatenated at eah of its leafs with a run inrunsn. Finally, for Identity (5.14) we notie that the set of all runs in runsn+1 an bepartitioned by means of their preambles, whih means that both sides of the identityrange over the same runs.As it was the ase for the auxiliary operator O in the internal iteration, we anbound the number of times that Q needs to be applied before reahing the greatest�xpoint by the number of states of the automaton. We introdue for this the notionof m-ompleteness of automata.De�nition 5.22 (m-omplete). A WBA A is m-omplete if, for every partial runr 2 runsm(q), there is a suessful run sr 2 su(q) suh that wt(r) �S wt(sr).Using the fat that
 is idempotent, it is easy to see that every WBA ism-ompletefor any m greater than the number of �nal states jF j. The proof is similar to the onegiven in [BHP08℄ for the fat that a looping automaton has a run i� it has a partialrun of depth greater than jQj. However we now need also to take into aount whihstates are �nal, and whih are not.Theorem 5.23. Let A be a WBA with less than m �nal states; then A is m-omplete.Proof. Suppose that we have a partial run r : t ! Q in runsm(q). We will use this rto onstrut a funtion � : K� ! t indutively. With this funtion, we then onstruta suessful run sr by setting sr(u) := r(�(u)). The intuitive meaning of �(v) = w is

92 CHAPTER 5. AUTOMATA-BASED PINPOINTINGthat in the run sr, the node v will have the same label as the node w in r. We de�neit as follows:� �(") := ",� for a node v �i, if there is a predeessor w of �(v)�i suh that (i) r(�(v)�i) = r(w),and (ii) r(w) 2 F , then set �(v � i) := w; otherwise, set �(v � i) := �(v) � i.Notie that for every v 2 K�, we have that �(v) is not a leaf node of t. In fat,whenever we �nd a �nal state twie in the same path, the mapping � leads always tothe earliest one. Thus, reahing a leaf would mean that we have a path reahing m�nal states, where none of them repeats, ontraditing the fat that the automatonhas less than m �nal states in total. Hene, the funtion � is well de�ned.We now show that it is possible to onstrut a suessful run sr from r by de�ningsr(v) = r(�(v)) for all v 2 K�, and that wt(r) �S wt(sr). Our de�nition of � ensuresthat, for every v 2 K� and i 2 K it holds that sr(v � i) = r(�(v) � i). Thus, for everyv 2 K�, we have that (sr(v); sr(v1); : : : ; sr(vk)) = (r(�(v)); r(�(v) � 1); : : : ; r(�(v) �k)),and hene,wt(sr(v); sr(v1); : : : ; sr(vk)) = wt(r(�(v)); r(�(v) � 1); : : : ; r(�(v) � k)):This implies that every fator in the produt wt(sr) is also a fator in the produtwt(r). Sine the produt omputes the in�mum, it holds that wt(r) �S wt(sr).It remains only to show that sr is suessful. Suppose on the ontrary that sr isnot suessful. Then, there must exist a path p and a node v 2 p suh that all itssuessors in p are labeled with non-�nal states. In other words, for every w 2 K�, ifv�w 2 p, then sr(v�w) =2 F . This implies, by our de�nition of �, that �(v�w) = �(v)�w,for all v � w 2 p. Thus, r has an in�nite path, whih ontradits the assumption thatr 2 runsm.The following theorem states that it is possible to ompute the mapping �k for anm-omplete automaton by applying the Q operator to the greatest element e1 of SQat most m times.Theorem 5.24. If A is an m-omplete WBA, then Qm(e1) = �k.Proof. Notie �rst that by Lemma 5.21, we know that Qm(e1)(q) =Lr2runsm(q) wt(r).Sine A is m-omplete, we an replae eah of these partial runs by a suessful run,and thus, Qm(e1)(q) �S Mr2runsm(q)wt(sr)�S Ms2su(q)wt(s) = �k(q):To prove the inequality in the other diretion, notie that given a suessful run r, wean trunate it at every path when m �nal states have been found. The result of thisis a �nite run sine otherwise, as the tree is �nitely branhing, K�onig's Lemma would

5.2. COMPUTING THE BEHAVIOUR OF WEIGHTED AUTOMATA 93imply the existene of an in�nite path in this tree. Sine branhes are trunated onewe have found m �nal states, an in�nite path would be one on whih less than m�nal states our, ontraditing the fat that r is a suessful run. Thus, the partialrun rm onstruted this way belongs to runsm. Notie that, for every node u of rm, itholds that rm(u) = r(u). Hene, we have that wt(r) �S wt(rm). This yields�k(q) = Mr2su(q)wt(r) �S Mr2su(q)wt(rm)�S Ms2runsm(q)wt(s) = Qm(e1)(q):Both inequalities together yield the desired result.In partiular, this theorem shows that the mapping �k is indeed the gfp of Q.Corollary 5.25. The mapping �k is the greatest �xpoint of Q.Proof. Sine SQ is �nite, the gfp of Q is reahed after �nitely many iterations; morepreisely, if n0 > jSjjQj, then this gfp is Nn�0Qn(e1) = Qn0(e1). Obviously, we anhoose n0 suh that n0 > jF j. Theorem 5.23 then says that the automaton is n0-omplete. Thus, by Theorem 5.24, it follows that Qn0(e1) = �k.Overall, we have thus shown how to ompute the behaviour of a WBA. ByLemma 5.20, kAk = Lq2Q in(q)
 �k(q). The above orollary says that �k is thegreatest �xpoint of Q, and this �xpoint an be omputed in mo := jF j + 1 iterationsteps sine mo is larger than the number of �nal states of the input WBA (Theo-rems 5.23 and 5.24). Eah step of this outer iteration onsists of omputing the least�xpoint of the operator O�, where � is the result of the previous step. This �xpointan be omputed in mi = jQ n F j+ 2 iteration steps sine mi is larger than the num-ber of non-�nal states of the input WBA (Theorems 5.17 and 5.18). Suh an inneriteration step requires a polynomial number of lattie operations (in the ardinalityjQj of Q).Thus, to analyze the omplexity of our algorithm for omputing the behaviourof a WBA, we need to know the omplexity of applying the lattie operations. If weassume that this omplexity is onstant (i.e., the lattie S is assumed to be �xed), thenwe end up with an overall polynomial time omplexity. However, this is not alwaysa reasonable assumption. In fat, we were able to restrit our attention to �nitedistributive latties by taking, for a given WBA, the distributive lattie generated bythe weights ourring in it (where these weights may ome from an underlying in�nitedistributive lattie). Thus, the atual �nite distributive lattie used may depend onthe automaton. Let us assume that the lattie operations an be performed usingtime polynomial in the size of any generating set. Sine the size of this generatingset is itself polynomial in the number of states of the input WBA A, this assumptionimplies that the lattie operations an be performed in time polynomial in the size ofthe automaton. Thus, under this assumption, we have an overall polynomial bound(measured in the number of states) for the omputation of the behaviour of a WBA.

94 CHAPTER 5. AUTOMATA-BASED PINPOINTINGIn the ase of pinpointing, we use the T -Boolean semiring B T , whih is the freedistributive lattie generated by the set lab(T). The lattie operations are onjun-tion and disjuntion of monotone Boolean formulae. Reall that, stritly speaking,the lattie elements are monotone Boolean formulae modulo equivalene, i.e., equiva-lene lasses of monotone Boolean formulae. However, sine equivalene of monotoneBoolean formulae is known to be an NP-omplete problem [GJ79℄, we do not try toompute unique representatives of the equivalene lasses. We an instead leave theformulae as they are. Nevertheless, if we are not areful, then the omputed pinpoint-ing formula may still be exponential in the size of the automaton, though we applyonly a polynomial number of onjuntion and disjuntion operations. The reason isthat we may have to reate opies of subformulae. However, this problem an easily beavoided by employing struture sharing, i.e., using direted ayli graphs (DAGs) asdata struture for monotone Boolean formulae. This way, we an ompute in polyno-mial time (a DAG representation of) the pinpointing formula whose size is polynomialin the size of the automaton.18We have now shown that it is possible to ompute the behaviour of a WBA inpolynomial time measured on the number of states that it has. We have presentedtwo examples of axiomati automata: a looping automaton for deiding unsatis�a-bility w.r.t. SI-TBoxes, and a generalised B�uhi automaton for deiding axiomatisatis�ability w.r.t. sets of LTL formulae. The pinpointing automata indued by themare thus a WLA and a WGBA, respetively. We will show now that the iterativealgorithm for omputing the behaviour of WBAs an be used also for omputing be-haviours of these other two kinds of automata. On one hand, we will see that a WLAis in fat a speial ase of a WBA, and hene the algorithm works diretly. For thisspeial ase, though, the method an atually be ollapsed to a simpler algorithmwhere the inner iteration (that is, the omputation of the least �xpoint of the opera-tor O) is performed in a trivial step. On the other hand, we will show that for everyWGBA we an e�etively onstrut, in polynomial time, a WBA that has the samebehaviour, whih allows us to reuse the algorithm so far desribed also in this ase.5.2.2 The Behaviour of WLAReall that a WLA is a WGBA that has no set of �nal states. For a run to besuessful in a WGBA, we require that every path in this run has in�nitely manynodes labeled with elements of Fi, for eah set of �nal states Fi. In the speial aseof WLA, this ondition is trivially satis�ed. Thus, every run of a weighted loopingautomaton is suessful. Alternatively, we an see eah WLA (Q; in;wt) as the WBA(Q; in;wt; Q). Foring every state to be a �nal state ensures that every run of thisautomaton is also suessful, just as when there were no sets of �nal states. Thus, thesame proess for omputing the behaviour of WBAs an be applied to WLAs. FromTheorem 5.17 we then have that the operators Of need to be applied at most twiebefore reahing its least �xpoint. In fat, in the partiular ase of WLAs, this bound18Note that the size of the automata we have onstruted for SI and LTL is already exponential inthe size of the input. Thus, the pinpointing formula may still be exponential in the size of the input,and omputing it may take exponential time in the same measure.

5.2. COMPUTING THE BEHAVIOUR OF WEIGHTED AUTOMATA 95an be further improved to the point where the proedure needs only one iteration,due to a trivialisation of the operator Of , as we will now show.Notie �rst that the operator Of depends on the set of �nal states; more preisely,the funtion stepf used in the de�nition of Of , is divided in two ases, depending onwhether the input state is �nal or not:stepf (�)(q) = (f(q) if q 2 F�(q) otherwise.If all the states are �nal, then no ase analysis is neessary in stepf , and henestepf (�)(q) = f(q) for all � 2 SQ and all q 2 Q. This ollapses the operator Ofto Of (�)(q) = M(q;q1;:::;qk)2Qk+1 wt(q; q1; : : : ; qk)
 kOj=1 f(qj):Notie that in this ase Of does not depend on the input �, and hene its only�xpoint is reahed after exatly one iteration. This allows us to aordingly simplifythe operator Q in the following way:Q(�)(q) = lfp(O�)(q)= O�(e0)(q)= M(q;q1;:::;qk)2Qk+1 wt(q; q1; : : : ; qk)
 kOj=1 �(qj):The behaviour of a WLA is then the gfp of this operator Q, whih an be omputed bya single iteration without any spei� all to Of . The inner iteration of the proedurefor WBAs is replaed in this speial ase by a diret appliation of the simpli�edde�nition of Q.Let us apply this insight to the pinpointing automaton for SI of De�nition 5.4.This automaton has exponentially many states in the size n of the input (C;T). Thus,we need exponentially many appliations of the operator Q. It is also easy to see thatthe time required by eah appliation of Q is exponential in n.Corollary 5.26. Let C be an ALC onept desription and T an SI-TBox. The pin-pointing formula for (C;T) w.r.t. unsatis�ability an be omputed in time exponentialin the size of (C;T).Sine even deiding satis�ability of ALC onept desriptions w.r.t. general SI-TBoxes is known to be ExpTime-hard [Sh94℄, this bound is optimal.We look now to the more general ase of omputing the behaviour of WGBAs.5.2.3 The Behaviour of WGBAWe have shown how to ompute the behaviour of a WBA in time polynomial inthe number of states. We will now give a polynomial redution in whih, for every

96 CHAPTER 5. AUTOMATA-BASED PINPOINTINGWGBA, we onstrut a WBA that has the exat same behaviour, reduing in thisway the problem of omputing the behaviour of WGBAs to the speial ase of WBAsthat we have already solved. For this redution we one again generalise an idea thathas previously been presented for unweighted automata. Intuitively, the redutiononsists in reating several opies of the set of states, using one opy to test the B�uhiondition for a spei� set of �nal states. When a �nal state of the urrent set hasbeen found, we move to the next opy. Between two times that we return to test the�rst opy, we an be sure that �nal states from all sets F1; : : : ; Fn have been found.Thus, it is possible to ensure that the generalised B�uhi ondition is satis�ed. For theunweighted ase, this same idea was used to redue the emptiness problem for GBAsto the one for BAs [VW86℄. We formalise now this intuition.Let A = (Q; in;wt; F0; : : : ; Fn�1), with n > 0, be a WGBA. We de�ne the WBABA as the tuple BA = (Q0; in0;wt0; F 0), where� Q0 = f(q; i) j q 2 Q; 0 � i � n� 1g,� in0(q; i) = (in(q) if i = 0,0 otherwise� wt0((q0; i); (q1; j); : : : ; (qk; j)) = 8><>:wt(q0; q1; : : : ; qk) if q0 2 Fi; j = i+ 1 mod n,wt(q0; q1; : : : ; qk) if q0 =2 Fi, i = j0 otherwise� F 0 = f(q; n� 1) j q 2 Fn�1g.Notie that the automaton BA has n � jQj states, where n is the number of sets of�nal states in A. Sine there an potentially be 2jQj sets of �nal states, this redutionis not polynomial when measured only in the number of states in A, but it is stillpolynomial in the total size of the original automaton A.De�nition 5.27 (Support). Let A be a WGBA. The support of A, denoted assupp(A), is the set of all runs r suh that in(r("))
 wt(r) 6= 0.The behaviour of a weighted automaton is, by de�nition, the supremum (that is,the addition) of the weights of all suessful runs multiplied by the initial distributionof their root labels. Obviously, if a run r is suh that in(r("))
 wt(r) = 0, i.e., ifr =2 supp(A), then it will not have any inuene in the omputed behaviour, and anhene be ignored. Our proof of behaviour-equivalene of A and BA will show thatthere is a bijetion between their supports that is weight preserving.Theorem 5.28. If A is a WGBA with at least one set of �nal states and BA isonstruted as above, then kAk = kBAk.Proof. We will introdue a bijetive funtion f : supp(A) ! supp(BA) suh that, forevery run r 2 supp(A), it holds that (i) wt(r) = wt0(f(r)) and (ii) r is suessful (w.r.t.A) i� f(r) is suessful (w.r.t. BA).Let r be a run in supp(A). We de�ne the run f(r) of BA reursively as follows:

5.2. COMPUTING THE BEHAVIOUR OF WEIGHTED AUTOMATA 97� f(r)(") = (r("); 0);� let u 2 K� and f(r)(u) = (q; i). Then, for all 1 � j � k,f(r)(uj) = ((r(uj); i) if q =2 Fi;(r(uj); i + 1 mod n) if q 2 Fi:Let u 2 K�, and f(r)(u) = (q; i). Then r(u) = q. Furthermore, for all 1 � j � k, itholds that f(r)(uj) = (r(uj); i+1 mod n) if q 2 Fi and f(r)(uj) = (r(uj); i) otherwise.Together with the de�nition of wt0, this implieswt0(f(r)(u); f(r)(u1); : : : ; f(r)(uk)) = wt(r(u); r(u1); : : : ; r(uk)):And thus, we have that wt(r) = wt0(f(r)). Sine we also have in0(f(r)(")) = in(r(")),the fat that in(r("))
 wt(r) 6= 0 also implies that in0(f(r)("))
 wt0(f(r)) 6= 0. Thismeans that f is indeed a funtion from supp(A) to supp(BA).It is easy to see that f is injetive. We show now that it is also surjetive. Considera run s 2 supp(BA). We need to show that there exists a run r 2 supp(A) suhthat s = f(r). We onstrut the run r 2 supp(A) as follows: for every u 2 K�, ifs(u) = (q; i), then r(u) = q. We show now that s = f(r). First, sine s 2 supp(BA),it holds that in0(s("))
 wt0(s) 6= 0. This in partiular means that in0(s(")) 6= 0, andthus, s(") = (q; 0) for some q 2 Q. Consider now a u 2 K� and let s(u) = (q; i).Hene, also r(u) = q. Sine wt0(s(u); s(u1); : : : ; s(uk)) 6= 0, it must be the ase thatfor all j; 1 � j � k it holds that, if q =2 Fi, then s(uj) = (qj ; i), and if q 2 Fi, thens(uj) = (qj ; i+1 mod n), for some qj 2 Q. But then, s satis�es the de�nition of f(r),whih shows that f is surjetive.It remains only to show that r is suessful (w.r.t. the WGBA A) i� f(r) issuessful (w.r.t. the WBA BA). Suppose �rst that f(r) is suessful. Then for everypath there are in�nitely many nodes labeled with elements of the only set of �nal statesF 0 = f(q; n� 1) j q 2 Fn�1g. But notie that, aording to the way f was de�ned, iff(r)(u) 2 F 0, then f(r)(uj) is of the form (qj ; 0) for all 1 � j � k. All the followingnodes in the path will have labels of the form (; 0) until a state from F0 is found; atwhih point, the labels will be hanged to the form (; 1), and so on. Thus, for eahu suh that f(r)(u) 2 F 0 there exist v0; v1; : : : ; vn�1 suh that for every i; 0 � i < n,there is a qi 2 Fi with f(r)(u � v0 � � � vi) = (qi; i), and hene r(u � v0 � � � vi) = qi 2 Fi.This implies that r is suessful.Conversely, assume that f(r) is not suessful. Then, there is a path u1; u2; : : :and a l � 0 suh that for all l0 � l it holds that f(r)(ul0) =2 F 0. Sine the seondomponent an only inrease (modulo n) from a node in a path to the other, theremust be a 1 � i0 � n suh that f(r)(ul0) is of the form (ql0 ; i0) for all l0 � l. But thismeans that for all l0 � l, r(ul0) =2 Fi0 . Thus, r is also not a suessful run.From this bijetion between the runs in the supports, the equivalene in the be-

