
Reasoning Services for the Maintenance
and Flexible Access to Description Logic

Ontologies

an Stelle einer Habilitationsschrift

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingereicht von
Dr.-Ing. Anni-Yasmin Turhan

Betreuender Hochschullehrer: Prof. Dr.-Ing. Franz Baader

Dresden, November 2013

Contents

1 Introduction 1
1.1 Basic Notions of Description Logics 2
1.2 Reasoning in Description Logics 5
1.3 Generalization Inferences for DLs 7
1.4 Reasoning in EL by Completion 8
1.5 Overview of the Thesis . 9

2 DL Standard Reasoning for Situation Recognition in Context-
aware Systems 11

3 Computing Role-depth Bounded Generalizations 15
3.1 The Role-depth Bounded LCS 15
3.2 The Role-depth Bounded MSC 17

4 Non-standard Inferences for DLs with Subjective Probabil-
ities 19
4.1 Generalizations in Prob-EL01c 20
4.2 Computing Explanations in Prob-EL01c 21

5 Computing Exact Generalizations in EL 22
5.1 Conditions for the Existence of the LCS w.r.t. General EL-

TBoxes . 22
5.2 Conditions for the Existence of the MSC w.r.t. Cyclic EL-

ABoxes . 23

6 Concept Similarity and Relaxed Instance Queries 24
6.1 A Framework for EL-concept Similarity Measures 24
6.2 Towards Instance Queries for Concepts Relaxed by Similarity

Measures . 25

7 Conclusions and Outlook 27

Bibliography 28

Appendix: Submitted Publications 37

1

1 Introduction

In Computer Science logics play an important role in many fields. Applied
Computer Science employs logical formalisms and their reasoning services in
data base systems or to verify properties of complex software and hardware
systems. In theoretical computer science logics are investigated in regard
to their close link to automata. Their expressivity is subject in the field of
descriptive complexity and the reasoning algorithms for logics are assessed
by means of computational complexity. In the field of Artificial Intelli-
gence logics and their reasoning problems are investigated since the early
beginnings—in particular in the field of knowledge representation. In logic-
based knowledge representation one of the main research goals is to devise
formalisms for which reasoning services that are vital to applications can
be solved by sound, complete and terminating algorithms—and ideally have
low computational complexity. By reasoning services in general we refer to
tasks that infer from a given representation of facts new facts. This thesis
studies some of these reasoning services in the context of formal ontology
languages.

Description Logics (DLs) [7] are a family of knowledge representation
formalisms with model-based semantics that allow to represent concepts and
(binary) relations from an application domain. A DL knowledge base (KB)
consists of a TBox, which contains intensional knowledge such as concept
definitions, and an ABox, which contains extensional knowledge and is used
to describe individual facts. Essentially, a TBox is a first order logic (FOL)
theory and the ABox is a set of ground facts.

DLs are closely related to Modal Logics or Hybrid Logics [74, 9] and most
DLs are decidable fragments of First Order Logic. DLs are investigated with
respect to different reasoning services. A main research goal is to devise DLs
that provide sufficient expressivity while allowing for reasoning algorithms
with low computational complexity. Reasoning algorithms for DLs that
offer a good trade-off for these criteria are implemented in highly optimized
reasoning systems. This motivated the choice of DLs as the basis for the
ontology web language OWL standardized by the W3C.

From the mid-nineties on, the main research effort in the field of DLs was
to investigate highly expressive DLs for which reasoning is still decidable [41,
81, 13, 42, 40, 43]. One of these highly expressive DL is SROIQ that allows
for reasoning in 2NExpTime [40, 45] and that is the DL underlying OWL 2
[64]. In the last decade so-called lightweight DLs, which have rather limited
expressivity, but allow for tractable reasoning procedures were investigated
as well. Lightweight DLs are tailored to yield efficient algorithms for a
particular reasoning problem. The DLs from the EL-family of DLs mostly
yield tractable reasoning algorithms for testing subsumption, i.e., for testing
whether one concept is more general than another [5, 6]. The DL EL++ is
a DL that still allows for subsumption tests in polynomial time and is a

2 1 INTRODUCTION

maximal DL with this property. EL++ is the DL underlying the OWL 2 EL
profile [64].

Flexible access to instance data in DL knowledge bases can be facilitated
by answering of conjunctive queries. Here the task is to evaluate over a DL
knowledge base (unions of) conjunctive queries, which correspond to the
select-project-join fragment of SQL. While for highly expressive DL this
task co-NP-hard [73, 34, 57], the DLs from the DL Lite family allow for
conjunctive query entailment1 in LogSpace [20, 21]—albeit at the cost of
severe restrictions on the expressivity. For applications with huge instance
data and only lightweight modelling of the background information this DL
can still be very useful. In fact, DL LiteR is the basis of the OWL 2 QL
profile [64].

The reasoner systems for OWL 2 and its profiles support standard rea-
soning tasks for DL KBs, which are used in many application domains.
Besides in the semantic web, geography or for context-aware systems DLs
are employed, most prominently, in the bio-medical field, where large on-
tologies are in use for more than a decade. For example, the well-known
ontologies Snomed [78] and the Gene Ontology [25] use only the expres-
sivity of the OWL 2 profile and they contain ten thousands of statements.
Now, building or maintaining such ontologies is certainly a non-trivial task
for users with little expertise in knowledge representation or logic and calls
for automated support. To this end, a number of so-called non-standard
inferences have been defined and investigated. This thesis presents results
on such non-standard inferences that can be employed for the maintenance
and flexible access to description logic ontologies.

1.1 Basic Notions of Description Logics

The main building blocks of a DL knowledge base are concepts. Each DL
provides a set of concept constructors, which allows to build complex con-
cepts. Starting from two disjoint sets: a set of concept names NC and a set of
role names NR, concepts can be built. In the DL EL, concept names A ∈ NC

and also the top concept > are EL-concepts. Complex concepts are defined
inductively. Let C and D be EL-concepts and r be a role name, then concept
conjunctions C uD and existential restrictions ∃r.C are EL-concepts.

The DL ALC extends EL by disjunction, value restrictions and negation,
which makes it a propositionally complete DL. It also provides the bottom
concept ⊥. ALC is extended to the highly expressive DL SROIQ by quali-
fied number restrictions and nominals. These concept constructors and their
syntax are shown in Table 1.

Concepts typically provide an intensional characterization of a set of
objects. Formally, the semantics of concepts are given by interpretations. An

1Query entailment is the decision problem corresponding to query answering

1.1 Basic Notions of Description Logics 3

Name Syntax Semantics

conjunction C uD (C uD)I = (CI ∩DI)
disjunction C tD (C tD)I = (CI ∪DI)
negation ¬C (¬C)I = ∆ \ CI

existential ∃r.C (∃r.C)I =
restriction {d ∈ ∆I | ∃e.(d, e) ∈ rI ∧ e ∈ CI}
value ∀r.C (∀r.C)I =
restriction {d ∈ ∆I | ∀e.(d, e) ∈ rI −→ e ∈ CI}
nominals {a} {a}I = {aI}
qualified at-least (≥ n r C) (≥ n r C)I = {d ∈ ∆I |
restriction ∃e1, . . . , en. ei 6= ej , 1 ≤ i < j ≤ n

∧ (d, ei) ∈ rI ∧ ei ∈ CI , 1 ≤ i ≤ n}
qualified at-most (≤ n r C) (≤ n r C)I =

(
¬(≥ n+1 r C)

)I
restriction

Table 1: DL Concept Constructors.

interpretation I = (∆I , ·I) is a pair consisting of an interpretation domain
∆I and a mapping function ·I . Concept names (A ∈ NC) are interpreted as
subsets of ∆I : AI ⊆ ∆I . Role names (r ∈ NR) are interpreted as binary
relations over ∆I : rI ⊆ ∆I ×∆I . The concept > is always interpreted as
the whole interpretation domain (>I = ∆I) and the bottom concept as the
empty set (⊥I = ∅). The interpretation function is extended to complex
concepts according to the semantics of concept constructors, which is shown
in the third column of Table 1.

In many DLs roles can be refined to model knowledge about binary rela-
tions from an application domain by role axioms. For instance, roles can be
declared to be transitive. Furthermore, some DLs allow to use simple role
inclusion axioms to state sub-role and super-role relationships, which to-
gether constitute the role hierarchy. Commonly used role axioms are shown
in Table 2. The DL SROIQ, for example, offers besides the mentioned
concept constructors also transitive roles, inverse roles, and complex role

Name Syntax Semantics

transitive role trans(r) (d, e) ∈ rI ∧ (e, f) ∈ rI −→ (d, f) ∈ rI

simple role inclusion r v s (d, e) ∈ rI −→ (d, e) ∈ sI

complex role inclusion r ◦ s v t (d, e) ∈ rI ∧ (e, f) ∈ sI −→ (d, f) ∈ tI

Table 2: DL Role Axioms.

4 1 INTRODUCTION

inclusion axioms. SROIQ is the DL corresponding to OWL 2.

The semantics of the role axioms are given in Table 2. A role axiom is
satisfied by an interpretation I, if I fulfills the conditions from the third
column of Table 2. Note that complex role inclusions can be used to express
transitive roles (t ◦ t v t) and simple role inclusion axioms, if the identity
relation is captured in a role id (id ◦ r v s).

The EL-family consists of EL and of DLs that extend EL, but that neither
offer value restrictions nor full negation. The DL that extends EL with
nominals is called ELO. Nominals allow to refer to individuals in complex
concepts. DLs with nominals correspond to Hybrid Logics. The extension of
EL with simple role inclusion axioms is called ELH and the one by complex
role inclusion axioms is called ELR. Some DLs allow to declare inverse roles,
where inv(r)I = {(e, d) | (d, e) ∈ rI}. The extension of EL by inverse roles
is called ELI. The DL ELOR extends EL by nominals and complex role
inclusions. ELOR extended by data types in turn yields EL++, which is the
DL underlying the OWL 2 EL profile of OWL 2.

A concept name can be assigned to a (complex) concept or two concepts
can be related to each other by general concept axioms.

Definition 1 (General concept axioms). Let C and D be concepts and A
a concept name. Then a statement of the form C v D is called a general
concept inclusion axiom (GCI). An interpretation I = (∆I , ·I) satisfies a
GCI C v D iff CI ⊆ DI

We use concept equivalence axioms, statements of the form C ≡ D, as
an abbreviation for the two GCIs C v D and D v C. If, in a concept equiv-
alence axiom the left-hand side is a concept name (A ≡ C, A ∈ NC), then
this kind of axiom is called a concept definition. Note, that the disjointness
of concepts, say C and D can be expressed by the GCI C u D v ⊥. Role
axioms and concept axioms are collected in the TBox.

Definition 2 (TBox, unfoldable TBox). A TBox T is a finite set of concept
axioms and role axioms. An unfoldable TBox is a TBox, where

• all concept axioms are concept definitions,

• each concept name appears at most once on the left-hand sides of a
concept axiom, and

• each concept definition is acyclic, i.e., the concept name on the left-
hand side is not referred to directly or indirectly in the right-hand side.

To distinguish unfoldable TBoxes from those that do not fulfill the con-
ditions for unfoldable TBoxes, these TBoxes are sometimes referred to as
general TBoxes. The concept names appearing on the left-hand sides in un-
foldable TBoxes are called defined concepts, whereas the remaining concept

1.2 Reasoning in Description Logics 5

names are called primitive concepts. TBoxes have model-based semantics.
An interpretation is a model of a TBox T , if each GCI and role axiom in T
is satisfied.

When using unfoldable TBoxes, the information on concepts from the
TBox can be treated by a pre-processing step. Concept definitions can be
unfolded, i.e., the defined concepts appearing in the left-hand side of the
concept definitions are replaced by the right-hand sides of their concept
definitions. This kind of replacement is done exhaustively when unfolding
a TBox. Due to the conditions for unfoldable TBoxes, this process always
terminates, but it may generate concepts of size exponential in the worst
case [66].

Assertions are statements that capture information on individual facts—
such as concept memberships or relationships to other individuals. NI is the
set of individual names and pairwise disjoint to NC and NR. Let a and b
be individual names ({a, b} ⊆ NI), C be a concept and r a role. Concept
assertions are statements of the form C(a). Role assertions are statements
of the form r(a, b). Let I = (∆I , ·I) be an interpretation. For individuals
interpretations are extended, so that they map every a ∈ NI to an aI ∈ ∆I .
A concept assertion C(a) is satisfied in an interpretation I, iff aI ∈ CI . A
role assertion r(a, b) is satisfied in an interpretation I, iff (aI , bI) ∈ rI .

Definition 3 (ABox, knowledge base). An ABox A is a finite set of concept
assertions and role assertions. An interpretation I is a model of an ABox
A, if it satisfies all assertions contained in A.

A knowledge base K is a pair (T ,A), where T is a TBox and A is an
ABox. An interpretation I is a model of a knowledge base K = (T ,A), if it
is a model of T and of A.

Sometimes we call a knowledge base an ontology. The model-based se-
mantics of knowledge bases are the basis for the reasoning services defined
for DLs.

1.2 Reasoning in Description Logics

Reasoning services allow to derive implicitly captured information from the
explicitly given. The classical reasoning problems underlying common such
services can be defined as follows.

Definition 4. Let C and D be concepts, a an individual, T a general TBox,
A an ABox and K = (T ,A).

Concept satisfiability: A concept C is satisfiable w.r.t. T iff CI 6= ∅ for
some model I of T .

Subsumption: A concept C is subsumed by a concept D w.r.t. T (denoted
C vT D) iff CI ⊆ DI for all models I of T .

6 1 INTRODUCTION

Concept equivalence: a concept C is equivalent to a concept D w.r.t. T
(denoted C ≡T D) iff CI = DI for all models I of T .

Knowledge base consistency: K is consistent iff it has a model.

Instance checking: a is an instance of C w.r.t. K (denoted K |= C(a)) iff
aI ∈ CI for all models I of K.

Obviously, concept equivalences can be tested by two subsumption tests
in the following way: C ≡T D iff C vT D and D vT C. In DL systems
complex reasoning services are offered, which are defined based on the above
reasoning problems as follows.

Classification: Given a TBox T . Compute the subsumption relationships
between all concept names in T .

Instance retrieval: Given a concept C and a knowledge base K = (T ,A),
compute all individuals a in A s.t. K |= C(a) holds.2

ABox realization: Given a knowledge base K = (T ,A). Compute for
each individual a in A the set of those concept names in K to which a
is an instance of.

The reasoning problems from Definition 4 can be reduced to each other, if
negation is provided in the DL under consideration (see [7, 83]). In fact, most
of these reductions can be done in polynomial time. Due to the reductions,
it suffices to investigate reasoning algorithms for only one of these reasoning
problems. For DLs that are extensions of ALC it is a common approach to
reduce the other reasoning problems to knowledge base consistency, which
is then tested by the tableaux method. Essentially, this method constructs a
model (or a model-like structure) that gives evidence to the consistency of
the KB.

For ALC the computational complexity for testing consistency of a KB
depends on whether general or unfoldable TBoxes are part of the KB. In case
of unfoldable TBoxes KB consistency is PSpace-complete while for general
TBoxes the complexity becomes ExpTime-complete. In case of SROIQ the
complexity rises to 2NExpTime [45].

Another reasoning service that has been intensively investigated in recent
years is answering (unions of) conjunctive queries. Intuitively, a conjunctive
query is a conjunction of assertions that may also contain variables, of which
some can be existentially quantified. Some of the variables in the conjunctive
query are so-called answer variables. If all occurrences of these variables are
replaced in the query by a tuple of individuals from the ABox such that
the obtained query is entailed by the KB, then this tuple of individuals is a
matcher for the query. Conjunctive query answering is to compute all such

2Instance retrieval is sometimes also called instance query.

1.3 Generalization Inferences for DLs 7

matchers. Answering conjunctive queries thus offers a much more powerful
way to query the KB, than instance retrieval, where the queries are limited
by the expressivity of the DL in use. For example, ALC only allows to
query for tree-shaped structures by the use of concepts in the query. In
contrast conjunctive queries allow to query about finite graph structures.
Query entailment tests whether a given query has a matcher in a given
KB. Query entailment is the decision problem corresponding to conjunctive
query answering.

The complexity of query entailment for ALC is ExpTime, if measured
w.r.t. the whole KB, whereas its data complexity (i.e. measured w.r.t. the
ABox alone) is co-NP-complete [57]. Conjunctive query answering in ex-
pressive DLs such as the DL corresponding to OWL 2 is 2ExpTime-hard
regarding combined complexity [57, 45], and coNP-hard for the data com-
plexity [73, 67]. For the lightweight profiles the data complexity for con-
junctive query answering is polynomial in case of OWL 2 EL [72, 51, 50]
and even in AC0 for OWL 2 QL [21].

1.3 Generalization Inferences for DLs

Generalization inferences are reasoning services that generalize either a group
of concepts or an individual into one concept. These inferences are partic-
ularly useful when building or structuring TBoxes. They allow to derive
a complex concept from a set of individuals that has all individuals from
the set as instances and thus allow to derive a new complex concept in
an example-driven way. This can be done by the bottom-up approach (see
[8, 19]) in two steps: first generalize each individual into a concept and then
generalizing all of these into a single concept. The first step in the bottom-
up approach is realized by the computation of the most specific concept,
initially defined in [24]. The second step is realized by the computation
of the least common subsumer, an inference initially defined in [23]. Both
inferences compute possibly complex concepts written in a target DL.

Definition 5 (least common subsumer, most specific concept). Let L be a
DL, C and D be L-concepts, T an L-TBox, A an L-ABox, K = (T , A)
and a an individual from A. A most specific concept (MSC) of a w.r.t. K
(denoted mscK(a)) is a concept E such that

• K |= E(a) and

• for each L-concept F holds: if K |= F (a), then E vT F .

A least common subsumer (LCS) of C and D w.r.t. T (denoted lcsT (C,D))
is an L-concept E such that

1. C vT E and D vT E and

2. for each L-concept F holds: if C vT F and D vT F , then E vT F .

8 1 INTRODUCTION

Since in DLs with conjunction the MSC and the LCS are unique modulo
equivalence, we speak about the LCS and the MSC, respectively. For DLs
that offer disjunction the LCS of a group of concepts is simply is their dis-
junction. Thus mostly sub-Boolean DLs are considered for the computation
of the LCS.

Computation algorithms for the LCS of concept (w.r.t. an empty TBox)
have been defined for EL and extensions of it in [8, 52]. These algorithms
represent the input concepts as labelled trees and use a characterization of
subsumption by homomorphisms between such trees.

1.4 Reasoning in EL by Completion

A reasoning procedure that computes classification for EL-TBoxes in poly-
nomial time is the completion algorithm [17, 5]. This algorithm proceeds in
three steps:

1. Transform the TBox into normal form.
An EL-TBox is in normal form, if it only contains GCIs of the form:

A1 v B, A1 uA2 v B, A1 v ∃r.A2 or ∃r.A1 v B.

where A1, A2 ∈ NC and D ∈ NC ∪ {⊥} appear in T .

2. Apply completion rules to completion sets. Two kinds of completion
sets are used: one for each named concept A in T (S(A)) and one for
pairs of named concepts and roles in T (S(A, r)). Initially, the algo-
rithm sets each S(A) = {A,>} and each (S(A, r) = ∅). The following
invariants hold during the application of the completion rules: (I1) if
B ∈ S(A) then A vT B and (I2) if B ∈ S(A, r) then A vT ∃r.B.

3. Read-off subsumption relationships from saturated completion sets.
Once the completion rules have been applied exhaustively, the follow-
ing holds:

• B ∈ S(A) iff A vT B and

• B ∈ S(A, r) iff A vT ∃r.B.

A more thorough introduction on classification by the completion method is
given in [83]. The completion method or variants thereof are implemented
in a number of DL reasoners—such as Cel [10], snorocket [54], jCel
[62, 61], and ELK3 [46]. The completion algorithm computes the canonical
model of the TBox.

Definition 6 (Canonical model [60]). Let C be a concept and T an EL-
TBox. The canonical model IC,T of C and T is defined as follows:

3ELK uses an optimized variant of completion that performs normalization and intro-
duction of completion sets ‘on demand’.

1.5 Overview of the Thesis 9

• ∆IC,T :={dC} ∪ {dA | ∃A ∈ NC ∩ (sub(C) ∪ sub(T))} ∪
{dC′ | ∃r.C ′ ∈ sub(C) ∪ sub(T)};

• AIC,T := {dD | D vT A}, for all A ∈ NC appearing in T or C;

• rIC,T := {(dD, dD′) | D vT ∃r.D′ for D′ ∈ sub(T)

or D ⊆R ∃r.D′ for D′ ∈ sub(C)} for all r ∈ NR appearing in

T or C;

Starting from the canonical model, the subsumption relation between
arbitrary EL-concepts (formulated over the signature of the TBox) can be
tested by simulations [60].

Definition 7 (Simulation). Let I1, I2 be interpretations and . be a relation
on ∆I1 × ∆I2. The relation . is a simulation between I1 and I2 if the
following conditions are satisfied:

• If e1 . e2 and e1 ∈ AI1, then e2 ∈ AI2 (A ∈ NC).

• If e1 . e2 and (e1, e
′
1) ∈ rI1, then there exists e′2 ∈ ∆I2 s.t.

(e2, e
′
2) ∈ rI2 and e′1 . e′2.

The completion method can be extended to an algorithm for ABox real-
ization [17, 5]. Even for this task the complexity stays polynomial [5]. The
completion procedures for EL have been lifted to several extensions of EL
[5, 6, 47].

The completion method or the computation of canonical models, respec-
tively, can be employed for computing other inferences than TBox classi-
fication or ABox realization as well—such as conjunctive query answering
[72, 51, 50], ontology modularization [60] or computing explanations for un-
intuitive entailments [12].

1.5 Overview of the Thesis

Besides the two introductory articles [83, 11], this thesis presents the content
of eight more publications, which essentially are grouped into three main
topics.

1. Application of DL reasoning for context-aware systems. In Sec-
tion 2 we address the task of situation recognition by standard DL rea-
soning services. The studies in [79] and [27] employ different versions
of the web ontology language OWL and demonstrate the feasibility of
this approach.

2. Computing generalizations in the EL family. Building DL knowl-
edge bases is often a costly and difficult task. This task can be facili-
tated by the computation of the LCS and the MSC. We investigate the

10 1 INTRODUCTION

computation of generalization inferences in the EL-family. If general
TBoxes or ABoxes with cyclic role assertions are used, then the LCS
or MSC, respectively, need not exist. Section 3 shows how approxima-
tive solutions for the LCS and the MSC for members of the EL-family
[70, 29] can be computed based on the completion method for EL.

This approach is extended to a variant of EL that can express prob-
abilities in Section 4. We study a completion algorithm for this logic
and give computation methods for the MSC and explanations [68].

In some cases the LCS and the MSC do exist even in the presence
of cyclic structures in the knowledge base. Conditions characterizing
these cases were described in [86] and are the focus of Section 5.

3. Concept similarity measures. Section 6 presents a flexible framework
for generating EL-concept similarity measures [55]. For the measures
generated by our framework we can guarantee several desirable prop-
erties. Furthermore, first results on answering relaxed instance queries
are presented. We investigated instance retrieval for concepts relaxed
by concept similarity measures in [31].

11

2 DL Standard Reasoning for Situation Recogni-
tion in Context-aware Systems

Context-aware systems act proactively and autonomously to changes in their
environment. These systems are equipped with sensing capabilities in the
wider sense. Depending on the information gathered about the context
of the system, adaptation decisions are invoked. Here, the central task is
to monitor the context data from the environment and recognize possibly
critical situations to which the system may have to adapt.

Typically, context information comes from different sources, such as sen-
sor data, data from other applications or direct input from the user of the
system. This heterogeneous information describes the environment on dif-
ferent levels of detail, which need to be integrated in order to derive the
high-level context of the system. Furthermore, the context information can
be incomplete due to unavailability of information sources or it can even be
incoherent, if context sources are faulty or corrupted.

To detect inconsistent information and to deal gracefully with incomplete
information, logical reasoning and DL reasoning in particular [4, 84, 80] have
been proposed for situation recognition. DLs seem a natural candidate for
representing context information, since they allow for representing facts on
different levels of granularity. DL reasoning systems (typically) adopt the
open world assumption and thus can deal with incomplete information in a
graceful way.

In [79] we describe a general framework for employing standard DL rea-
soning services for situation recognition. The idea is to encode the situations
to be recognized as queries over a DL KB. The TBox of this KB stores the
background information on the system and its environment in terms of con-
cepts. Such a TBox is built manually at design-time. The gathered informa-
tion about the status of the environment is preprocessed and then collected
in ABoxes, which are automatically generated at run-time. To recognize
critical situations, a query is executed over the KB. If individuals matching
the query are found, then the corresponding situation is recognized. The
reasoning tasks instance retrieval and conjunctive query answering can be
employed for situation recognition.