98 CHAPTER 5. AUTOMATA-BASED PINPOINTINGhaviours an be dedued as follows.kAk = Mr suessful run of A in(r("))
 wt(r)= Mr suessful run of A in(r("))
 wt(f(r))= Mf(r) suessful run of BA in(f(r)("))
 wt(f(r))= Mr suessful run of BA in0(r("))
 wt0(r) = kBAk;whih onludes our proof.Given a WGBA with m states and n sets of �nal states, this redution yields aWBA with n � m states. As desribed before, omputing the behaviour of a WBArequires time polynomial in the size of its state set; in this ase, polynomial in n �m.Thus, our method omputes the behaviour of a WGBA in time polynomial in theoverall number of states and sets of �nal states that it ontains.Let us apply this approah for omputing the behaviour of a WGBA to the pin-pointing automaton for LTL from De�nition 5.6. This automaton has exponentiallymany states in the size n of the input (�;R) and linearly many set of �nal states in n.Thus, the WBA onstruted from the WGBA is of size exponential in n. Overall, thetwo nested iterations perform exponentially many steps, whih leads to an algorithmwith a total running time that is exponential in the size of the input.Corollary 5.29. Let � be an LTL formula and R a set of LTL formulae. A pinpoint-ing formula for (�;R) w.r.t. a-unsatis�ability an be omputed in time exponential inthe size of (�;R).5.3 An Alternative Computation of the BehaviourIndependently from the development of the present dissertation, a di�erent algorithmfor omputing the behaviour of WBAs over distributive latties was developed byDroste et al. [DKR08℄. We will �rst sketh this alternative approah and then ompareit to ours, with speial attention to the appliation in the pinpointing senario.19 Inthe following, we will all our method the iterative method and the one from [DKR08℄the prime method.The prime method is based on the following property of distributive latties. Let(S;�S) be a distributive lattie. An element p 2 S is alled meet prime if, for everys1; s2 2 S, s1
 s2 �S p implies that either s1 �S p or s2 �S p. It is known that19We present only a speial ase of the algorithm in [DKR08℄, where we allow only unlabeled treesas inputs. Furthermore, we have exhanged the use of join prime elements in [DKR08℄ with the useof their meet prime ounterparts. This is justi�ed by duality of distributive latties, allows for aneasier understanding of how this method works in the pinpointing appliation, and makes it easier toompare it with our approah in this setting.

5.3. AN ALTERNATIVE COMPUTATION OF THE BEHAVIOUR 99any element s of S equals the in�mum of all the meet prime elements greater than orequal to s [Gr�a98℄. If one ould deide, for a given meet prime element p, whether p isgreater than or equal to the behaviour of a weighted automaton, then this behaviourould be readily found from the outputs of suh deisions by omputing the in�mumof all those meet prime elements for whih this deision is answered positively.In the prime method, this deision problem is solved in the following way. LetA = (Q; in;wt; F) be the WBA over the distributive lattie (S;�S) for whih we wantto ompute the behaviour, and let prime(S) denote the set of all meet prime elementsof S. For every meet prime element p 2 prime(S), onstrut the (unweighted) B�uhiautomaton Ap = (Q;�; I; F) where:� � := f(q; q1; : : : ; qk) 2 Qk+1 j wt(q; q1; : : : ; qk) 6�S pg;� I := fq 2 Q j in(q) 6�S pg.It is easy to see that Ap aepts a non-empty language, i.e., there exists a suessfulrun of Ap that starts with an initial state, i� there is a suessful run r of A suhthat in(r("))
wt(r) 6�S p. Equivalently, the language aepted by Ap is empty i�, forevery suessful run r of A, it holds that in(r("))
 wt(r) �S p. But this means thatkAk �S p. Thus, if we denote by L(Ap) the language aepted by the automaton Ap,we have kAk = Ofp2prime(S)jL(Ap)=;g p:In the pinpointing appliation, we use the lattie B T , where the meet prime ele-ments are exatly all onjuntions of propositional variables in lab(T).20 There is thena one-to-one orrespondene between the meet prime elements of B T and all subsetsof axioms appearing in the axiomati input for whih the pinpointing formula is beingomputed. Take an arbitrary meet prime element p and assume that it orresponds tothe set of axioms T 0 � T , i.e., p = Vt2T 0 lab(t). The automaton Ap has a transition(q; q1; : : : ; qk) i��vio(q; q1; : : : ; qk) = wt(q; q1; : : : ; qk) 6�BT p = ^t2T 0 lab(t):Sine �vio(q; q1; : : : ; qk) = Wft2T j(q;q1;:::;qk)=2�res(t)g lab(t), this means that for everyt 2 T 0, (q; q1; : : : ; qk) 2 �res(t). But this holds i� (q; q1; : : : ; qk) is a transition of AjT 0(see De�nition 5.1). Analogously, it is easy to see that a state q is an initial state ofAp i� it is an initial state of AjT 0 . Thus, the automaton Ap is idential to the T 0-restrited subautomaton AjT 0 . Consequently, testing the automaton Ap for emptinessis the same as testing AjT 0 for emptiness. This shows that the prime method atuallyorresponds to the na��ve blak-box approah of testing the -property for all possiblesubsets of axioms. Unoptimized, this proess will thus always need an exponentialnumber of tests for omputing the pinpointing formula. However, this proess allows20Reall that the lattie BT uses disjuntion as its in�mum operator, and onjuntion as the supre-mum. Thus, onjuntions of variables are the only elements of the lattie that annot be written asthe in�mum (disjuntion) of other elements.

100 CHAPTER 5. AUTOMATA-BASED PINPOINTING
q0 q1 : : : qn�1Figure 5.1: The looping automaton An from Example 5.30.the use of all the optimizations appliable to blak-box pinpointing algorithms, whihare independent of the proedure used to deide the underlying property. Notie,nonetheless, that �nding all prime elements that are greater than or equal to thebehaviour is equivalent to �nding all sets of axioms that ontain at least one MinA.As a onsequene of this, there are ases where an exponential number of emptinesstests is neessary, even when using blak-box optimizations (see Chapter 6).In the examples we have presented in this work (i.e., pinpointing unsatis�ability inSI and LTL), both the iterative and the prime method have an exponential runningtime. For the iterative method, we have a bound that is polynomial in the number ofstates of the onstruted automata, but this number is itself exponential in the sizeof the input. The prime method performs exponentially many emptiness tests, eahof whih requires exponential time (sine it is performed on an exponentially largeautomaton). Although both approahes result in an exponential-time algorithm inthese ases, the bound on the iterative method has the advantage of not depending onthe number of meet prime elements of the lattie, as opposed to the prime method.In the ase of pinpointing, the lattie has always 2n meet prime elements, where n isthe number of input axioms. If the axiomati automaton deiding the property has anumber of states polynomial in the size of the input, then this exponential number oftests will yield a suboptimal proedure, as demonstrated by the following examples.Example 5.30. Consider an input I and a set of axioms T = ft0; : : : ; tn�1g, andassume that the -property is de�ned as follows: P1 := f(I;T 0) j T 0 � T ; jT 0j > 0g.Let eah axiom ti be labelled with the propositional variable pi. Then a pinpointingformula for P1 is given by W0�i<n pi.We an onstrut an axiomati automaton (An;�res; Ires) for the axiomatisedinput (I;T) as follows:� An is the looping automaton for arity 1 An := (fq0; : : : ; qn�1g;�; fq0g) depitedin Figure 5.1, where� � = f(qi; q(i+1) mod n) j 0 � i < ng;� for every 0 � j � n� 1;�res(tj) = � n f(qj ; q(j+1) mod n)g;� for every t 2 T ; Ires(t) = fq0g.It is easy to see that this axiomati automaton is orret for the property P1. Sine Anhas n states and n transitions, the iterative method needs polynomial time to omputethe behaviour of the pinpointing automaton indued by (An;�res; Ires), measured inthe number of axioms n. On the other hand, the unoptimized prime method requires2n emptiness tests.

5.3. AN ALTERNATIVE COMPUTATION OF THE BEHAVIOUR 101We will take advantage of this example to illustrate how the iterative methodomputes the behaviour of an automaton (whih in this ase orresponds to the pin-pointing formula). The axiomati automaton (An;�res; Ires) indues the pinpointingautomaton (A;�res; Ires)pin = (fq0; : : : ; qn�1g; in;wt), where� in(q0) = ? and in(qi) = > for all 0 < i < n; and� wt(qi; qj) equals pi if j = (i+ 1) mod n, and > otherwise.As this is a weighted looping automaton, the iterative method redues to an iteratedappliation of the simpli�ed operator Q desribed in Setion 5.2.2. Notie that, forevery state qi, there is exatly one transition, namely (qi; q(i+1) mod n), having a weightdistint from >. Hene, for every funtion � : Q! B T we have:Q(�)(qi) = ^0�j<nwt(qi; qj) _ �(qj)= wt(qi; q(i+1) mod n) _ �(q(i+1) mod n) = pi _ �(q(i+1) mod n):The proess starts with the funtion e1 : Q ! B T that maps every state to ?; thatis, e1(qi) = ? for all 0 � i < n. After the �rst appliation of the operator Q, we haveQ(e1)(qi) = pi for all 0 � i < n sine pi _ ? is equivalent to pi. Analogously, after miterations we have, for all 0 � i < n, thatQm(e1)(qi) = _0�j<m p(i+j) mod n:This proess reahes a �xpoint when m = n, in whih ase every state qi is mappedto the formula W0�j<n pj . Thus, the behaviour of (A;�res; Ires)pin isk(A;�res; Ires)pink = V0�i<n in(qi) _Qn(e1)(qi)= in(q0) _Qn(e1)(q0)= Qn(e1)(q0) = W0�j<n pj ;whih is a pinpointing formula.We present a seond example in whih the original deision proedure requiresa generalised B�uhi aeptane ondition. This additional example shows that theexponential blowup in the exeution time of the prime method when ompared to theiterative method an appear also with properties for whih the looping aeptaneondition is not suÆient.Example 5.31. Let Q be an in�nite set of states and let the set of inputs I be theset of all generalised B�uhi automata using states from Q, and the set of axioms beT := Qk+1. That is, we use the transitions of the automata in I as axioms of ourproperty. We de�ne the -property P2 as the set of all tuples of the form (A;�) whereA = (Q;�; I; F1; : : : ; Fn) is a generalised B�uhi automaton in I, and � � T, suhthat (Q;� n �; I; F1; : : : ; Fn) has no suessful run r with r(") 2 I. Intuitively, theaxioms tell whih transitions are disallowed in the input automaton A. The -property

102 CHAPTER 5. AUTOMATA-BASED PINPOINTINGis satis�ed whenever we remove enough transitions (by adding them to the axiom set)to avoid any suessful run whose root is labelled with an initial state. It is easy to seethat the axiomati automaton (A;�res; Ires) where �res(t) = � n ftg and Ires(t) = Qfor all t 2 � is orret for the property P and the axiomatised input (A;�). As wehave seen, the iterative method requires time polynomial in the number of states jQjof this axiomati automaton to ompute the pinpointing formula for this property. Onthe other hand, the prime method needs 2j�j emptiness tests, eah polynomial in jQj.We thus have a potentially exponential inrease in exeution time, when ompared tothe iterative method.One advantage of the prime method is that it an easily be generalised to moreomplex automata models. For instane, it is shown in [DKR08℄ how the same ideaworks in the presene of a more omplex aeptane ondition, known as the Mullerondition. Also note that the prime method an possibly be optimized using the ideasunderlying the known optimizations of blak-box pinpointing proedures, not just inthe ase of applying it to pinpointing, but also in a more general setting.In this hapter we have introdued a general method for omputing the pinpoint-ing formula of any -property that an be deided with an axiomati automaton usinga B�uhi aeptane ondition. We do this through the onstrution of the pinpointingautomaton indued by the original axiomati automaton. The pinpointing automatonis a weighted automaton whose behaviour is a pinpointing formula. In order to e�e-tively ompute the formula, we developed an algorithm that omputes the behaviourof weighted automata over �nite distributive latties. This method generalises theideas employed for the well-known iterative emptiness test on unweighted automata.We also desribed how this iterative method an be used, along with an adequatedata struture, to onstrut the pinpointing formula in time polynomial in the sizeof the automaton. Sine just deiding the emptiness of automata in general requirespolynomial time in the same measure, the iterative algorithm turns out to be optimalfrom a omplexity point of view.We instantiated our approah by showing how it an be used to ompute a pin-pointing formula for unsatis�ability of ALC onept terms w.r.t. general SI-TBoxes,as well as for axiomati unsatis�ability of LTL formulae. In both ases, the automa-ton onstruted has size exponential in the number of axioms, and thus the algorithmrequires exponential time to ompute the pinpointing formula. This bound is opti-mal for unsatis�ability of ALC onept terms w.r.t. general SI-TBoxes, where theunderlying deision problem is already ExpTime hard [Sh94℄. On the other hand,deiding axiomati unsatis�ability of LTL formulae is in PSpae [SC85℄, and it isunlear whether the automata-based deision proedure yields an optimal time boundor not.In the next hapter we will look in detail at some omplexity results for pinpointing.Although the fous on this work has been on omputing a pinpointing formula, dueto the fat that all MinAs and MaNAs an then be dedued from it, our omplexitystudy will primarily look at the hardness of �nding these sets of axioms, rather thanthe mentioned formula.

Chapter 6Complexity ResultsSo far in this work we have foused on how to ompute a pinpointing formula for agiven property P by extending the proedure used for deiding P. For the pinpointingextension of general tableaux, we found a problem even for ensuring a �nite exeutiontime. We had to settle for a sublass of tableaux, laiming that it is impossible tofully haraterize the set of all tableaux having a terminating pinpointing extension.Even in the ases of termination, it is not lear how the labeling mehanism usedin the pinpointing extension a�ets the overall exeution time. If we restrit thedisourse to ground tableaux (see De�nition 3.5), then we know that the pinpointingextension will generate the same set of assertions as the original tableau algorithm,but may hange their labels exponentially often, in the number of axioms, as there areexponentially many monotone Boolean formulae that an label eah assertion. Thus,the pinpointing extension of ground tableaux has an exeution time exponential inthe number of axioms. This in partiular means that the pinpointing extension of thetableau for subsumption of HL onept names requires exponential time, althoughthe underlying deision proedure terminates in polynomial time in the number ofaxioms.For the ase of automata-based deision proedures, we showed that the pin-pointing formula an be omputed in time polynomial in the size of the automa-ton. Sine merely deiding the property requires time polynomial in the same mea-sure, this method is optimal with respet to its underlying deision proedure. Inother words, if the axiomati automaton A is an optimal deision proedure for theproperty P, then the pinpointing automaton indued by A omputes the pinpointingformula in optimal time. For instane, unsatis�ability of ALC onept terms w.r.t.general SI-TBoxes is an ExpTime omplete problem, and the axiomati automaton(AC;T ;�resC;T ; IresC;T) that deides this property has size exponential in the num-ber of axioms. Thus, a pinpointing formula an be omputed from its pinpointingautomaton in exponential time. But it might well be the ase that the automatonused yields a suboptimal deision proedure. For instane, the axiomati automaton(A�;R;�res�;R; Ires�;R) has also size exponential in the number of axioms, but theproperty it deides, namely axiomati unsatis�ability of LTL formulae, is known tobe in PSpae [SC85℄. Using the pinpointing automaton to ompute the pinpointingformula yields an exponential time algorithm. It is unlear whether this algorithm is103

104 CHAPTER 6. COMPLEXITY RESULTSoptimal or not.In this hapter we try to shine some light on the hardness of solving pinpointing-related problems. We divide this study into two parts. First, we show omplexityresults that are independent of the method use for solving the problems. Afterwards,we prove our laim from Chapter 3 that it is undeidable whether the pinpointingextension of a terminating general tableau is also terminating.6.1 Complexity of PinpointingWe start our study of the omplexity of pinpointing by showing a trivial upper boundobtained by the simplest blak-box algorithm. Let P be a -property and � = (I;T)an axiomatised input suh that � 2 P. Given an arbitrary proedure that deides P,we an �nd the set of all MinAs, all MaNAs and a pinpointing formula for P and �,with a very na��ve blak-box algorithm that onsists on applying the deision proedure2jT j times. One simply tests, for eah T 0 � T , whether (I;T 0) 2 P or not. Fromthe answers to these tests, the sets MINP(�) and MAXP(�) an readily be omputed,and hene also the pinpointing formula (see Page 37). This in partiular means that,if the deision proedure runs in at most exponential time, then MINP(�), MAXP(�)and the pinpointing formula an be omputed in exponential time.21 Obviously, forany -property whose deision problem is ExpTime-omplete, suh as unsatis�abilityof ALC onept terms w.r.t. general TBoxes [Sh91, BCM+03℄, this bound is tight.We will see that even for problems in lower omplexity lasses, the bound is alsotight. Along with this, we will analyse the omplexity of other problems related topinpointing.As we want to identify how muh of the omplexity is due to pinpointing, asopposed to the original deision problem, our results will be based on subsumption ofHL onept names. Sine this property is deidable in polynomial time, any inreasein omplexity that we enounter an then be attributed to pinpointing.This setion is omposed of three parts. In the �rst part we present omplexityresults related to the omputation of MinAs. Some of these results �rst appearedin [BPS07a℄, where it was also laimed, without proof, that their dual results holdalso for the omputation of MaNAs. In the seond part we present proofs to thislaim. Finally, in Setion 6.1.3, we show that there exist axiomatised inputs for whihthe pinpointing formula has superpolynomial length, when measured in the numberof axioms. This in partiular implies that suh a formula annot be written (noromputed) in polynomial time.6.1.1 MinA ComplexityIf we are only interested in �nding one, arbitrary, MinA, then we an ompute it with ablak-box algorithm that alls the deision proedure only jT j times [BPS07a, Chi97,KPSG06℄. The idea onsists in systematially trying to remove axioms while still21Notie that this also implies that if the deision proedure is at least exponential, then pinpointing-related problems are solvable without an inrement in the omplexity.