In [79] we employ concepts as queries to recognize situations. In order
to detect whether any individual in the ABox is an instance of any of the
(possibly many) query concepts, instance checks can be performed for those
individuals representing the current situation.

We demonstrated the feasibility of our approach by a study in the intel-
ligent home domain using OWL 1 reasoning systems that were available at
that time (in 2008). In the application scenario an intelligent door lock is
modelled that acts, when the door bell is rung. Here, essentially two kinds
of situations were relevant. The first kind are situations, where it is clear

12 2 DL REASONING FOR SITUATION RECOGNITION

whether or not to open the door. The second kind are situations regard-
ing the where-abouts of the inhabitant of the house, in order to delegate
the decision on whether to open. We modelled the TBox and the query
concepts representing situations in OWL. The resulting TBox used the ex-
pressivity of the DL ALCHIF , which is a proper sub-logic of OWL Lite
(corresponding to the DL SHIF).

For the two complex situations to be recognized in this application we
modelled the situations as concepts. In order to be able to recognize at
least a generalization of these situations, we modelled relaxed variants of
these situations—each of which captured only a single aspect of the com-
plex situation. For instance, one complex situation was generalized in one
variant modeling only information on the person who is ringing and in an-
other variant by modeling only the current location of the inhabitant of the
house. For these variants we also added generalized concepts to the TBox.
This hierarchy of concepts describing more and more general, but simpler
situations allows to recognize at least more general kinds of situations and
thus allows the context-aware system to act.

The complexity of reasoning in OWL Lite is ExpTime-complete. To
achieve acceptable running times, we built two variants of the TBox that
avoid expressive means known to increase running times: GCIs and inverse
roles together with role hierarchies. For our test suite of a TBox with 135
concepts, 27 roles and an ABox with 98 individuals, the process of ABox
realization (after the TBox was classified) took about 2 seconds for most
tested systems.4 The two simplified variants of the TBox did decrease run-
ning times only moderately (if at all), while missing several inferences.

In [27] we tested the capabilities of OWL 2 reasoners for the differ-
ent profiles regarding situation recognition for service management systems.
Service management systems orchestrate the execution of complex services
in distributed computing environments. The goal in such settings is to en-
sure that computing resources are efficiently utilized while functional and
nonfunctional requirements of individual services are respected. This can
be achieved by service migration [22], where the main memory content of
a service is transferred from one physical machine to another at runtime or
by service rebinding [28], where for a service instance running on an under-
utilized server, a new instance is started on a second server and all future
service requests are redirected to this second one, so that the old service
instance can be gradually terminated and the underutilized server can be
switched off.

We modelled the situations to be recognized as concepts and also as
unions of conjunctive queries and used the DL reasoning services instance
query answering and answering of (unions of) conjunctive queries for rec-

4The difference of running times between FaCT++ and Pellet was almost 3 orders
of magnitude.

13

Query type Profile
Reasoner Version Inst. Conj. OWL EL QL

FaCT++ [82] v1.6.1 � � � �
HermiT [65] v1.3.6 � SHOIQ � �
Pellet [77] v2.3.0 � � SHOIN (D) � �
RacerPro [37] v2.0 � � SHIQ(D) � �
ELK [46] v0.3.1 � EL+
jCel [61] v0.18.0 � EL+
Quest [71] v1.7-alpha � �

Table 3: Reasoners and their supported queries and profiles.

ognizing situations. We were interested in the performance of the OWL 2
reasoners w.r.t. the different DL-based OWL 2 profiles and the two reason-
ing services.

We manually built a TBox modelling a video player platform containing
113 concept definitions and 66 properties. This TBox uses ALCIQ a sub-
logic of OWL 2, for which reasoning is also ExpTime-complete. For both
lightweight profiles, OWL 2 EL and OWL 2 QL, we built variations of
the OWL 2 TBox manually—keeping much of the original information. In
the case of OWL 2 QL, which does not offer much expressivity for building
complex concepts, we encoded the necessary information in the queries. We
modelled 13 situations as OWL 2 concepts (of size of approximately 10).
Since OWL 2 EL does not offer universal quantification, only 11 of them
are modeled as OWL 2 EL classes. For these 11 situations we formulated
the corresponding union of conjunctive queries, which contain on average
15 disjuncts of conjunctions with 8 conjuncts each. We used two simple
ABoxes, i.e., ABoxes which have no complex concepts, but only concept
names in the concept assertions, and which contained 380 individuals, more
than 770 class assertions, and more than 545 property assertions.

Our evaluation used seven DL reasoners, which differ w.r.t. the sup-
ported DL and the reasoning services provided. Table 3 depicts the tested
reasoners, the used version, and the closest DL of the respective profile they
implement (‘�’ stands for full coverage). At the time of writing no rea-
soner for answering conjunctive queries in OWL 2 EL under the standard
semantics was available.

The experiments showed that in case of the lightweight profiles not all
situations could be recognized, due to the limited expressiveness.

For the use of query concepts the time for loading the ontology and
instance retrieval for all situation concepts in OWL 2 took about 2 seconds
for most systems. When using the OWL 2 EL profiles these times dropped
to 0.5s for most systems. The time for answering conjunctive queries that

14 2 DL REASONING FOR SITUATION RECOGNITION

modelled the 11 situations was higher. For OWL 2, RacerPro5 used 41s.
For the two lightweight profiles the running times were similar: Pellet
needed almost 3s, while it took 7.3s for RacerPro.

We carried out a similar study in [35] that addressed the task of situation
recognition for the energy efficient use of software variants in a very similar
test setting. Here, we found that the part of the video player ontology that
modelled the hardware could easily be reused. The running times measured
for a similar setup as above were all comparable.

Unsurprisingly, the use of query concepts is sometimes a limitation. In
particular, query concepts only allow to query for tree-like structures for
most DLs. In contrast, conjunctive queries allow to query for arbitrary
structures by the use of variables. For instance, one would like to express
that ‘the provider of a network available at the current location of the user
and the provider contracted by the user are the same’, which are multiple
relationships to the same (set of) objects via different roles. This kind of
query can easily be captured by conjunctive queries. To express this in a
concept, would then require the use of nominals.

5under nrql semantics

15

3 Computing Role-depth Bounded Generalizations

The least common subsumer (Def. 5) and the most specific concept (Def. 5)
are the two generalization inferences we have investigated for some members
of the EL-family of Description Logics. If computed w.r.t. cyclic ABoxes [53]
the MSC, and if computed w.r.t. general TBoxes the LCS do not need to
exist [2], since a finite EL-concept cannot capture the cyclic information.

There have been several approaches to address this problem. If computed
w.r.t. greatest fixed points semantics the LCS always exists in the presence
of general TBoxes [3, 18]. Similarly, in [58] an extension of EL with greatest
fix points in the concept language has been proposed. In this extension the
LCS and MSC always exist.

To compute generalizations in OWL 2 EL, extending the syntax or
changing the semantics is not a feasible approach. Instead, we pursue a
pragmatic approach in [70] by computing the generalization in EL w.r.t.
general TBoxes up to a maximal role-depth (specified in the input) and
thus obtaining only an approximation, if applied to cyclic concepts or in-
dividuals with cyclic role relationships, respectively. To approximate the
MSC computed w.r.t. cyclic ABoxes (and unfoldable TBoxes) by limiting
the role-depth had already been suggested in [53].

In case the LCS is computed w.r.t. an acyclic TBox, the obtained concept
is the exact solution, provided that a sufficiently large role-depth bound has
been chosen, which is the role-depth of the input concepts unfolded w.r.t.
the TBox. Similarly, for KBs consisting of an acyclic TBox and an acyclic
ABox, the MSC of an individual a can be obtained by taking the sum of the
longest path from a in the ABox and the maximal role-depth of unfolded
concept assertions of individuals reachable from a as the bound.

3.1 The Role-depth Bounded LCS

In [70] we introduced the notion of a role-depth bounded LCS limited by a
bound k. The so-called k-LCS is a common subsumer of the input concepts,
but it has a maximal role-depth of k and is the least such concept w.r.t. sub-
sumption among all concepts of role-depth at most k. The idea underlying
our computation algorithm for the k-LCS is to use the data structure that
is computed already during completion for the classification of the TBox,
i.e. to use the canonical model of the TBox.

Computing the Role-depth Bounded LCS in EL
The computation algorithm for the k-LCS proceeds in the following steps:

1. it introduces concept names for the possibly complex input concepts
by adding concept definitions to the TBox,

2. performs classification of the enriched TBox

16 3 COMPUTING ROLE-DEPTH BOUNDED GENERALIZATIONS

3. starting from the completion sets of the newly introduced concepts, it
computes the cross-product of their existential restrictions taken from
the completion sets for subsuming existential restrictions (S(A, r)) and
applies the k-LCS recursively with decreased role-depth.

Through the traversal of the completion sets, a tree unraveling of the canon-
ical model is produced. The cross-product construction of these tree unrav-
elings yields the k-LCS. (The concept names introduced by completion can
safely be omitted.) It was already shown in [8] that the computation of
the LCS of EL-concepts (without a TBox) can be done by a cross-product
construction of the syntax trees of the input concepts.

Unfortunately, the k-LCS for EL can grow exponentially in the size of
the TBox.

Computing the Role-depth Bounded LCS in ELOR

EL-concepts can describe (classes of) tree structures. In particular they do
not allow to express multiple relationships to the same (set of) objects via
different roles. Nominals can be used to describe such structures. This and
a better coverage of the OWL 2 EL profile by generalization inferences
motivated our extension of the above approach to nominals and complex
role hierarchies.

Nominals can lead to conditional subsumption relationships, depending
on whether a concept has an empty interpretation or not. To handle these
conditional subsumption relationships the non-emptiness of concepts needs
to be propagated along the reachability relation between concepts. This
means that in the presence of nominals the completion sets are computed
w.r.t. an additional parameter—a concept name that is assumed to have
a non-empty interpretation. Such an extension has been proposed in [5]6

and [47]7 for ELO and can be classified in polynomial time. We gave a
completion-based version of this algorithm in [29] as a basis for a compu-
tation algorithm for the k-LCS in ELOR. The k-LCS algorithm performs
the same three steps as the one for EL. However, it only needs to consider
those concepts that are related to the input concepts by the reachability
relation, when re-classifying the TBox augmented by the k-LCS input con-
cepts. Again, the resulting concept can grow exponentially in the size of the
input.

Additional Results on the Role-depth Bounded LCS. On the one
hand we investigated the completion-based method to compute the k-LCS

6The algorithm turned out to be incomplete.
7This optimized method performs normalization and the computation of parts of the

canonical model only if necessary.

3.2 The Role-depth Bounded MSC 17

also for ELI in [33]. On the other hand it turns out that the completion-
based method yields concepts for the MSC and the LCS that have redun-
dant parts, since all subsumers are stored in the completion sets. To obtain
smaller representations of the k-LCS, we investigated rewriting methods
together with optimization methods for the k-LCS in [32], which we imple-
mented in our system Gel. An evaluation for the EL case on a version of the
medical ontology Galen showed that even for a role-depth bound of k = 4
computation times for the un-optimized k-LCS can take an hour, while the
optimized version takes only 1.9 seconds.

3.2 The Role-depth Bounded MSC

The k-MSC is a concept that has the input individual as an instance, has a
maximal role-depth of at most k, and is minimal w.r.t. subsumption among
all concepts of role-depth k. The k-MSC can be computed from the canonical
model of the ABox, which is computed by the completion method for ABox
realization.

Role-depth Bounded MSC in EL
Our computation algorithm for the k-MSC in EL uses the completion sets
obtained during ABox realization [70]. The algorithm unravels the canon-
ical model starting from the element representing the input individual. It
starts from the completion set of the input individual and invoking the k-
MSC (with decreased role-depth bound) for each directly related individual
recursively. Similarly to the completion-based k-LCS, this method yields
redundant (sub-)concepts, for which the same rewriting techniques can be
applied to obtain more succinct, but equivalent concepts. In general the ex-
ponential growth of the resulting concept cannot be avoided. One can show
that the k-MSC in EL can grow exponentially in k, but only polynomially
in the size of the knowledge base.

Role-depth Bounded MSC w.r.t. ELOR KBs

The MSC expressed in ELO is trivial, since mscK(a) = {a}. This kind of
msc does not provide much insight regarding the concept containing a as
an instance. Thus we investigated the MSC expressed in EL, but computed
w.r.t. an ELOR KB. In DLs with nominals and existential restrictions, the
ABox can be ‘absorbed’ into the TBox by encoding concept assertions C(a)
as {a} v C and role assertions r(a, b) as {a} v ∃r.{b}. Once the completion
rules for the enriched TBox have been applied exhaustively, the k-MSC in
EL can be obtained by starting from the completion set that represents the
input individual.

For ELOR highly redundant concepts are obtained for the MSC when
using the completion-based algorithm naively, since (1) all named subsumers

18 3 COMPUTING ROLE-DEPTH BOUNDED GENERALIZATIONS

are considered (not only the direct ones) and (2) existential restrictions are
duplicated for all super-roles of a role. Similar rewriting techniques that
result in a more succinct concept as in the case of the LCS can be employed.
Similarly to the case of the EL-MSC w.r.t. an EL-KB, the EL-MSC w.r.t. an
ELOR-KB can grow exponentially in k, but only polynomially in the size of
the knowledge base.

By the methods for computing the role-depth bounded generalizations
for ELOR-KBs, we can now cover most of the expressivity of the OWL 2 EL
profile by our algorithms—data-types (and disjointness axioms) are missing.

19

4 Non-standard Inferences for DLs with Subjec-
tive Probabilities

In applications, information is not always crisp, but holds only with a degree
of certainty. Crisp DLs cannot represent this kind of information faithfully.
In recent years several ways of extending DLs by expressive means for un-
certainty or imprecision have been investigated. For instance, fuzzy DLs
[15, 14, 16], rough DLs [76, 26, 48], or probabilistic DLs [49, 56] were de-
fined and reasoning in these DLs was investigated.

A DL that can express subjective probabilities in the concepts is the
DL Prob-ELc devised in [59]. Prob-ELc extends EL and allows for concepts
following the syntax rule:

C,D ::= > | A | C uD | ∃r.C | P.qC | ∃P.qr.C,

where A ∈ NC, r ∈ NR, . ∈ {>,<,≥,≤,=}, and q ∈ [0, 1]. Intuitively, a
concept of the form P.qC denotes the class of all objects that belong to C
with a probability .q.

The semantics of Prob-ELc generalizes the semantics of classical EL by
considering a set of possible worlds, corresponding to an extension of FOL
by subjective (or Type 2) probabilities [38]. More precisely, the semantics
of Prob-ELc is based on probabilistic interpretations. A probabilistic inter-
pretation is a tuple of the form I = (∆I ,W, (Iw)w∈W , µ), where ∆I is a
(non-empty) domain, W is a non-empty set of (possible) worlds, µ is a dis-
crete probability distribution over the set of worlds W , and for every w ∈W ,
Iw is a classical EL interpretation with domain ∆I .

While (crisp) concept names are interpreted as subsets of each world in
a probabilistic interpretation, probabilistic named concepts P.qA are inter-
preted by:

P.qA
Iw := {d ∈ ∆ | pId (A) . q}

pId (A) := µ({w ∈W | d ∈ AIw}),
pId,e(r) := µ({w ∈W | (d, e) ∈ rIw}).

The functions Iw and pId are extended to complex concept descriptions
through a mutual recursion, see [59] for details. A probabilistic interpre-
tation I = (∆I ,W, (Iw)w∈W , µ) satisfies

• the GCI C v D, if for every w ∈W it holds that CIw ⊆ DIw .

• the assertion C(a), if for every world w ∈W it holds that aIw ∈ CIw,

• the assertion r(a, b), if (aIw, b
I
w) ∈ rIw for all w ∈W , and

• the assertion P.qr(a, b), if pI
aI ,bI (r) . q.

20 4 INFERENCES FOR DLS WITH SUBJECTIVE PROBABILITIES

Based on this definition, the notions of model of a TBox, model of an ABox,
concept subsumption, and instance checking are defined as before.

Unfortunately, the probabilistic constructors increase the complexity of
reasoning, and deciding subsumption becomes intractable in general (more
precisely ExpTime-complete) [36]. However, reasoning stays tractable if
only the probabilistic concepts P>0C and P=1C are allowed. This DL, called
Prob-EL01c , allows only to express that a concept C may hold almost surely
(P=1C), or that C may be improbable, but not impossible (P>0C). A com-
pletion algorithm for Prob-EL01c was devised in [59]8, which we used as a
foundation to investigate generalization inferences in Prob-EL01c . Prob-EL01c
has the uniform model property, which states that, if a Prob-EL01c -KB has
a model, then it also has a model where the probability distribution assigns
the same probability to each world that has a probability greater than 0.
This allows to compute canonical models with uniform probability.

In the completion algorithm completion sets are introduced for several
worlds. Intuitively, there are three kinds of worlds to be distinguished.
One world represents ‘almost certain’ facts that hold with probability 1.
Another one represents the world that has probability 0, which is used to
compute the subsumption relationships between classical (non-probabilistic)
concepts. The third kind are worlds for each concept name A that appears
in a concept of the form P>0A. These worlds ‘give evidence’ in the model
that A is not impossible.

4.1 Generalizations in Prob-EL01
c

As in EL, neither the LCS nor the MSC need to exist in Prob-EL01c , if con-
sidered w.r.t. cyclic TBoxes or acyclic ABoxes, respectively. A computation
algorithm for the k-LCS in Prob-EL01c was described in [69]. It turns out
that the cross-product construction needs to be carried out separately for
the three kinds of worlds. To obtain crisp existential restrictions, existential
restrictions in the world representing probability 0 need to be combined.
While for concepts of the form P=1∃r.C existential restrictions from the ‘al-
most certain world’, i.e. the world with probability 1 need to be combined.
To obtain concepts of the form P>0∃r.C, the cross-product construction is
carried out over the remaining worlds, i.e. those with probability greater 0.

The completion algorithm for ABox realization in Prob-EL01c from [59]
is the basis for the computation algorithm for the k-MSC presented in [68].
Here, we extended the method from Section 3.2 to probabilistic concepts.
Essentially, the MSC in Prob-EL01c can be constructed from the completion
sets similarly as the k-LCS, by distinguishing the three kinds of worlds when
constructing existential restrictions.

8The completion algorithm turned out to be incomplete recently, the missing comple-
tion rule can be found in [30].

4.2 Computing Explanations in Prob-EL01c 21

Similarly as for subsumption or instance checking, the computational
complexity for the computation role-depth bounded LCS or MSC does not
change when going from EL to Prob-EL01c . The resulting LCS-concept can
be exponential in the size of the TBox [68]. Note, that our approxima-
tive methods yield the exact generalizations, if the TBox (/the KB K) is
unfoldable and the k is sufficiently large.

The k-LCS has been extended to the use of nominals in the probabilistic
concepts in the DL Prob-ELO01

c [30], which required to extend the comple-
tion algorithm for Prob-EL01c by the propagation of concept non-emptiness.
Again, the complexities for the standard inferences as well as for the gener-
alization inferences do not change in the presence of nominals.

4.2 Computing Explanations in Prob-EL01
c

Since the LCS and MSC inference may return results that are unintu-
itive to users—which might easily be the case when obtained for DLs with
probabilities—computing explanations automatically is a useful service. In
case an unintuitive concept is returned by the MSC, the set of axioms and
assertions causing the instance relationship between the input individual
and this concept to hold can be returned as an explanation. In [68] we
extended the method for computing explanations for subsumption relation-
ships in EL from [12] to explaining subsumption and instance relationships
in Prob-EL01c . The approach in [12] computes all the minimal axiom sets
(MinAs) causing such a relationship to hold. It labels each axiom with
a propositional variable and each element of the completion sets gets la-
belled with a monotone Boolean formula. The idea is that these monotone
Boolean formulas get combined during completion. If completion set ele-
ments together with the axiom cause a completion rule to ‘fire’, then their
corresponding formulas form a conjunction together with the propositional
variable for the axiom. If the consequence was new, it gets the conjunction
as a label. In case the consequence was already derived, the new conjunction
forms a disjunction with the old label of the consequence, unless the new
conjunction is redundant to the old one. The resulting formula in the label
of the consequence that is to be explained, transformed into DNF collects in
each disjunct which axioms need to be combined to derive the consequence.

This approach was transferred to the completion algorithm for realiza-
tion of Prob-EL01c -ABoxes in [68] by labelling the assertions also. There can
be exponentially many models of a monotone Boolean formula, i.e. exponen-
tially many different conjunctions in the DNF of the formula. Thus there
can be exponentially many MinAs for one consequence in Prob-EL01c and
the modified completion algorithm can run in ExpTime—as it is also the
case for EL.

22 5 COMPUTING EXACT GENERALIZATIONS IN EL

5 Computing Exact Generalizations in EL
In [86] we investigated conditions under which the LCS or the MSC exist in
EL, if computed w.r.t. cyclic TBoxes or KBs. In both cases we can follow
the same approach:

1. Identify a set of candidate concepts of increasing role-depth for the
exact generalization,

2. find a characterization for the concept obtained by the exact general-
ization, and

3. find an upper bound for the role-depth of the exact generalization.

Testing whether the set of candidates with role-depth up to the upper bound
contains a concept that fulfills the characterization, decides whether the
exact generalization exists. If such an element is in the set, then this element
is the exact generalization.

5.1 Conditions for the Existence of the LCS w.r.t. General
EL-TBoxes

In case the LCS exists for a given EL-TBox and two given EL-concepts C
and D, then there must be an ` ∈ IN s.t. the k-lcsT (C,D) up to role-depth `
is the lcsT (C,D). Thus the sequence of k-LCSs with increasing role-depth is
a set of LCS candidates. This sequence can be computed from pointed mod-
els, which are pairs of an element and a canonical interpretation (Def. 6), by
building the characteristic concept from them. The characteristic concept of
the pointed (canonical) model (I, d) is the concept that is a conjunction of
(1) all concept names that hold for d in I and (2) all existential restrictions
built from each role for which d has a role-successor in I and the character-
istic concept of that role-successor in I. In detail the sequence of LCSs can
be computed from the pointed canonical models (IC,T , dC) and (ID,T , dD)
using simulations (Def. 7) by:

1. taking their cross-product (IC,T × ID,T , (dC , dD)),

2. building its tree unraveling starting from (dC , dD) up to path-length
k, yielding a new interpretation, and

3. building from this interpretation the k-characteristic concept of (dC , dD).

The characteristic concept of the tree unraveling up to paths of length k of
the cross-product of the (pointed) canonical modelsXk(IC,T ×ID,T , (dC , dD))
yields the k-LCS of C and D w.r.t. T and thus a common subsumer. We
showed the following characterization of the LCS in [86]:

E ≡T lcsT (C,D) iff (IC,T × ID,T , (dC , dD)) . (IE,T , dE) and

(IE,T , dE) . (IC,T × ID,T , (dC , dD)).
(1)

5.2 Conditions for the Existence of the MSC w.r.t. Cyclic EL-ABoxes 23

The existence of (maximal) simulations between finite trees can be decided
in polynomial time [39]. This test allows us to check for an obtained k-LCS
whether it is the LCS.

Furthermore, we have shown an upper bound on the role-depth of the
LCS of two EL-concepts w.r.t. to a general EL-TBox, if it exists. In that
case the role-depth of the LCS is quadratic in the size of the product model.

Together with the characterization of the LCS (1), this bound allows to
test for the existence of the LCS for a given TBox and a pair of concepts by
the following steps: compute the size of the product of the pointed canonical
models, obtain the bound and test for k-LCSs up to this bound whether the
simulation required by (1) exists.9

Using the above techniques, we can show that it is decidable in polyno-
mial time whether the LCS of a given pair of concepts w.r.t. a given TBox
exists.

5.2 Conditions for the Existence of the MSC w.r.t. Cyclic
EL-ABoxes

Following the same approach as for the LCS, we showed in [86] conditions
under which the MSC does exist—even if computed w.r.t. cyclic ABoxes.
Assume we want to compute the mscK(a) of individual a w.r.t. the KB K,
then the sequence of k-MSCs for an increasing role-depth bound k is a set
of candidates for this MSC. The k-MSC can be computed from the pointed
canonical model of the KB (IK, da) by computing the tree unraveling of
path length up to k starting from da and then building the k-characteristic
concept Xk(IK, da) of it. We showed the following characterization of the
MSC:

C ≡T mscK(a) iff (IK, da) . (IC,T , dC) and

(IC,T , dC) . (IK, da).
(2)

Furthermore, we have shown an upper bound on the role-depth of the MSC
of an individual w.r.t. an EL-KB with a cyclic EL-ABox, if it exists. In
that case the role-depth of the MSC is quadratic in the size of the canonical
model. Together with (2) this yields that it is decidable in polynomial time
whether the MSC of a given individual w.r.t. a given KB exists.

The same upper bounds for the role-depth of the LCS and of the MSC
as obtained for EL hold, if the TBox and the KB, respectively, use role
hierarchies [85].

9The result in [86] on the size of the LCS (and the MSC) needs to be corrected: in the
worst case both of them can grow exponentially in the size of the TBox/KB.

24 6 CONCEPT SIMILARITY AND RELAXED INSTANCE QUERIES

6 Concept Similarity and Relaxed Instance Queries

The notion of concept similarity is widely used in different application do-
mains for ontologies. For example, for the Gene Ontology the similarity
of concepts describing genes is used to assess whether these genes realize
similar functionalities [75, 63]. The similarity of concepts is assessed by
similarity measures. A concept similarity measure (CSM) is a function that
returns a value between 0 and 1 for a pair of (complex) concepts. These
measures play a central role in ontology alignment, where the task is to find
the corresponding concepts from different ontologies.

6.1 A Framework for EL-concept Similarity Measures

Despite its popular use, the notion of concept similarity is not formally de-
fined and may even depend on the context or application. Many concept
similarity measures have been devised in the literature [44, 63, 1] for differ-
ent purposes. However, there are some properties that should be required
to hold for a well-founded similarity measure for concepts. In [55] we list
properties for CSMs that are well-established from the literature or that
match the intuition for similarity measures.

Among other properties, we require that a CSM regards the semantics
rather than the syntactic form of the concepts to assess. A CSM ∼ is
equivalence invariant iff for two concepts C1 and C2, C1 ≡ C2 implies that
C1 ∼ D = C2 ∼ D for any concept D. This property can be achieved by
transforming the input concepts into a unique normal form. Other proper-
ties of a CSM are those of a metric, namely, symmetry, triangle inequality
(for the dual notion, i.e. for the distance of concepts) and identity of the
indiscernible. The (partial) order induced by the subsumption relationships
is reflected by the property subsumption preserving, which requires that if
C v D v E, then C∼D ≥ C∼E holds. Our framework simi for concept
similarity measures for EL-concepts and role hierarchies allows to construct
measures, which have most of the properties discussed in [55].10

An individual CSM can be obtained by parameterizing simi by

• a primitive measure which allows to set the similarity of pairs of con-
cept names or pairs of roles, and

• several operators,

• a weighting function g that sets a weight for concept names and exis-
tential restrictions and thus allows to highlight thematic sub-domains
of the domain of discourse.

10The triangular inequality could not be achieved in simi.

6.2 Towards Instance Queries for Concepts Relaxed by Similarity
Measures 25

The measures obtained by the framework can be computed in polynomial
time in the size of the input concepts, if the functions employed in the
measure can be computed in polynomial time.

Although defined only for concepts, the similarity measure framework
allows to construct measures that can be applied to concepts defined in
unfoldable TBoxes. In such a case the concepts need to be expanded w.r.t.
the TBox before applying the measure. Similarity measures constructed by
this framework can be utilized to realize new reasoning services.

6.2 Towards Instance Queries for Concepts Relaxed by Sim-
ilarity Measures

Instance queries allow to query ABoxes by using concepts as a query. In
case such a query does not return any individual from the ABox, feasible
alternatives can be retrieved by relaxing the query concept Cq, i.e., retrieve
individuals that ‘come close’ to those that fulfill the specification Cq.

The appropriate notion of similarity to be used may vary for different
applications or even for different queries within one application. Some as-
pects of the query concept need to be kept in a proposed alternative, while
for others a variation is acceptable.

In [31] we propose to employ CSMs to relax query concepts. The idea
is that for a query concept Cq all those individuals are retrieved that are
instances of ‘sufficiently similar’ concepts to Cq. More precisely, we define
the following new reasoning service:

Definition 8 (Relaxed instance, relaxed instance retrieval). Let L be some
DL, Cq be an L-concept, ∼ a CSM over L-concepts, and t ∈ (0, 1] a degree.
The individual a ∈ NI is a relaxed instance of Cq w.r.t. the L-KB K, ∼
and the threshold t, denoted a ∈∼t Cq, iff there exists an L-concept X s.t.
Cq ∼ X ≥ t and K |= X(a).

Relaxed instance retrieval is to compute the set of all individuals that
are relaxed instances of Cq w.r.t. the L-KB K, ∼ and the threshold t.

This approach allows flexibility w.r.t. the degree of similarity and w.r.t.
the notion of similarity by choosing an appropriate degree t and a CSM ∼,
respectively. An illustration for the different relaxed instances obtained for
different CSMs w.r.t. the same Cq is given in Figure 1.

We investigated this inference for EL-KBs with unfoldable TBoxes in [31]
and identified properties of CSMs that allow to compute relaxed instances
in our approach. Now, to compute the relaxed instances of an EL-concept
(w.r.t. an EL-KB) it is not feasible to compute all sufficiently similar concepts
and then perform instance checking for those, since (1) the number of those
concepts can be infinite leading to an infinite number of queries and (2) a
similarity measure does not provide a method how to obtain a ‘sufficiently
similar’ concept.

26 6 CONCEPT SIMILARITY AND RELAXED INSTANCE QUERIES

∆I

CIq

Figure 1: Relaxed instances w.r.t. two different similarity measures. Darker
colors represent the relaxed instances of Cq w.r.t. higher degrees t.

Instead we proceed by computing, for each individual a in the ABox,
a concept that has the individual a as an instance and resembles Cq most
w.r.t. the CSM ∼. We call this the mimic of Cq w.r.t. a and ∼ (denoted
M(Cq, a)). Now, if M(Cq, a) ∼ Cq ≥ t holds, then a is a relaxed instance
of Cq; otherwise, it cannot be a relaxed instance, as no concept can have
a greater similarity degree with Cq while still containing a. In [31] we give
an algorithm for computing mimics in EL. The idea is to compute the
k-MSC of a with the role-depth of Cq as the role-depth bound, and then
remove sub-concepts from the resulting concept to make it more similar
to Cq. This approach requires that the CSM ∼ is symmetric, equivalence
invariant, structural, i.e., it computes the similarity by induction on the
structure of concepts, and is monotone in the sense that, for N ⊆ NC:

(
X ∼

l

A∈N
A
)
≥

(
X u ∃r.B ∼

l

A∈N
A
)
.

Deciding whether an individual is a relaxed instance of a concept (w.r.t.
a similarity measure and a degree t) can be done in NExpTime in k = role-
depth(Cq) (provided that ∼ can be computed in NExpTime). However,
the algorithm runs in NP-time in the size of K, if ∼ can be computed in
NP. Tight lower bounds for the decision problem whether an individual is a
relaxed instance remain future work.

27

7 Conclusions and Outlook

In this thesis we have presented results on how to realize situation recogni-
tion for context-aware systems by means of standard DL reasoning. We have
supplied studies on realizing this approach by reasoning systems for OWL
1 and OWL 2, which demonstrated the feasibility of our approach. How-
ever, the ontology languages from the OWL standard do lack expressive
means needed in this kind of application, such as for uncertain or temporal
information, for example.

The computation of generalizations can play an important role for build-
ing and maintenance of DL TBoxes. We have investigated an approximative
method to compute the LCS and the MSC for members of the EL-family in
the presence of cycles in the TBox and the ABox, respectively. Our algo-
rithms for computing generalizations are based on the completion method,
which is the reasoning method for standard reasoning tasks and implemented
in DL reasoners. For generalizations, nominals may tend to be too restric-
tive since the LCS only returns an ELO-concept, if both concepts use the
same individual. Here, the use of variables, similarly as in nominal schemas,
instead of individuals could be useful.

We also devised algorithms for computing generalizations and explana-
tions for EL augmented with (restricted) subjective probabilities. We con-
jecture that our methods can be extended to Prob-ELc (without restricting
the used probabilities).

For the LCS and the MSC in EL computed w.r.t. cyclic KBs we showed
exact conditions for their existence. It requires an empirical evaluation to
see whether there are EL KBs from applications that are cyclic and where the
LCS exists for some concepts or where the MSC exists for some individuals.
On the theoretical side, we would like to devise such existence conditions
for more expressive variants of EL. Similar existence conditions based on
canonical models for Horn-DLs can be investigated.

The framework for concept similarity measures allows to construct such
measures with certain properties. An interesting extension is to devise such a
framework for more expressive DLs or for EL-concepts defined w.r.t. general
TBoxes. Here, the use of canonical models appear to be a promising idea.

The new inference services relaxed instance retrieval and the computa-
tion of mimics open the road for several follow-up questions. A natural
task would be to find the exact complexity bounds for the relaxed instance
retrieval in EL. One could also investigate relaxed versions of other stan-
dard inferences, such as relaxed subsumption or query answering. As for the
concept similarity measures, the extension of the two inferences to general
TBoxes is interesting future work.

28 REFERENCES

References

[1] T. Alsubait, B. Parsia, and U. Sattler. A similarity-based theory of
controlling mcq difficulty. In J. Stando and Y. Imai, editors, Proceedings
of Second International Conference on e-Learning and e-Technologies
in Education (ICEEE), pages 283–288, 2013.

[2] F. Baader. Least common subsumers and most specific concepts in a de-
scription logic with existential restrictions and terminological cycles. In
G. Gottlob and T. Walsh, editors, Proc. of the 18th Int. Joint Conf. on
Artificial Intelligence (IJCAI-03), pages 325–330. Morgan Kaufmann,
2003.

[3] F. Baader. Terminological cycles in a description logic with existential
restrictions. In G. Gottlob and T. Walsh, editors, Proc. of the 18th
Int. Joint Conf. on Artificial Intelligence (IJCAI-03), pages 319–324.
Morgan Kaufmann, 2003.

[4] F. Baader, A. Bauer, P. Baumgartner, A. Cregan, A. Gabaldon, K. Ji,
K. Lee, D. Rajaratnam, and R. Schwitter. A novel architecture for sit-
uation awareness systems. In M. Giese and A. Waaler, editors, Proceed-
ings of the 18th International Conference on Automated Reasoning with
Analytic Tableaux and Related Methods (Tableaux 2009), volume 5607
of Lecture Notes in Computer Science, pages 77–92. Springer-Verlag,
2009.

[5] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In
Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI-05),
Edinburgh, UK, 2005. Morgan-Kaufmann Publishers.

[6] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope further.
In K. Clark and P. F. Patel-Schneider, editors, In Proc. of the OWLED
Workshop, 2008.

[7] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-
Schneider, editors. The Description Logic Handbook: Theory, Imple-
mentation, and Applications. Cambridge University Press, 2003.

[8] F. Baader, R. Küsters, and R. Molitor. Computing least common sub-
sumers in description logics with existential restrictions. In T. Dean, ed-
itor, Proc. of the 16th Int. Joint Conf. on Artificial Intelligence (IJCAI-
99), pages 96–101, Stockholm, Sweden, 1999. Morgan Kaufmann, Los
Altos.

[9] F. Baader and C. Lutz. Description logic. In P. Blackburn, J. van
Benthem, and F. Wolter, editors, The Handbook of Modal Logic, pages
757–820. Elsevier, 2006.

REFERENCES 29

[10] F. Baader, C. Lutz, and B. Suntisrivaraporn. CEL—a polynomial-time
reasoner for life science ontologies. In U. Furbach and N. Shankar,
editors, Proc. of the 3rd Int. Joint Conf. on Automated Reasoning
(IJCAR-06), volume 4130 of Lecture Notes In Artificial Intelligence,
pages 287–291. Springer-Verlag, 2006. CEL download page: http:

//lat.inf.tu-dresden.de/systems/cel/.

[11] F. Baader, C. Lutz, and A.-Y. Turhan. Small is again beautiful in
description logics. KI, 24(1):25–33, 2010.

[12] F. Baader, R. Peñaloza, and B. Suntisrivaraporn. Pinpointing in the
description logic EL+. In Proc. of the 30th German Annual Conf. on
Artificial Intelligence (KI’07), volume 4667 of Lecture Notes In Artifi-
cial Intelligence, pages 52–67, Osnabrück, Germany, 2007. Springer.

[13] F. Baader and U. Sattler. An overview of tableau algorithms for de-
scription logics. Studia Logica, 69:5–40, 2001.

[14] F. Bobillo, M. Delgado, J. Gómez-Romero, and U. Straccia. Fuzzy
description logics under Gödel semantics. International Journal of Ap-
proximate Reasoning, 50(3):494–514, 2009.

[15] F. Bobillo and U. Straccia. Fuzzy description logics with general t-
norms and datatypes. Fuzzy Sets and Systems, 160(23):3382–3402,
2009.

[16] S. Borgwardt and R. Peñaloza. Undecidability of fuzzy description
logics. In G. Brewka, T. Eiter, and S. A. McIlraith, editors, Proc. of
the 12th Int. Conf. on the Principles of Knowledge Representation and
Reasoning (KR-12), pages 232–242. AAAI Press, 2012.

[17] S. Brandt. Polynomial time reasoning in a description logic with exis-
tential restrictions, GCI axioms, and—what else? In R. L. de Mantáras
and L. Saitta, editors, Proc. of the 16th European Conf. on Artificial
Intelligence (ECAI-04), pages 298–302. IOS Press, 2004.

[18] S. Brandt. Standard and Non-standard Reasoning in Description Log-
ics. PhD thesis, Institute for Theoretical Computer Science, TU Dres-
den, January 2006.

[19] S. Brandt and A.-Y. Turhan. Using non-standard inferences in de-
scription logics — what does it buy me? In G. Görz, V. Haarslev,
C. Lutz, and R. Möller, editors, Proc. of the 2001 Applications of De-
scription Logic Workshop (ADL 2001), number 44 in CEUR Work-
shop, Vienna, Austria, September 2001. RWTH Aachen. See http:

//CEUR-WS.org/Vol-44/.

30 REFERENCES

[20] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati.
DL-Lite: Tractable description logics for ontologies. In M. M. Veloso
and S. Kambhampati, editors, Proc. of the 20th Nat. Conf. on Artificial
Intelligence (AAAI’05), pages 602–607. AAAI Press/The MIT Press,
2005.

[21] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati.
Tractable reasoning and efficient query answering in description logics:
The DL-Lite family. Journal of Automated Reasoning, 39(3):385–429,
2007.

[22] C. Clark, K. Fraser, S. Hand, J. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield. Live migration of virtual machines. In Proc. of
the 2nd Conference on Symposium on Networked Systems Design &
Implementation-Vol. 2, pages 273–286. USENIX Association, 2005.

[23] W. W. Cohen, A. Borgida, and H. Hirsh. Computing least common
subsumers in description logics. In W. Swartout, editor, Proc. of the
10th Nat. Conf. on Artificial Intelligence (AAAI-92), pages 754–760,
San Jose, CA, 1992. AAAI Press/The MIT Press.

[24] W. W. Cohen and H. Hirsh. Learning the CLASSIC description log-
ics: Theoretical and experimental results. In J. Doyle, E. Sandewall,
and P. Torasso, editors, Proc. of the 4th Int. Conf. on the Principles
of Knowledge Representation and Reasoning (KR-94), pages 121–133,
Bonn, 1994. Morgan Kaufmann, Los Altos.

[25] T. G. O. Consortium. Gene Ontology: Tool for the unification of biol-
ogy. Nature Genetics, 25:25–29, 2000.

[26] C. d’Amato, N. Fanizzi, F. Esposito, and T. Lukasiewicz. Representing
uncertain concepts in rough description logics via contextual indiscerni-
bility relations. In F. Bobillo, P. C. Costa, C. d’Amato, N. Fanizzi,
K. B. Laskey, K. J. Laskey, T. Lukasiewicz, M. Nickles, and M. Pool,
editors, Uncertainty Reasoning for the Semantic Web II, International
Workshops URSW 2008-2010 and UniDL 2010, Revised Selected Pa-
pers, volume 7123 of LNCS, pages 300–314. Springer, 2013.

[27] W. Dargie, Eldora, J. Mendez, C. Möbius, K. Rybina, V. Thost, and
A.-Y. Turhan. Situation recognition for service management systems
using OWL 2 reasoners. In D. Nicklas, D. Riboni, and M. Wieland, ed-
itors, In Proceedings of the Context Modeling and Reasoning Workshop
(CoMoRea’13) collocated with IEEE International Conference on Per-
vasive Computing and Communications (PerCom), pages 31–36, 2013.

[28] W. Dargie, A. Strunk, and A. Schill. Energy-aware service execution.
In C. T. Chou, T. Pfeifer, and A. P. Jayasumana, editors, IEEE 36th

REFERENCES 31

Conference on Local Computer Networks, LCN 2011, Bonn, Germany,
October 4-7, 2011, pages 1064–1071. IEEE, 2011.

[29] A. Ecke, R. Peñaloza, and A.-Y. Turhan. Computing role-depth
bounded generalizations in the description logic ELOR. In I. J.
Timm and M. Thimm, editors, Proceedings of the 36th German Con-
ference on Artificial Intelligence (KI 2013), volume 8077 of Lecture
Notes in Artificial Intelligence, pages 49–60, Koblenz, Germany, 2013.
Springer-Verlag. extended version: http://lat.inf.tu-dresden.de/
research/papers/2013/EcPeTu-KI-13.long.pdf.

[30] A. Ecke, R. Peñaloza, and A.-Y. Turhan. Role-depth bounded least
common subsumer in Prob-EL with nominals. In T. Eiter, B. Glimm,
Y. Kazakov, and M. Krötzsch, editors, Informal Proceedings of the 26th
International Workshop on Description Logics (DL-2013), volume 1014
of CEUR-WS, pages 670–688, Ulm, Germany, 2013.

[31] A. Ecke, R. Peñaloza, and A.-Y. Turhan. Towards instance query
answering for concepts relaxed by similarity measures. In L. Godo,
H. Prade, and G. Qi, editors, Workshop on Weighted Logics for AI (in
conjunction with IJCAI’13), Beijing, China, 2013. An extended version
is invited to a special issue on the Workshop Weighted Logics for AI of
the Journal of Applied Logic.

[32] A. Ecke and A.-Y. Turhan. Optimizations for the role-depth bounded
least common subsumer in EL+. In P. Klinov and M. Horridge, ed-
itors, Proceedings of the OWL Experiences and Directions Workshop
(OWLed’12), volume 849 of CEUR Workshop Proceedings. CEUR-
WS.org, 2012.

[33] A. Ecke and A.-Y. Turhan. Role-depth bounded least common sub-
sumers for EL+ and ELI. In Y. Kazakov, D. Lembo, and F. Wolter,
editors, Proceedings of the 2012 International Workshop on Description
Logics, volume 846 of CEUR Workshop Proceedings. CEUR-WS.org,
2012.

[34] B. Glimm, I. Horrocks, C. Lutz, and U. Sattler. Conjunctive query
answering for the description logic SHIQ. In M. M. Veloso, editor,
Proc. of the 20th Int. Joint Conf. on Artificial Intelligence (IJCAI-07),
pages 399–404, Hyderabad, India, 2007.

[35] S. Götz, J. Mendez, V. Thost, and A.-Y. Turhan. OWL 2 Reasoning To
Detect Energy-Efficient Software Variants From Context. In Proceed-
ings of the OWL Experiences and Directions Workshop (OWLed’13),
2013.

32 REFERENCES

[36] V. Gutiérrez-Basulto, J. C. Jung, C. Lutz, and L. Schröder. A closer
look at the probabilistic description logic Prob-EL. In Proceedings of
Twenty-Fifth Conference on Artificial Intelligence (AAAI-11), 2011.

[37] V. Haarslev, K. Hidde, R. Möller, and M. Wessel. The racerpro knowl-
edge representation and reasoning system. Semantic Web Journal,
3(3):267–277, 2012.

[38] J. Y. Halpern. An analysis of first-order logics of probability. Artificial
Intelligence, 46:311–350, 1990.

[39] M. Henzinger, T. Henzinger, and P. Kopke. Computing simulations
on finite and infinite graphs. Foundations of Computer Science, IEEE
Annual Symposium on, 0:453, 1995.

[40] I. Horrocks, O. Kutz, and U. Sattler. The even more irresistible
SROIQ. In P. Doherty, J. Mylopoulos, and C. Welty, editors, Proc. of
the 10th Int. Conf. on the Principles of Knowledge Representation and
Reasoning (KR-06), pages 57–67. AAAI Press, 2006.

[41] I. Horrocks and U. Sattler. A description logic with transitive and
inverse roles and role hierarchies. Journal of Logic and Computation,
9(3):385–410, 1999.

[42] I. Horrocks and U. Sattler. A tableaux decision procedure for SHOIQ.
In Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI-
05). Morgan Kaufmann, Jan. 2005.

[43] I. Horrocks and U. Sattler. A tableau decision procedure for SHOIQ.
J. of Automated Reasoning, 39(3):249–276, 2007.

[44] K. Janowicz. Sim-dl: Towards a semantic similarity measurement the-
ory for the description logic ALCNR in geographic information re-
trieval. In R. Meersman, Z. Tari, and P. Herrero, editors, On the Move
to Meaningful Internet Systems 2006 (OTM 2006), volume 4278 of Lec-
ture Notes in Computer Science, pages 1681–1692. Springer, 2006.

[45] Y. Kazakov. RIQ and SROIQ are harder than shoiq. In G. Brewka
and J. Lang, editors, Proc. of the 11th Int. Conf. on the Principles
of Knowledge Representation and Reasoning (KR-08), pages 274–284.
AAAI Press, 2008.

[46] Y. Kazakov, M. Krötzsch, and F. Simanč́ık. ELK reasoner: Architec-
ture and evaluation. In I. Horrocks, M. Yatskevich, and E. Jimenez-
Ruiz, editors, Proceedings of the OWL Reasoner Evaluation Workshop
(ORE’12), volume 858 of CEUR Workshop. CEUR-WS.org, 2012.

REFERENCES 33

[47] Y. Kazakov, M. Krötzsch, and F. Simanč́ık. Practical reasoning with
nominals in the EL family of description logics. In G. Brewka, T. Eiter,
and S. A. McIlraith, editors, Proc. of the 12th Int. Conf. on the Princi-
ples of Knowledge Representation and Reasoning (KR-12), pages 264–
274. AAAI Press, 2012.

[48] C. M. Keet. Rough subsumption reasoning with rowl. In I. Brown,
K. Sewchurran, and H. Suleman, editors, Proc. of the 2011 Annual
Conf. of the South African Inst. of Comp. Scientists and Inform. Tech.
(SAICSIT 2011), pages 133–140. ACM, 2011.

[49] P. Klinov and B. Parsia. Pronto: A practical probabilistic description
logic reasoner. In F. Bobillo, P. C. da Costa, C. d’Amato, N. Fanizzi,
K. B. Laskey, K. J. Laskey, T. Lukasiewicz, M. Nickles, and M. Pool,
editors, Uncertainty Reasoning for the Semantic Web II, International
Workshops URSW 2008-2010 and UniDL 2010, Revised Selected Pa-
pers, volume 7123 of Lecture Notes in Computer Science, pages 59–79.
Springer, 2013.

[50] A. Krisnadhi and C. Lutz. Data complexity in the el family of dls. In
D. Calvanese, E. Franconi, V. Haarslev, D. Lembo, B. Motik, A.-Y.
Turhan, and S. Tessaris, editors, Proc. of the 2007 Description Logic
Workshop (DL 2007), volume 250 of CEUR Workshop Proceedings.
CEUR-WS.org, 2007.

[51] M. Krötzsch and S. Rudolph. Conjunctive queries for el with compo-
sition of roles. In D. Calvanese, E. Franconi, V. Haarslev, D. Lembo,
B. Motik, A.-Y. Turhan, and S. Tessaris, editors, Proc. of the 2007 De-
scription Logic Workshop (DL 2007), volume 250 of CEUR Workshop
Proceedings. CEUR-WS.org, 2007.

[52] R. Küsters and R. Molitor. Computing Least Common Subsumers in
ALEN . In B. Nebel, editor, Proc. of the 17th Int. Joint Conf. on
Artificial Intelligence (IJCAI-01), pages 219–224. Morgan Kaufman,
2001.

[53] R. Küsters and R. Molitor. Approximating most specific concepts in
description logics with existential restrictions. AI Communications,
15(1):47–59, 2002.

[54] M. Lawley and C. Bousquet. Fast classification in Protégé: Snorocket
as an OWL 2 EL reasoner. In T. Meyer, M. Orgun, and K. Taylor,
editors, Australasian Ontology Workshop 2010 (AOW 2010): Advances
in Ontologies, volume 122 of CRPIT, pages 45–50, Adelaide, Australia,
2010. ACS.