6.1. COMPLEXITY OF PINPOINTING 105belonging to the property. Suppose that we have some T 0 � T suh that (I;T 0) 2 P.We then selet an axiom t 2 T 0 that is going to be tested for removal. If the propertystill follows one t is removed, i.e., if (I;T 0 n ftg) 2 P, then t is not neessary forthe property to hold and hene an be removed. This proess is then repeated withT 0 n ftg. If, on the ontrary, (I;T 0 n ftg) =2 P, then we know that t must belongto all MinAs for T 0, and we hene ontinue the proess with the set T 0, but nevertesting t for removal again. In this way, every axiom is tested for removal exatlyone. It an be shown that the set of axioms resulting from this proedure is indeed aMinA. Thus, the omputation of one arbitrary MinA is in the same omplexity lassas merely deiding the underlying property, as long as this latter problem is at leastpolynomial. In the ase of subsumption of HL onept names, this means that oneMinA an be omputed in polynomial time in the size of the TBox.If we further assume that the axioms in the TBox are ordered, then we an �ndthe lexiographial last MinA also in polynomial time. We say that a set of axiomsS is lexiographially before another set S0 i� the �rst element at whih they disagreeis in S. If we test the axioms for removal in order, then the blak-box algorithmdesribed above yields the last lexiographial last MinA.22 Also the additive algo-rithm by Tamiz, Mardle and Jones [TMJ96℄ (see also [Chi97℄) yields as an output thelexiographial last MinA in polynomial time.Unfortunately, omputing one MinA, even the lexiographial last one, is usuallynot enough. For instane, if we are trying to understand why an axiomati inputbelongs to a -property, then it would be desirable to obtain MinAs that have asfew axioms as possible, as larger sets of axioms are more diÆult to interpret. Thefollowing theorem shows that deiding the existene of a MinA whose ardinality isbounded by a given natural number n is an NP-omplete problem (see [Sun09, BPS07a℄for a proof). Hene, it is hard to know whether a given MinA has minimal size or not.Theorem 6.1. Given an HL TBox T ; onept names A;B ourring in T , and anatural number n, it is NP-omplete to deide whether or not there is a MinA for Tw.r.t. A v B of ardinality � n.Another property of interest when trying to understand a -property P is whethera given axiom t is relevant for P; that is, whether there is a MinA that ontains t.This knowledge is helpful, for instane, when trying to ompute the set of all MinAs.In [KPHS07℄, the authors propose the use of Reiter's Hitting Set Tree algorithm [Rei87℄as an improved blak-box algorithm for produing the set of all MinAs. This idea hassine then been used and further optimised for spei� deision problems [SHCH07,BS08, SQJH08℄. Deteting axioms that are relevant would allow us to further improvethis approah using the set enumeration proedure proposed by Rymon [Rym92℄. Thefollowing theorem shows that deiding relevane of axioms is also an NP-hard problem.Theorem 6.2. Let T be a HL TBox, t 2 T , and A;B two onept names appearingin T . Deiding whether there exists a MinA S for T w.r.t. A v B suh that t 2 S isNP-omplete in the size of T .22This strategy orresponds to the na��ve algorithm presented in [BPS07a, Sun09℄

106 CHAPTER 6. COMPLEXITY RESULTSProof. The problem is learly in NP as we need only polynomial time to test whethera set of axioms S is a MinA, and whether t 2 S. The omplexity hardness an beshown by a redution of the following NP-omplete problem [FGN90, EG95a℄: giventwo sets of propositional variables H;M , a set T of de�nite Horn lauses over H [M(i.e., formulae of the form v1 ^ : : : ^ vn ! w with w; vi 2 H [M for all 1 � i � n),and a variable h 2 H, deide whether there is a minimal H 0 � H suh that h 2 H 0and H 0 [T j=M .Given an instane of this problem, we de�ne a onept name Pi for every hi 2 Hand Qi for every mi 2 M ; additionally, we use two new onept names A;B. OurTBox has an axiom of the form A v Pi for every hi 2 H, an axiom R1 u : : :uRn v Rfor every v1 ^ : : : ^ vn ! w 2 T , and additionally the axiom umi2M Qi v B. It is easyto see that, given a variable h0 2 H, there is a MinA for A v B ontaining A v P0 i�there is a minimal H 0 2 H suh that h0 2 H 0 and H 0 [T j=M .As it was already said, �nding the lexiographial last MinA for subsumption ofHL onept names requires only polynomial time. If, on the ontrary, we are interestedin �nding the lexiographial �rst MinA, then we enounter another hard problem.Theorem 6.3. Given an HL TBox T , onept names A;B ourring in T and aMinA S, it is oNP-omplete to tell whether S is the lexiographial �rst MinA for Tw.r.t. A v B.Proof. The problem is in oNP sine if S is not the lexiographial �rst, then wean prove this by presenting a MinA that appears before S within this ordering. Toprove hardness, we will make a redution from the �rst lexiographial minimal vertexover problem. Given a graph G = (V;E), a set C � V is alled a vertex over iffor every edge (u; v) 2 E either u 2 C or v 2 C. For a graph G and a minimalvertex over D, it is oNP-omplete to deide whether D is the �rst lexiographialminimal vertex over [JYP88℄. Alternatively, we an see this problem as deiding the�rst lexiographial hitting set from a olletion of sets of ardinality at most two.Suppose that V = fv1; : : : ; vng and that E = fe1; : : : ; ekg where for every i; 1 � i � k,ei is of the form ei = fv; wg. We use a onept name Pi for every element vi 2 V ,a onept name Qj for every edge in ej 2 E and the additional onept names A;B,and de�ne the TBoxT := fA v Pi j 1 � i � ng [fPi v uvi2ej Qj j 1 � i � ng [fQ1 u : : : uQk v Bg:Hene, there are 2n+ 1 axioms, whih we order in the following way: for 1 � m � n,the m-th axiom is A v Pm and the n+m-th axiom is Pm v uvi2ej Qj , with kuj=1Qk v Bas the last axiom. If D is a minimal vertex over, then the setSD = fA v Pi; Pi v uvi2ej Qj j vi 2 Dg [f kuj=1Qj v Bg

6.1. COMPLEXITY OF PINPOINTING 107is a MinA for T w.r.t. A v B. Additionally, if S is a MinA for T w.r.t. A v B, thenS satis�es the following two properties: (i) kuj=1Qj v B 2 S, and (ii) A v Pi 2 S i�Pi v uvi2ej Qj 2 S for all 1 � i � n. Thus, for every MinA S we an onstrut theset D = fvi j A v Pi 2 Sg, whih is suh that S = SD. Furthermore, the way theordering was de�ned ensures that a D is lexiographially before D0 if and only if SDis lexiographially before SD0 . This means that D is the lexiographial �rst minimalvertex over i� SD is the lexiographial �rst MinA.Sine the deision problems we have presented in this setion depend, in a greateror smaller degree, on the set of all MinAs, it ould be argued that their hardness is aonsequene of the fat that an axiomati input an have exponentially many MinAs(see [Sun09, BPS07a℄ for an example). We ould instead try to analyse the omplexityof enumerating the set of all MinAs [JYP88℄. An algorithm that enumerates all MinAsusing time polynomial in the size of both the input and the output, that is, in the sizeof the TBox and the number of MinAs, will be alled output polynomial. If we had anoutput polynomial algorithm, then its exeution time would be polynomial wheneverthe axiomati input had only polynomially many MinAs.We are interested in the enumeration omplexity of omputing the set of all MinAsfor an HL-TBox w.r.t. a given subsumption relation. Unfortunately, to the best ofour e�orts we were unable to �nd a tight bound on the omplexity of this problem.Hene, we settle here for weaker results, in whih we allow additional expressivity inthe ontology. We will show that if we either allow a set of irrefutable axioms, or if weextend the syntax of axioms to allow disjuntion in the left-hand size, then an outputpolynomial algorithm omputing all MinAs is impossible.Before proving this, we will present an auxiliary result showing that it is not pos-sible to enumerate all the minimal valuations satisfying a monotone Boolean formulawith an output polynomial algorithm. A proof of this fat an be found in the tehni-al report [EG91℄; sine this result is not inluded in the orresponding journal paper[EG95b℄, we provide our own distint proof for the sake of ompleteness.Theorem 6.4. There is no output polynomial algorithm for omputing all minimalsatisfying valuations of monotone Boolean formulae, unless P=NP.To prove this theorem, it is enough to show (see [KSS00℄) that the following dei-sion problem is NP-hard:Lemma 6.5. Given a monotone Boolean formula � and a set M of minimal valua-tions satisfying �, deiding whether there exists a minimal valuation V =2M satisfying� is NP-hard in the size of � and M.Proof. The proof is by redution of theNP-hard hypergraph 2-oloring problem [GJ79℄:given a olletion H = fE1; : : : ; Emg of subsets of a set of verties V , eah of them ofsize 3, is there a set C suh that C \Ei 6= ; and (V n C) \Ei 6= ; for i = 1; : : : ;m.2323In other words, both C and its omplement must be hitting sets for E1; : : : ; Em.

108 CHAPTER 6. COMPLEXITY RESULTSLet V = fv1; : : : ; vng and Ei = fvi1; vi2; vi3g for all i = 1; : : : ;m. We representevery vi 2 V by a propositional variable pi, and onstrut the monotone Booleanformula � := _Wmi=1 i, where = m̂i=1 pi1 _ pi2 _ pi3 and i = pi1 ^ pi2 ^ pi3and the setM := fVi := fpi1; pi2; pi3g j 1 � i � m and no strit subset of Vi satis�es g:It is easy to see that the formula � as well as the set M an be onstruted intime polynomial in the size of V and H. Moreover, every valuation Vi 2 M satis�esthe formula i, and hene also �. It is minimal sine no strit subset of Vi satis�es(i) any of the j (whih require valuations of size at least 3 to be satis�ed) nor (ii) sine otherwise the ondition in the de�nition of M would be violated. This showsthat � andM indeed form an instane of the problem onsidered in the lemma.To omplete the proof of NP-hardness of this problem, it remains to be shown thatthere is a minimal valuation V 62 M satisfying � i� there is a set C � V suh thatC \Ei 6= ; and (V n C) \Ei 6= ; for all 1 � i � m.We show �rst the if diretion. Let C be suh a set, whih we assume without lossof generality to be minimal with respet to set inlusion. We de�ne the valuationVC := fpi j vi 2 Cg and laim that it is the minimal valuation we are looking for. Forevery 1 � i � m, C\Ei 6= ; implies that there is a 1 � j � 3 suh that vij 2 C, whihmeans that pij 2 VC . This shows that VC satis�es and thus also �. In addition,sine (V n C) \Ei 6= ;, there is a 1 � k � 3 suh that vik =2 C. Thus, VC is di�erentfrom all the valuations Vi 2M, and it does not satisfy any of the formulae i.To show that VC is minimal, assume that V 0 � VC . Sine C is minimal, the setC 0 := fvi j pi 2 V 0g � C is suh that there is a 1 � i � m with C 0 \ Ei = ;. Thisimplies that V 0 does not satisfy pi1 _ pi2 _ pi3, and hene it does not satisfy . Asa subset of VC , it also does not satisfy any of the formulae i, and thus it does notsatisfy �. This shows that VC is a minimal valuation satisfying � that does not belongtoM.For the only-if diretion, assume that there is a minimal valuation V 62 M satisfying�. This valuation annot satisfy any of the formulae i. Indeed, (i) for Vi 2 M thiswould imply that V is a superset of one of the valuations in M, whih ontraditseither the minimality of V or the fat that it does not belong to M; (ii) for Vi 62 Mthere would be a smaller valuation satisfying , whih ontradits the minimality ofV. Sine V is a model of �, it must thus satisfy . De�ne the set CV := fvi j pi 2 Vg.Sine V satis�es , for every 1 � i � m there is a 1 � j � 3 suh that pij 2 V, andthus vij 2 CV \ Ei. On the other hand, sine V does not satisfy any of the formulae i, for every 1 � i � m there must also be a 1 � k � 3 suh that pik =2 V, whihmeans that Ei 6� CV and hene (V n C) \Ei 6= ;.Theorem 6.4 follows from this lemma sine an output polynomial algorithm whoseruntime is bounded by the polynomial P (j�j; jMj) (where � is the input andM the

6.1. COMPLEXITY OF PINPOINTING 109output) ould be used to deide the problem introdued in the lemma in polynomialtime as follows: given � andM, run the algorithm for time at most P (j�j; jMj) andhek whether the generated valuations are exatly those inM.Theorem 6.4 shows that an algorithm for omputing all MinAs based on omputingthe pinpointing formula and then produing its minimal satisfying valuations annotbe output polynomial. We would like to show that there is no algorithm of anykind for omputing all MinAs that is output polynomial. Unfortunately, our e�ortstowards this goal have been unfruitful. In this respet, we had to settle with a weakerresult dealing with the enumeration of all MinAs in the presene of an irrefutableTBox. Assume that the TBox is formed by the disjoint union of a stati TBox Tswhose axioms are irrefutable, and a refutable TBox Tr. We will denote this union asT = (Ts ℄ Tr). In this ontext, a MinA S for T w.r.t. A v B is a minimal subset ofTr suh that A vTs[S B. In Chapter 3 we showed that this de�nes a -property, andhene we an use the notions of MinA in it.Theorem 6.6. There is no output polynomial algorithm that omputes, for a givenHL TBox T = (Ts ℄ Tr) and onept names A;B ourring in T , all MinAs for Tw.r.t. A v B, unless P=NP.Proof. We show that the problem of omputing the minimal valuations of monotoneBoolean formulae an be redued in polynomial time to the problem of omputingthe MinAs of an HL TBox. Given a monotone Boolean formula �, we introdue oneonept name B for every subformula of of �, and one additional onept nameA. We de�ne TBoxes T for the subformulae of � by indution in a straightforwardmanner: if = p is a propositional variable, then T := fA v Bpg; if = 1 ^ 2,then T := fB 1 uB 2 v B g; if = 1 _ 2, then T := fB 1 v B ; B 2 v B g.Obviously, the size of T� is linear in the size of �. In T�, we delare the GCIsA v Bpwith p a propositional variable to be refutable, and the other GCIs to be irrefutable.With this division of T� into a stati and a refutable part, it is easy to see that thereis a one-to-one orrespondene between the minimal satisfying valuations of � andthe MinAs for T� w.r.t. A v B�. In partiular, given a MinA S, the orrespondingvaluation VS onsists of all p suh that A v Bp 2 S. Thus, if we ould ompute allMinAs with an output polynomial algorithm, we ould do the same for all minimalsatisfying valuations.This theorem shows that, in general, exponential time is neessary for omputingall the MinAs of a given axiomati input, even if there are only polynomially manyof them, when some of the axioms are allowed to be irrefutable. The reason whyirrefutable axioms are neessary is to be able to adequately model the disjuntionsfrom whih we are reduing the problem. It seems reasonable, thus, that if we allowthe language to inlude the disjuntion onstrutor (t), then there will be no need fora stati TBox. We will now show that it suÆes to allow this onstrutor only on theleft-hand side of the axioms. More formally, we de�ne the set of HLU onept termsas those that an be obtained from the set NC of onept names using the onstrutorsu and t. A disjuntive TBox is a set of axioms of the form C v D where C is an

110 CHAPTER 6. COMPLEXITY RESULTSHLU onept term and D is an HL onept term. The semantis of this logi arede�ned in the obvious way.Theorem 6.7. Let T be a disjuntive TBox and A;B two onept names appearingin T . There is no output polynomial algorithm for omputing all MinAs for T w.r.t.A v B, unless P = NP .Proof. The proof is very similar to that of Theorem 6.4 through Lemma 6.5. We willredue the hypergraph 2-oloring to the problem of deiding, given a set of MinAsM,whether there is another MinA for our property that is not an element ofM.Let V = fv1; : : : ; vng and Ei = fvi1; vi2; vi3g for i; 1 � i � m. We will simulateeah vi 2 V by a onept name Pi. If we de�ne the axiom tB astB := mui=1(pi1 t pi2 t pi3) t mti=1(pi1 u pi2 u pi3) v B;then we onstrut the disjuntive TBox T = fA v Pi j 1 � i � ng [ftBg, and the setof MinAsM := fVi := fA v Pij j 1 � j � 3g [ftBg j 1 � i � m and Vi is a MinAg:Sine the onept name B appears only in the right-hand side of the axiom tB , anyMinA for T w.r.t. A v B must ontain this axiom. Thus, using an argument analogousto the one of Lemma 6.5, we have that there is a MinA S =2 M for T w.r.t. A v Bif and only if there is a set C v V suh that C \ Ei 6= ; and (V n C) \ Ei 6= ; for alli; 1 � i � m. From this result, our laim follows, using the same argument as in theproof of Theorem 6.4.Alternatively one may be interested in knowing how many MinAs there are, ratherthan atually obtaining eah of them. For these kind of problems, where the interestis in ounting the number of solutions, we have to analyse a di�erent kind of om-plexity. In the theory of ounting omplexity, given a deision problem, one is notonly interested in whether there is a solution or not, but rather in how many solutionsexist. Clearly, the resoures neessary for ounting the number of solutions exeedthose needed for merely deiding the existene of one sine any number of solutionsgreater to zero implies an aÆrmative answer to the deision problem. In the �rst pa-pers introduing this omplexity measure, Valiant showed that there exist problemsdeidable in polynomial time for whih ounting the number of solutions is as hard asfor NP-omplete problems [Val79a, Val79b℄. Informally, the ounting omplexity lass#P ontains all those problems for whih a solution to its related deision problem anbe veri�ed in polynomial time. Thus, the ounting problem of every deision problemin NP belongs to #P.Theorem 6.8. Given a HL TBox T and two onept names A;B ourring in T ,the problem of ounting the number of MinAs for T w.r.t. A v B is #P-omplete.Proof. The problem is in #P sine its underlying deision problem, whether thereexist a MinA for T w.r.t. A v B is in NP.24 We show #P-hardness by a redution24Atually, as it has already been said, it is in P.

6.1. COMPLEXITY OF PINPOINTING 111of the #P-hard minimal vertex over ounting problem [Val79b℄: given a set V andE � V � V , ount the number of minimal vertex overs. In other words, ountingthe number of minimal hitting sets of a olletion of sets of ardinality at most two.We use the same redution presented in the proof of Theorem 6.3, and show thatit is parsimonious; i.e. that is preserves the number of solutions. As shown in saidproof, a set C � V is a minimal set having at least one element of eah e 2 E i�SC := fA v Pi; Pi v uvi2ej Qj j vi 2 Cg [f kuj=1Qj v Bg is a MinA for T w.r.t.A v B. We have thus a one-to-one orrespondene between the number of vertexovers and the number of MinAs. Hene, ounting the number of MinAs is a #P-hardproblem.Another interesting question regarding ounting is, given an axiom t, ompute thenumber of MinAs that have t as an element. Solving this problem is relevant, forexample, when orreting an unwanted onsequene: those axioms that appear moreoften as auses of the error are the most likely to be faulty, and their removal will alsoeliminate the most MinAs possible. This idea has been proposed as an heuristi fororreting an error while minimizing the hanges in the set of axioms [Sh05, SHCH07℄.Unfortunately, this ounting problem is also #P-hard.Theorem 6.9. Given an HL TBox T , an axiom t 2 T , and two onept names A;Bourring in T , the problem of ounting the number of MinAs for T w.r.t. A v Bontaining t is #P-omplete.Proof. This problem is in #P as its underlying deision problem is in NP. We show#P-hardness by giving a parsimonious redution of the problem from Theorem 6.8.Given an HL TBox T and two onept names A;B appearing in T , we de�ne the newHL TBox T 0 := T [S0, where S0 = fA v C;B u C v Dg and C and D are oneptnames not ourring in T . Clearly, a set S � T is a MinA for T w.r.t. A v B i�S [S0 is a MinA for T 0 w.r.t. A v D. Furthermore, every MinA for T 0 w.r.t. A v Dmust ontain the axioms in S0. Thus, there are exatly as many MinAs for T w.r.t.A v B as there are MinAs for T 0 w.r.t. A v D ontaining the axiom A v C, whihentails the hardness result.With this result we �nish our study of omplexity of problems related to �ndingMinAs. In the following subsetion we will show that the same omplexity boundshold for the dual problems related to MaNAs.6.1.2 MaNA ComplexityFinding minimal hitting sets has been useful, not only when trying to produe the setof all MaNAs from known MinAs and vie versa, but also to prove the hardness ofMinA related problems in the previous subsetion. Given the dual nature of MinAsand MaNAs, it is hardly surprising that the dual problem of hitting sets { that ofindependent sets { will be equally helpful for showing the hardness of MaNA relatedproblems.

112 CHAPTER 6. COMPLEXITY RESULTSAlgorithm 1 Compute one MaNA for T = ft1; : : : ; tng w.r.t. A v B.1: if A 6vT B then2: return no MaNA3: S := ;4: for 1 � i � n do5: if A 6vS[ftig B then6: S := S [ftig7: return SGiven a olletionM of sets using elements from V, a set S � V is an independentset i� for everyM 2M it holds thatM 6� S. Notie that S is a (maximal) independentset if and only if VnS is a (minimal) hitting set. Thus, all omplexity results known for(minimal) hitting sets apply also, in their dual presentation, to (maximal) independentsets, and likewise for the opposite diretion. This is, nonetheless, not suÆient forlaiming that all the results from Setion 6.1.1 hold also for MaNAs, sine the -properties onsidered hange with this polynomial redution.Although not all of the algorithms known for omputing a single MinA an bedualised, we an still ompute one MaNA { in fat, the lexiographial �rst MaNA {with only a polynomial overhead, by dualising the naive algorithm presented in [Sun09,BPS07a℄ in suh a way that adds axioms to the knowledge base, as long as the propertydoes not follow from the enlarged set. This dual version, for the ase of subsumptionw.r.t. HL-TBoxes, is shown in Algorithm 1. This algorithm requires polynomiallymany subsumption tests. Furthermore, it is easy to see that its output orrespondsto the �rst lexiographial MaNA.If the searh for a MaNA aims to avoiding an unwanted onsequene, then weare interested in �nding the largest possible MaNA, that is, one with the greatestardinality, suh that the hanges to the knowledge base remain minimal. Deidingwhether there is a MaNA of size greater than or equal to a given n is an NP-ompleteproblem, though.Theorem 6.10. Given an HL TBox T , onept names A;B appearing in T and anatural number n, it is NP-omplete to deide the existene of a MaNA for T w.r.t.A v B of ardinality � n.Proof. The problem is obviously in NP. For the hardness, we redue the NP-hardproblem of maximal independent sets: given a olletion of setsM = fS1; : : : ; Skg anda natural number n, deide whether there is an independent set forM of ardinality� n. For the redution, we use a onept name P for every element p 2 Ski=1 Siand additional onept names A;B. We onsider that eah set Si is of the formSi = fsi1; : : : ; si`ig and onstrut the TBox:T := fA v P j p 2 Ski=1 Sig[f `iuj=1Pij v B j 1 � i � kg

6.1. COMPLEXITY OF PINPOINTING 113We will show that there is an independent set forM of size � n i� there is a MaNAfor T w.r.t. A v B of size � n+ k.Assume �rst that there is suh an independent set M . The sub-TBoxT 0 = fA v P j p 2Mg [Swhere S := f `iuj=1Pij v B j 1 � i � kg (6.1)has jM j+ k axioms and is suh that A 6vT 0 B.Conversely, take a MaNA T 0. Suppose that there is a i; 1 � i � k suh that`iuj=1Pij v B =2 T 0. Sine T 0 is a MaNA, it holds that fA v Pij j 1 � j � `ig � T 0.Take now any element from Si; say pi1. Then, the new sub-TBoxT 0i = (T 0 n fA v Pi1g) [f `iuj=1Pij v Bgis suh that (i) jT 0i j = jT 0j, and (ii) A 6vT 0i B. The same proess an be applied againto this set T 0i , until we have onstruted a set of axioms T 00 suh that A 6vT 00 B andS � T 00, where S is the one of Equation (6.1). The set M = fp j A v P 2 T 00g is anindependent set forM, and jT 00j = jM j+ k.Just as we were interested in the relevane of an axiom when dealing with MinAs,one might want to know whether a given axiom neessarily appears in every MaNA, orthere is at least one that does not ontain it. We show that this problem is equivalentto that of Theorem 6.2.Theorem 6.11. Let T be a HL TBox, t 2 T and A;B onept names in T . Deidingthe existene of a MaNA S for T w.r.t. A v B suh that t =2 S is NP-omplete on thesize of T .Proof. Let S be a MaNA suh that t =2 S. Then, for S [ftg it holds that A vS[ftg B.Thus, there is a MinA S 0 for A v B w.r.t. T suh that S 0 � S [ftg. But then, itholds that t 2 S 0 sine otherwise S 0 � S, whih would ontradit the fat that S 0 is aMinA. Conversely, if S is a MinA suh that t 2 S, then the subsumption relation doesnot hold for S n ftg. Hene, there is a MaNA S 0 ontaining S n ftg. If t 2 S 0, thenS � S 0, ontraditing the de�nition of MaNA. Hene, there is a MinA ontaining t ifand only if there is a MaNA that does not ontain t.To �nish with the deision omplexity results, we show oNP-hardness for theproblem of �nding the lexiographial last MaNA. This follows easily from the hard-ness of �nding the lexiographial last maximal independent set.Theorem 6.12. Given an HL TBox T , onept names A;B appearing in T and aMaNA S, it is oNP-omplete to tell whether S is the lexiographial last MaNA forT w.r.t. A v B.

114 CHAPTER 6. COMPLEXITY RESULTSProof. The problem is in oNP sine we an verify a ounterexample in polynomialtime. For the hardness, we use the result from [JYP88℄ by whih �nding the lexio-graphial last maximal independent set is oNP-hard. We use the same redution fromthe proof of Theorem 6.10 and order the axioms as follows: �rst all the axioms of theform A v P , and then all the other axioms. It is easy to see that M is the last lexio-graphial maximal independent set forM if and only if T 0 = fA v Pj j pj 2Mg [S,with S as in Equation (6.1), is the last lexiographial MaNA for T w.r.t. A v B.We fous now on the omplexity of enumerating all MaNAs. For a �xed naturalnumber n, onsider the HL TBoxTn = fA v Pi; Pi v B j 1 � i � ng:Tn has 2n axioms, but for every set N � f1; : : : ; ng, the sub-TBoxfA v Pi j i 2 Ng [fPj v B j j =2 Ngis a MaNA for Tn w.r.t. A v B. Sine eah di�erent N de�nes a di�erent MaNA, thisaxiomati input has 2n MaNAs. This example shows that a given axiomati inputmay have exponentially many MaNAs, measured on the number of axioms. We willshow that they annot be enumerated using an output polynomial algorithm, in thepresene of an irrefutable TBox. As it was the ase for MinAs, we will show �rstan auxiliary result regarding the omputation of all maximal valuations falsifying amonotone Boolean formula.Lemma 6.13. Given a monotone Boolean formula � and a setM of maximal valua-tions falsifying �, deiding whether there exists a maximal valuation V =2M falsifying� is NP-hard in the size of � and M.Proof. For the proof, we one again use the NP-hard hypergraph 2-oloring problem.Our redution in this ase will be very similar to the one used in Lemma 6.5, takingadvantage of the duality of the problems. Let V = fv1; : : : ; vng and Ei = fvi1; vi2; vi3gfor all i = 1; : : : ;m. We represent every vi 2 V by a propositional variable pi, all Pthe set of all propositional variables representing a v 2 V . and onstrut the monotoneBoolean formula � := ^Vmi=1 i, where = m_i=1 pi1 ^ pi2 ^ pi3 and i = pi1 _ pi2 _ pi3and the setM := fVi := P n fpi1; pi2; pi3g j 1 � i � m and no strit superset of Vi falsi�es g:It is easy to see that the formula � as well as the set M an be onstruted intime polynomial in the size of V and H. Moreover, every valuation Vi 2 M falsi�esthe formula i, and hene also �. It is maximal sine no strit superset of Vi falsi�es(i) any of the j (whih require valuations of size at most n � 3 to be falsi�ed) nor

6.1. COMPLEXITY OF PINPOINTING 115(ii) sine otherwise the ondition in the de�nition of M would be violated. Thisshows that � andM indeed form an instane of the problem onsidered in the lemma.To omplete the proof of NP-hardness of this problem, it remains to be shown thatthere is a maximal valuation V 62 M falsifying � i� there is a set C � V suh thatC \Ei 6= ; and (V n C) \Ei 6= ; for all 1 � i � m.We show �rst the if diretion. Let C be suh a set, whih we assume without lossof generality to be minimal with respet to set inlusion. We de�ne the valuationVC := P n fpi j vi 2 Cg and laim that it is the maximal valuation we are lookingfor. For every 1 � i � m, C \ Ei 6= ; implies that there is a 1 � j � 3 suh thatvij 2 C, whih means that pij =2 VC . This shows that VC falsi�es and thus also �.In addition, sine (V n C) \Ei 6= ;, there is a 1 � k � 3 suh that vik 2 C. Thus, VCis di�erent from all the valuations Vi 2M, and it satis�es all of the formulae i.To show that VC is maximal, assume that V 0 � VC . Sine C is minimal, the setC 0 := fvi j pi =2 V 0g � C is suh that there is a 1 � i � m with C 0 \ Ei = ;. Thisimplies that V 0 satis�es pi1 ^ pi2 ^ pi3, and hene it also satis�es . As a superset ofVC , it also satis�es all of the formulae i, and thus it must satisfy �. This shows thatVC is a maximal valuation falsifying � that does not belong toM.For the only-if diretion, assume that there is a maximal valuation V 62 M falsifying�. This valuation annot falsify any of the formulae i. Indeed, (i) for Vi 2 M thiswould imply that V is a subset of one of the valuations inM, whih ontradits eitherthe maximality of V or the fat that it does not belong to M; (ii) for Vi 62 M therewould be a larger valuation falsifying , whih ontradits the maximality of V.Sine V is not a model of �, it must thus falsify . De�ne for this valuation theset CV := fvi j pi =2 Vg. Sine V falsi�es , for every 1 � i � m there is a 1 � j � 3suh that pij =2 V, and thus vij 2 CV \Ei. On the other hand, sine V does not falsifyany of the formulae i, for every 1 � i � m there must also be a 1 � l � 3 suh thatpi;k 2 V, whih means that Ei 6� CV and hene (V n C) \Ei 6= ;.From this lemma, we get the following theorem, whose proof is idential to theone for Theorem 6.4 presented in the previous subsetion.Theorem 6.14. There is no output polynomial algorithm for omputing all maximalfalsifying valuations of monotone Boolean formulae, unless P=NP.In the proof of Theorem 6.6, we presented a one to one orrespondene betweenMinAs using an irrefutable TBox, and minimal valuations satisfying a Boolean for-mula. It is easy to see that the same redution yields also a bijetion between the setof MaNAs for the same property and the maximal valuations falsifying the formula.We thus obtain the next result.Theorem 6.15. There is no output polynomial algorithm that omputes, for a givenHL TBox T = (Ts ℄ Tr) and onept names A;B ourring in T , all MaNAs for Tw.r.t. A v B, unless P=NP.Reall now that it is possible to simulate a monotone Boolean formula using adisjuntive TBox. Thus, the dual result for Theorem 6.7 holds too.

116 CHAPTER 6. COMPLEXITY RESULTSTheorem 6.16. Let T be a disjuntive TBox and A;B two onept names appearingin T . There is no output polynomial algorithm for omputing all MaNAs for T w.r.t.A v B, unless P = NP .Considering now the problem of ounting the number of solutions, we get thetwo results that ounting the number of MaNAs and the number of all MaNAs notontaining a given axiom t are #P-omplete problems.Theorem 6.17. Given a HL TBox T , two onept names A;B appearing in T andan axiom t 2 T , the following two problems are #P-omplete:1. ounting the number of MaNAs for T w.r.t. A v B;2. ounting the number of MaNAs for T w.r.t. A v B not ontaining t.Proof. For the �rst point, onsider M = fS1; : : : ; Skg and let s =2 Ski=1 Si. Then,M has as many maximal independent sets asM0 = fS1 [fsg; : : : ; Sk [fsg; fsgg; infat, M is a maximal independent set of M i� it is also a maximal independent setof M0. We onstrut a TBox T from M0 as in the proof of Theorem 6.10. Notiethat suh a redution is not parsimonious; for every maximal independent set of Mthere an be several MaNAs for T w.r.t. A v B. Let T 0 be a MaNA, and de�neMT 0 = fp j A v P 2 T 0g. If S, de�ned by Equation (6.1), is a subset of T 0, thenMT 0 is a maximal independent set for M0; otherwise, there is a set S 2 M0 suhthat S � MT 0 . In partiular, the latter implies that A v Ps 2 T 0, where Ps is theonept name representing the new element s used for de�ningM0. Thus, the numberof MaNAs for T w.r.t. A v B equals the number of maximal independent sets forMplus the number of MaNAs that ontain the axiom A v Ps. Consider now the TBoxTs = fA v Ps u P j p 2 Ski=1 Sig [f `iuj=1Pij v B j 1 � i � kg. All the MaNAsfor this TBox are MaNAs for T , and ontain A v Ps. Thus, if m1 is the number ofMaNAs for T w.r.t. A v B and m2 the number of MaNAs for Ts w.r.t. A v B, thenthe number of maximal independent sets forM equals m1 �m2. Sine both TBoxesan be omputed in polynomial time on the size of M, the problem of ounting thenumber of MaNAs for an HL-TBox w.r.t. a subsumption is #P-hard.For the seond part, given a TBox T , there are as many MaNAs for T w.r.t. A v Bas there are for T [ftg w.r.t. A v B not ontaining the axiom t if t := A v B.With this we �nish our analysis of the omplexity of �nding MaNAs.6.1.3 Pinpointing ComplexityAll the omplexity results presented so far orrespond to �nding the set of all MinAs,or some of its properties, regardless of the method used. In this dissertation wehave foused on an indiret method towards this goal, by �nding �rst a pinpointingformula. As desribed in Setion 3.1, there is a diret orrespondene between theMinAs and the minimal valuations satisfying the pinpointing formula, by a bijetionbetween the axioms in the input and the variables appearing in the formula. As

6.1. COMPLEXITY OF PINPOINTING 117it turns out, analogous omplexity results hold already for the problem of �ndingminimal valuations satisfying a monotone Boolean formula or, as it is also alled inthe literature, �nding the prime impliants of a monotone Boolean formula.It is worth notiing that every valuation V an be seen as a monotone Booleanformula onsisting of the onjuntion of the variables appearing in V. Likewise, a setof valuations represents the disjuntion of all the valuations appearing in it; that is, aformula in disjuntive normal form. It is easy to see that, given a monotone Booleanformula �, the set of all minimal valuations satisfying � is equivalent to the originalformula �. Sine the disjuntive normal form of a formula may be exponential inthe number of variables appearing in the formula, it follows that there an be expo-nentially many minimal valuations that satisfy a given monotone Boolean formula.Additionally, there is no output polynomial algorithm that omputes all these mini-mal valuations (unless P=NP), as shown in [BPS07a, EG91℄ (see also Theorem 6.4),and ounting how many of them exist is #P-omplete [Val79b℄. Analogous omplexityresults hold for the problem of �nding maximal valuations not satisfying the formula.These hardness results for monotone Boolean formulae open the question of howhard it is to ompute the pinpointing formula per se. It ould still be the ase that�nding a pinpointing formula is a simple task, and the whole hardness of omputingMinAs is pushed to the omputation of minimal valuations from it. Unfortunately,known results in the area of monotone omplexity show us that this is not the ase.25In essene, Karhmer and Wigderson [KW88, KW90℄ showed that there exist -properties deidable in polynomial time whose pinpointing formula is superpolynomialin length (see also Setion 5 of [BS90℄). The problem they use for showing this resultis graph reahability. Consider a set of verties V = fv1; : : : ; vng, and let the setsI = T = f(v; w) j v; w 2 V g; that is, the inputs and axioms are pairs of verties.We see eah axiom (v; w) as an edge between v and w. Thus, a set of axioms is agraph. The -property we are interested in deiding is whether, given an axiomatisedinput ((v; w);T), w is reahable from v in the graph T . Notie that this is indeed a-property that an be deided in polynomial time. The pinpointing formula for thisproperty and the axiomatised input ((v1; vn);T) is not representable in polynomiallength [KW88, KW90℄.This -property is in fat a speial ase of subsumption ofHL onept names, whereall the axioms are of the form C v D, with C;D onept names. From this it followsthat there exist axiomatised inputs whose pinpointing formula w.r.t. subsumption hassuperpolynomial length.Theorem 6.18. Let NC be a set of onept names, T = fC v D j C;D 2 NCg,and A;B 2 NC. The pinpointing formula for ((A;B);T) w.r.t. subsumption annot berepresented in polynomial length in the size of T .With this we onlude our study of the general omplexity of pinpointing, and turnnow our attention to proving our laim from Chapter 3 with respet to undeidabilityof termination of the pinpointing extension of general tableaux.25Monotone omplexity measures the length of a monotone Boolean formula omputing a givenfuntion.