34 REFERENCES

[55] K. Lehmann and A.-Y. Turhan. A framework for semantic-based sim-
ilarity measures for ELH-concepts. In L. F. del Cerro, A. Herzig, and
J. Mengin, editors, Proceedings of the 13th European Conference on
Logics in Artificial Intelligence, (JELIA’12), volume 7519 of Lecture
Notes in Computer Science, pages 307–319. Springer, 2012.

[56] T. Lukasiewicz. Uncertainty reasoning for the semantic web. In
A. Polleres and T. Swift, editors, Web Reasoning and Rule Systems,
Third International Conference, RR 2009, Chantilly, VA, USA, Octo-
ber 25-26, 2009, Proceedings, volume 5837 of Lecture Notes in Computer
Science, pages 26–39. Springer, 2009.

[57] C. Lutz. The complexity of conjunctive query answering in expressive
description logics. In A. Armando, P. Baumgartner, and G. Dowek,
editors, Proceedings of the 4th International Joint Conference on Auto-
mated Reasoning (IJCAR2008), number 5195 in LNAI, pages 179–193.
Springer, 2008.

[58] C. Lutz, R. Piro, and F. Wolter. EL-concepts go second-order: Great-
est fixpoints and simulation quantifiers. In H. Coelho, R. Studer, and
M. Wooldridge, editors, Proc. of the 19th European Conf. on Artificial
Intelligence (ECAI-10), volume 215 of Frontiers in Artificial Intelli-
gence and Applications, pages 41–46. IOS Press, 2010.

[59] C. Lutz and L. Schröder. Probabilistic description logics for subjective
uncertainty. In F. Lin, U. Sattler, and M. Truszczynski, editors, Proc.
of the 12th Int. Conf. on the Principles of Knowledge Representation
and Reasoning (KR-10). AAAI Press, 2010.

[60] C. Lutz and F. Wolter. Deciding inseparability and conservative ex-
tensions in the description logic EL. Journal of Symbolic Computation,
45(2):194 – 228, 2010.

[61] J. Mendez. jCel: A modular rule-based reasoner. In In Proc. of the 1st
Int. Workshop on OWL Reasoner Evaluation (ORE’12), volume 858 of
CEUR, 2012.

[62] J. Mendez, A. Ecke, and A.-Y. Turhan. Implementing completion-based
inferences for the EL-family. In R. Rosati, S. Rudolph, and M. Za-
kharyaschev, editors, Proc. of the 2011 Description Logic Workshop
(DL 2011), volume 745. CEUR Workshop, 2011.

[63] M. Mistry and P. Pavlidis. Gene ontology term overlap as a measure
of gene functional similarity. BMC Bioinformatics, 9, 2008.

[64] B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu, A. Fokoue, and
C. Lutz. OWL 2 web ontology language profiles. W3C Rec-

REFERENCES 35

ommendation, 27 October 2009. http://www.w3.org/TR/2009/

REC-owl2-profiles-20091027/.

[65] B. Motik, R. Shearer, and I. Horrocks. Optimized Reasoning in De-
scription Logics using Hypertableaux. In Proc. of the 23th Conf. on
Automated Deduction (CADE-23), LNAI, pages 67–83, Bremen, Ger-
many, July 17–20 2007. Springer.

[66] B. Nebel. Terminological reasoning is inherently intractable. Artificial
Intelligence Journal, 43:235–249, 1990.

[67] M. Ortiz, D. Calvanese, and T. Eiter. Data complexity of query answer-
ing in expressive description logics via tableaux. Journal of Automated
Reasoning, 41(1):61–98, 2008.

[68] R. Peñaloza and A.-Y. Turhan. Instance-based non-standard infer-
ences in EL with subjective probabilities. In F. Bobillo, P. C. Costa,
C. d’Amato, N. Fanizzi, K. B. Laskey, K. J. Laskey, T. Lukasiewicz,
M. Nickles, and M. Pool, editors, Uncertainty Reasoning for the Se-
mantic Web II, International Workshops URSW 2008-2010 and UniDL
2010, Revised Selected Papers, number 7123 in Lecture Notes in Com-
puter Science, pages 80–98. Springer-Verlag, 2013.

[69] R. Peñaloza and A.-Y. Turhan. Role-depth bounded least common sub-
sumers by completion for EL- and Prob-EL-TBoxes. In V. Haarslev,
D. Toman, and G. E. Weddell, editors, Proceedings of the 23rd Interna-
tional Workshop on Description Logics (DL’10), volume 573 of CEUR
Workshop Proceedings. CEUR-WS.org, 2010.

[70] R. Peñaloza and A.-Y. Turhan. A practical approach for comput-
ing generalization inferences in EL. In G. Antoniou, M. Grobelnik,
E. P. B. Simperl, B. Parsia, D. Plexousakis, P. D. Leenheer, and J. Z.
Pan, editors, Proceedings of 8th Extended Semantic Web Conference
(ESWC’11), volume 6643 of Lecture Notes in Computer Science, pages
410–423. Springer, 2011.

[71] M. Rodriguez-Muro and D. Calvanese. Quest, an OWL 2 QL rea-
soner for ontology-based data access. In Proc. of the 9th Int. Workshop
on OWL: Experiences and Directions (OWLED 2012), volume 849 of
CEUR, 2012.

[72] R. Rosati. On conjunctive query answering in el. In D. Calvanese,
E. Franconi, V. Haarslev, D. Lembo, B. Motik, A.-Y. Turhan, and
S. Tessaris, editors, Proc. of the 2007 Description Logic Workshop (DL
2007), volume 250 of CEUR Workshop Proceedings. CEUR-WS.org,
2007.

36 REFERENCES

[73] A. Schaerf. On the complexity of the instance checking problem in
concept languages with existential quantification. Journal of Intelligent
Information Systems, 2:265–278, 1993.

[74] K. Schild. A correspondence theory for terminological logics: prelimi-
nary report. In J. Mylopoulos and R. Reiter, editors, Proc. of the 12th
Int. Joint Conf. on Artificial Intelligence (IJCAI-91), Sydney, Aus-
tralia, 1991.

[75] A. Schlicker, F. S. Domingues, J. Rahnenführer, and T. Lengauer. A
new measure for functional similarity of gene products based on gene
ontology. BMC Bioinformatics, 7:302, 2006.

[76] S. Schlobach, M. C. A. Klein, and L. Peelen. Description logics with
approximate definitions - precise modeling of vague concepts. In M. M.
Veloso, editor, Proc. of the 20th Int. Joint Conf. on Artificial Intelli-
gence (IJCAI-07), pages 557–562, 2007.

[77] E. Sirin and B. Parsia. Pellet system description. In Description Logics,
volume 189 of CEUR, 2006.

[78] K. Spackman. Managing clinical terminology hierarchies using algo-
rithmic calculation of subsumption: Experience with SNOMED-RT.
Journal of the American Medical Informatics Assoc., 2000. Fall Sym-
posium Special Issue.

[79] T. Springer and A.-Y. Turhan. Employing description logics in ambi-
ent intelligence for modeling and reasoning about complex situations.
Journal of Ambient Intelligence and Smart Environments, 1(3):235–
259, 2009.

[80] K. Taylor and L. Leidinger. Ontology-driven complex event process-
ing in heterogeneous sensor networks. In G. Antoniou, M. Grobelnik,
E. Simperl, B. Parsia, D. Plexousakis, P. D. Leenheer, and J. Z. Pan,
editors, Proceedings of 8th Extended Semantic Web Conference (ESWC
2011), volume 6644 of Lecture Notes in Computer Science, pages 285–
299. Springer, 2011.

[81] S. Tobies. The complexity of reasoning with cardinality restrictions and
nominals in expressive description logics. Journal of Artificial Intelli-
gence Research, 12:199–217, May 2000.

[82] D. Tsarkov, I. Horrocks, and P. Patel-Schneider. Optimising termino-
logical reasoning for expressive description logics. Journal of Automated
Reasoning, 2007.

REFERENCES 37

[83] A.-Y. Turhan. Reasoning and explanation in EL and in expressive de-
scription logics. In U. Aßmann, A. Bartho, and C. Wende, editors,
Reasoning Web. Semantic Technologies for Software Engineering, 6th
International Summer School 2010, Dresden, Germany. Tutorial Lec-
tures, volume 6325 of Lecture Notes in Computer Science, pages 1–27.
Springer, 2010.

[84] A.-Y. Turhan, T. Springer, and M. Berger. Pushing doors for modeling
contexts with OWL DL – a case study. In J. Indulska and D. Nicklas,
editors, Proceedings of the Workshop on Context Modeling and Reason-
ing (CoMoRea’06). IEEE Computer Society, March 2006.

[85] A.-Y. Turhan and B. Zarrieß. Computing the lcs w.r.t. general EL+-
TBoxes. In T. Eiter, B. Glimm, Y. Kazakov, and M. Krötzsch, editors,
Informal Proceedings of the 26th International Workshop on Descrip-
tion Logics, volume 1014 of CEUR Workshop Proceedings, pages 477–
488. CEUR-WS.org, 2013.

[86] B. Zarrieß and A.-Y. Turhan. Most Specific Generalizations w.r.t. Gen-
eral EL-TBoxes. In F. Rossi, editor, Proceedings of the 23rd Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’13), 2013.

38 REFERENCES

Appendix

the submitted papers in chronological order

Künstl Intell (2010) 24: 25–33
DOI 10.1007/s13218-010-0004-8

FAC H B E I T R AG

Small is Again Beautiful in Description Logics

Franz Baader · Carsten Lutz · Anni-Yasmin Turhan

Received: 24 June 2009 / Accepted: 10 August 2009 / Published online: 9 February 2010
© Springer-Verlag 2010

Abstract The Description Logic (DL) research of the last
20 years was mainly concerned with increasing the expres-
sive power of the employed description language without
losing the ability of implementing highly-optimized reason-
ing systems that behave well in practice, in spite of the ever
increasing worst-case complexity of the underlying infer-
ence problems. OWL DL, the standard ontology language
for the Semantic Web, is based on such an expressive DL for
which reasoning is highly intractable. Its sublanguage OWL
Lite was intended to provide a tractable version of OWL,
but turned out to be only of a slightly lower worst-case com-
plexity than OWL DL. This and other reasons have led to the
development of two new families of light-weight DLs, EL
and DL-Lite, which recently have been proposed as profiles
of OWL 2, the new version of the OWL standard. In this pa-
per, we give an introduction to these new logics, explaining
the rationales behind their design.

Keywords Knowledge representation · Description logics ·
Automated reasoning

F. Baader (�) · A.-Y. Turhan
Institut für Theoretische Informatik, TU Dresden, 01062 Dresden,
Deutschland
e-mail: baader@inf.tu-dresden.de

A.-Y. Turhan (�)
e-mail: turhan@inf.tu-dresden.de

C. Lutz
Universität Bremen, Fachbereich 03, Postfach 330440,
28334 Bremen, Deutschland
e-mail: clu@informatik.uni-bremen.de

1 Introduction

Description Logics [8] are a well-investigated family of
logic-based knowledge representation formalisms, which
can be used to represent the conceptual knowledge of
an application domain in a structured and formally well-
understood way. They are employed in various application
domains, such as natural language processing, configura-
tion, and databases, but their most notable success so far is
the adoption of the DL-based language OWL1 as a standard
ontology language for the Semantic Web [11, 33].

In DLs, concepts are formally described by concept
descriptions, i.e., expressions that are built from concept
names (unary predicates) and role names (binary predicates)
using concept constructors. The expressivity of a particular
DL is determined by which concept constructors are avail-
able in it. From a semantic point of view, concept names and
concept descriptions represent sets of individuals, whereas
roles represent binary relations between individuals. For ex-
ample, using the concept name Woman, and the role name
child, the concept of women having a daughter can be rep-
resented by the concept description

Woman � ∃child.Woman,

and the concept of women having only daughters by

Woman � ∀child.Woman.

In its simplest form, a DL terminology (usually called TBox)
can be used to introduce abbreviations for complex concept
descriptions. For example, the concept definitions

Woman ≡ Human � Female,

Mother ≡ Woman � ∃child.�

1http://www.w3.org/TR/owl-features/.

26 Künstl Intell (2010) 24: 25–33

define the concept of a woman as a human that is female,
and the concept of a mother as a woman that has a child,
where � stands for the top concept (which is interpreted as
the universe of all individuals in the application domain).
So-called general concept inclusions (GCIs) can be used to
state additional constraints on the interpretation of concepts
and roles. In our example, it makes sense to state domain
and range restrictions for the role child. The GCIs

∃child.Human � Human

Human � ∀child.Human

respectively say that only human beings can have human
children, and that the child of a human being must be human.

In the assertional part (ABox) of a DL knowledge base,
facts about a specific application situation can be stated, by
introducing named individuals and relating them to concepts
and roles. For example, the assertions

Woman(LINDA), child(LINDA, JAMES)

state that Linda is a woman, who has the child James.
Knowledge representation systems based on DLs pro-

vide their users with various inference services that allow
them to deduce implicit knowledge from the explicitly rep-
resented knowledge. For instance, the subsumption service
allows one to determine subconcept-superconcept relation-
ships. For example, w.r.t. the concept definitions from above,
the concept Female subsumes the concept Mother since all
instances of the second concept are necessarily instances of
the first concept, i.e., whenever the above concept defini-
tions are satisfied, then Mother is interpreted as a subset of
Female. With the help of the subsumption service, one can
compute the hierarchy of all concepts defined in a TBox.
This compound inference service is usually called classifi-
cation. The instance service can be used to check whether an
individual occurring in an ABox is necessarily an instance
of a given concept. For example, w.r.t. the above assertions,
concept definitions, and GCIs, the individual JAMES is an
instance of the concept Human. With the help of the instance
service, one can also compute answers to instance queries,
i.e., all individuals occurring in the ABox that are instances
of the query concept C. In order to state more general search
criteria, one can use so-called conjunctive queries, i.e., con-
junctions of assertions that may also contain variables, of
which some can be existentially quantified. For example, the
conjunctive query

∃y, z.Woman(x) ∧ child(x, y) ∧ child(z, y) ∧ Beatle(z)

asks for all women that have a child with a parent that is a
Beatle. With respect to the knowledge base we have intro-
duced so far, this conjunctive query has no individual as an
answer.

In order to ensure a reasonable and predictable behavior
of a DL system, the underlying inference problems (like the

subsumption and the instance problem) should at least be
decidable for the DL employed by the system, and prefer-
ably of low complexity. Consequently, the expressive power
of the DL in question must be restricted in an appropriate
way. If the imposed restrictions are too severe, however,
then the important notions of the application domain can no
longer be expressed. Investigating this trade-off between the
expressivity of DLs and the complexity of their inference
problems has been one of the most important issues in DL
research.

The general opinion on the (worst-case) complexity that
is acceptable for a DL has changed dramatically over time.
Historically, in the early times of DL research people con-
centrated on identifying formalisms for which reasoning is
tractable, i.e., can be performed in polynomial time [47].
The precursor of all DL systems, KL-ONE [16], as well as
its early successor systems, like KANDOR [47], K-REP [43],
BACK [48], and LOOM [42], indeed employed polynomial-
time subsumption algorithms. Later on, however, it turned
out that subsumption in rather inexpressive DLs may be
intractable [38], that subsumption in KL-ONE is even un-
decidable [49], and that even for systems like KANDOR

and BACK, for which the expressiveness of the underly-
ing DL had been carefully restricted with the goal of re-
taining tractability, the subsumption problem is in fact in-
tractable [44]. The reason for the discrepancy between the
complexity of the subsumption algorithms employed in the
above mentioned early DL systems and the worst-case com-
plexity of the subsumption problems these algorithms were
supposed to solve was due to the fact that these systems em-
ployed sound, but incomplete subsumption algorithms, i.e.,
algorithms whose positive answers to subsumption queries
are correct, but whose negative answers may be incorrect.
The use of incomplete algorithms has since then largely
been abandoned in the DL community, mainly because of
the problem that the behavior of the systems is no longer
determined by the semantics of the description language: an
incomplete algorithm may claim that a subsumption rela-
tionship does not hold, although it should hold according to
the semantics. All the intractability results mentioned above
already hold for subsumption between concept descriptions
without a TBox. An even worse blow to the quest for a prac-
tically useful DL with a sound, complete, and polynomial-
time subsumption algorithm was Nebel’s result [45] that
subsumption w.r.t. an acyclic TBox (i.e., an unambiguous
set of concept definitions without cyclic dependencies) in a
DL with conjunction (�) and value restriction (∀r.C) is al-
ready intractable.2

2All the systems mentioned above supported these two concept con-
structors, which were at that time viewed as being indispensable for
a DL. The DL with exactly these two concept constructors is called
FL0 [4].

Künstl Intell (2010) 24: 25–33 27

At about the time when these (negative) complexity re-
sults were obtained, a new approach for solving inference
problems in DLs, such as the subsumption and the in-
stance problem, was introduced. This so-called tableau-
based approach was first introduced in the context of DLs
by Schmidt-Schauß and Smolka [50], though it had already
been used for modal logics long before that [22]. It has
turned out that this approach can be used to handle a great
variety of different DLs [7, 10, 15, 26, 27, 30, 34, 35],
and it yields sound and complete inference algorithms also
for very expressive DLs. Although the worst-case complex-
ity of these algorithms is quite high, the tableau-based ap-
proach nevertheless often yields practical procedures: opti-
mized implementations of such procedures have turned out
to behave quite well in applications [9, 23, 25, 28, 29, 31],
even for expressive DLs with a high worst-case complex-
ity (ExpTime and beyond). The advent of efficient tableau-
based algorithms was the main reason why the DL commu-
nity basically abandoned the search for DLs with tractable
inference problems, and concentrated on the design of prac-
tical tableau-based algorithms for expressive DLs. The most
prominent modern DL systems, FaCT++ [53], Racer [24],
and Pellet [51] support very expressive DLs and employ
highly-optimized tableau-based algorithms.

In addition to the fact that DLs are equipped with a well-
defined formal semantics, the availability of mature systems
that support sound and complete reasoning in very expres-
sive description formalisms was an important argument in
favor of using DLs as the foundation of OWL, the standard
ontology language for the Semantic Web. In fact, OWL DL
is based on the expressive DL SHOIN (D), for which rea-
soning is NExpTime-complete, and its sublanguage OWL
Lite is based on SHIF(D), for which reasoning is still
ExpTime-complete [32]. The OWL 2 standard is based on
the even more expressive DL SROIQ(D), which is even
2NExpTime-complete [36].

Due to the ever increasing expressive power and worst-
case complexity of expressive DLs, there is also an in-
creasing number of ontologies emerging from practical ap-
plications that cannot be handled by tableau-based reason-
ing systems without manual tuning by the system develop-
ers, despite highly optimized implementations. Perhaps the
most prominent example is the well-known medical ontol-
ogy SNOMED CT,3 which comprises 380,000 concepts and
is used to generate a standardized health care terminology
used as a standard for medical data exchange in a variety
of countries such as the US, Canada, and Australia. In tests
performed in 2005 with FaCT++ and Racer, neither of the
two systems could classify SNOMED CT [13],4 and Pellet

3http://www.ihtsdo.org/snomed-ct/.
4Note, however, that more recent versions of FaCT++ and Racer per-
form quite well on SNOMED CT [52], due to optimizations specifically
tailored towards the classification of SNOMED CT.

still could not classify SNOMED CT in tests performed in
2008 [52]. From the DL point of view, SNOMED CT is an
acyclic TBox that contains only the concept constructors
conjunction (�), existential restriction (∃r.C), and the top
concept (�). The DL with exactly these three concept con-
structors is called EL [12]. In contrast to its counterpart with
value restrictions, FL0, the light-weight DL EL has much
better algorithmic properties. Whereas subsumption without
a TBox is polynomial in both EL [12] and FL0 [38], sub-
sumption in FL0 w.r.t. an acyclic TBox is coNP-complete
[45] and w.r.t. GCIs it is even ExpTime-complete [5]. In
contrast, subsumption in EL stays tractable even w.r.t. GCIs
[17], and this result is stable under the addition of several
interesting means of expressivity [5, 6]. The DL EL and the
mentioned tractability results will be introduced in more de-
tail in the next section.

Another issue with expressive DLs and tableau-based al-
gorithms is that they do not scale too well to knowledge
bases with a very large ABox. In particular, query answer-
ing in expressive DLs such as the already mentioned SHIF
and SHOIN is 2ExpTime-complete regarding combined
complexity [39], i.e., the complexity w.r.t. the size of the
TBox and the ABox. Thus query answering in these logics
is even harder than subsumption while at the same time be-
ing much more time critical. Moreover, query answering in
these DLs is coNP-complete [46] regarding data complexity
(i.e., in the size of the ABox), which is viewed as ‘unfeasi-
ble’ in the database community. These results are dramatic
since many DL applications, such as those that use ABoxes
as kind of web repositories, involve ABoxes with hundred
of thousands of individuals. It is a commonly held opinion
that, in order to achieve truly scalable query answering in the
short term, it is essential to make use of conventional rela-
tional database systems for query answering in DLs. Given
this proviso, the question is what expressivity can a DL offer
such that queries can be answered using relational database
technology while at the same time meaningful concepts can
be specified in the TBox. As an answer to this, the DL-Lite
family has been introduced in [18, 19], designed to allow the
implementation of conjunctive query answering ‘on top of’
a relational database system. In Sect. 3, we introduce DL-
Litecore and two of its extensions DL-LiteF and DL-LiteR.
We also sketch the standard approach to query answering in
these languages. Interestingly, also in EL it is possible to im-
plement query answering using a database system, though
with a different approach than in DL-Lite (see the end of
Sect. 3).

2 The DL EL and Its Extension EL++

Starting with a set Ncon of concept names and a set Nrole

of role names, EL-concept descriptions are built using the
concept constructors top concept (�), conjunction (�), and

28 Künstl Intell (2010) 24: 25–33

Table 1 Syntax and semantics
of EL Name Syntax Semantics

Concept name A AI ⊆ �I

Role name r rI ⊆ �I × �I

Top concept � �I = �I

Conjunction C � D (C � D)I = CI ∩ DI

Existential
restriction

∃r.C (∃r.C)I = {x | ∃y : (x, y) ∈ rI ∧ y ∈ CI}

General concept
inclusion (GCI)

C � D CI ⊆ DI

Concept definition A ≡ C AI = CI

existential restriction (∃r.C). The semantics of EL-concept
descriptions is defined in the usual way, using the notion
of an interpretation I = (�I , ·I), which consists of a non-
empty domain �I and an interpretation function ·I that as-
signs binary relations on �I to role names and subsets of
�I to concept descriptions, as shown in the semantics col-
umn of Table 1.

A general concept inclusion (GCI) is of the form C � D

where C,D are EL-concept descriptions, and a concept de-
finition is of the form A ≡ C where A is a concept name
and C is an EL-concept description. The interpretation I
is a model of the GCI C � D or the concept definition
A ≡ C if it satisfies the condition stated in the semantics
column of Table 1. Obviously, this semantics implies that
the concept definition A ≡ C is equivalent to the two GCIs
A � C,C � A in the sense that they have the same models.
For this reason, in the following we will consider only GCIs.
A finite set of GCIs is called a TBox.

Given a TBox T and two EL-concept descriptions C,D,
we say that C is subsumed by D w.r.t. T (written C �T D)
if CI ⊆ DI holds for all models I of T .5

When designing a subsumption algorithm for EL it is
actually enough to consider the case where C,D are con-
cept names occurring in the TBox. In fact, it is easy to see
that C �T D iff A �T ∪{A�C,D�B} B where A,B are new
concept names, i.e., concept names not occurring in C, D,
and T .

The polynomial-time subsumption algorithm for EL
[5, 17] that will be sketched below actually classifies the
given TBox T , i.e., it simultaneously computes all sub-
sumption relationships between the concept names occur-
ring in T . This algorithm proceeds in four steps:

1. Normalize the TBox.
2. Translate the normalized TBox into a graph.
3. Complete the graph using completion rules.

5In this section, we do not introduce ABoxes and the instance problem.
It should be noted, however, that the tractability results sketched in this
section extend to the instance problem.

Fig. 1 The completion rules for subsumption in EL

4. Read off the subsumption relationships from the normal-
ized graph.

An EL-TBox is normalized iff it only contains GCIs of the
following form: A1 � A2 � B , A � ∃r.B , ∃r.A � B , where
A,A1,A2,B are concept names or the top concept �. Any
EL-TBox can be transformed in polynomial time into a nor-
malized one by applying equivalence-preserving normaliza-
tion rules [17].