118 CHAPTER 6. COMPLEXITY RESULTS6.2 Undeidability of Tableaux TerminationWe have now shown several results of the hardness of pinpointing-related problems,independent of the method used for solving them. For the rest of this hapter, wefous our attention one more on the tableau-based method. First of all, notie thatwe have always assumed that the original tableau terminates on every input (seeDe�nition 3.18) and have not dealt with any means to ensure this fat. Even more,we have shown in Example 3.32 that even if we an prove termination of a generaltableau, this will not ensure that its pinpointing extension will also run in �nite time.To deal with this problem, we introdued the onept of ordered tableaux in Chapter 4and showed that they, and their pinpointing extensions, are always terminating. Itis nonetheless very easy to see that this lass does not fully haraterize the lass ofall tableaux having a terminating pinpointing extension. Unfortunately, as we willsee now, it is unable to �nd a method that deides whether a given tableau has aterminating pinpointing extension.This setion has the following struture. First, we will show that there is a tableauS for whih, given an axiomatised input �, it is undeidable whether S terminates on� by a redution from the halting problem for Turing mahines. We then show howto modify the same ideas to show that there is a tableau S for whih it is undeidablewhether its pinpointing extension terminates on a given axiomatised input �. In theend we show how this result relates to our problem of termination in general.De�nition 6.19 (Turing mahine). A Turing mahine (TM) is a quadruple ofthe form M = (Q;�; Æ; q0) where Q is a �nite set of states , � is a �nite set oftape symbols ontaining the blank symbol t, q0 2 Q is the initial state and Æ is thetransition funtion Æ : Q� �! (Q [fyes; nog)��� f�;�g.Given a TM M and an input !, the halting problem onsists on deiding whetherM halts on !; that is, whether a sequene of omputations following the transitionrelation over the input ! will reah a state where no further step is possible. Thisproblem is well known to be undeidable [Tur36, Dav04℄; in other words, there is noalgorithm that an deide whether M halts on ! for all possible TMs M and inputs!. In fat, the following stronger result an be shown: there is a TM M for whihthe problem of deiding, given an input !, whether M halts on ! is undeidable.The di�erene between these two problems is that in the �rst one the TM is alsoa part of the input for the deision problem, while in the seond one suh TM is�xed. Obviously, if there is no algorithm for deiding halting of inputs for a �xedTM, then there is also none that an deide the problem for all possible TMs. Werequire the stronger result sine it is possible to think of general tableaux that arenot desribable in a �nite way, and hene annot be onsidered part of the input of adeision proedure.6.2.1 Termination of TableauxWe will onstrut, given a TM M , a tableau SM whose inputs will be analogous tothose of M and suh that SM terminates on an input ! if and only if M halts on

6.2. UNDECIDABILITY OF TABLEAUX TERMINATION 119!. Intuitively, the SM -states will represent on�gurations on the tape of M duringthe exeution of the TM and thus a rule appliation on SM will simulate the hangesperformed on the tape by an exeution step on M .We will �rst use a prediate symbol to represent eah symbol in �; that is, forevery g 2 �, inlude in the signature the unary prediate symbol Tg. To show thatthe symbol g appears on the tape in the urrent on�guration, we simply use theassertion Tg(a) for some onstant a. Sine the order in whih the symbols appear inthe tape is relevant for the exeution of the mahine, we have to represent suh anorder aordingly in our tableau states. As SM -states are merely sets of assertions, wewill use prediate symbols Fz for z 2 Z in our signature. Intuitively, an assertion ofthe form Fz(a) states that onstant a is alloted in the tape position z. Suh a onstanta works as the fusion point between the symbols in the tape and the position theyoupy. Thus, we will use distint onstants at di�erent positions.One we know the symbols appearing on the tape and their position, we still needto represent the position of the head and the internal state of the mahine. We do thisin the same way as when desribing the tape. For eah state q 2 Q, we add the unaryprediate symbol Hq to the signature of our tableau. The assertion Hq(a) representsthen that the mahine has the internal state q. To know the position to whih thehead is pointing, we need to look into an assertion of the form Fz(a); this way weknow that the head is urrently reading the symbol on the z-th ell of the tape.Example 6.20. In the initial on�guration of the exeution of a TM, the head isloated in position 1 and the internal state is set to q0. Suppose that the input is givenby the hain s � t. This on�guration an be represented by the set of assertionsfF1(a); F2(b); Ts(a); Tt(b);Hq0(a)g:Sine we want the evolution of the states of our tableau to simulate the transi-tions performed by the original TM, we need to de�ne the tableau rules aordingly.Suppose, for example, that we have Æ(q0; s) = (q1; s0;!). Given the on�guration ofExample 6.20, this mahine would hange the tape to ontain the hain s0 � t, with thehead pointing to the seond ell and the internal state being q1. Thus, we would likeour rule to hange the set of assertions aordingly, leading to the setfF1(); F2(b); Ts0(); Tt(b);Hq1(b)g:It is very easy to add the required assertions with a rule appliation. Unfortunately,tableau rule appliations only extend the sets of assertions, and never remove elementsfrom it. Sine we have used distint onstants for representing distint positions (i.e.,ells) of the tape, we an add an assertion speifying that a given onstant should notbe onsidered anymore as part of the desription of a on�guration of the TM. Weahieve this with the aid of the additional unary prediate ? in the signature of SM .We an now desribe the on�guration after one exeution step in M with the set ofassertions fF1(a); Ts(a);Hq0(a);?(a)g [fF1(); F2(b); Ts0(); Tt(b);Hq1(b)g:

120 CHAPTER 6. COMPLEXITY RESULTSThe seond set in this expression ontains all the elements representing the atualon�guration of the mahine, the �rst set showing all the elements that are related tothe onstant a, whih is disarded by the assertion ?(a). This �rst set an be thoughtof as a trash tail representing the states and symbols that have been overridden duringthe exeution of M .Suppose now that Æ(q1; t) = (q1; t;!). When the mahine exeutes this transition,the head ends up pointing at a ell that is empty and not represented in the SM -state. Sine we annot know beforehand how many tape ells will be used during theexeution of M , we annot represent all of them in the tableau state either. What weneed is a way of expanding the spae on demand. In this example, we need to speifythat the third tape ell will also be used. Thus, we need to add an assertion of theform F3(d). Furthermore, we know that the tape is written with the blank symbol tat that ell, so we also inlude the assertion Tt(d).This approah, nonetheless, requires us to know that there is no assertion of theform F3(x) before the rule an be applied; otherwise, this rule ould also be applied to\add spae" that is already in use. For example, one suh rule appliation ould addthe new assertions F2(e); Tt(e), whih is an undesired behaviour. Our de�nition of ruleappliation does not allow to look for the (non-)existene of an assertion of some shape;nonetheless, we will be able to do suh a hek indiretly by using non-deterministirules. One of the non-deterministi options will try only to add an assertion Fn(y),while the other will add both neessary elements, namely Fn(y); Tt(y). The way ruleappliation was de�ned ensures that this rule is only appliable if there is no assertionspeifying the use of spae in ell n already. We are now ready to onstrut our tableauSM that simulates the TM M .De�nition 6.21 (Simulating tableau). Let M = (Q;�; Æ; q0) be a TM and let theset of inputs I � �� and set of axioms T = ;. The tableau simulatingM is the tableaufor I and T given by SM = (�; �S ;R; C) where� � = fFz j z 2 Zg [fTg j g 2 �g [fHq j q 2 Qg [f?g, all of arity 1;� for every w = g1 � � � gk 2 I, we havewS = fTgi(ai); Fi(ai) j 1 � i � kg [fHq0(a1)g;� for every pair (q; g) 2 Q� �, if Æ(q; g) = (q0; g0;!), then the rules(fFk(x); Tg(x);Hq(x); Fk+1(y); Sg00(y)g; ;) ! ffFk(z); Tg0(z);Hq0(y);?(x)gg(fFk(x); Tg(x);Hq(x)g; ;) ! ffFk+1(z)g; fFk+1(z); Tt(z)ggare in R, and if Æ(q; g) = (q0; g0;), then the rules(fFk(x); Tg(x);Hq(x); Fk�1(y); Sg00(y)g; ;) ! ffFk(z); Tg0(z);Hq0(y);?(x)gg(fFk(x); Tg(x);Hq(x)g; ;) ! ffFk�1(z)g; fFk�1(z); Tt(z)ggare in R, for all k 2 Z; and

6.2. UNDECIDABILITY OF TABLEAUX TERMINATION 121� C = ;.Theorem 6.22. Let M be a TM, SM its simulating tableau and w an input for M .Then, M halts on w if and only if SM terminates on the axiomatised input (w; ;).Proof. At every SM -state, at most one rule is appliable, desribed by the only asser-tion of the form Hq(a) suh that there is no assertion ?(a) in the same state. Thereare two kinds of appliable rules: those that orrespond to a transition of the originalTM, whih are deterministi, and the non-deterministi ones used to expand the de-sription of the tape. If one of the former kind is applied, then the assertion ?(a) isadded, as well as a new assertion Hq0(b), pointing to the new tape ell where the ruleapplies. The new SM -state obtained this way represents the on�guration on the tapeafter the TM transition is applied. If the non-deterministi rule is applied, then weobtain two new SM -states. The �rst one, in whih only an assertion Fk() is added,is already saturated, and hene is irrelevant in the searh of termination. The seondone hanges in no way the desription of the tape, but allows the rule of the �rst kindto be triggered. Thus, every SM state represents a reahable on�guration of the TMM over input w. Likewise, for every reahable on�guration, there is a SM -state thatrepresents it.Corollary 6.23. There is a tableau S for whih it is undeidable whether it terminatesover a given axiomatised input.Notie that the simulating tableau does not have any axioms in its inputs. Thismeans that the pinpointing extension of a simulating tableau orresponds to the sameoriginal tableau. Hene, we have also shown that there is a tableau for whih it isundeidable whether its pinpointing extension terminates on a given input w. But itis still possible to ask about the pinpointing extension of terminating tableaux as wedo in the following subsetion.6.2.2 Pinpointing Extensions of Terminating TableauxWe will show now that there exists also a terminating tableau for whih it is unde-idable whether its pinpointing extension terminates on a given axiomatised input.For this, we want now to onstrut a terminating tableau whose pinpointing extensionsimulates the TM. One thing to notie �rst is that none of the rules of the tableausimulating a TM desribed before an be applied if there is no assertion of the formHq(x) representing the internal state of the mahine. Thus, if we ould leave out allthese assertions, the TM behaviour will not be simulated by the tableau. The ideais then to reate a tableau that starts with a state desribing the whole input, butnot the initial internal state of the mahine, whih we know that must be q0. Thistableau should then never add the assertion Hq0(a1) to the states, ensuring that thesimulating rules are not triggered. Additional rules in this tableau should ensure that,when exeuted in the normal way, it always terminates, but when exeuting its pin-pointing extension, using some axioms, the assertion Hq0(a1) is added and then the

122 CHAPTER 6. COMPLEXITY RESULTSTM is simulated. This way, we will have a terminating tableau SM whose pinpointingextension terminates on an input (w;T) if and only if the TM M halts on input w.To do this, we �rst allow the set of axioms to be T = fax1; ax2g, with all its subsetsbeing admissible. Then, we modify the tableau SM of De�nition 6.21 to onstrut S0Min the following way. Add to the signature � the unary prediate names P; P 0; P1; P2;and add to R the rules(fP (x)g; fax1g) ! ffP 0(x); P1(x)gg (6.2)(fP (x)g; fax2g) ! ffP 0(x); P2(x)gg (6.3)(fP 0(x)g; ;) ! ffHq0(x)g; fP1(x)g; fP2(x)gg: (6.4)Furthermore, we modify the de�nition of �S to replae Hq0(a1) by P (a1) in wS .The new tableau formed this way is learly terminating. At the initial state, noneof the rules for simulating the TM an be triggered, sine Hq0(a1) is not present. Theonly way to add this assertion is to apply Rule (6.4), whih in turn an only be appliedone an assertion of the form P 0(x) is present; that is, after applying either Rule (6.2)or Rule (6.3). But one any of these rules is applied, the appliability onditions ofnon-deterministi rules disallow the possibility of Rule (6.4) to be applied. Hene,after at most two rule appliations (depending on the set of axioms given in theaxiomatised input), this tableau reahes a saturated state. We thus onlude that S0Mterminates on every axiomatised input.On the other hand, if the pinpointing extension of S0M is applied with an inputontaining both axioms ax1 and ax2, then after the appliation of both Rules (6.2)and (6.3), Rule (6.4) beomes pinpointing appliable. This is the ase beause thelabel of the assertion P 0(a1) at this point is ax1 _ ax2, whih does not imply the labelof any of the assertions P1(a1) or P2(a1), given by ax1 and ax2, respetively. Afterapplying this rule, we obtain three S0M states. Two of them, those orrespondingto the last two sets in the rule, are already saturated, but not the third one. Thethird S0M -state now ontains the assertion Hq0(a1), the only missing piee to start thesimulation of the TM over the same input given. Thus the pinpointing extension ofS0M terminates on an input (w;T) if and only if M halts on w, whih gives us ourdesired undeidability result.Corollary 6.24. There is a terminating tableau S for whih it is undeidable, givenan axiomatised input �, whether the pinpointing extension of S terminates on �.Notie that this is not exatly the result we are looking for. We would like tobe able to lassify all the tableaux whose pinpointing extension terminates on allinputs. It ould be the ase, for example, that every terminating tableau for whihthe undeidability result of Corollary 6.24 holds has also an axiomatised input forwhih non-termination an be deided. We ould then still be able to �nd all thetableaux we are interested in. This, unfortunately, is not the ase, given the fat thatwe an hoose the set of inputs over whih the tableau an be applied. De�ne then,for a given tableau S over I and Padmis (T) and an axiomatised input � = (I;T),the restrited tableau S� over I0 = fIg and Padmis (T0) = fS 2 Padmis(T) j S � T g.Then, S� terminates on all axiomatised inputs if and only if S terminates on input �.

6.2. UNDECIDABILITY OF TABLEAUX TERMINATION 123We have thus shown that it is impossible to fully haraterize the set of all tableauxthat have a terminating pinpointing extension. This obviously does not mean thatwe annot �nd other sublasses, or even further extend the lass of ordered tableauxintrodued in Chapter 4, but that there is no way of desribing all the elements of thelass.This �nishes our study of the omplexity of pinpointing, and with it, the wholebody of this dissertation. This hapter has shown us that the problem of pinpointing,with all the tasks that surround it, is in general a hard one. For the onstrutivedeision proedures, haraterised in this work by general tableaux, the pinpointingextension follows a very intuitive onstrution, as witnessed by the di�erent times whenthese ideas have appeared, presumably in an independent way. But our undeidabilityresults show that, although the pinpointing extension is simple, speial attention has tobe paid, lest we end up with an algorithm that runs inde�nitely. But the problems arenot inherent to the tableau-based approah. As our general omplexity results show, itis simply not possible to design any algorithm that will behave niely omplexity-wisefor solving the problems of pinpointing (unless P=NP).We based our omplexity results on the justi�ation and diagnoses problems w.r.t.HL knowledge bases. This was motivated by the polynomial omplexity of its deisionproblem. Unfortunately, this leaves some problems open. For one, the redutionspresented rely on having a general HL-TBox. In desription logis, it is sometimesthe ase that the use of an ayli TBox allows for a lower omplexity bound. Fromour present study, it is still unlear whether this is the ase for pinpointing in the logiHL or not. Another interesting problem left open during this hapter is the exatomplexity of enumerating all MinAs (or MaNAs) if we do not allow for the moregeneral languages used in our proofs.In the next and losing hapter we give our onlusions as well as some of the openquestions that were left by the present dissertation, inluding those desribed above.These open problems ould be used as starting points for further researh in the areaof pinpointing.