In the next step, we build the classification graph GT =
(V ,V × V,S,R) where

• V is the set of concept names (including �) occurring in
the normalized TBox T ;

• S labels nodes with sets of concept names (again includ-
ing �);

• R labels edges with sets of role names.

The label sets are supposed to satisfy the following invari-
ants:

• B ∈ S(A) implies A �T B , i.e., S(A) contains only sub-
sumers of A w.r.t. T .

• r ∈ R(A,B) implies A �T ∃r.B , i.e., R(A,B) contains
only roles r such that ∃r.B subsumes A w.r.t. T .

Initially, we set S(A) := {A,�} for all nodes A ∈ V , and
R(A,B) := ∅ for all edges (A,B) ∈ V × V . Obviously, the
above invariants are satisfied by these initial label sets.

The labels of nodes and edges are then extended by ap-
plying the rules of Fig. 1. Note that a rule is only applied if
it really extends a label set. It is easy to see that these rules
preserve the above invariants. For example, consider the
(most complicated) rule (R3). Obviously, ∃r.B1 � A1 ∈ T

Künstl Intell (2010) 24: 25–33 29

implies ∃r.B1 �T A1, and the assumption that the invariants
are satisfied before applying the rule yields B �T B1 and
A �T ∃r.B . The subsumption relationship B �T B1 obvi-
ously implies ∃r.B �T ∃r.B1. By applying transitivity of the
subsumption relation �T , we thus obtain A �T A1.

The fact that subsumption in EL w.r.t. TBoxes can be
decided in polynomial time is an immediate consequence of
the following two facts (see [5, 17] for proofs):

1. Rule application terminates after a polynomial number of
steps.

2. If no more rules are applicable, then A �T B iff B ∈
S(A).

Theorem 1 Subsumption in EL w.r.t. TBoxes can be de-
cided in polynomial time.

This result is not only of theoretical interest. Experi-
ments have shown that an optimized implementation [13] of
the subsumption algorithm sketched above in the CEL sys-
tem6 [14] behaves very well on large life science ontologies
[13, 52].

The tractability result for EL can be extended to EL++,
which extends EL by the following means of expressive-
ness:

• The bottom concept ⊥ is always interpreted as the empty
set. It can, for example, be used to express disjointness of
concepts, as in the GCI Woman � Man � ⊥.

• Nominals are basically names for individuals, but used as
concept constructors with set brackets around the individ-
ual name. A nominal {n} is always interpreted as a single-
ton set. For example, we can use the nominal {OBAMA}
to express the concept of all individuals that like Obama:
∃likes.{OBAMA}. Nominals can also be used to express
ABox assertions through GCIs. For example, the role as-
sertion r(a, b) can be expressed as {a} � ∃r.{b}.

• Concrete domains can be used to refer to data types like
numbers or strings when defining concepts. For exam-
ple, the concept description Human � ≥18(age) describes
adult human beings. However, only very restricted forms
of concrete domains are admissible in EL++ (see [5] for
details).

• Restricted role-value maps are of the form r1 ◦· · ·◦rk � r .
They are TBox axioms and not concept constructors. In a
model of this role-value map, the composition of the roles
r1, . . . , rk must be contained in the role r . Special cases of
such role-value maps are transitivity of a role r , expressed
as r ◦ r � r and right-identity rules r ◦ s � r , which are
both important for medical ontologies. For example, we
may want to say that the part_of relation is transitive,
which can be expressed as part_of ◦ part_of � part_of ,

6http://cel.googlecode.com.

and that medical findings are inherited along part_of, ex-
pressed as finding_at ◦ part_of � finding_at. Given the
second role-value maps together with GCIs stating that a
finger is part of the hand, an injury of the finger is an in-
jury found at the finger, and an injury of the hand is an
injury found at the hand, we can then deduce that an in-
jury of the finger is an injury of the hand.

• A reflexivity axiom for the role r states that this role is
reflexive, i.e., every individual is related to itself w.r.t. this
role. For example, in a medical ontology one may want to
state that the part_of relation is reflexive, i.e., every entity
is part of itself.

• The range restriction ran(r) � C says that the second
component of every tuple belonging to r must belong to
C. For example, the range restriction ran(finding_at) �
Body_structure says that finding sites must belong to the
body structure, i.e., this role is used to specify where in
the body something (e.g., an injury) is found. The range
restriction ran(r) � C could of course be expressed us-
ing the GCI � � ∀r.C, but value restrictions ∀r.C are not
available in EL++. Thus, range restrictions can be seen
as a restricted way of using value restrictions in EL++.
Note, however, that the unrestricted use of value restric-
tions would destroy tractability.

Note that the original version of EL++ [5] did not have re-
flexive roles and range restrictions. They were added in the
version introduced in [6], which is the version of EL++ that
underlies the designated OWL EL profile of OWL 2. To keep
tractability (even decidability), one must actually impose a
syntactic restriction on EL++-TBoxes that prevents interac-
tions between restricted role-value maps and range restric-
tions (see [6] for details). It should also be noted that ba-
sically all other additions of typical DL constructors to EL
make subsumption w.r.t. TBoxes ExpTime-hard [5, 6].

3 The DL-Lite Family of DLs

DL-Litecore is the basic member of the DL-Lite family [20].
Concept descriptions of this DL are of the form

A, ∃r.�, ∃r−.�,

where A is a concept name, r is a role name, and r− denotes
the inverse of the role name r , with the obvious semantics

(r−)I = {(y, x) | (x, y) ∈ rI}.
A DL-Litecore knowledge base (KB) consists of a TBox
and an ABox. The TBox formalism allows for GCIs and
disjointness axioms between DL-Litecore concept descrip-
tions C,D:

C � D and disj(C,D),

where an interpretation I is a model of disj(C,D) if it sat-
isfies CI ∩ DI = ∅. Although conjunction is not available

30 Künstl Intell (2010) 24: 25–33

in DL-Litecore, it can be simulated to a certain extent: a con-
junction on the right-hand side of a GCI C � D1 � D2 can
be expressed by the two GCIs C � D1 and C � D2. Dis-
junction on the left-hand side of a GCI can be expressed in a
similar way. The following is an example of a DL-Litecore-
TBox:

Tex = {∃child.� � Parent, Parent � Human,

Human � ∃child−.�, disj(Human, Insect)}.
A DL-Litecore-ABox is a finite set of concept and role as-
sertions: A(a) and r(a, b), where A is a concept name, r

is a role name, and a, b are individual names. An interpre-
tation I assigns an element cI ∈ �I to every individual
name c such that the unique name assumption (UNA) is sat-
isfied, i.e. aI �= bI for distinct individual names a, b.7 It
is a model of A(a) if it satisfies aI ∈ AI and of r(a, b) if
it satisfies (aI , bI) ∈ rI . The restriction to concept names
in concept assertions can be circumvented by introducing a
GCI for a new concept name, say Anew � C, in the TBox
and then stating Anew(a) in the ABox. The following is an
example of a DL-Litecore-ABox:

Aex = {Woman(LINDA), child(LINDA, JAMES),

Beatle(PAUL), child(PAUL, JAMES)}.
In [20], the following two extensions of DL-Litecore have
also been considered:

• DL-LiteF , in which the TBox may additionally contain
functionality axioms func(r) for role names and their in-
verses. Such an axiom can, e.g., be used to state that the
role father is functional, i.e., every individual has at most
one father.

• DL-LiteR, in which the TBox may additionally contain
role inclusion axioms r1 � r2 and role disjointness axioms
disj(r1, r2) for role names and their inverses. Such axioms
can, e.g., be used to state that the roles father and mother
are disjoint subroles of child−.

Other members of the DL-Lite family have, e.g., been de-
fined in [2, 21, 37].

The DL-Lite family of DLs is tailored towards appli-
cations in which huge amounts of data (represented as an
ABox) are queried w.r.t. fairly light-weight ontologies. In
this setting, it is no longer sufficient that query answering
is tractable. One needs to be able to store the ABox in a
relational database system, and answer queries using a re-
lational query engine. From a logical point of view, a re-
lational database is a finite first-order interpretation I , and
the relational query engine can efficiently answer first-order
queries (FOL queries). Such a query is a first-order formula

7The impact of dropping the UNA on the complexity of reasoning in
the DL-Lite family has been investigated in [3].

φ(�x) over the vocabulary of the database and with free vari-
ables �x; an answer tuple �c is a sequence of elements of the
domain of I such that φ(�c) evaluates to true in I . Given an
FOL query q , we denote the set of its answer tuples in the
database I with qI .

In DL-Lite, one concentrates on answering a restricted
form of FOL queries, so-called unions of conjunctive
queries. A conjunctive query is a conjunction of atoms, built
using concept and role names as predicate symbols, indi-
vidual names as constant symbols, and variables, of which
some may be existentially quantified. For example, the fol-
lowing is a conjunctive query:

qex = ∃y, z1, z2. Woman(x) ∧ child(x, y) ∧ child(z1, y)

∧ Human(z1) ∧ child(z2, z1).

A union of conjunctive queries is a finite set of conjunc-
tive queries, which is interpreted as the disjunction of its
elements. Given a union of conjunctive queries or a con-
junctive query q and a knowledge base K, the set of an-
swers to q over K (denoted ans(q,K)) consists of all tu-
ples �a of individual names appearing in the knowledge base
such that �aI ∈ qI for every model I of the knowledge
base. For the knowledge base Kex = (Tex,Aex) of our ex-
ample and the conjunctive query qex , it is easy to see that
ans(qex,Kex) = {LINDA}.

The approach for query answering in DL-Lite using a re-
lational database system proceeds as follows:

1. use the TBox T to reformulate the given union of con-
junctive queries q into an FOL query qT and then discard
the TBox;

2. view the ABox A as a relational database IA, which has
as its domain all individuals names occurring in A, in-
terprets concept names A as AIA = {a | A(a) ∈ A}, and
role names r as rIA = {(a, b) | r(a, b) ∈ A};

3. evaluate qT in the database IA using a relational query
engine.

If this approach is correct for a given DL L, i.e., there
is a reformulation function q �→ qT such that qT IA =
ans(q, (T ,A)) for all unions of conjunctive queries q , then
one says that answering conjunctive queries in L is FOL-
reducible. The following theorem is proved in [20].

Theorem 2 Answering conjunctive queries in DL-Litecore,
DL-LiteF , and DL-LiteR is FOL-reducible.

Since the size of the reformulated query does not depend
on the size of the ABox, the data complexity of evaluat-
ing the original query (i.e., the complexity in terms of the
size of the ABox) is the same as evaluating the reformu-
lated query. Because the data complexity of evaluating FOL
queries in a relational database is complete for the complex-
ity class AC0, this implies that the data complexity of an-
swering conjunctive queries in DL-Litecore, DL-LiteF , and

Künstl Intell (2010) 24: 25–33 31

DL-LiteR is in AC0, which is a proper subclass of the class
of all tractable problems P . This method for query answer-
ing in DL-Lite based on FOL-reducibility has been imple-
mented in the QuOnto system [1].

The reformulation approach developed in [20] actually
yields a union of conjunctive queries rather than an arbitrary
FOL query. Instead of describing it in detail, we illustrate
it with our example. The main idea is to use the GCIs in
the TBox as rewrite rules from right to left. Each rewrite
step replaces an atom in a conjunctive query q contained in
the union of conjunctive queries. The rewritten conjunctive
query q ′ is then added to the union of conjunctive queries
(without removing the original query q). Consider the atom
child(z2, z1) in qex . Since z2 is existentially quantified, this
basically says that z1 belongs to ∃child−.�, and thus the
GCI Human � ∃child−.� can be used to replace this atom
with Human(z1), which already occurs in the conjunctive
query. Thus, the new conjunctive query q(1):

∃y, z1.Woman(x) ∧ child(x, y) ∧ child(z1, y) ∧ Human(z1)

is added. In q(1), the atom Human(z1) can be replaced by
Parent(z1), which yields the additional conjunctive query
q(2). Using the GCI ∃child.� � Parent, the atom Parent(z1)

in q(2) can be replaced by child(z1, z3), where z3 is a new
existentially quantified variable. This yields the new con-
junctive query q(3):

∃y, z1, z3.Woman(x) ∧ child(x, y) ∧ child(z1, y)

∧ child(z1, z3).

It is easy to see that LINDA is an answer for the query q(3)

in the database IAex
, and thus of the union of conjunctive

queries generated by the reformulation process. In addition
to rewriting atoms using GCIs, the general reformulation
process also uses unification of atoms in a conjunctive query
to generate new conjunctive queries (see [20] for details).

It should be noted that also for (a fragment of) EL++,
an approach to conjunctive query answering using relational
database systems has been developed [40, 41]. Since the data
complexity of query answering in EL is PTime-complete,
the approach follows a different route than the one for DL-
Lite (since FOL-reducibility implies that the data complex-
ity of query answering is in AC0). In particular, the TBox
is incorporated into the ABox and not into the query. How-
ever, some limited query reformulation (independent of both
the TBox and the ABox) is still required. Interestingly, both
the ABox rewriting and the query reformulation cause only a
polynomial blow-up, in contrast to DL-Lite, where the blow-
up of the query may be exponential in the size of the origi-
nal query [20]. This alternative approach for query answer-
ing using a relational database system can also be applied
to DL-Lite [37]. The approach introduced in [37] causes an
exponential blow-up of the query, but we believe that this
may be avoidable. Nevertheless, even with this blow-up the

query execution times are typically smaller than those of the
approach introduced in [20].

4 Conclusion

We have described the origins of two novel families of light-
weight DLs: logics of the EL family were designed to admit
subsumption and classification in polynomial time, while
still providing sufficient expressive power for life-science
ontologies; logics of the DL-Lite family have been designed
to enable query answering using relational database sys-
tems, while still providing sufficient expressive power to
capture conceptual modeling formalisms. The relevance of
the small DLs discussed in this article is underlined by the
fact that both of them are captured in the official W3C pro-
files8 document for the recommendation of OWL 2. Each of
the OWL 2 profiles are designed for specific application re-
quirements. For applications that rely on reasoning services
for ontologies with a large number of concepts, the profile
OWL 2 EL has been introduced, which is based on EL++.
For applications that deal with large sets of data and that
mainly use the reasoning service of query answering, the
profile OWL 2 QL has been defined. The DL underlying
this profile is DL-LiteR. Both, the profile OWL 2 EL and
OWL 2 QL pave the way to apply very efficient reasoning
services in practical applications. The recent research and
standardization efforts discussed in this paper suggest that
small is indeed again beautiful in Description Logics.

References

1. Acciarri A, Calvanese D, De Giacomo G, Lembo D, Lenzerini M,
Palmieri M, Rosati R (2005) QUONTO QUerying ONTOlogies.
In: Proc of the nat conf on AI (AAAI’05)

2. Artale A, Calvanese D, Kontchakov R, Zakharyaschev M (2007)
DL-Lite in the light of first-order logic. In: Proc of the nat conf on
AI (AAAI’07)

3. Artale A, Calvanese D, Kontchakov R, Zakharyaschev M (2009)
DL-Lite without the unique name assumption. In: Proc of the de-
scription logic WS (DL’09), CEUR

4. Baader F (1990) Terminological cycles in KL-ONE-based knowl-
edge representation languages. In: Proc of the nat conf on AI
(AAAI’90)

5. Baader F, Brandt S, Lutz C (2005) Pushing the EL envelope. In:
Proc of the int joint conf on AI (IJCAI’05)

6. Baader F, Brandt S, Lutz C (2008) Pushing the EL envelope fur-
ther. In: Proc of the Int WS on OWL: experiences and directions
(OWLED’08)

7. Baader F, Buchheit M, Hollunder B (1996) Cardinality restrictions
on concepts. Artif Intell 88(1–2):195–213

8. Baader F, Calvanese D, McGuinness D, Nardi D, Patel-Schneider
PF (eds) (2003) The description logic handbook: theory, imple-
mentation, and applications. Cambridge University Press, Cam-
bridge

8http://www.w3.org/TR/owl2-profiles/.

32 Künstl Intell (2010) 24: 25–33

9. Baader F, Franconi E, Hollunder B, Nebel B, Profitlich H-J (1994)
An empirical analysis of optimization techniques for terminologi-
cal representation systems or: making KRIS get a move on. Appl
AI Spec Iss on KB Management

10. Baader F, Hanschke P (1991) A schema for integrating concrete
domains into concept languages. In: Proc of the int joint conf on
AI (IJCAI’91)

11. Baader F, Horrocks I, Sattler U (2003) Description logics. In:
Handbook on ontologies. Int handbooks in information systems.
Springer, Berlin

12. Baader F, Küsters R, Molitor R (1999) Computing least common
subsumers in description logics with existential restrictions. In:
Proc of the int joint conf on AI (IJCAI’99)

13. Baader F, Lutz C, Suntisrivaraporn B (2005) Is tractable reasoning
in extensions of the description logic EL useful in practice? In:
Proc of the int WS on methods for modalities (M4M-05)

14. Baader F, Lutz C, Suntisrivaraporn B (2006) CEL—a polynomial-
time reasoner for life science ontologies. In: Proc of the int joint
conf on autom reasoning (IJCAR’06). LNAI, vol 4130

15. Baader F, Sattler U (2001) An overview of tableau algorithms for
description logics. Stud Log 69:5–40

16. Brachman RJ, Schmolze JG (1985) An overview of the KL-ONE
knowledge representation system. Cogn Sci 9(2)

17. Brandt S (2004) Polynomial time reasoning in a description logic
with existential restrictions, GCI axioms, and—what else? In:
Proc of the Eur conf on AI (ECAI’04)

18. Calvanese D, De Giacomo G, Lembo D, Lenzerini M, Rosati
R (2005) DL-Lite: tractable description logics for ontologies.
In: Proc of the nat conf on AI (AAAI’05)

19. Calvanese D, de Giacomo G, Lembo D, Lenzerini M, Rosati R
(2006) Data complexity of query answering in description logics.
In: Proc of the int conf on principles of knowledge representation
and reasoning (KR’06)

20. Calvanese D, De Giacomo G, Lembo D, Lenzerini M, Rosati R
(2007) Tractable reasoning and efficient query answering in de-
scription logics: the DL-Lite family. J Autom Reason 39(3):385–
429

21. Calvanese D, De Giacomo G, Lembo D, Lenzerini M, Poggi A,
Rosati R (2006) Linking data to ontologies: the description logic
DL-LiteA. In: Proc of the int WS on OWL: experiences and direc-
tions (OWLED’06). CEUR

22. Fitting M (1972) Tableau methods of proof for modal logics. Notre
Dame J Form Log 13(2):237–247

23. Haarslev V, Möller R (2001) High performance reasoning with
very large knowledge bases: a practical case study. In: Proc of the
int joint conf on AI (IJCAI’01)

24. Haarslev V, Möller R (2001) RACER system description. In:
Proc of the int joint conf on autom reasoning (IJCAR’01). LNAI,
vol 2083

25. Haarslev V, Möller R (2008) On the scalability of description logic
instance retrieval. J Autom Reason 41(2):99–142

26. Hollunder B, Baader F (1991) Qualifying number restrictions in
concept languages. In: Proc of the int conf on the principles of
knowledge representation and reasoning (KR’91)

27. Hollunder B, Nutt W, Schmidt-Schauß M (1990) Subsumption al-
gorithms for concept description languages. In: Proc of the Eur
conf on AI (ECAI’90)

28. Horrocks I (1998) Using an expressive description logic: FaCT or
fiction? In: Proc of the int conf on principles of knowledge repre-
sentation and reasoning (KR’98)

29. Horrocks I (2003) Implementation and optimization techniques.
In: Baader F, Calvanese D, McGuinness D, Nardi D, Patel-
Schneider PF (eds) The description logic handbook: theory, imple-
mentation, and applications. Cambridge Univ. Press, Cambridge

30. Horrocks I, Kutz O, Sattler U (2006) The even more irresistible
SROIQ. In: Proc of the int conf on principles of knowledge rep-
resentation and reasoning (KR’06)

31. Horrocks I, Patel-Schneider PF (1999) Optimizing description
logic subsumption. J Logic Comput 9(3):267–293

32. Horrocks I, Patel-Schneider PF (2004) Reducing OWL entailment
to description logic satisfiability. J Web Sem 1(4):345–357

33. Horrocks I, Patel-Schneider PF, van Harmelen F (2003) From
SHIQ and RDF to OWL: the making of a web ontology language.
J Web Sem 1(1):7–26

34. Horrocks I, Sattler U (2005) A tableaux decision procedure for
SHOIQ. In: Proc of the int joint conf on AI (IJCAI’05)

35. Horrocks I, Sattler U, Tobies S (2000) Practical reasoning for very
expressive description logics. J Interest Group Pure Appl Logic
8(3):239–264

36. Kazakov Y (2008) RIQ and SROIQ are harder than SHOIQ.
In: Proc of the int conf on principles of knowledge representation
and reasoning (KR’08)

37. Kontchakov R, Lutz C, Toman D, Wolter F, Zakharyaschev M
(2009) Combined FO rewritability for conjunctive query answer-
ing in DL-Lite. In: Proc of the description logic WS (DL’09)

38. Levesque HJ, Brachman RJ (1987) Expressiveness and tractability
in knowledge representation and reasoning. Comput Intell 3:78–
93

39. Lutz C (2008) The complexity of conjunctive query answering in
expressive description logics. In: Proc of the int joint conf on au-
tom reasoning (IJCAR’08). LNAI, vol 5195

40. Lutz C, Toman D, Wolter F (2008) Conjunctive query answering
in EL using a database system. In: In Proc of the int WS on OWL:
experiences and directions (OWLED’08)

41. Lutz C, Toman D, Wolter F (2009) Conjunctive query answering
in the description logic EL using a relational database system. In:
Proc of the int joint conf on AI (IJCAI’09)

42. MacGregor R (1991) The evolving technology of classification-
based knowledge representation systems. In: Principles of seman-
tic networks. Kaufmann, Los Altos

43. Mays E, Dionne R, Weida R (1991) K-REP system overview.
SIGART Bull 2(3):93–97

44. Nebel B (1988) Computational complexity of terminological rea-
soning in BACK. Artif Intell 34(3):371–383

45. Nebel B (1990) Terminological reasoning is inherently intractable.
Artif Intell 43(2):235–249

46. Ortiz M, Calvanese D, Eiter T (2008) Data complexity of query
answering in expressive description logics via tableaux. J Autom
Reason 41(1):61–98

47. Patel-Schneider PF (1984) Small can be beautiful in knowledge
representation. In: Proc of the IEEE WS on knowledge-based sys-
tems

48. Peltason Ch (1991) The BACK system—an overview. SIGART
Bull 2(3):114–119

49. Schmidt-Schauß M (1989) Subsumption in KL-ONE is undecid-
able. In: Proc of the int conf on the principles of knowledge repre-
sentation and reasoning (KR’89)

50. Schmidt-Schauß M, Smolka G (1991) Attributive concept descrip-
tions with complements. Artif Intell 48(1):1–26

51. Sirin E, Parsia B (2004) Pellet: an OWL DL reasoner. In: Proc of
the description logic WS (DL’04)

52. Suntisrivaraporn B (2009) Polynomial-time reasoning support for
design and maintenance of large-scale biomedical ontologies. PhD
thesis, Fakultät Informatik, TU Dresden

53. Tsarkov D, Horrocks I (2006) FaCT++ description logic rea-
soner: system description. In: Proc of the int joint conf on autom
reasoning (IJCAR’06). LNAI, vol 4130

Reasoning and Explanation in EL and in Expressive
Description Logics

Anni-Yasmin Turhan

Theoretical Computer Science,
TU Dresden, Germany,

turhan@tcs.inf.tu-dresden.de

Abstract. Description Logics (DLs) are the formalism underlying the standard
web ontology language OWL 2. DLs have formal semantics which are the basis
for powerful reasoning services. In this paper, we introduce the basic notions
of DLs and the techniques that realize subsumption—the fundamental reasoning
service of DL systems. We discuss two reasoning methods for this service: the
tableau method for expressive DLs such as ALC and the completion method for
the light-weight DL EL. We also present methods for generating explanations for
computed subsumption relationships in these two DLs.

1 Introduction

The ontology language for the semantic web OWL provides means to describe enti-
ties of a application domain in an ontology. The underlying formalism for OWL are
Description Logics, which have well-defined syntax and formal semantics. The recent
version of the W3C standard OWL 2.0 has four language variants: the OWL 2 language
itself and three profiles. The latter are light-weight ontology languages of relatively low
expressivity and that are tailored to be efficient for specific reasoning tasks. We are
interested in the reasoning task of computing subsumption, i.e., sub- and super-class re-
lationships, and providing explanations for the obtained reasoning results. In this paper,
we discuss reasoning techniques for computing subsumption relationships for the core
description logics underlying the OWL 2 language: ALC and the core description log-
ics underlying the EL profile: EL. The EL profile is particularly suitable for applications
with ontologies that define very large numbers of classes and that need subsumption as
the main inference service. Based on the reasoning techniques for subsumption, we dis-
cuss methods to compute explanations for detected subsumption relationships in ALC
and EL. Before we turn to the reasoning techniques, we give general overview of De-
scription Logics.