124 CHAPTER 6. COMPLEXITY RESULTS

Chapter 7Conlusions and Future WorkIn this losing hapter we present �rst a hronial summary of the dissertation, in-luding some onluding remarks and brief insights about the proess that led to someof the results readily presented. This summary is followed by some ideas of possiblefuture work that an be built over the results inluded in this and other related works.Some problems left open by this dissertation are also inluded.7.1 A Chronial SummaryIn di�erent areas, the need to understand the inuene of portions of a theory over theonsequenes it produes has arisen as a natural problem with distint appliations.This understanding is usually ahieved through the omputation of one or severalMinAs. There are essentially two methods to �nd these sets, one that a deisionproedure exists: one an either all the deision proedure as-is using di�erent por-tions of the theory (the blak-box approah), or one an try to modify the originalalgorithm in suh a way that a single exeution shines some light on the inuenepartiular axioms have over the result (the glass-box approah).In this work we had a look at how a glass-box approah works if our deisionproedure is either tableau- or automata-based. Although it is possible to think ofdeision algorithms that do not fall into any of these two ategories, these are in realityvery rarely found in logi, speially when dealing with monotone properties, whih isone of our most basi assumptions.Very reently, the problem of �nding MinAs started to gain relevane in the areaof Desription Logis, where it got the name of axiom pinpointing. The �rst studiesof this problem in DLs produed a ustom modi�ation of a tableau-based deisionalgorithm, whih allowed to �nd one or (a desription of) all MinAs for the studiedonsequene. All these ustom modi�ations had several elements in ommon, mainlyby the traing mehanism they implemented. Nonetheless, it was not ompletely ob-vious how the same ideas would apply to di�erent onstrutors and their assoiatedtableau rules. Hene, eah partiular pinpointing extension had to be tested for or-retness individually. This motivated our quest for a general notion of tableau-basedaxiom pinpointing, from whih di�erent instanes an be taken and known to be125

126 CHAPTER 7. CONCLUSIONS AND FUTURE WORKorret without the hassle of solving similar problems one and again.In order to desribe a general approah to tableau-based pinpointing we faed �rstthe task of formalising the notion of a tableau algorithm. Although the main ideas ofthis lass of algorithms seem in general intuitive, there have been very few attemptsto formalise them. This orresponds perhaps to the fat that the intuitive notion isso vague as to allow for a perfet formal �tting: any de�nition would either exluderelevant examples, or be too broad, allowing for tehniques that are not generally on-sidered to be tableau-based. Our formalisation is no exeption of this. In partiular,instanes of what we all ground tableau (e.g. the subsumption method for EL, orthe ongruene losure algorithm) do not seem to be onsidered as tableau-based bythe ommunity. In the other diretion, even trying to be as general as possible, oururrent approah annot deal with omplex bloking tehniques, like the ones used forDLs with number restritions to ensure termination of the proess.With a general notion of tableau, we ould then proeed to de�ne their pinpointingextensions in a way that would allow us to ompute all the MinAs for a property,represented in a monotone Boolean formula. Our method follows the ideas previouslypresented in the DL ommunity, but generalises them in a way that allows for distintkinds of rules and strutures that have not previously been onsidered. For instane,our pinpointing extension an be used alongside with ternary prediates, while DLsdeal usually only with unary (onepts) and binary (roles) prediates. There werenonetheless unexpeted problems during the development of our framework.For one, we must speak of the problem of termination of the pinpointing extensionsof general tableau. In the original soures motivating our generalisation, terminationof the pinpointing extension was disregarded as a trivial onsequene of termination ofthe original tableau algorithm. Intuitively, it indeed looks so, and in a �rst approahwe thought that termination of pinpointing extensions should as trivially follow inthe general ase. As we saw at the end of Chapter 3, this intuition was inorret,as multiple appliations of rules, aused by the need to understand all auses forthe insertion of a given assertion, may result in a ombination that leads to non-termination. Suh a behaviour does not seem to our in the tableaux for DL.To reover termination we looked again at suessful ases and distinguished, asothers have done before, the tree-shape of the reated strutures as a ommon ausefor termination. That lead to the de�nition of forest tableaux whih, under someadditional assumptions, were shown to terminate. Even if they do not satisfy theassumptions required for termination, we showed that equality bloking an be usedin this setting to obtain e�etive algorithms. Tree tableaux obviously onstitute avery small sublass of general tableaux, and its de�nition may seem too omplex. Inreality, although several onditions are imposed to these tableaux, all of them aresyntatial, on the shape of the rules. This might very well exlude several otherterminating pinpointing extensions, but syntatial restritions have the advantage ofbeing easily veri�ed for any given tableau. Other notions of terminating tableaux maypossibly be de�ned, but we showed that it is impossible to fully haraterise this lass.While researhing in this topi, we slowly beame aware of the fat that the sameideas had appeared often in other areas. Partiulary surprising is the fat that allglass-box methods found followed the same pattern: the implementation of a traing

7.1. A CHRONICAL SUMMARY 127tehnique over a onstrutive algorithm. Here the term onstrutive refers to the fatthat these algorithms use rules and axioms to onstrut some kind of model fromwhih the property an be readily deided. The traing tehnique onsists on addinga label to eah piee of this model, whih expresses the auses for its addition. Thislabel is modi�ed if more auses beome known.Automata-based deision proedures are not onstrutive. In their most basiformulation, we onstrut an automaton based on the input of the problem. Theinput is rejeted if and only if this automaton has a suessful run with the root labelbelonging to the set of initial states. Nonetheless, trying to build a suessful run leads,in the best ase, to a non-deterministi proedure. This an be improved for automata,by means of an iterative emptiness test, that runs in (deterministi) polynomial timein the size of the automaton. Suh a test tells us only whether the language aeptedby the automaton is empty or not, but tells us nothing about how this language (or,more orretly, the aepting runs) looks like. Hene, although we an orretly deidea property, it is not simple to trae the reasons of this deision bak to the originalaxioms. This diÆulty is further augmented by the fat that the funtion mappinginputs to automata may atually be arbitrary, holding no regularities with respet tothe axioms employed.Given the prominene of automata-based deision proedures in DLs for showingomplexity, and their pratial use in some temporal logis, where they have beensuessfully implemented, it seemed only natural to try to �nd a way to omputethe pinpointing formula from an automata-based deider. The �rst step was to forea regularity that ould allow us to reason about partiular axioms. This was donethrough the de�nition of axiomati automata, whih states that the addition of newaxioms an only restrit the set of suessful runs and initial states. The only stepleft onsisted in �nding a way to modify the original automaton, or its emptinesstest, to ompute a monotone Boolean formula, rather than just a yes/no answer.Weighted automata ame out as a diret solution: they extend automata theory tothe omputation of values of a semiring. We showed how to transform an axiomatiautomaton into a weighted automaton whose behaviour orresponds to the pinpointingformula. At this time we were surprised not to �nd any algorithm for omputing thebehaviour of weighted automata of the kind we were dealing with, and so, developedone of our own by generalising the well-known iterative emptiness test. One thingto notie is that the emptiness test relies heavily on the distributivity of the logialoperators over eah other. For the general ase, suh distributivity ould not lose itsimportane, and hene our algorithm ould only work on distributive semirings. Asevery distributive semiring is in fat a lattie, our formulation requiring weights tobelong to a distributive lattie is in fat the weakest we ould allow in our setting.With this restrition, we were able to prove the orretness of an algorithm that �ndsthe behaviour using time polynomial in the size of the original automaton.By the time we were �nishing our researh on the omputation of behaviour ofautomata, we beame aware of a di�erent method, developed independently, for solv-ing the same task. However, when we analysed how this method redues to the aseof pinpointing, whih was the main onern of our study, we found out that the al-ternative method is equivalent to the most na��ve blak-box approah, in whih every

128 CHAPTER 7. CONCLUSIONS AND FUTURE WORKpossible set of axioms is tested for the property, and then the minimal ones are takenas MinAs. With that in mind, we onstruted some examples where our methodperforms exponentially faster than the other one.Up to this point, exept for the upper-bound obtained by pinpointing automata,there was no lear understanding of the omplexity of �nding MinAs, or their assoi-ated problems. We went on to show that, in general, pinpointing is a hard problem.Although in the logi HL �nding one arbitrary MinA is feasible, as well as �nding thelast lexiographial one, this positive trak disappears one we want to �nd additionalproperties that shine some light over the set of all MinAs. Their dual properties arealso hard for the set of MaNAs. Furthermore, even the most ompat representa-tion of these sets as a monotone Boolean formula may be superpolynomial in length.Notie that this result does not violate the one saying that automata ompute thepinpointing formula in polynomial time in the size of the automaton, as we employeda di�erent representation formalism, namely struture sharing, to obtain the feasibletime-bound.7.2 Future WorkOne of the main motivations for this work, as has been previously repeated, was thesearh for a general desription of the glass-box strategies used for pinpointing inDesription Logis. Our framework is, not surprisingly, general enough to be appliedto other settings. One obvious example is the use of the temporal logi LTL as anexample for the need of generalised B�uhi automata, in Chapter 5. This suggests thatthere is still a wide range of related problems that an be studied. We present heresome of these problems, in most ases aompanied by some thoughts on how anthey be approahed.The �rst and most obvious problem onerns a better understanding of the pin-pointing extension of general tableaux, speially regarding their exeution time. Weknow that in general it is impossible even to ensure a �nite exeution time; but evenwhen the pinpointing extension is known to terminate, there is no appropriate boundon the number of rule appliations that are neessary before a saturated state isreahed. In the ase of ground tableaux, it is easy to see that an exponential blowupin the number of rule appliations annot be avoided in the general ase. This followsfrom the fat that rule appliations may modify the label of a single assertion fromthe least- to the most-general monotone Boolean formula in exponentially many steps.Conversely, it is a very simple exerise to show that suh an exponential blowup yieldsan upper bound on the exeution time of the pinpointing extension. We will return tothis later on, when we speak about latties. One we introdue variables, though, thisount beomes muh more ompliated. Rule appliations an still modify the label ofa single assertion at most exponentially many times, but additional rule appliationsmay ause the inlusion of new assertions that would never appear during the regulartableau exeution. It is not lear how many of these new assertions will be introdued,even for ordered forest tableaux.Continuing in the omplexity line of thought, we have left some unsolved prob-

7.2. FUTURE WORK 129lems in this work. With respet to the omplexity of enumerating all MinAs and/orMaNAs, our hardness results are weaker than desired, as we assumed that a portionof the ontology is omposed of axioms that annot be refuted for the omputationof justi�ations or diagnoses. It is not very lear how to remove this generalisation.In fat, it seems that allowing an irrefutable set of axioms suÆes to show hardness:in [Bie08℄ it was shown that there is no output polynomial algorithm for enumeratingall MinAs even if the refutable axioms and the subsumption being justi�ed are all ofthe form > v A, where A is a onept name.26 Most of our MinA-related omplex-ity results rely on a redution from the minimal hitting set problem. Unfortunatelythe exat enumeration omplexity of the hitting set problem is a long-standing openproblem. In Setion 6.1.1 we have shown that enumerating all MinAs is at least ashard as enumerating all minimal hitting sets. Our laim is that a redution in theother diretion is not possible, ruling out the equivalene of both problems.Another problem that was left unsolved is the omplexity of pinpointing on ayliTBoxes. All our hardness results for HL depend on the use of a set of GCIs that doesnot satisfy the ayliity assumption. In DL, reasoning under ayli TBoxes ansometimes lead to a lower omplexity lass, as attested by the logis ALC and SI. Itould still be the ase that feasibility an be regained in HL in this restrited setting.Likewise, our automata-based approah an be used to prove an exponential upperbound for pinpointing in SI with ayli TBoxes, but it is not lear that the boundis tight. For deiding a property, we have shown that a (non-deterministi) top-downemptiness test an sometimes be used to �nd a tighter upper bound [BHP08℄. It is,however, unlear how the same ideas ould be applied to pinpointing as the top-downapproah yields the information of only one suessful run, while pinpointing needs tobe able to reason about all of them.One an also onsider �nding approximate solutions to some of the problems.Consider for instane the problem of �nding the MinA with the least axioms; this is animportant problem as small MinAs are usually easier to understand. We have shownthat �nding the smallest MinA is an NP-hard problem, but it is perhaps possibleto onstrut a proedure that approximates its solution. Suh a proedure shouldompute in polynomial time a MinA whose size is guaranteed to diverge only slightlyfrom the optimal. Alternatively, stohasti methods an be used to �nd MinAs havinga high probability of being optimal. Other problems whose approximation ould beof interest inlude omputing the lexiographial �rst MinA or the total number ofMinAs.For our automata-based approah to pinpointing, we had �rst to identify ontri-butions of individual axioms to the property under onsideration. To this end, wede�ned mappings that yield, for every axiom t, those initial states and transitionsthat are allowed by the use of t in the ontology. A more general framework ouldalso allow axioms to inuene the aeptane ondition of the axiomati automaton.Suh a generalisation was in part left out of this work due to our lak to oneiveany senario that ould motivate its appliation. Another possible generalisation of26In reality, the redution presented in [Bie08℄ shows hardness for the DL EL, that is, with the helpof existential restritions. It is nonetheless not hard to adapt the same redution to the logi HL,thus obtaining a result more akin to those in this dissertation.

130 CHAPTER 7. CONCLUSIONS AND FUTURE WORKthe automata-based framework onsists in inluding more general lasses of automata.For instane, it seems likely that an algorithm similar to ours an be used to omputethe behaviour of weighted parity automata. Apparently, if the automaton is suh thatthe aeptane ondition an be tested loally, by the onstrution and onatenationof �nite runs, its behaviour an be omputed by an iterative algorithm akin to theone presented in Chapter 5.Pinpointing, as desribed in this dissertation, reates a bijetion between axiomsand a set of propositional variables that will be used to desribe the pinpointingformula. As the automata-based approah teahes us, the propositional variables andall the monotone Boolean formulas onstruted over them are in fat elements from afree distributive lattie. One an thus think of applying the same ideas using di�erentlatties: we map eah axiom to an element of the lattie; this mapping is then used toonstrut a weighted automaton whose behaviour yields a desired value. Preliminarywork on this topi has shown that it may be neessary to restrit the mapping to obtainmeaningful results. Of ourse, suh a senario is not limited to the automata approah,as it is also possible to oneive the development of weighted tableaux from the sameline of thought. So far as weighted tableaux follow the same ideas of pinpointingextensions, all our results an be reused; for example, one an show that for groundtableaux, the weighted extension will have an overhead exeution time proportionalto the longest hain of the form 0 < s1 < : : : < sn < 1. Unfortunately, the negativeresults and in partiular all the problems related to termination, would be still presentin this setting.One possible appliation of the weighted senarios just desribed orresponds toreasoning under vagueness. Indeed, some of the norms used in the de�nition of fuzzyonstrutors generate distributive latties. If instead one was interested in reasoningwith probabilities, then more work needs to be done. For some appliations, one isinterested in knowing whether one an onstrut a model for a property with probabil-ity 1. In this partiular ase, it would suÆe to use the so-alled probability semiring,that in fat omputes the maximum probability of sequenes of independent events.But the probability semiring is not distributive, and hene it is not lear whether theweighted approah an orretly be applied to it. Evenmore, if one wanted to atuallyompute the probability of a property to follow, one would instead need to reasonwith measures, whih are more omplex algebrai strutures.Modern reasoners for DLs, whih are tableau-based, rely on heavy optimizations toprodue an answer in a timely manner. Our desription of the pinpointing extensionrequires several of these optimizations to be shut o�; otherwise, orretness annot beguaranteed. This is perhaps one of the reasons why in reent time muh attention hasbeen paid to blak-box pinpointing. A study of new optimization strategies that analso be applied for pinpointing would very likely improve the pratiality of the task.As it an be seen, there is still muh work that an be built over the results andideas of this dissertation. This is hardly surprising, sine the problems of �ndingjusti�ations and diagnoses are relevant in several �elds, as attested by the setion onrelated work. This makes the searh of general methods, that an be shared betweendi�erent �elds, and possibly using distint deision proedures, more relevant.