Description Logics (DLs) [6] are a family of knowledge representation formalisms
that have formal semantics. This family of logics is tailored towards representing ter-
minological knowledge of an application domain in a structured and formally well-
understood way. Description logics allow users to define important notions, such as
classes or relations of their application domain in terms of concepts and roles. These
concepts (unary predicates) and roles (binary predicates) then restrict the way these
classes and relations are interpreted. Based on these definitions, implicitly captured

knowledge can be inferred from the given descriptions of concepts and roles, as for
instance sub-class or instance relationships.

The name Description Logics is motivated by the fact that classes and relations
are defined in terms of concept descriptions. These concept descriptions are complex
expressions built from atomic concepts and atomic roles using the concept constructors
offered by the particular DL in use. Based on their formal semantics, a whole collection
of inference services has been defined and investigated for different DLs. DLs have
been employed in various domains, such as databases, biomedical or context-aware
applications [3, 96]. Their most notable success so far is probably the adoption of the
DL-based language OWL1 as standard ontology language for the Semantic Web [53].

Historically, DLs stem from knowledge representation systems such as semantic
networks [85, 94] or frame systems [73]. These early knowledge representation systems
were motivated by linguistic applications and allow to specify information from the
domain of discourse. They offer methods to compute inheritance relations between the
specified notions. Early frame-based systems and semantic networks both have oper-
ational semantics, i.e., the semantics of reasoning is given by its implementation. As
a consequence, the result of the reasoning process depends on the implementation of
the reasoner and thus the result may differ from system to system for the same input
[95]. To remedy this, DLs and their reasoning services are based on formal semantics.
The information about the application domain is represented in a declarative and unam-
biguous way. More importantly, the formal semantics of the reasoning services ensure
predictable and thus reliable behavior of the DL reasoning systems—independent of
the implementation.

The investigation of algorithms for reasoning services and their complexity is the
main focus of the DL research community. Typically, one can distinguish the following
phases of DL research during the last decades. In the late eighties, reasoning algorithms
have been devised for DL systems that mostly were sound, but incomplete, i.e., they
would return correct answers, but would not find all correct answers. This development
was led by the belief that terminological reasoning is inherently intractable [79, 80], and
thus completeness was traded for tractability. These algorithms have been implemented
in systems such as Classic [23, 22, 84] and Back [79, 81]. During the nineties, sound and
complete reasoning methods were investigated for the core inferences of DL systems:
consistency and subsumption. Consistency assures that the specification of the concepts,
roles and individuals are free of contradictions. For subsumption one computes super-
and sub-concept relations from the given specifications of concepts and roles. The use
of incomplete algorithms for these inferences has largely been abandoned in the DL
community since then, mainly because of the problem that the behavior of the systems
is no longer determined by the semantics of the description language: an incomplete
algorithm may claim that a subsumption relationship does not hold, although it should
hold according to the semantics.

The underlying technique for computing the basic DL inferences is the tableau
method [37], which was adapted to DLs in [91]. This method was extended to more
and more expressive DLs (for an overview, see [17]). The gain in expressiveness came
at the cost of higher complexity for the reasoning procedures—reasoning for the DLs in-

1 http://www.w3.org/TR/owl-features/

vestigated is PSpace-complete or even ExpTime-complete [66, 54, 98] (for an overview
see [17, 31]).

Despite the high complexity, highly optimized DL reasoning systems were imple-
mented based on the tableau method—most prominently the FACT system [49] and
RACER [43]. These systems employed optimization methods developed for DL reason-
ing based on tableaux [7, 48, 58, 45] and demonstrated that the high worst case complex-
ities would hardly be encountered in practice [49, 52, 58, 42, 50, 100]. In fact, it turned
out that these highly optimized implementations of the reasoning methods do perform
surprisingly well on DL knowledge bases from practical applications.

Encouraged by these findings and driven by application needs researchers inves-
tigated tableau algorithms for even more expressive DLs [55, 56, 51, 57] in the last
decade. At the same time, the idea of the Semantic Web emerged and DLs became
the basis for the W3C standardized web ontology language OWL [53, 44]. This brought
DLs into the attention of new users from various application areas, which in turn neces-
sitated automated support of ontology services and motivated research on various new
inferences for DLs. For instance,

– the generation of explanations of consequences that the DL reasoner detected [90,
83, 63, 61, 15],

– support for building ontologies by computing generalizations [10, 27, 18, 101, 35],
– conjunctive queries as a means to access the instance data of an ontology [76, 29,

30, 39, 82, 36, 67], and
– computing modularizations of an ontology as means to facilitate their reuse [38,

69, 33, 32, 70].

All of them are currently investigated reasoning services for DLs and most of them
are implemented in specialized reasoners. At the same time, the need for faster rea-
soners for the afore mentioned basic inferences for DLs led to two developments. On
the one hand, the new tableau-based reasoners for expressive DL were developed such
as PELLET [93], FACT++ [99, 100] and RACERPRO [86] and new reasoning methods
for expressive DLs were investigated and implemented such as resolution [74, 76] in
KAON2 and hyper-tableau [77, 78] in HERMIT. On the other hand, light-weight DLs,
which are DLs with relatively limited expressivity, but good computational properties
for specific reasoning tasks were designed [13]. Reasoning even for large ontologies
written in these DLs can be done efficiently, since the respective reasoning methods
are tractable. There are two “families” of lightweight DLs: the EL family [25, 4, 5],
for which the subsumption and the instance problem are polynomial, and the DL Lite
family [28, 30], for which the instance problem and query answering are polynomial. A
member of each of these families is the DL corresponding to one of the profiles of the
OWL 2 standard.

In this paper, we examine the basic reasoning services for DLs for the light-weight DL
EL and for expressive DLs. In the next section, we give basic definitions for the fun-
damental DLs ALC and EL. We introduce basic notions such as concept descriptions,
TBoxes and ABoxes and their semantics. Based on this, we define the central reasoning
services common to most DL systems. In Section 3, we discuss the reasoning meth-
ods for basic reasoning problems: we describe the tableau method for ALC and the

completion-based approach for EL. In Section 4, we turn to another reasoning service,
namely the computation of explanations for (probably unexpected) reasoning results.
Again, we consider methods for expressive DLs and for EL for this task.

2 Basic Definitions

The central notion for DLs are concept descriptions, which can be built from concept
names and so-called concept constructors. For instance, one can describe a course as
an event given by a lecturer in the following way by a concept description:

Event u ∃ given-by.Lecturer u ∃ has-topic.>

This concept description is a conjunction (indicated by u) of the concept Event, the
existential restriction ∃ given-by.Lecturer and the existential restriction ∃ has-topic.>.
The first existential restriction consists of the role name given-by and concept Lecturer,
which relates the Lecturer to the course. The latter existential restriction states that there
is a topic (which is not specified).

In general, concept descriptions are built from the set of concept names NC and
the set of role names NR using concept constructors. Every DL offers a different set
of concept constructors. The DL EL allows only for the concept constructors that were
used in the example concept description above.

Definition 1 (EL-concept descriptions). Let NC be a set of concept names and NR a
set of role names. The set of EL-concept descriptions is the smallest set such that

– all concept names are EL-concept descriptions;
– if C andD are EL-concept descriptions, then CuD is also an EL-concept descrip-

tion;
– if C is an EL-concept description and r ∈ NR, then ∃r.C is also an EL-concept

description.

If this set of concept constructors is extended to all Boolean connectors, i.e., extended
by disjunction (t) and full negation (¬), one obtains the DLALC. We can defineALC-
concept descriptions inductively.

Definition 2 (ALC-concept descriptions). Let NC be a set of concept names and NR
a set of role names. The set of ALC-concept descriptions is the smallest set such that

– all concept names are ALC-concept descriptions;
– if C and D are ALC-concept descriptions, then ¬C, C u D and C t D are also
ALC-concept descriptions;

– if C is an ALC-concept description and r ∈ NR, then ∃r.C and ∀r.C are also
ALC-concept descriptions.

We call concept descriptions of the form ∃r.C existential restrictions and concept de-
scriptions of the form ∀r.C value restrictions. The semantics of DL concept descriptions
is given by means of interpretations.

Definition 3 (Semantics ofALC-concept descriptions). LetC andD beALC-concept
descriptions and r a role name. An interpretation is a pair I = (∆I , ·I) where the do-
main ∆I is a non-empty set and ·I is a function that assigns to every concept name A a
set AI ⊆ ∆I and to every role name r a binary relation rI ⊆ ∆I ×∆I . This function
is extended to complex ALC-concept descriptions as follows:

– (C uD)I = CI ∩DI;
– (C tD)I = CI ∪DI;
– (¬C)I = ∆I \ CI;
– (∃r.C)I = {x ∈ ∆I | there is a y ∈ ∆I with (x, y) ∈ rI and y ∈ CI}; and
– (∀r.C)I = {x ∈ ∆I | for all y ∈ ∆I , (x, y) ∈ rI implies y ∈ CI}.

This definitions clearly also captures the semantics of the less expressive DL EL. Both,
EL and ALC also offer the top-concept >, which is always interpreted as the whole
domain ∆I . In addition ALC also offers the bottom concept ⊥, which is always inter-
preted as the empty set. Now, with the ALC-concept constructors at hand, one can, for
instance, characterize a graduate CS student by the following concept description:

∃ studies-subject. CS u (Master-Student t PhD-Student)

Concept description like these are the main building blocks to model terminological
knowledge.

2.1 Terminological Knowledge

A name can be assigned to a concept description by a concept definition. For instance,
we can write Course≡ Event u ∃ given-by.Lecturer u ∃ has-topic.> to supply a concept
definition for the concept Course.

Definition 4 (Concept definition, general concept inclusion). Let A be a concept
name and C, D be (possibly) complex concept description.

– A concept definition is a statement of the form A ≡ C.
– A general concept inclusion (GCI for short) is a statement of the form C v D.

It is easy to see that every concept definition A ≡ C can be expressed by two GCIs:
A v C and C v A. The terminological information expressed by GCIs is collected in
the so-called TBox.

Definition 5 (TBox). A finite set of GCIs is called a TBox.
An interpretation is a model of a TBox T , if it satisfies all GCIs, i.e., if CI ⊆ DI

for all C v D in T .

If all concept descriptions in a TBox T are from a description logic L, then we call T
a L-TBox.

If a concept definition A ≡ C in a TBox uses a concept name B directly, i.e., B
appears in C, or if B is used indirectly by the definitions of the names appearing in C,
we say that the TBox is cyclic. Otherwise a TBox is acyclic.

Definition 6 (Unfoldable TBox). A TBox T is a finite set of concept definitions that is
acyclic and such that every concept name appears at most once on the left-hand side
of the concept definitions in T . Given a TBox T , we call the concept name A a defined
concept, ifA occurs on the left-hand side of a concept definition in T . All other concepts
are called primitive concepts.

One of the basic reasoning services in DL systems is to test for the satisfiability of
a concept or a TBox, i.e., to test whether the information specified in it contains logical
contradictions or not. In case the TBox contains a contradiction, any consequence can
follow logically from the TBox. Moreover, if a TBox is not satisfiable, the specified
information can hardly capture the intended meaning from an application domain. To
test for satisfiability is often a first step for a user to check whether a TBox models
something “meaningful”.

Definition 7 (Concept satisfiability, TBox satisfiability). Let C be a concept descrip-
tion and T a TBox. The concept description C is satisfiable iff it has a model, i.e., iff
there exists an interpretation I such that CI 6= ∅. A TBox T is satisfiable iff it has a
model, i.e., an interpretation that satisfies all GCIs in T .

If a concept or TBox is not satisfiable, it is called unsatisfiable. Other typical reason-
ing services offered in DL systems test for equivalence or inclusion relations between
concepts. In the latter case, if one concept of the TBox models a more general category
than another one, we say that this concept subsumes the other one.

Definition 8 (Concept subsumption, concept equivalence). Let C,D be two concept
descriptions and T a (possibly empty) TBox. The concept description C is subsumed
by the concept description D w.r.t. T (C vT D), iff CI ⊆ DI holds in every model
I of T . Two concepts C,D are equivalent w.r.t. T (C ≡T D), iff CI = DI holds for
every model I of T .

The computation of the subsumption relations for all named concepts mentioned in the
TBox T is called classification of the TBox T and yields the concept hierarchy of the
TBox T .

2.2 Assertional Knowledge

Facts about individuals from the application domain can be stated by assertions. There
are two basic kinds of assertions for DL systems—one expresses that an individual
belongs to a concept and the other one specifies that two individuals are related via a
role. The set NI is the set of all individual names.

Definition 9 (Assertion, ABox). Let C be a concept description, r ∈ NR a role name
and i, j ({i, j} ⊆ NI) be two individual names, then

– C(i) is called a concept assertion and
– r(i, j) is called a role assertion.

An ABox A is a finite set of concept assertions and role assertions.

For instance, we can express that Dresden is a city located at the river Elbe by the
following ABox:

{ City(Dresden), River(Elbe), located-at(Dresden, Elbe) }
If all concept descriptions in an ABox A are from a Description Logic L, then we call
A a L-ABox. In order to capture ABoxes, the interpretation function is now extended
to individual names. Each individual name is mapped by the interpretation function to
an element of the domain ∆I .

Definition 10 (Semantics of assertions, semantics of ABoxes). Let C be a concept
description, r a role name and i, j two individual names, then an interpretation I sat-
isfies

– the concept assertion C(i) if iI ∈ CI and
– the role assertion r(i, j) if (iI , jI) ∈ rI .

An interpretation I is a model of an ABox A, if I satisfies every assertion in A.

A DL knowledge base K consists of an ABox A and a TBox T . We write K = (T , A).
We can now test for the absence of contradictions in ABoxes.

Definition 11 (ABox consistency, instance of). An ABox A is consistent w.r.t. a TBox
T , iff it has a model that is also a model for T . The individual i is an instance of
the concept description C w.r.t. an ABox A and a TBox T (we write A |=T C(i)),
iff iI ∈ CI for all models I of T and A.

ABox realization is a reasoning service that computes for each individual i of an ABox
A and a TBox T the set of all named concepts A appearing in A and T that (1) have i
as an instance (A |=T A(i)) and (2) that is least w.r.t. vT .

Typically, all the reasoning services introduced in this section are implemented in
DL systems. In Section 3, we discuss the reasoning algorithms for these inferences for
ALC and in more detail for EL. Before we do so, we survey some extensions of these
two basic DLs.

2.3 Extensions of Basic DLs

The basic DLALC has been extended in many ways and, as mentioned in the introduc-
tion, reasoning algorithms have been devised for many of these extensions, see [31]. We
consider here now some of those extensions that are captured in the OWL 2 standard
[102] and that are also covered in the OWL 2 EL profile [75]. The DLs underlying these
standardized ontology languages are SROIQ [51] and EL++ [5], respectively. Both
DLs allow to specify more information on roles.

A role r can be declared to be a transitive role in the TBox. The semantics is
straight-forward. An interpretation I satisfies a transitive role declaration transitive(r)
if {(a, b), (b, c)} ⊆ rI implies (a, c) ∈ rI . Transitive roles can be used in concept
descriptions. Assume that the role has-part is transitive, then the two axioms:

Summer-school ≡ ∃ has-part. Course
Course ≡ ∃ has-part. Lesson

imply that a Summer school has a part that is a lesson. The declaration of an inverse role
applies to a role name r and yields its inverse r−1, where the semantics is the obvious
one, i.e.,

(r−1)I := {(e, d) | (d, e) ∈ rI}.
Using the inverse of the role attends, we can define the concept of a speaker giving a
boring talk as

Speaker u ∃gives.(Talk u ∀attends−1.(Bored t Sleeping)).

Furthermore, it can be specified that a role is a super-role of another role by a role
inclusion axiom. The set of all role inclusions form the role hierarchy. An interpretation
I satisfies a role inclusion axiom r v s if rI ⊆ sI .

For instance, we might capture the fact that everybody who is attending something
(a course) is also interested in this (course) by a role inclusion axiom

attends v interested-in.

DL researchers have introduced many additional constructors to the basic DL ALC
and investigated various DLs obtained by combining such constructors. Here, we only
introduce qualified number restrictions as example for additional concept constructors.
This extension is covered also in the DL SROIQ, but not in EL++. See [1] for an
extensive list of additional concept and role constructors.

Qualified number restrictions are of the form (≥n r.C) (at-least restriction) and
(≤n r.C) (at-most restriction), where n ≥ 0 is a non-negative integer, r ∈ NR is a role
name, and C is a concept description. The semantics of these additional constructors is
defined as follows:

(≥n r.C)I := {d ∈ ∆I | card({e | (d, e) ∈ rI ∧ e ∈ CI}) ≥ n},
(≤n r.C)I := {d ∈ ∆I | card({e | (d, e) ∈ rI ∧ e ∈ CI}) ≤ n},

where card(X) yields the cardinality of the set X . Using qualified number restrictions,
we can define the concept of all persons that attend at most 20 talks, of which at least 3
have the topic DL:

Person u (≤ 20 attends.Talk) u (≥ 3 attends.(Talk u ∃topic.DL)).

2.4 Relations of DLs to Other Logics

Description logics are logic-based knowledge representation formalisms. A natural ques-
tion is how they are related to other logics. In fact, it is easy to see, given their semantics,
that most description logics are a fragment of first order logic (FOL). Concept descrip-
tions can be translated into FOL formulae with one free variable. Concept names can be
interpreted as unary predicates and role names as binary relations, see for example [88,
68, 59]. An arbitraryALC-concept description can be translated into a FOL formula τx,
where x is a free variable in the following way:

– τx(A) := A(x) for a concept name A,

– τx(¬C) := ¬ τx(C),
– τx(C uD) := τx(C) ∧ τx(D),
– τx(C tD) := τx(C) ∨ τx(D),
– τx(∃r.C) := ∃y.(r(x, y) ∨ τy(C)), where y is a variable different from x, and
– τx(∀r.C) := ∀y.(r(x, y)→ τy(C)), where y is a variable different from x.

The intuition of the translation to FOL is that the formula τx(C) describes all domain
elements d from ∆I that make the formula τx true if x is replaced by d. This clearly
coincides with the interpretation of the concept description CI . The translation does
not yield arbitrary FOL formulae, but formulae from the two-variable fragment [41]
and the guarded fragment [40]. Both of which are known to be decidable.

Description Logics are closely related to modal logics (see e.g. [37, 21]). For instance,
the DL ALC is a syntactic variant of the multimodal logic K, see [89]. The multimodal
logic K introduces several box and diamond operators that are indexed with the name of
the corresponding transition relation, which can be directly translated into ALC using
role names corresponding to the transition relations.

AnyALC interpretation I can be viewed as a Kripke structureKI . The elements of
the domain w ∈ ∆I correspond to possible worlds inKI . A propositional variableA is
true in world w, iff w ∈ AI . There is a transition relation r in the Kripke structure from
worldw1 to worldw2 iff (w1, w2) ∈ rI . Many theoretical results on reasoning in modal
logics carry directly over to standard inferences in DLs due to this direct translation.

3 DL Reasoning

In this section we present reasoning methods for the DL reasoning problems defined in
the last section: satisfiability and subsumption. These problems are decision problems
and we devise decision procedures for them. Before we do so, we recall some general
requirements that we would like to hold for such decision procedures. Such a procedure
must be:

– sound, i.e., the positive answers should be correct;
– complete, i.e., the negative answers should be correct; and
– terminating, i.e., it should always give an answer in finite time.

Together these properties ensure that we always obtain an answer and that every given
answer of the procedure is correct. These properties guarantee that applications built on
top of these procedures are predictable and reliable. To employ the decision procedures
in real world applications, we also would like our decision procedure to be

– efficient, i.e., it should be optimal w.r.t. the (worst-case) complexity of the problem,
and

– practical, i.e., easy to implement and optimize, and behave well for application
cases.

DL research has mostly been dedicated to design decision procedures that fulfill these
requirements. The underlying techniques to realize reasoning procedures that we are
considering in the following are the tableaux method for expressive DLs and completion
for EL.

3.1 Reasoning in Expressive DLs

By expressive DLs we refer to DLs that offer at least all Boolean constructors and
that are thus closed under negation. For this kind of DLs, it is not necessary to design
and implement different algorithms for the different reasoning problems introduced
in the last section, since there exist polynomial time reductions, which only require
the availability of the concept constructors conjunction and negation in the description
language. For the TBox reasoning problems there are the following reductions:

– Subsumption can be be reduced in polynomial time to equivalence:

C vT D iff C uD ≡T C.

– Equivalence can be be reduced in polynomial time to subsumption:

C ≡T D iff C vT D and D vT C.

– Subsumption can be be reduced in polynomial time to (un)satisfiability:

C vT D iff C u ¬D is unsatisfiable w.r.t. T .

– Satisfiability can be be reduced in polynomial time to (non-)subsumption:

C is satisfiable w.r.t. T iff not C vT ⊥.

For reasoning problems w.r.t. ABoxes (and TBoxes) there are similar polynomial time
reductions:

– Satisfiability can be be reduced in polynomial time to consistency:

C is satisfiable w.r.t. T iff the ABox {C(a)} is consistent w.r.t. T .

– The instance problem can be reduced in polynomial time to (in)consistency:

A |=T C(a) iff A ∪ {¬C(a)} is inconsistent w.r.t. T .

– Consistency can be reduced in polynomial time to the (non-)instance problem:

A is consistent w.r.t. T iff A 6|=T ⊥(a).

With these reductions at hand, it suffices to investigate a reasoning procedure for one of
the reasoning problems. In this section, we restrict ourselves to unfoldable TBoxes, i.e.,
TBoxes without GCIs and cyclic definitions. We present a tableau algorithm for decid-
ing ABox consistency in this setting. Such a tableau-based algorithm tries to construct a
model for the ABox by breaking down the concept descriptions in the knowledge base
and inferring new constraints on the elements of this model. The algorithm either stops
because all attempts to build a model failed due to obvious contradictions, or it stops
with a “canonical” model.

In a first step of the consistency test, negation is treated by transforming the concept
description from the knowledge base into negation normal form (NNF). This normal
form pushes all negations into the description until they occur only in front of concept
names, using de Morgan’ rules.

The→u-rule
Condition: A contains (C1 u C2)(x), but not both C1(x) and C2(x).
Action: A′ := A ∪ {C1(x), C2(x)}.

The→t-rule
Condition: A contains (C1 t C2)(x), but neither C1(x) nor C2(x).
Action: A′ := A ∪ {C1(x)}, A′′ := A ∪ {C2(x)}.

The→∃-rule
Condition: A contains (∃r.C)(x), but there is no individual name z such that C(z)

and r(x, z) are in A.
Action: A′ := A ∪ {C(y), r(x, y)} where y is an individual name not occurring in A.

The→∀-rule
Condition: A contains (∀r.C)(x) and r(x, y), but it does not contain C(y).
Action: A′ := A ∪ {C(y)}.

Fig. 1. Tableau rules of the consistency algorithm for ALC.

Definition 12 (ALC-negation normal form). AnALC-concept description is inALC-
negation normal form (NNF) if the following rules have been applied exhaustively:

¬⊥ → > ¬(C uD)→ (¬C t ¬D) ¬(∃r.C)→ (∀r.¬C)
¬> → ⊥ ¬(C tD)→ (¬C u ¬D) ¬(∀r.C)→ (∃r.¬C)

¬¬C → C

A TBox or an ABox is in NNF, if all concept descriptions appearing in it are in NNF.

The size of an ALC-concept description is the number of occurrences of all concept
and role names that appear in the concept description. The size of a TBox is the sum
of the sizes of all the concept descriptions appearing in the TBox. Similarly, the size
of an ABox is the sum of all the concept descriptions appearing the concept assertions
plus the number of role assertions. Transforming anALC-concept description into NNF
yields an equivalent concept description, TBox or ABox of the same size.

LetA0 be anALC-ABox that is to be tested for consistency. In a first preprocessing
step the definitions from the TBox are expanded.2 More precisely, names of defined
concepts are replaced by the right-hand sides of their definitions in the TBox. This
replacement is done exhaustively until only names of primitive concepts appear in the
ABox A0. Next, this ABox is transformed into NNF. In order to test consistency of the
normalized A0, the algorithm applies tableau rules to this ABox until no more rules
apply. The tableau rules for ALC are depicted in Fig. 1. Tableau rules in general are
consistency preserving transformation rules.

The tableau rule →t that handles disjunction is nondeterministic. It transforms a
given ABox into two new ABoxes such that the original ABox is consistent if one of
the new ABoxes is so. For this reason, we will consider finite sets of ABoxes S =
{A1, . . . ,Ak} instead of single ones. Such a set of ABoxes is consistent iff there is

2 Recall, that we are dealing with unfoldable TBoxes (Def. 6).

some i, 1 ≤ i ≤ k, such that Ai is consistent. A tableau rule of Fig. 1 is applied to a
given finite set of ABoxes S as follows: it takes an element A of S, and replaces it by
one ABox A′ or, in case of→t by two ABoxes A′ and A′′.

Definition 13 (Clash, complete ABox, closed ABox). An ABox A contains a clash iff
{A(x), ¬A(x)} ⊆ A for some individual name x and some concept name A. An ABox
A is called

– complete iff none of the tableau rules of Fig. 1 applies to it, and
– closed if it contains a clash, and open otherwise.

The consistency algorithm for ALC proceeds in the following steps. It starts with
the singleton set of ABoxes {A0}, and applies the rules from Fig. 1 in arbitrary order
until no more rules apply. The algorithm returns “consistent” if the set Ŝ of ABoxes
obtained by exhaustively applying the tableau rules contains an open ABox, and “in-
consistent” otherwise.

For this procedure, one can show that it is sound, complete and terminating by
examining the individual tableau rules. For termination, it is easy to see that each rule
application is monotonic in the sense that every rule application extends the number
of concept assertions for the individuals in A and it never removes elements from A.
Furthermore, each concept description that appears in A due to the application of the
tableau rules is a sub-concept description of a concept description that appears already
in the initial ABox A0. These two facts together imply that the application of tableau
rules terminates. Completeness of the procedure can easily be seen from the definition
of a clash. Soundness can be shown by showing local correctness of the individual
tableau rules. Local correctness means that the rules preserve consistency, i.e., if Ŝ ′ is
obtained from the finite set of ABoxes Ŝ by application of a transformation rule, then
Ŝ is consistent iff Ŝ ′ is consistent.

Due to space limitations, we refer the reader to [2, 6] for the proofs for soundness,
completeness and termination of the tableau algorithm for ALC.

For general TBoxes, the tableau algorithm needs to be extended by a rule for treating
GCIs and a more complex mechanism to ensure termination. For a given general TBox
T = {C1 v D1, . . . , Cn v Dn}, it is easy to see that the general TBox consisting of
the single GCI of the form

> v (¬C1 tD1) u . . . u (¬Cn tDn)

is equivalent to T , i.e., they have the same models. Thus, reasoning for general TBoxes
can be done by taking a general TBox that consists of a single GCI of the form > v C,
where C is a concept description constructed from the GCIs as above. This GCI states
that every element in the model belongs to C. To capture this in the tableau method,
we add a new rule: the →T vC-rule adds the concept assertion C(x) in case the indi-
vidual name x occurs in the ABox A, and C(x) is not yet present in A. Local correct-
ness, soundness, and completeness of this procedure can easily be shown. However,
the procedure does not terminate, due to cyclic axioms. To regain termination, cyclic
computations need to be detected and the application of the→∃-rule must be blocked.
For two individuals a and b, we say that a is younger than b, if a was introduced by an

application of the→∃-rule after b was already present in the ABox. The application of
the→∃-rule to an individual x is blocked by an individual y in an ABox A iff

– x is younger than y, and
– {C | C(x) ∈ A} ⊆ {C | C(y) ∈ A}.

The main idea underlying blocking is that the blocked individual x can use the role
successors of y instead of generating new role successors.

The complexity of the consistency problem inALC w.r.t. unfoldable TBoxes is PSpace-
complete [92, 66]. In case general TBoxes are used, the complexity of testing consis-
tency is ExpTime-complete [89]. For the DLs underlying the OWL standard the com-
plexity of testing consistency is even higher. Reasoning in the DL underlying the OWL
1.0 standard SHOIQ is NExpTime-complete [98] and for the DL SROIQ, which is
the basis for the OWL 2 standard, it is even N2ExpTime [64].

3.2 Reasoning in EL
Since the DL EL does neither offer negation nor the bottom concept, contradictions can-
not be expressed and thus testing satisfiability is trivial in EL. For testing subsumption
in EL, it was shown in [25] that reasoning can be done in polynomial time. This result
was rather surprising. For the very similar DL FL0, which allows for value restrictions
instead of existential restrictions, reasoning w.r.t. general TBoxes is ExpTime-complete
[46]. For a collection of extensions of EL it was investigated, whether they have the
same nice computational properties [26, 4, 5]. These investigations identified extensions
of EL that allow for efficient classification. The DL EL++ extends EL with the bottom
concept (⊥), nominals, a restricted form of concrete domains, and a restricted form of
so-called role-value maps. For this DL, it was shown in [5] that almost all additions of
other typical DL constructors to ELmake subsumption w.r.t. general TBoxes ExpTime-
complete. The DL EL++ is the closest DL to the OWL 2 EL profile.

Despite its limited expressivity, EL is highly relevant for practical applications. In
fact, both the large medical ontology SNOMED CT3 and the Gene Ontology4 can be
expressed in EL.

3.3 Subsumption in EL
The polynomial time algorithm for computing subsumption w.r.t. a general TBox actu-
ally performs classification of the whole TBox, i.e., it computes the subsumption rela-
tionships between all named concepts of a given TBox simultaneously. This algorithm
proceeds in four steps:

1. Normalize the TBox.
2. Translate the normalized TBox into completion sets.
3. Complete these sets using completion rules.
4. Read off the subsumption relationships from the normalized graph.
3 http://www.ihtsdo.org/snomed-ct/
4 http://www.geneontology.org/

NF1 C u D̂ v E −→ { D̂ v A,C uA v E }
NF2 ∃r.Ĉ v D −→ { Ĉ v A,∃r.A v D }
NF3 Ĉ v D̂ −→ { Ĉ v A,A v D̂ }
NF4 B v ∃r.Ĉ −→ { B v ∃r.A,A v Ĉ }
NF5 B v C uD −→ { B v C,B v D }

where Ĉ, D̂ are complex concept descriptions and A is a new concept name.

Fig. 2. EL normalization rules

The normal form for EL-TBoxes required in the first step is defined as follows.

Definition 14 (Normal form for EL-TBoxes). An EL-TBox T is in normal form if all
concept inclusions have one of the following forms:

A1 v B, A1 uA2 v B, A1 v ∃r.A2 or ∃r.A1 v B,

where A1, A2 and B are concept names appearing in T or the top-concept >.

Any EL-TBox T can be transformed into a normalized TBox T ′ by simply introducing
new concept names. EL-TBoxes can be transformed into normal form by applying the
normalization rules displayed in Fig. 2 exhaustively. These rules replace the GCI on
the left-hand side of the rule with the set of GCIs on the right-hand side of the rule.
The idea behind the normalization rules is to introduce names for complex sub-concept
descriptions. It suffices to obtain a TBox that is a subsumption-equivalent TBox to the
original one, i.e., the original and the normalized TBox capture the same subsumption
relationships for the named concepts from the original TBox. Thus it suffices to intro-
duce the new concept names with GCIs instead of equivalences. The transformation
into normal form can be done in linear time.

The completion algorithm works on a data-structure called completion sets. There
are two kinds of completion sets used in the algorithm:

– S(A) for each concept name A mentioned in the normalized TBox, and
– S(A, r) for each concept name A and role name r mentioned in the normalized

TBox.

Both kinds of completion sets contain concept names and >. By ST we denote the
set containing all completion sets of the TBox T . In the completion algorithm, the
completion sets are initialized as follows:

– S(A) := {A,>} for each concept name A mentioned in the normalized TBox,
and

– S(A, r) := ∅ for each concept name A and role name r mentioned in the normal-
ized TBox.

CR1 If C′ v D ∈ T , C′ ∈ S(C), and D 6∈ S(C)
then add D to S(C).

CR2 If C1 u C2 v D ∈ T , C1, C2 ∈ S(C), and D 6∈ S(C)
then add D to S(C).

CR3 If C′ v ∃r.D ∈ T , C′ ∈ S(C), and D /∈ S(C, r)
then add D to S(C, r).

CR4 If ∃r.D′ v E ∈ T , D ∈ S(C, r), D′ ∈ S(D), and E /∈ S(C)
then add E to S(C).

Fig. 3. EL completion rules

The intuition is that the completion rules make implicit subsumption relationships ex-
plicit in the following sense:

– B ∈ S(A) implies that A vT B, i.e., S(A) contains only subsumers of A, and
– B ∈ S(A, r) implies that A vT ∃r.B, i.e., S(A, r) contains only concept names
B s.t. A is subsumed by ∃r.B.

In fact, it can be shown that these properties of the completion sets are invariants and
thus do not change during completion. Clearly, this holds for the initial elements of the
completion. After initialization all completion sets in ST are extended by applying the
completion rules that are shown in Fig. 3 exhaustively, i.e., until no more rule applies.
It is easy to see that the rules preserve the above invariants. In each of the rules the last
condition ensures that the rule is only applied once to the same concepts and completion
sets. The first rule CR1 propagates the transitivity of subsumption. The second CR2 en-
sures that if a conjunction implies a concept C w.r.t. T and the conjuncts are already in
the completion set of a concept, then C has to be in that completion set as well. The rule
CR3 is applicable if a concept name implies an existential restriction w.r.t. T and this
concept name is contained in the completion set S(C), then the existential restriction is
implied by C as well. The most complicated rule is CR4. The axiom ∃r.D′ v E ∈ T
implies ∃r.D′ vT E, and the assumption that the invariants are satisfied before apply-
ing the rule yieldsD vT D′ and C vT ∃r.D. The subsumption relationshipD vT D′
then implies ∃r.D vT ∃r.D′. By applying transitivity of the subsumption relation vT ,
we obtain C vT E.

Once the completion process has terminated, the subsumption relation between two
named concepts A and B can be tested by checking whether B ∈ S(A). The fact that
subsumption in EL w.r.t. general TBoxes can be decided in polynomial time follows
from the following statements:

1. Rule application terminates after a polynomial number of steps.
2. If no more rules are applicable, then A vT B iff B ∈ S(A).

The first statement holds, since the number of completion sets, of the kind S(A) is linear
in size of the TBox. In addition, the number of completion set of the kind S(A, r) is
quadratic in the size of T . The size of the completion sets is bounded by the number of
concept names and role names, and each rule application extends at least one label.

Theorem 1. Subsumption in EL is polynomial w.r.t. general TBoxes.

This nice computational property transfers also to EL++ [5], the DL corresponding
closest to the OWL 2 EL profile.

The first implementation of the subsumption algorithm for EL sketched above is the
CEL system [11, 71]. This system showed that the classification of the very large knowl-
edge bases can be done in runtime acceptable for practical applications. For instance,
classifying the knowledge base SNOMED CT, which contains more than 300.000 axioms
takes less than half an hour and classification of the Gene Ontology, which contains
more than 20.000 axioms, takes only 6 seconds [12].

4 Explanation of Reasoning Results

DL knowledge bases often contain thousands of axioms and have a complex structure
due to the use of GCIs. These knowledge bases are developed by users who are experts
in the domain to be modeled, but have little expertise in knowledge representation or
logic. For this sort of applications, it is necessary that the development process of the
knowledge base is supported by automated services implemented in the DL system.

Classical DL reasoning systems can detect that a certain consequence holds, such as
an inconsistency or a subsumption relation, but they give no evidence why it holds. The
reasoning service explanation facilitates better understanding of the knowledge base
and gives a starting point to resolve an unwanted consequence in the knowledge base.
For instance, the SNOMED ontology contains the subsumption relation:

Amputation-of-Finger v Amputation-of-Arm.

A user who wants to correct this, faces the task of finding the axioms responsible for this
unintended subsumption relation among 350.000 others. Clearly, automated support is
needed for this task. A first step towards providing such support was described in [90],
where an algorithm for computing all minimal subsets of a given knowledge base that
have a given consequence is described. This approach was extended to expressive DLs
in [83].

For a TBox T and a consequence c an explanation points to the “source” of the
consequence, which is a subset of T that contributes to the consequence c. We call a
minimal axiom set (MinA) a minimal subset (w.r.t. size) of a TBox T , that has a certain
consequence. Axiom pinpointing is the process of computing MinAs.

Example 1. Consider the following TBox:

Tex ={ Cat v ∃ has-parent. Cat, I
Cat v Pet, II

∃ has-parent.Pet v Animal, III
Pet v Animal } IV

For the TBox Tex, we find the consequence Cat vTex Animal. The consequence holds
since axiom I says that cats are pets and pets are in turn animals by axiom IV. This

consequence also follows from Tex by using axiom I and axiom II, which together say
that a cat has a parent that is a pet. Now from this together with axiom III it, follows
that cats are animals. Thus, the one consequence has several MinAs, namely: {I, IV}
and {I, II, III}.

It turns out that there may be exponentially many MinAs, which shows that an
algorithm for computing all MinAs needs exponential time in the size of the input
TBox. In order to obtain an explanation for a consequence, we need to compute one
single MinA of the consequence. There are two general approaches for pinpointing,
i.e., computing a MinA of a consequence:

Black box approach, which uses a DL reasoner as an oracle, i.e, it repetitively queries
the reasoner to compute a MinA.

Glass box approach, which modifies the internals of a DL reasoner s.t. it yields a
MinA directly when computing an inference.

While the black box approach is independent of the reasoner, the glass box approach
needs to be tailored to the reasoning method in use. We examine the black box approach
first, which is the method of choice for expressive DLs, then we discuss the glass box
approach for completion-based reasoning in EL.

The task of computing explanations has also been considered in other research ar-
eas. For example, in the SAT community, people have considered the problem of com-
puting minimally unsatisfiable subsets of a set of propositional formulae. Approaches
for computing these sets developed there include algorithms that call a SAT solver as a
black box [65, 20] but also algorithms that extend a resolution-based SAT solver directly
[34, 103].

4.1 Black Box Method for Pinpointing

Assume we want to perform pinpointing for the consequenceA v B w.r.t. the TBox T .
The basic idea underlying the black box method is a kind of uninformed search: Given
a TBox T and the consequence A v B: simply remove the first axiom from the TBox
T and test whether the consequence still holds. If so, continue with the second axiom.
If the consequence does not follow from the TBox with the first axiom removed, put
the axiom back to the TBox and then test the second axiom. This naive method always
performs as many subsumption tests as the number of axioms in the TBox. Since MinAs
are often quite small, this is not a feasible method for very large TBoxes.

A more efficient method would not proceed axiom-wise, but first compute a not
necessarily minimal subset of the TBox from which the consequence follows and then
minimize this set using the naive procedure. This approach is only feasible if the algo-
rithm for the first step produces fairly small sets of axioms and is efficient.

The black box method is independent of the DL in use and can be used to compute
explanations for any DL, provided there is a DL reasoner for the DL and the conse-
quence in question. This method can easily be implemented on top of a DL reasoner
and does not require to change the internal structure of the reasoner. This is the reason
why most implementations of pinpointing are based on the black box approach.

For EL the black box pinpointing algorithm has been implemented in the DL rea-
soning system CEL [16, 19, 97]. For a variant of the medical knowledge base GALEN
[87] with 4000 axioms the overall run-time for computing a MinA with the non-naive
method took 9:45 min. In contrast the naive method took seven hours for the same
task. The first implementation of the black box method for pinpointing was done for the
ontology editor SWOOP [62] based on the methods described in [83]. A more recent im-
plementation of black box pinpointing was done in the ontology editor PROTÉGÉ. This
implementation allows pinpointing even for parts of axioms that contribute to deriving
a consequence [47].

4.2 Glass Box Pinpointing for EL

The glass box approach for computing an explanation depends on the DL used and the
reasoning method employed. It requires that the internals of a reasoner are modified
by adding label sets to the reasoning procedure that collect the relevant axioms already
during the computation of the consequence. For EL, we modify the completion algo-
rithm for subsumption from Section 3.3 to compute one explanation for a subsumption
relationship. To this end, we annotate every element in the completion sets in S with a
monotone Boolean formula that captures the MinAs.5 The glass box algorithm for EL
was described in [15] and extended in [16].

The basic labeling assigns to every GCI t ∈ T a unique propositional variable
lab(t) as a label. By lab(T) we denote the set of all propositional variables labeling
GCIs in the TBox T . Now, a monotone Boolean formula over lab(T) is a Boolean
formula using

– (some of) the variables in lab(T), and
– only the connectives ∧, ∨ and true for truth.

Its propositional valuation (denoted ν) is the set of propositional variables that make
the formula true when they are assigned the value true. For a valuation ν ⊆ lab(T), let
Tν := {t ∈ T | lab(T) ∈ ν}. The idea is that the valuation characterizes a combination
of axiom labels. These labels are mapped back to the actual axioms from the TBox T
by Tν .

Definition 15 (Pinpointing formula). Let T be an EL-TBox and A and B concept
names occurring in T . The monotone Boolean formula φ over lab(T) is a pinpointing
formula for T w.r.t. A vT B, if the following holds for every valuation ν ⊆ lab(T):

A vTν B iff ν satisfies φ.

Consider Example 1 again. Take lab(Tex) := {I, II, III, IV} as the set of proposi-
tional variables, then II∧(IV∨(I∧III)) is a pinpointing formula for Tex w.r.t.A vTex B.

Lemma 1. Let φ be a pinpointing formula for the TBox T w.r.t. A vT B. If valuations
are ordered by set inclusions, then

5 This method for generating explanations was first applied for default reasoning in [8].

M = {Tν | ν is a minimal valuation satisfying φ}

is the set of all MinAs for T w.r.t. A vT B.

Proof. We need to show the following claims:

1. M contains only MinAs.
2. There is no MinA m1 s.t. m1 /∈M .

Show claim 1.:
For each set of axioms m ∈ M there is a valuation νm s.t. νm = lab(m), which is
minimal in size and that satisfies φ. Since φ is satisfied, A vT B holds. Since νm is
minimal there is no subset of νm satisfying φ, and thus m is a MinA.
Show claim 2.:
Assume m1 is a MinA for T w.r.t. A vT B and m1 /∈ M . Since m1 is a MinA, m1 is
minimal andA vm1 B holds. Let νm1 be the valuation νm1 = lab(m1). FromA vT B
follows νm1

satisfies the pinpointing formula φ. Thus, m1 induces a minimal valuation
satisfying φ, which is a contradiction to m1 /∈M . o

Lemma 1 guarantees that it is enough to compute the pinpointing formula to obtain
all MinAs, i.e., explanations for the consequence in question. However, to obtain one
MinA from the pinpointing formula, one can transform the pinpointing formula into
disjunctive normal form, remove those disjuncts that are implied by other disjuncts and
then pick one disjunct as the explanation.

Next, we describe the computation algorithm for pinpointing formulae in EL based
on completion. Again, we want to explain A v B w.r.t. the EL-TBox T . Since the
completion algorithm starts by normalizing the TBox, we need to introduce the labels
for the original TBox and labels for the normalized TBox T ′ as well. The labels of the
normalized TBox T ′ need to “keep track” of the corresponding axioms in the original
TBox.

The completion procedure needs to be adapted to propagate the labels and to con-
struct the pinpointing formula. To this end, each element of the completion sets, say
X ∈ S(A), is labelled with a monotone Boolean formula: lab(A,X). The initial ele-
ments of the completions sets A ∈ S(A) and > ∈ S(A) are labelled with true , i.e.,
lab(A,A) = lab(A,>) = true for all concept names appearing in T . Now, we need
to modify the completion rules from Fig. 3. Let the precondition of a completion rule
CRi be satisfied for a set of completion sets ST ′ w.r.t. the TBox T ′. The modified rule
collects the labels of those GCIs and completion sets that make the rule CRi applicable.
Let φ be the conjunction of :

– labels of GCIs in T ′ that appear in the precondition of CRi, and
– labels of elements in completion sets in ST ′ that appear in the precondition of CRi.

The conjunction collected in φ needs to be propagated to the consequence of the rule
CRi. If the completion set element in the consequence of CRi is not in ST ′ , then it is
added with label φ. In case the consequence of CRi is already in ST ′ and has the label
ψ, the completion algorithm has derived the consequence again. In this case, ψ and φ
are compared. If ψ∧φ 6≡ ψ, the consequence of CRi is derived in an alternative way and

the label of this consequence is changed to φ ∨ ψ. The new label of the consequence is
a more general Boolean formula. If ψ ∧ φ ≡ ψ, then φ implies ψ. In this case the rule
CRi is not applied.

Example 2. Consider Example 1 again. To compute the pinpointing formula for Cat
vTex Animal, the set of completion sets STex is initialized as follows:

STex = { (Cat,>)true , (Cat, Cat)true ,
(Pet,>)true , (Pet, Pet)true ,
(Animal,>)true , (Animal, Animal)true }.

Then we can apply the modified rules:

– Using axiom II: Cat v Pet ∈ Tex and (Cat, Cat)true ∈ STex ,
add (Cat,Pet)II∧true to STex .

– Using axiom I: Cat v ∃ has-parent. Cat ∈ Tex and (Cat, Cat)true ∈ STex ,
add (Cat, has-parent, Pet)I∧true to STex .

– Using axiom IV: Pet v Animal ∈ Tex and (Cat,Pet)II∧true ∈ STex ,
add (Cat, Animal)II∧IV∧true to STex .

– Using axiom III: ∃ has-parent.Pet v Animal ∈ Tex and
{(Cat, Pet)II∧true , (Cat, has-parent, Pet)I∧true)} ⊂ STex ,
modify (Cat, Animal)II∧IV∧true to (Cat, Animal)(II∧IV∧true)∨(III∧II∧I∧true).

Now, lab(Cat, Animal) = (II ∧ IV) ∨ (III ∧ II ∧ I) is the pinpointing formula for Tex
w.r.t. Cat vTex Animal.

The modified completion algorithm always terminates, but not necessarily in poly-
nomial time due to the possibility of repeated generalization of the label. Testing equiv-
alence of monotone Boolean formulae is an NP-complete problem. However, given
formulae over n propositional variables whose size is exponential in n, equivalence can
be tested in time exponential in n. Thus, there are at most exponentially many rule ap-
plications and each of them takes at most exponential time. This yields an exponential
time bound for the execution of the pinpointing algorithm.

However, the set of completion sets S obtained by the described process is identical
to the one obtained by the unmodified algorithm. After the modified completion algo-
rithm has terminated, the label lab(A,B) is a pinpointing formula for T w.r.t.A vT B.

Theorem 2. Given an EL-TBox T in normal form, the pinpointing algorithm termi-
nates in time exponential in the size of T . After termination, the resulting set of comple-
tion sets ST satisfies the following two properties for all concept names A,B occurring
in T :

1. A vT B iff (S(A), B) ∈ ST , and
2. lab(A,B) is a pinpointing formula for T w.r.t A vT B.

This result was shown in [16] for the DL EL++. In the example, the TBox Tex is already
in normal form. In the general case, the TBox needs to be normalized and the pinpoint-
ing formula obtained by the modified completion needs to reconstruct the labels for the
original axioms from the label of the normalized axioms.

The propositional variables from the normalized TBox in φ are replaced with those
of the original one. More precisely, each label of a normalized GCI is replaced by the
disjunction of its source GCIs. Once the de-normalized pinpointing formula is obtained,
it is transformed into disjunctive normal form. One disjunct of this formula yields a
MinA and thus an explanation of the consequence. To sum up, the pinpointing extension
of the EL subsumption algorithm proceeds in the following steps:

1. Label all axioms in T .
2. Normalize T according the rules from Fig. 2.
3. Label each axiom in the normalized TBox T ′ and keep the source GCI of every

normalized GCI.
4. Apply the completion rules from Fig. 3 modified as described.
5. De-normalize the pinpointing formula.
6. Build the disjunctive normal form.
7. Pick one disjunct as explanation.

Note that the transformation into disjunctive normal form may cause an exponential
blow-up, which means that, in some cases, the pinpointing formula provides us with a
compact representation of the set of all MinAs. Also note that this blow-up is not in the
size of the pinpointing formula but rather in the number of variables. Thus, if the size
of the pinpointing formula is already exponential in the size of the TBox T , computing
all MinAs from it is still “only” exponential in the size of T .

The glass box approach for pinpointing has also been investigated for more expres-
sive DLs such as ALC in [72]. A more general view on tableaux and pinpointing was
taken in [14].