Bibliography[ACGM04℄ Alessandro Armando, Claudio Castellini, Enrio Giunhiglia, and MaroMaratea. A SAT-based deision proedure for the boolean ombination ofdi�erene onstraints. In Proeedings of the 7th International Confereneon Theory and Appliations of Satis�ability Testing (SAT'04), Vanouver,BC, Canada, 2004. Cited in page(s) 10[Baa03a℄ Franz Baader. The instane problem and the most spei� onept inthe desription logi EL w.r.t. terminologial yles with desriptive se-mantis. In Andreas G�unter, Rudolf Kruse, and Bernard Neumann, ed-itors, Proeedings of the 26th Annual German Conferene on Arti�ialIntelligene, KI 2003, volume 2821 of Leture Notes in Arti�ial Intelli-gene, pages 64{78, Hamburg, Germany, 2003. Springer-Verlag. Cited inpage(s) 18[Baa03b℄ Franz Baader. Least ommon subsumers and most spei� onepts in adesription logi with existential restritions and terminologial yles. InGeorg Gottlob and Toby Walsh, editors, Proeedings of the 18th Interna-tional Joint Conferene on Arti�ial Intelligene, pages 319{324. MorganKaufmann, 2003. Cited in page(s) 18[Baa03℄ Franz Baader. Terminologial yles in a desription logi with existen-tial restritions. In Georg Gottlob and Toby Walsh, editors, Proeedingsof the 18th International Joint Conferene on Arti�ial Intelligene (IJ-CAI 2003), pages 325{330, Aapulo, Mexio, 2003. Morgan Kaufmann,Los Altos. Cited in page(s) 3[BBC+05℄ Maro Bozzano, Roberto Bruttomesso, Alessandro Cimatti, Tommi A.Junttila, Peter van Rossum, Stephan Shulz, and Roberto Sebastiani. Aninremental and layered proedure for the satis�ability of linear arithmetilogi. In Niolas Halbwahs and Lenore D. Zuk, editors, Proeedings ofthe 11th International Conferene on Tools and Algorithms for the Con-strution and Analysis of Systems (TACAS'05), volume 3440 of LetureNotes in Computer Siene, pages 317{333. Springer-Verlag, 2005. Citedin page(s) 10 131

132 BIBLIOGRAPHY[BBH96℄ Franz Baader, Martin Buhheit, and Bernhard Hollunder. Cardinalityrestritions on onepts. Arti�ial Intelligene, 88(1{2):195{213, 1996.Cited in page(s) 67[BBL05℄ Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL enve-lope. In Leslie Pak Kaelbling and Alessandro SaÆotti, editors, Proeed-ings of the 19th International Joint Conferene on Arti�ial Intelligene(IJCAI 2005), pages 364{369, Edinburgh (UK), 2005. Morgan Kaufmann,Los Altos. Cited in page(s) 7, 19[BCM+03℄ Franz Baader, Diego Calvanese, Deborah MGuinness, Daniele Nardi,and Peter F. Patel-Shneider, editors. The Desription Logi Handbook:Theory, Implementation, and Appliations. Cambridge University Press,2003. Cited in page(s) 3, 11, 12, 104[BDS93℄ Martin Buhheit, Franeso M. Donini, and Andrea Shaerf. Deidablereasoning in terminologial knowledge representation systems. Journal ofArti�ial Intelligene Researh, 1:109{138, 1993. Cited in page(s) 23[BH91℄ Franz Baader and Philipp Hanshke. A shema for integrating onretedomains into onept languages. In John Mylopoulos and RaymondReiter, editors, Proeedings of the 12th International Joint Confereneon Arti�ial Intelligene (IJCAI'91), pages 452{457, Sydney, Australia,1991. Morgan Kaufmann, Los Altos. Cited in page(s) 19[BH95℄ Franz Baader and Bernhard Hollunder. Embedding defaults into ter-minologial knowledge representation formalisms. Journal of AutomatedReasoning, 14:149{180, 1995. Cited in page(s) 8, 33, 36[BHP07℄ Franz Baader, Jan Hladik, and Rafael Pe~naloza. SI! automata an showPSPACE results for desription logis. In Remo Loos, Szil�ard ZsoltFazekas, and Carlos Martin-Vide, editors, Proeedings of the First Inter-national Conferene on Language and Automata Theory and Appliations(LATA'07), Tarragona, Spain, 2007. Cited in page(s) 28[BHP08℄ Franz Baader, Jan Hladik, and Rafael Pe~naloza. Automata an showPSPACE results for desription logis. Information and Computation,206(9,10):1045{1056, 2008. Speial Issue: First International Confereneon Language and Automata Theory and Appliations (LATA'07). Citedin page(s) 7, 9, 28, 91, 129[Bie08℄ Meghyn Bienvenu. Complexity of abdution in the EL family oflightweight desription logis. In Gerhard Brewka and J�erôme Lang,editors, Proeedings of the 11th International Conferene on Priniplesof Knowledge Representation and Reasoning (KR'2008), pages 220{230.AAAI Press/The MIT Press, 2008. Cited in page(s) 10, 129

BIBLIOGRAPHY 133[BL85℄ Ronald J. Brahman and Hetor J. Levesque, editors. Readings in Knowl-edge Representation. Morgan Kaufmann, Los Altos, 1985. Cited inpage(s) 140, 141[BP07℄ Franz Baader and Rafael Pe~naloza. Axiom pinpointing in gener-al tableaux. In Niola Olivetti, editor, Proeedings of the 16thInternational Conferene on Analyti Tableaux and Related Methods(TABLEAUX 2007), volume 4548 of Leture Notes in Arti�ial Intelli-gene, pages 11{27, Aix-en-Provene, Frane, 2007. Springer-Verlag. Citedin page(s) 7[BP08℄ Franz Baader and Rafael Pe~naloza. Automata-based axiom pinpointing.In Alessandro Armando, Peter Baumgartner, and Gilles Dowek, editors,Proeedings of the International Joint Conferene on Automated Reason-ing (IJCAR 2008), volume 4667 of Leture Notes in Arti�ial Intelli-gene, pages 226{241, Sydney, Australia, 2008. Springer-Verlag. Cited inpage(s) 8[BP09℄ Franz Baader and Rafael Pe~naloza. Axiom pinpointing in generaltableaux. Journal of Logi and Computation, 2009. Speial Issue:Tableaux'07. To appear. Cited in page(s) 7[BPS07a℄ Franz Baader, Rafael Pe~naloza, and Boontawee Suntisrivaraporn. Pin-pointing in the desription logi EL+. In Joahim Hertzberg, MihaelBeetz, and Roman Englert, editors, Proeedings of the 30th German An-nual Conferene on Arti�ial Intelligene (KI'07), volume 4667 of LetureNotes in Arti�ial Intelligene, pages 52{67, Osnabr�uk, Germany, 2007.Springer-Verlag. Cited in page(s) 8, 104, 105, 107, 112, 117[BPS07b℄ Franz Baader, Rafael Pe~naloza, and Boontawee Suntisrivaraporn. Pin-pointing in the desription logi EL. In Diego Calvanese, Enrio Franoni,Volker Haarslev, Domenio Lembo, Boris Motik, Anni-Yasmin Turhan,and Sergio Tessaris, editors, Proeedings of the 2007 Desription LogiWorkshop (DL 2007), volume 250 of CEUR-WS, Brixen-Bressanone,Italy, 2007. Cited in page(s) 8[Bra04a℄ Sebastian Brandt. On subsumption and instane problem in ELH w.r.t.general TBoxes. In Volker Haarslev and Ralf M�oller, editors, Proeed-ings of the 2004 Desription Logi Workshop (DL 2004), volume 104.CEUR Eletroni Workshop Proeedings, http://eur-ws.org/Vol-104/,2004. Cited in page(s) 19[Bra04b℄ Sebastian Brandt. Polynomial time reasoning in a desription logi withexistential restritions, GCI axioms, and|what else? In Ramon L�opezde M�antaras and Lorenza Saitta, editors, Proeedings of the 16th EuropeanConferene on Arti�ial Intelligene (ECAI 2004), pages 298{302, 2004.Cited in page(s) 3

134 BIBLIOGRAPHY[Bru05℄ Renato Bruni. On exat seletion of minimally unsatis�able subformu-lae. Annals of Mathematis and Arti�ial Intelligene, 43(1):35{50, 2005.Cited in page(s) 10[BS90℄ Ravi B. Boppana and Mihael Sipser. The omplexity of �nite fun-tions. In Handbook of theoretial omputer siene (vol. A): algorithmsand omplexity, pages 757{804, Cambridge, MA, USA, 1990. The MITPress. Cited in page(s) 117[BS01℄ Franz Baader and Ulrike Sattler. An overview of tableau algorithms fordesription logis. Studia Logia, 69:5{40, 2001. Cited in page(s) 7, 18,22[BS05℄ James Bailey and Peter J. Stukey. Disovery of minimal unsatis�-able subsets of onstraints using hitting set dualization. In Manuel V.Hermenegildo and Daniel Cabeza, editors, Proeedings of the 7th In-ternational Symposium on Pratial Aspets of Delarative Languages(PADL'05), volume 3350 of Leture Notes in Computer Siene, pages174{186, Long Beah, CA, USA, 2005. Springer-Verlag. Cited in page(s) 9[BS08℄ Franz Baader and Boontawee Suntisrivaraporn. Debugging SNOMEDCT using axiom pinpointing in the desription logi EL+. In Proeedingsof the 3rd Knowledge Representation in Mediine (KR-MED'08), volume410 of CEUR-WS, 2008. Cited in page(s) 4, 9, 105[BT01℄ Franz Baader and Stephan Tobies. The inverse method implements theautomata approah for modal satis�ability. In Rajeev Gor�e, Alexan-der Leitsh, and Tobias Nipkow, editors, Proeedings of the InternationalJoint Conferene on Automated Reasoning (IJCAR 2001), volume 2083 ofLeture Notes in Arti�ial Intelligene, pages 92{106, Siena, Italy, 2001.Springer-Verlag. Cited in page(s) 9, 26[CD91℄ John W. Chinnek and Erik W. Dravnieks. Loating minimal infeasi-ble onstraint sets in linear programs. ORSA Journal on Computing,3(2):157{168, 1991. Cited in page(s) 10[CDGL99℄ Diego Calvanese, Giuseppe De Giaomo, and Maurizio Lenzerini. Reason-ing in expressive desription logis with �xpoints based on automata onin�nite trees. In Proeedings of the 16th Interntional Joint Conferene onArti�ial Intelligene (IJCAI'99), pages 84{89, 1999. Cited in page(s) 9[CDGL02℄ Diego Calvanese, Giuseppe De Giaomo, and Maurizio Lenzerini. 2ATAsmake DLs easy. In Proeedings of the 2002 Desription Logi Workshop(DL 2002), pages 107{118, 2002. Cited in page(s) 9[Chi97℄ John W. Chinnek. Finding a useful subset of onstraints for analysis inan infeasible linear program. INFORMS Journal on Computing, 9(2):164{174, 1997. Cited in page(s) 10, 104, 105

BIBLIOGRAPHY 135[Dav04℄ Martin Davis. The Undeidable: Basi Papers on Undeidable Proposi-tions, Unsolvable Problems and Computable Funtions. Dover Publia-tions, Inorporated, 2004. Cited in page(s) 118[DDB98℄ Gennady Davydov, Inna Davydova, and Hans Kleine B�uning. An eÆientalgorithm for the minimal unsatis�ability problem for a sublass of CNF.Annals of Mathematis and Arti�ial Intelligene, 23(3{4):229{245, 1998.Cited in page(s) 10[dK86a℄ Johan de Kleer. An assumption-based TMS. Arti�ial Intelligene,28(2):127{162, 1986. Cited in page(s) 10[dK86b℄ Johan de Kleer. Extending the ATMS. Arti�ial Intelligene, 28(2):163{196, 1986. Cited in page(s) 10[dK86℄ Johan de Kleer. Problem solving with the ATMS. Arti�ial Intelligene,28(2):197{224, 1986. Cited in page(s) 10[DK06℄ Manfred Droste and Dietrih Kuske. Skew and in�nitary formal powerseries. Theoretial Computer Siene, 366(3):199{227, 2006. Cited inpage(s) 80[DKR08℄ Manfred Droste, Werner Kuih, and George Rahonis. Multi-valued MSOlogis over words and trees. Fundamenta Informatiae, 84(3,4):305{327,2008. Cited in page(s) 9, 76, 83, 98, 102[DR06℄ Manfred Droste and George Rahonis. Weighted automata and weightedlogis on in�nite words. In Osar H. Ibarra and Zhe Dang, editors, Pro-eedings of the 10th International Conferene on Developments of Lan-guage Theory (DLT 2006), volume 4036 of Leture Notes in ComputerSiene, pages 49{58, Santa Barbara, CA, USA, 2006. Springer-Verlag.Cited in page(s) 80[DSV08℄ Manfred Droste, Jaques Sakarovith, and Heiko Vogler. Weighted au-tomata with disounting. Information Proessing Letters, 108:23{28,2008. Cited in page(s) 80[EG91℄ Thomas Eiter and Georg Gottlob. Identifying the minimal transversalsof a hypergraph and related problems. Tehnial Report CD-TR 91/16,Christian Doppler Labor f�ur Expertensysteme, TU-Wien, 1991. Cited inpage(s) 107, 117[EG95a℄ Thomas Eiter and Georg Gottlob. The omplexity of logi-based abdu-tion. Journal of the ACM, 42(1):3{42, 1995. Cited in page(s) 10, 106[EG95b℄ Thomas Eiter and Georg Gottlob. Identifying the minimal transversalsof a hypergraph and related problems. SIAM Journal on Computing,24(6):1278{1304, 1995. Cited in page(s) 107

136 BIBLIOGRAPHY[EKM61℄ Rolf Eberle, David Kaplan, and Rihard Montague. Hempel and oppen-heim on explanation. Philosophy of Siene, 28(4):418{428, 1961. Citedin page(s) 2[EM02℄ Thomas Eiter and Kazuhisa Makino. On omputing all abdutive ex-planations. In Proeedings of the 18th National Conferene on Arti�ialIntelligene (AAAI 2005), pages 62{67, Alberta, Canada, 2002. AAAIPress/The MIT Press. Cited in page(s) 10[FGN90℄ Gerhard Friedrih, Georg Gottlob, andWolfgang Nejdl. Hypothesis lassi-�ation, abdutive diagnosis and therapy. In Georg Gottlob and WolfgangNejdl, editors, Proeedings of the International Workshop on Expert Sys-tems in Engineering, Priniples and Appliations, volume 462 of LetureNotes in Computer Siene, pages 69{78, Viena, Austria, 1990. Springer-Verlag. Cited in page(s) 106[GHN+04℄ Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliveras,and Cesare Tinelli. DPLL(T): Fast deision proedures. In R. Alur andD. Peled, editors, Proeedings of the 16th International Conferene onComputer Aided Veri�ation (CAV'04), volume 3114 of Leture Notes inComputer Siene, pages 175{188, Boston, MA, USA, 2004. Springer-Verlag. Cited in page(s) 10[GJ79℄ Mihael R. Garey and David S. Johnson. Computers and Intratability |A guide to NP-ompleteness. W. H. Freeman and Company, San Franiso(CA, USA), 1979. Cited in page(s) 36, 94, 107[GO01℄ Paul Gastin and Denis Oddoux. Fast LTL to B�uhi automata transla-tion. In G�erard Berry, Hubert Comon, and Alain Finkel, editors, Proeed-ings of the 13th International Conferene on Computer Aided Veri�ation(CAV'01), volume 2102 of Leture Notes in Computer Siene, pages 53{65, Paris, Frane, 2001. Springer-Verlag. Cited in page(s) 9[GPSS80℄ Dov M. Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi.On the temporal analysis of fairness. In Proeedings of the 7th ACMSIGACT-SIGPLAN Symposium on Priniples of Programming Languages(POPL'80), pages 163{173, 1980. Cited in page(s) 16[GPVW95℄ Rob Gerth, Doron Peled, Moshe Y. Vardi, and Pierre Wolper. Sim-ple on-the-y automati veri�ation of linear temporal logi. In ProtoolSpei�ation Testing and Veri�ation, pages 3{18, Warsaw, Poland, 1995.Chapman & Hall. Cited in page(s) 9[GR90℄ John Gleeson and Jennifer Ryan. Identifying minimally infeasible subsys-tems of inequalities. INFORMS Journal on Computing, 2(1):61{63, 1990.Cited in page(s) 10[Gr�a98℄ George Gr�atzer. General Lattie Theory. Birkh�auser, Basel, seond editionedition, 1998. Cited in page(s) 79, 99

BIBLIOGRAPHY 137[HB91℄ Bernhard Hollunder and Franz Baader. Qualifying number restritions inonept languages. In James F. Allen, Rihard Fikes, and Erik Sandewall,editors, Proeedings of the 2nd International Conferene on the Prini-ples of Knowledge Representation and Reasoning (KR'91), pages 335{346, Cambridge, MA, USA, 1991. Morgan Kaufmann, Los Altos. Citedin page(s) 67[Hem65℄ Carl G. Hempel. Aspets of Sienti� Explanation (and Other Essays).Free Press, New York, 1965. Cited in page(s) 2[HKS05℄ Ian Horroks, Oliver Kutz, and Ulrike Sattler. The irresistible SRIQ. InProeedings of OWL: Experienes and Diretions, Galway, Ireland, 2005.Cited in page(s) 14[HKS06℄ Ian Horroks, Oliver Kutz, and Ulrike Sattler. The even more irresistibleSROIQ. In Patrik Doherty, John Mylopoulos, and Christopher A. Welty,editors, Proeedings of the 10th International Conferene on Priniples ofKnowledge Representation and Reasoning (KR'2006), pages 57{67, LakeDistrit, UK, 2006. AAAI Press/The MIT Press. Cited in page(s) 14[HM01℄ Volker Haarslev and Ralf M�oller. RACER system desription. In Pro-eedings of the International Joint Conferene on Automated Reasoning(IJCAR 2001), 2001. Cited in page(s) 9[HO48℄ Carl G. Hempel and Paul Oppenheim. Studies in the logi of explanation.Philosophy of Siene, 15(2):135{175, 1948. Cited in page(s) 2, 3, 5[Hol96℄ Bernhard Hollunder. Consisteny heking redued to satis�ability ofonepts in terminologial systems. Annals of Mathematis and Arti�ialIntelligene, 18(2{4):133{157, 1996. Cited in page(s) 8, 19[Hol97℄ Gerard J. Holzmann. The model heker SPIN. IEEE Transations onSoftware Engineering, 23(5):279{295, 1997. Cited in page(s) 9[Hor98℄ Ian Horroks. Using an expressive desription logi: FaCT or �tion? InAnthony G. Cohn, Lenhard K. Shubert, and Stuart C. Shapiro, editors,Proeedings of the 6th International Conferene on Priniples of Knowl-edge Representation and Reasoning (KR'98), pages 636{647, Trento, Italy,1998. Cited in page(s) 9, 23[HPS08℄ Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Laoni and preisejusti�ations in owl. In Amit P. Sheth, Ste�en Staab, Mike Dean, Mas-simo Paolui, Diana Maynard, Timothy W. Finin, and KrishnaprasadThirunarayan, editors, Proeedings of the 7th International Semanti WebConferene (ISWC'08), volume 5318 of Leture Notes in Computer Si-ene, pages 323{338, Karlsruhe, Germany, 2008. Springer-Verlag. Citedin page(s) 8, 10

138 BIBLIOGRAPHY[HPS09℄ Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Lemmas for justi�-ations in owl. In Bernardo Cuena Grau, Ian Horroks, Boris Motik, andUlrike Sattler, editors, Proeedings of the 2009 Desription Logi Work-shop (DL 2009), volume 477 of CEUR-WS, 2009. Cited in page(s) 10[HPSvH03℄ Ian Horroks, Peter F. Patel-Shneider, and Frank van Harmelen. FromSHIQ and RDF to OWL: The making of a web ontology language. Journalof Web Semantis, 1(1):7{26, 2003. Cited in page(s) 3[HS99℄ Ian Horroks and Ulrike Sattler. A desription logi with transitive andinverse roles and role hierarhies. Journal of Logi and Computation,9(3):385{410, 1999. Cited in page(s) 24, 65, 67[HS04℄ Ian Horroks and Ulrike Sattler. Deidability of SHIQ with omplex roleinlusion axioms. Arti�ial Intelligene, 160(1):79{104, 2004. Cited inpage(s) 3, 14[HST00℄ Ian Horroks, Ulrike Sattler, and Stefan Tobies. Pratial reasoning forvery expressive desription logis. Journal of the Interest Group in Pureand Applied Logi, 8(3):239{264, 2000. Cited in page(s) 3, 67[JYP88℄ David S. Johnson, Mihalis Yannakakis, and Christos H. Papadimitriou.On generating all maximal independent sets. Information Proessing Let-ters, 27(3):119{123, 1988. Cited in page(s) 106, 107, 114[KL07℄ Orna Kupferman and Yoad Lustig. Lattie automata. In Byron Cook andAndreas Podelski, editors, Proeedings of the 8th International Confer-ene on Veri�ation, Model Cheking, and Abstrat Interpretation (VM-CAI'07), volume 4349 of Leture Notes in Arti�ial Intelligene, pages199{213, Nie, Frane, 2007. Springer-Verlag. Cited in page(s) 9[KPHS07℄ Aditya Kalyanpur, Bijan Parsia, Matthew Horridge, and Evren Sirin.Finding all justi�ations of OWL DL entailments. In Karl Aberer, Key-Sun Choi, Natasha Fridman Noy, Dean Allemang, Kyung-Il Lee, LyndonJ. B. Nixon, Jennifer Golbek, Peter Mika, Diana Maynard, Riihiro Mi-zoguhi, Guus Shreiber, and Philippe Cudr�e-Mauroux, editors, Proeed-ings of the 6th International Semanti Web Conferene and 2nd AsianSemanti Web Conferene, ISWC 2007 + ASWC 2007, volume 4825 ofLeture Notes in Computer Siene, pages 267{280, Busan, Korea, 2007.Springer-Verlag. Cited in page(s) 9, 105[KPSG06℄ Aditya Kalyanpur, Bijan Parsia, Evren Sirin, and Bernardo Cuena Grau.Repairing unsatis�able onepts in OWL ontologies. In York Sure andJohn Domingue, editors, Proeedings of the 3rd European Semanti WebConferene (ESWC'06), volume 4011 of Leture Notes in Computer Si-ene, pages 170{184, Budva, Montenegro, 2006. Springer-Verlag. Cited inpage(s) 104

BIBLIOGRAPHY 139[KSS00℄ Dimitris J. Kavvadias, Martha Sideri, and Elias C. Stavropoulos. Gener-ating all maximal models of a Boolean expression. Information ProessingLetters, 74(3{4):157{162, 2000. Cited in page(s) 107[KW88℄ Mauriio Karhmer and Avi Wigderson. Monotone iruits for onne-tivity require super-logarithmi depth. In Proeedings of the 20th ACMSIGACT Symposium on Theory of Computing (STOC'88), pages 539{550, Chiago, Illinois, USA, 1988. ACM Press and Addison Wesley. Citedin page(s) 117[KW90℄ Mauriio Karhmer and Avi Wigderson. Monotone iruits for onne-tivity require super-logarithmi depth. SIAM Journal on Disrete Math-ematis, 3(2):255{265, 1990. Cited in page(s) 117[Lei97℄ Alexander Leitsh. The Resolution Calulus. Springer-Verlag, 1997. Citedin page(s) 7[LMP06℄ Kevin Lee, Thomas Meyer, and Je� Z. Pan. Computing maximally sat-is�able terminologies for the desription logi ALC with GCIs. In BijanParsia, Ulrike Sattler, and David Toman, editors, Proeedings of the 2006Desription Logi Workshop (DL 2006), Lake Distrit, UK, 2006. Citedin page(s) 8, 9, 34[LS00℄ Carsten Lutz and Ulrike Sattler. The omplexity of reasoning withboolean modal logi. In Proeedings of Advanes in Modal Logi 2000(AiML 2000), 2000. Cited in page(s) 9[LS04℄ Inês Lyne and Jo~ao P. Marques Silva. On omputing minimum un-satis�able ores. In Proeedings of the 7th International Conferene onTheory and Appliations of Satis�ability Testing (SAT'04), Vanouver,BC, Canada, 2004. Cited in page(s) 10[LS05℄ Mark H. LiÆton and Karem A. Sakallah. On �nding all minimally unsat-is�able subformulas. In Fahiem Bahus and Toby Walsh, editors, Pro-eedings of the 8th International Conferene on Theory and Appliationsof Satis�ability Testing (SAT'05), volume 3569 of Leture Notes in Com-puter Siene, pages 173{186. Springer-Verlag, 2005. Cited in page(s) 9,36[LST99℄ Carsten Lutz, Ulrike Sattler, and Stephan Tobies. A suggestion for ann-ary desription logi. In Patrik Lambrix, Alex Borgida, MaurizioLenzerini, Ralf M�oller, and Peter Patel-Shneider, editors, Proeedings ofthe 1999 Desription Logi Workshop (DL'99), pages 81{85, Linkoeping,Sweden, 1999. CEUR Eletroni Workshop Proeedings, http://eur-ws.org/Vol-22/. Cited in page(s) 56[Lut99℄ Carsten Lutz. Complexity of terminologial reasoning revisited. In Pro-eedings of the 6th International Conferene on Logi for Programming

140 BIBLIOGRAPHYand Automated Reasoning (LPAR'99), volume 1705 of Leture Notes inArti�ial Intelligene, pages 181{200. Springer-Verlag, 1999. Cited inpage(s) 14, 20, 21[Man08℄ Eleni G. Mandrali. Weighted tree automata with disounting. Master'sthesis, Aristotle University of Thessaloniki, 2008. Cited in page(s) 80[Mil43℄ John Stuart Mill. A System of Logi. John W. Parker, London, UK, 1843.Cited in page(s) 2[Min81℄ Marvin Minsky. A framework for representing knowledge. In John Hauge-land, editor, Mind Design. The MIT Press, 1981. A longer version ap-peared in The Psyhology of Computer Vision (1975). Republished in[BL85℄. Cited in page(s) 3[MLBP06℄ Thomas Meyer, Kevin Lee, Rihard Booth, and Je� Z. Pan. Find-ing maximally satis�able terminologies for the desription logi ALC.In Proeedings of the 21st National Conferene on Arti�ial Intelligene(AAAI 2006). AAAI Press/The MIT Press, 2006. Cited in page(s) 34[Neb90℄ Bernhard Nebel. Terminologial reasoning is inherently intratable. Ar-ti�ial Intelligene, 43:235{249, 1990. Cited in page(s) 14, 20[NO07℄ Robert Nieuwenhuis and Albert Oliveras. Fast ongruene losure andextensions. Information and Computation, 205(4):557{580, 2007. Citedin page(s) 7, 37[NOT06℄ Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SATand SAT Modulo Theories: From an abstrat Davis{Putnam{Logemann{Loveland proedure to DPLL(T). Journal of the ACM, 53(6):937{977,2006. Cited in page(s) 10[Pe~n08℄ Rafael Pe~naloza. Automata-based pinpointing for DLs. In Franz Baader,Carsten Lutz, and Boris Motik, editors, Proeedings of the 2008 Desrip-tion Logi Workshop (DL 2008), volume 353 of CEUR-WS, Dresden, Ger-many, 2008. Cited in page(s) 8[Pnu77℄ Amir Pnueli. The temporal logi of programs. In Proeedings of the 18thAnnual Symposium on the Foundations of Computer Siene (FOCS'77),pages 46{57, 1977. Cited in page(s) 16[Pop35℄ Karl Popper. Logik der Forshung. Springer, Vienna, Austria, 1935. Citedin page(s) 2[PSK05℄ Bijan Parsia, Evren Sirin, and Aditya Kalyanpur. Debugging OWL on-tologies. In Allan Ellis and Tatsuya Hagino, editors, Proeedings of the14th International Conferene on World Wide Web (WWW'05), pages633{640. ACM, 2005. Cited in page(s) 8, 34

BIBLIOGRAPHY 141[Qui67℄ M. Ross Quillian. Word onepts: A theory and simulation of some basiapabilities. Behavioral Siene, 12:410{430, 1967. Republished in [BL85℄.Cited in page(s) 3[Rab70℄ Mihael O. Rabin. Weakly de�nable relations and speial automata. InY. Bar-Hillel, editor, Proeedings of Symposium on Mathematial Logiand Foundations of Set Theory, pages 1{23. North-Holland Publ. Co.,Amsterdam, 1970. Cited in page(s) 26[Rah07℄ George Rahonis. Weighted muller tree automata and weighted logis.Journal of Automata, Languages and Combinatoris, 12(4):455{483, 2007.Cited in page(s) 80[Rei87℄ Raymond Reiter. A theory of diagnosis from �rst priniples. Arti�ialIntelligene, 32(1):57{95, 1987. Cited in page(s) 8, 9, 105[Rob65℄ John Alan Robinson. A mahine-oriented logi based on the resolutionpriniple. Journal of the ACM, 12:23{41, 1965. Cited in page(s) 7[Rym92℄ Ron Rymon. Searh through systemati set enumeration. In BernhardNebel, Charles Rih, and William R. Swartout, editors, Proeedings ofthe 3rd International Conferene on the Priniples of Knowledge Repre-sentation and Reasoning (KR'92), pages 539{550, Cambridge, MA, USA,1992. Cited in page(s) 105[Sal89℄ Wesley C. Salmon. Four Deades of Sienti� Explanation. University ofMinnesota Press, 1989. Cited in page(s) 2[SC85℄ A. Prasad Sistla and E. C. Clarke. The omplexity of propositional lin-ear temporal logi. Journal of the ACM, 32(3):733{749, 1985. Cited inpage(s) 102, 103[SC03℄ Stefan Shlobah and Ronald Cornet. Non-standard reasoning servies forthe debugging of desription logi terminologies. In Georg Gottlob andToby Walsh, editors, Proeedings of the 18th International Joint Confer-ene on Arti�ial Intelligene (IJCAI 2003), pages 355{362, Aapulo,Mexio, 2003. Morgan Kaufmann, Los Altos. Cited in page(s) 8, 33, 34,36[Sh91℄ Klaus Shild. A orrespondene theory for terminologial logis: Pre-liminary report. In Proeedings of the 12th International Joint Confer-ene on Arti�ial Intelligene (IJCAI'91), pages 466{471, 1991. Cited inpage(s) 104[Sh94℄ Klaus Shild. Terminologial yles and the propositional �-alulus. InJ. Doyle, E. Sandewall, and P. Torasso, editors, Proeedings of the 4thInternational Conferene on the Priniples of Knowledge Representationand Reasoning (KR'94), pages 509{520, Bonn (Germany), 1994. MorganKaufmann, Los Altos. Cited in page(s) 95, 102

142 BIBLIOGRAPHY[Sh96℄ Gerhard Shurz. Sienti� explanation: A ritial survey. Foundations ofSiene, 3:429{465, 1996. Cited in page(s) 2[Sh05℄ Stefan Shlobah. Diagnosing terminologies. In Manuela M. Veloso andSubbarao Kambhampati, editors, Proeedings of the 20th National Con-ferene on Arti�ial Intelligene (AAAI 2005), pages 670{675. AAAIPress/The MIT Press, 2005. Cited in page(s) 8, 111[Sei94℄ Helmut Seidl. Finite tree automata with ost funtions. Theoretial Com-puter Siene, 126(1):113{142, 1994. Cited in page(s) 79[SHCH07℄ Stefan Shlobah, Zhisheng Huang, Ronald Cornet, and Frank Harmelen.Debugging inoherent terminologies. Journal of Automated Reasoning,39(3):317{349, 2007. Cited in page(s) 9, 105, 111[SP04℄ Evren Sirin and Bijan Parsia. Pellet: An OWL DL reasoner. In Proeed-ings of the 2004 Desription Logi Workshop (DL 2004), pages 212{213,2004. Cited in page(s) 9[Spa05℄ Kent A. Spakman. Rates of hange in a large linial terminology:Three years of experiene with SNOMED linial terms. In Proeedings ofthe 2005 AMIA Annual Symposium (AMIA 2005), pages 714{718. Han-ley&Belfus, 2005. Cited in page(s) 4[SPSW01℄ Mihael Q. Stearns, Colin Prie, Kent A. Spakman, and Amy Y. Wang.SNOMED linial terms: Overview of the development proess andprojet status. In Proeedings of the 2001 AMIA Annual Symposium(AMIA 2001), pages 662{666. Hanley&Belfus, 2001. Cited in page(s) 4[SQJH08℄ Boontawee Suntisrivaraporn, Guilin Qi, Qiu Ji, and Peter Haase. Amodularization-based approah to �nding all justi�ations for owl dl en-tailments. In John Domingue and Chutiporn Anutariya, editors, Proeed-ings of the 3th Asian Semanti Web Conferene (ASWC'08), volume 5367of Leture Notes in Computer Siene, pages 1{15. Springer-Verlag, 2008.Cited in page(s) 105[SS91℄ Manfred Shmidt-Shau� and Gert Smolka. Attributive onept desrip-tions with omplements. Arti�ial Intelligene, 48(1):1{26, 1991. Citedin page(s) 8, 12[ST07℄ Renate A. Shmidt and Dmitry Tishkovsky. Using tableau to deideexpressive desription logis with role negation. In Karl Aberer, Key-Sun Choi, Natasha Fridman Noy, Dean Allemang, Kyung-Il Lee, Lyn-don J. B. Nixon, Jennifer Golbek, Peter Mika, Diana Maynard, RiihiroMizoguhi, Guus Shreiber, and Philippe Cudr�e-Mauroux, editors, TheSemanti Web, 6th International Semanti Web Conferene, 2nd AsianSemanti Web Conferene, ISWC 2007 + ASWC 2007, Busan, Korea,November 11-15, 2007, volume 4825 of Leture Notes in Computer Si-ene, pages 438{451. Springer, 2007. Cited in page(s) 9

BIBLIOGRAPHY 143[ST08℄ Renate A. Shmidt and Dmitry Tishkovsky. A general tableau method fordeiding desription logis, modal logis and related �rst-order fragments.In Alessandro Armando, Peter Baumgartner, and Gilles Dowek, editors,Proeedings of the International Joint Conferene on Automated Reason-ing (IJCAR 2008), volume 5195 of Leture Notes in Computer Siene,pages 194{209, Sydney, Australia, 2008. Springer. Cited in page(s) 9[Sun09℄ Boontawee Suntisrivaraporn. Polynomial-time Reasoning Support for De-sign and Maintenane of Large-sale Biomedial Ontologies. PhD thesis,Tehnishe Universit�at Dresden, 2009. Cited in page(s) 3, 9, 105, 107,112[Tar55℄ Alfred Tarski. A lattie-theoretial �xpoint theorem and its appliations.Pai� Journal of Mathematis, 5:285{309, 1955. Cited in page(s) 85[TMJ96℄ Mehrdad Tamiz, S. J. Mardle, and Dylan F. Jones. Deteting IIS in infea-sible linear programmes using tehniques from goal programming. Com-puters and Operations Researh, 23(2):113{119, 1996. Cited in page(s) 10,105[Tur36℄ Alan Turing. On omputable numbers, with an appliation to the Ent-sheidungsproblem. Proeedings of the London Mathematial Soiety,2(42):230{265, 1936. Cited in page(s) 118[Val79a℄ Leslie G. Valiant. The omplexity of omputing the permanent. Theoret-ial Computer Siene, 8(2):189{201, 1979. Cited in page(s) 110[Val79b℄ Leslie G. Valiant. The omplexity of enumeration and reliability problems.SIAM Journal on Computing, 8(3):410{421, 1979. Cited in page(s) 110,111, 117[Var96℄ Moshe Y. Vardi. An automata-theoreti approah to linear temporal logi.In Faron Moller and Graham Birtwistle, editors, Logis for Conurreny:Struture versus Automata, volume 1043 of Leture Notes in ComputerSiene, pages 238{266. Springer-Verlag, 1996. Cited in page(s) 11[VW84℄ Moshe Y. Vardi and Pierre Wolper. Automata-theoreti tehniques formodal logis of programs. In Proeedings of the 16th ACM SIGACT Sym-posium on Theory of Computing (STOC'84), pages 446{455, 1984. Citedin page(s) 26[VW86℄ Moshe Y. Vardi and Pierre Wolper. Automata-theoreti tehniques formodal logis of programs. Journal of Computer and System Sienes,32:183{221, 1986. A preliminary version appeared in Pro. of the 16thACM SIGACT Symp. on Theory of Computing (STOC'84). Cited inpage(s) 26, 84, 96[WVS83℄ Pierre Wolper, Moshe Y. Vardi, and A. Prasad Sistla. Reasoning aboutin�nite omputation paths. In Proeedings of the 24th Annual Symposium

144 BIBLIOGRAPHYof Foundations of Computer Siene (SFCS'83), pages 185{194, Washing-ton, DC, USA, 1983. IEEE Computer Soiety. Cited in page(s) 7, 29,30[ZM03℄ Lintao Zhang and Sharad Malik. Validating SAT solvers using an indepen-dent resolution-based heker: Pratial implementations and other ap-pliations. In Proeedings of the 2003 Conferene on Design, Automationand Test in Europe (DATE'03), pages 10880{10885, Munih, Germany,2003. IEEE Computer Soiety Press. Cited in page(s) 10