We presented methods to obtain an explanation for a consequence. In order to actu-
ally repair a DL knowledge base, it is necessary to alleviate all causes of an unwanted
consequence. In order to support users to repair a knowledge base, all MinAs need to
be computed. The glass box method for EL computes all MinAs and can be employed
for knowledge base repair directly. For the black box approach, a method for obtaining
all MinAs is described in [90, 60]. This method computes the first MinA by the algo-
rithms described above and then employs a method based on hitting sets to obtain the
remaining MinAs.

The mechanism of pinpointing is not only useful for explanation or repair of DL
knowledge bases. Access restrictions to knowledge bases can be supported as well [9].
If a user only has access to a part of the ontology, it is not obvious whether certain
consequences can be accessed by the user as well. By computing all MinAs for the
consequence, it can be tested whether the consequence follows from the accessible part
alone. In that case access to the consequence does not violate the access restrictions.

Acknowledgement This article is based on the Description Logic tutorial by the author,
which she taught at the 2009 Masters Ontology Spring School organized by the Meraka
Institute in Tshwane (Pretoria), South Africa and it is based on the course material by
Franz Baader at the 2009 Reasoning Web Summer School, see [2]. The author would
like to thank the anonymous reviewers and Marcel Lippmann for valuable comments
on earlier versions of this paper.

References

1. F. Baader. Description logic terminology. In [6], pages 485–495. Cambridge University
Press, 2003.

2. F. Baader. Description logics. In Proceedings of Reasoning Web: Semantic Technologies
for Information Systems, volume 5689 of Lecture Notes in Computer Science, pages 1–39,
2009.

3. F. Baader, A. Bauer, P. Baumgartner, A. Cregan, A. Gabaldon, K. Ji, K. Lee, D. Rajaratnam,
and R. Schwitter. A novel architecture for situation awareness systems. In M. Giese and
A. Waaler, editors, Proc. of the 18th International Conference on Automated Reasoning
with Analytic Tableaux and Related Methods (Tableaux 2009), volume 5607 of Lecture
Notes in Computer Science, pages 77–92. Springer-Verlag, 2009.

4. F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proc. of the 19th Int.
Joint Conf. on Artificial Intelligence (IJCAI-05), Edinburgh, UK, 2005. Morgan-Kaufmann
Publishers.

5. F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope further. In K. Clark and P. F.
Patel-Schneider, editors, In Proc. of the OWLED Workshop, 2008.

6. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors. The
Description Logic Handbook: Theory, Implementation, and Applications. Cambridge Uni-
versity Press, 2003.

7. F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H.-J. Profitlich. An empirical analysis
of optimization techniques for terminological representation systems or: Making KRIS get
a move on. Applied Artificial Intelligence. Special Issue on Knowledge Base Management,
4:109–132, 1994.

8. F. Baader and B. Hollunder. Embedding defaults into terminological knowledge represen-
tation formalisms. In Proc. of the 3rd Int. Conf. on the Principles of Knowledge Represen-
tation and Reasoning (KR-92), pages 306–317. Morgan Kaufmann, Los Altos, 1992.

9. F. Baader, M. Knechtel, and R. Peñaloza. A generic approach for large-scale ontological
reasoning in the presence of access restrictions to the ontology’s axioms. Proc. of the 8th
International Semantic Web Conference (ISWC 2009), volume 5823 of Lecture Notes in
Computer Science, pages 49–64, 2009.

10. F. Baader, R. Küsters, and R. Molitor. Computing least common subsumer in description
logics with existential restrictions. In T. Dean, editor, Proc. of the 16th Int. Joint Conf. on
Artificial Intelligence (IJCAI-99), pages 96–101, 1999. Morgan Kaufmann, Los Altos.

11. F. Baader, C. Lutz, and B. Suntisrivaraporn. CEL—a polynomial-time reasoner for life
science ontologies. In U. Furbach and N. Shankar, editors, Proc. of the 3rd Int. Joint
Conf. on Automated Reasoning (IJCAR-06), volume 4130 of Lecture Notes In Artifi-
cial Intelligence, pages 287–291. Springer-Verlag, 2006. CEL download page: http:
//lat.inf.tu-dresden.de/systems/cel/.

12. F. Baader, C. Lutz, and B. Suntisrivaraporn. Is tractable reasoning in extensions of the
description logic EL useful in practice? In Journal of Logic, Language and Information,
Special Issue on Method for Modality (M4M), 2007.

13. F. Baader, C. Lutz, and A.-Y. Turhan. Small is again beautiful in description logics. KI –
Künstliche Intelligenz, 24(1):25–33, April 2010.

14. F. Baader and R. Peñaloza. Axiom pinpointing in general tableaux. Journal of Logic and
Computation, 20(1):5–34, 2010. Special Issue: Tableaux and Analytic Proof Methods.

15. F. Baader, R. Peñaloza, and B. Suntisrivaraporn. Pinpointing in the description logic EL. In
D. Calvanese, E. Franconi, V. Haarslev, D. Lembo, B. Motik, S. Tessaris, and A.-Y. Turhan,
editors, Proc. of the 2007 Description Logic Workshop (DL 2007), CEUR-WS, 2007.

16. F. Baader, R. Peñaloza, and B. Suntisrivaraporn. Pinpointing in the description logic EL+.
In Proc. of the 30th German Annual Conf. on Artificial Intelligence (KI’07), volume 4667 of
Lecture Notes In Artificial Intelligence, pages 52–67, Osnabrück, Germany, 2007. Springer.

17. F. Baader and U. Sattler. An overview of tableau algorithms for description logics. Studia
Logica, 69:5–40, 2001.

18. F. Baader, B. Sertkaya, and A.-Y. Turhan. Computing the least common subsumer w.r.t. a
background terminology. Journal of Applied Logics, 2007.

19. F. Baader and B. Suntisrivaraporn. Debugging SNOMED CT using axiom pinpointing in
the description logic EL+. In Proc. of the International Conference on Representing and
Sharing Knowledge Using SNOMED (KR-MED’08), Phoenix, Arizona, 2008.

20. J. Bailey and P. J. Stuckey. Discovery of minimal unsatisfiable subsets of constraints using
hitting set dualization. In M. V. Hermenegildo and D. Cabeza, editors, InProc. of Practi-
cal Aspects of Declarative Languages, 7th International Symposium (PADL 2005), USA,
LNCS, pages 174–186, 2005.

21. P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, Cambridge, MA, USA, 2001.

22. A. Borgida and P. F. Patel-Schneider. A semantics and complete algorithm for subsumption
in the CLASSIC description logic. Journal of Artificial Intelligence Research, 1:277–308,
1994.

23. R. J. Brachman, A. Borgida, D. L. McGuinness, and L. Alperin Resnick. The CLASSIC
knowledge representation system, or, KL-ONE: the next generation. Preprints of the Work-
shop on Formal Aspects of Semantic Networks, Two Harbors, Cal., 1989.

24. R. J. Brachman and H. J. Levesque. Readings in Knowledge Representation. Morgan
Kaufmann, Los Altos, 1985.

25. S. Brandt. Polynomial time reasoning in a description logic with existential restrictions,
GCI axioms, and—what else? In R. L. de Mantáras and L. Saitta, editors, Proc. of the 16th
European Conf. on Artificial Intelligence (ECAI-04), pages 298–302. IOS Press, 2004.

26. S. Brandt. Reasoning in ELH w.r.t. general concept inclusion axioms. LTCS-
Report LTCS-04-03, Chair for Automata Theory, Institute for Theoretical Computer
Science, Dresden University of Technology, Germany, 2004. See http://lat.inf.tu-
dresden.de/research/reports.html.

27. S. Brandt, R. Küsters, and A.-Y. Turhan. Approximation and difference in description
logics. In D. Fensel, D. McGuinness, and M.-A. Williams, editors, Proc. of the 8th Int. Conf.
on the Principles of Knowledge Representation and Reasoning (KR-02), San Francisco, CA,
2002. Morgan Kaufmann Publishers.

28. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. DL-Lite: Tractable
description logics for ontologies. In M. M. Veloso and S. Kambhampati, editors, Proc. of
the 20th Nat. Conf. on Artificial Intelligence (AAAI’05), pages 602–607. AAAI Press/The
MIT Press, 2005.

29. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data complexity
of query answering in description logics. In Proc. of the 10th Int. Conf. on the Principles
of Knowledge Representation and Reasoning (KR 2006), pages 260–270, 2006.

30. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reason-
ing and efficient query answering in description logics: The DL-Lite family. Journal of
Automated Reasoning, 39(3):385–429, 2007.

31. D. Calvanese and G. D. Giacomo. Expressive description logics. In [6], pages 178–218.
Cambridge University Press, 2003.

32. B. Cuenca Grau, I. Horrocks, Y. Kazakov, and U. Sattler. Modular reuse of ontologies:
Theory and practice. Journal of Artificial Intelligence Research, 31:273–318, 2008.

33. B. Cuenca Grau, Y. Kazakov, I. Horrocks, and U. Sattler. A logical framework for modular
integration of ontologies. In Proc. of the 20th Int. Joint Conf. on Artificial Intelligence
(IJCAI-07), pages 298–303, 2007.

34. G. Davydov, I. Davydova, and H. K. Büning. An efficient algorithm for the minimal unsat-
isfiability problem for a subclass of cnf. Ann. Math. Artif. Intell., 23(3-4):229–245, 1998.

35. F. M. Donini, S. Colucci, T. Di Noia, and E. Di Sciascio. A tableaux-based method for com-
puting least common subsumers for expressive description logics. In Proc. of the Twenty-
First International Joint Conference on Artificial Intelligence (IJCAI-09), pages 739–745.
AAAI, July 2009.

36. T. Eiter, C. Lutz, M. Ortiz, and M. Simkus. Query answering in description logics with
transitive roles. In Proc. of the 21st International Joint Conference on Artificial Intelligence
IJCAI09. AAAI Press, 2009.

37. M. Fitting. Basic modal logic. In Handbook of Logic in Artificial Intelligence and Logic
Programming, volume 1, pages 365–448. Oxford Science Publications, 1993.

38. S. Ghilardi, C. Lutz, and F. Wolter. Did I damage my ontology? a case for conservative
extensions in description logics. In P. Doherty, J. Mylopoulos, and C. Welty, editors, Proc.
of the 10th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR-
06), pages 187–197. AAAI Press, 2006.

39. B. Glimm, I. Horrocks, C. Lutz, and U. Sattler. Conjunctive query answering for the de-
scription logic SHIQ. In M. M. Veloso, editor, Proc. of the 20th Int. Joint Conf. on
Artificial Intelligence (IJCAI-07), pages 399–404, 2007.

40. E. Grädel. On the restraining power of guards. Journal of Symbolic Logic, 64:1719–1742,
1999.

41. E. Grädel, P. G. Kolaitis, and M. Y. Vardi. On the decision problem for two-variable first-
order logic. Bulletin of Symbolic Logic, 3(1):53–69, 1997.

42. V. Haarslev and R. Möller. High performance reasoning with very large knowledge bases:
A practical case study. In B. Nebel, editor, Proc. of the 17th Int. Joint Conf. on Artificial
Intelligence (IJCAI-01), pages 161–166, 2001.

43. V. Haarslev and R. Möller. RACER system description. In R. Goré, A. Leitsch, and T. Nip-
kov, editors, Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR-01), Lecture
Notes in Computer Science. Springer, 2001.

44. V. Haarslev and R. Möller. Optimization techniques for retrieving resources described in
OWL/RDF documents: First results. In Proc. of the 9th Int. Conf. on the Principles of
Knowledge Representation and Reasoning (KR-04), pages 163–173, 2004.

45. V. Haarslev, R. Möller, and A.-Y. Turhan. Exploiting pseudo models for TBox and ABox
reasoning in expressive description logics. In R. Goré, A. Leitsch, and T. Nipkov, editors,
Proc. of the International Joint Conference on Automated Reasoning IJCAR’01, LNAI.
Springer Verlag, 2001.

46. M. Hofmann. Proof-theoretic approach to description-logic. In P. Panangaden, editor, Proc.
of the 20th Ann. IEEE Symp. on Logic in Computer Science (LICS-05), pages 229–237.
IEEE Computer Society Press, 2005.

47. M. Horridge, B. Parsia, and U. Sattler. Laconic and precise justifications in OWL. In ISWC
08 The International Semantic Web Conference 2008, Karlsruhe, Germany, 2008.

48. I. Horrocks. Optimising Tableaux Decision Procedures for Description Logics. PhD thesis,
University of Manchester, 1997.

49. I. Horrocks. Using an expressive description logic: FaCT or fiction? In A. Cohn, L. Schu-
bert, and S. Shapiro, editors, Proc. of the 6th Int. Conf. on the Principles of Knowledge
Representation and Reasoning (KR-98), pages 636–647, 1998.

50. I. Horrocks. Reasoning with expressive description logics: Theory and practice. In
A. Voronkov, editor, Proc. of the 19th Conf. on Automated Deduction (CADE-19), num-
ber 2392 in Lecture Notes In Artificial Intelligence, pages 1–15. Springer, 2002.

51. I. Horrocks, O. Kutz, and U. Sattler. The even more irresistible SROIQ. In P. Do-
herty, J. Mylopoulos, and C. Welty, editors, Proc. of the 10th Int. Conf. on the Principles of
Knowledge Representation and Reasoning (KR-06), pages 57–67. AAAI Press, 2006.

52. I. Horrocks and P. Patel-Schneider. Optimizing description logic subsumption. Journal of
Logic and Computation, 9(3):267–293, 1999.

53. I. Horrocks, P. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to OWL: The
making of a web ontology language. Journal of Web Semantics, 1(1):7–26, 2003.

54. I. Horrocks and U. Sattler. A description logic with transitive and inverse roles and role
hierarchies. Journal of Logic and Computation, 9(3):385–410, 1999.

55. I. Horrocks and U. Sattler. Optimised reasoning for SHIQ. In Proc. of the 15th European
Conference on Artificial Intelligence, 2002.

56. I. Horrocks and U. Sattler. A tableaux decision procedure for SHOIQ. In Proc. of the
19th Int. Joint Conf. on Artificial Intelligence (IJCAI-05). Morgan Kaufmann, Jan. 2005.

57. I. Horrocks and U. Sattler. A tableau decision procedure for SHOIQ. J. of Automated
Reasoning, 39(3):249–276, 2007.

58. I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for very expressive description
logics. J. of the Interest Group in Pure and Applied Logic, 8(3):239–264, 2000.

59. U. Hustadt, R. A. Schmidt, and L. Georgieva. A survey of decidable first-order fragments
and description logics. Journal of Relational Methods in Computer Science, 1:251–276,
2004.

60. A. Kalyanpur, B. Parsia, M. Horridge, and E. Sirin. Finding all justifications of owl dl
entailments. In The Semantic Web, 6th International Semantic Web Conference, 2nd Asian
Semantic Web Conference, ISWC 2007 + ASWC 2007, Korea, 2007, volume 4825 of Lecture
Notes in Computer Science, pages 267–280, 2007.

61. A. Kalyanpur, B. Parsia, E. Sirin, and B. Cuenca Grau. Repairing unsatisfiable concepts in
owl ontologies. In Y. Sure and J. Domingue, editors, Proc. of the 3rd European Semantic
Web Conf. (ESWC’06), volume 4011 of Lecture Notes in Computer Science, pages 170–
184. Springer, 2006.

62. A. Kalyanpur, B. Parsia, E. Sirin, B. Cuenca Grau, and J. Hendler. Swoop: A web ontology
editing browser. J. Web Sem., 4(2):144–153, 2006.

63. A. Kalyanpur, B. Parsia, E. Sirin, and J. A. Hendler. Debugging unsatisfiable classes in
OWL ontologies. J. Web Sem., 3(4):268–293, 2005.

64. Y. Kazakov. RIQ and SROIQ are harder than SHOIQ. In G. Brewka and J. Lang,
editors, Proc. of the 11th Int. Conf. on the Principles of Knowledge Representation and
Reasoning (KR-08), pages 274–284. AAAI Press, 2008.

65. M. H. Liffiton and K. A. Sakallah. Algorithms for computing minimal unsatisfiable subsets
of constraints. J. Autom. Reasoning, 40(1):1–33, 2008.

66. C. Lutz. Complexity of terminological reasoning revisited. In Proc. of the 6th Int. Conf. on
Logic for Programming and Automated Reasoning (LPAR’99), Lecture Notes in Computer
Science, pages 181–200. Springer, 1999.

67. C. Lutz. The complexity of conjunctive query answering in expressive description logics.
In A. Armando, P. Baumgartner, and G. Dowek, editors, Proc. of the 4th International Joint
Conference on Automated Reasoning (IJCAR2008), number 5195 in LNAI, pages 179–193.
Springer, 2008.

68. C. Lutz, U. Sattler, and F. Wolter. Description logics and the two-variable fragment. In
D. McGuiness, P. Pater-Schneider, C. Goble, and R. Möller, editors, Proc. of the 2001 In-
ternational Workshop in Description Logics (DL-2001), pages 66–75, Stanford, California,
USA, 2001.

69. C. Lutz, D. Walther, and F. Wolter. Conservative extensions in expressive description logics.
In Proc. of the 20th Int. Joint Conf. on Artificial Intelligence (IJCAI-07). AAAI Press, 2007.

70. C. Lutz and F. Wolter. Deciding inseparability and conservative extensions in the descrip-
tion logic EL. Journal of Symbolic Computation, 45(2):194 – 228, 2010.

71. J. Mendez and B. Suntisrivaraporn. Reintroducing cel as an owl 2 el reasoner. In B. Cuenca
Grau, I. Horrocks, B. Motik, and U. Sattler, editors, Proc. of the 2008 Description Logic
Workshop (DL 2009), volume 477 of CEUR-WS, 2009.

72. T. Meyer, K. Lee, R. Booth, and J. Z. Pan. Finding maximally satisfiable terminologies
for the description logic ALC. In Proc. of the 21st Nat. Conf. on Artificial Intelligence
(AAAI’06). AAAI Press/The MIT Press, 2006.

73. M. Minsky. A framework for representing knowledge. Technical report, MIT-AI Labora-
tory, Cambridge, MA, USA, 1974.

74. B. Motik. Reasoning in Description Logics using Resolution and Deductive Databases.
PhD thesis, Universität Karlsruhe, 2006.

75. B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu, A. Fokoue, and C. Lutz. Owl 2 web ontology
language profiles. W3C Recommendation, 27 October 2009. http://www.w3.org/
TR/2009/REC-owl2-profiles-20091027/.

76. B. Motik and U. Sattler. A Comparison of Techniques for Querying Large Description
Logic ABoxes. In M. Hermann and A. Voronkov, editors, Proc. of the 13th Int. Conf. on
Logic for Programming Artificial Intelligence and Reasoning (LPAR’06), LNCS, Cambo-
dia, 2006. Springer. KAON2 download page: http://kaon2.semanticweb.org/.

77. B. Motik, R. Shearer, and I. Horrocks. A hypertableau calculus for SHIQ. In D. Cal-
vanese, E. Franconi, V. Haarslev, D. Lembo, B. Motik, S. Tessaris, and A.-Y. Turhan, edi-
tors, Proc. of the 2007 Description Logic Workshop (DL 2007), 2007.

78. B. Motik, R. Shearer, and I. Horrocks. Optimized Reasoning in Description Logics using
Hypertableaux. In F. Pfennig, editor, Proc. of the 23th Conf. on Automated Deduction
(CADE-23), LNAI, pages 67–83, Germany, 2007. Springer.

79. B. Nebel. Computational complexity of terminological reasoning in BACK. Artificial
Intelligence Journal, 34(3):371–383, 1988.

80. B. Nebel. Terminological reasoning is inherently intractable. Artificial Intelligence Journal,
43:235–249, 1990.

81. B. Nebel and K. von Luck. Hybrid reasoning in BACK. In Proc. of the 3rd Int. Sym.
on Methodologies for Intelligent Systems (ISMIS-88), pages 260–269. North-Holland Publ.
Co., Amsterdam, 1988.

82. M. Ortiz, D. Calvanese, and T. Eiter. Data complexity of query answering in expressive
description logics via tableaux. Journal of Automated Reasoning, 41(1):61–98, 2008.

83. B. Parsia, E. Sirin, and A. Kalyanpur. Debugging OWL Ontologies. In A. Ellis and
T. Hagino, editors, Proc. of the 14th Int. World Wide Web Conference (WWW2005), pages
633–640, Japan, 2005.

84. P. Patel-Schneider, D. L. McGuinness, R. J. Brachman, L. A. Resnick, and A. Borgida.
The CLASSIC knowledge representation system: Guiding principles and implementation
rational. SIGART Bulletin, 2(3):108–113, 1991.

85. M. R. Quillian. Word concepts: A theory and simulation of some basic capabilities. Behav-
ioral Science, 12:410–430, 1967. Republished in [24].

86. Racer Systems GmbH & Co. KG. RacerPro Reference Manual Version 1.9,
Dec. 2005. Available from: http://www.racer-systems.com/products/
racerpro/reference-manual-1-9.pdf.

87. A. Rector and I. Horrocks. Experience building a large, re-usable medical ontology using
a description logic with transitivity and concept inclusions. In Proc. of the Workshop on
Ontological Engineering, AAAI Spring Symposium (AAAI’97), 1997.

88. U. Sattler, D. Calvanese, and R. Molitor. Relationships with other formalisms. In [6], pages
137–177. Cambridge University Press, 2003.

89. K. Schild. A correspondence theory for terminological logics: preliminary report. In J. My-
lopoulos and R. Reiter, editors, Proc. of the 12th Int. Joint Conf. on Artificial Intelligence
(IJCAI-91), Sydney, Australia, 1991.

90. S. Schlobach and R. Cornet. Non-standard reasoning services for the debugging of de-
scription logic terminologies. In G. Gottlob and T. Walsh, editors, Proc. of the 18th Int.
Joint Conf. on Artificial Intelligence (IJCAI-03), pages 355–362, Mexico, 2003. Morgan
Kaufmann, Los Altos.

91. M. Schmidt-Schauß and G. Smolka. Attributive concept descriptions with unions and com-
plements. Technical Report SR-88-21, Deutsches Forschungszentrum für Künstliche Intel-
ligenz (DFKI), Kaiserslautern, Germany, 1988.

92. M. Schmidt-Schauß and G. Smolka. Attributive concept descriptions with complements.
Artificial Intelligence Journal, 48(1):1–26, 1991.

93. E. Sirin and B. Parsia. Pellet system description. In B. Parsia, U. Sattler, and D. Toman,
editors, Description Logics, volume 189 of CEUR Workshop Proceedings. CEUR-WS.org,
2006.

94. J. F. Sowa, editor. Principles of Semantic Networks. Morgan Kaufmann, Los Altos, 1991.
95. J. F. Sowa. Encyclopedia of Artificial Intelligence, chapter Semantic Networks. John Wiley

& Sons, New York, 1992.
96. T. Springer and A.-Y. Turhan. Employing description logics in ambient intelligence for

modeling and reasoning about complex situations. Journal of Ambient Intelligence and
Smart Environments, 1(3):235–259, 2009.

97. B. Suntisrivaraporn. Polynomial-Time Reasoning Support for Design and Maintenance of
Large-Scale Biomedical Ontologies. PhD thesis, Fakultät Informatik, TU Dresden, 2009.
http://lat.inf.tu-dresden.de/research/phd/#Sun-PhD-2008.

98. S. Tobies. The complexity of reasoning with cardinality restrictions and nominals in ex-
pressive description logics. Journal of Artificial Intelligence Research, 12:199–217, May
2000.

99. D. Tsarkov and I. Horrocks. FaCT++ description logic reasoner: System description. In
Proc. of the 3rd Int. Joint Conf. on Automated Reasoning (IJCAR-06), 2006. FaCT++
download page: http://owl.man.ac.uk/factplusplus/.

100. D. Tsarkov, I. Horrocks, and P. F. Patel-Schneider. Optimising terminological reasoning for
expressive description logics. Journal of Automated Reasoning, 2007.

101. A.-Y. Turhan. On the Computation of Common Subsumers in Description Logics. PhD
thesis, TU Dresden, Institute for Theoretical Computer Science, 2007.

102. W3C OWL Working Group. Owl 2 web ontology language document overview.
W3C Recommendation, 27th October 2009. http://www.w3.org/TR/2009/
REC-owl2-overview-20091027/.

103. L. Zhang and S. Malik. Validating sat solvers using an independent resolution-based
checker: Practical implementations and other applications. In Design, Automation and Test
in Europe Conference and Exposition (DATE 2003), 3-7 March 2003, Munich, Germany,
pages 10880–10885. IEEE Computer Society, 2003.

Journal of Ambient Intelligence and Smart Environments 1 (2009) 1–5 1
IOS Press

Employing Description Logics in Ambient
Intelligence for Modeling and Reasoning
about Complex Situations
Thomas Springer and Anni-Yasmin Turhan a

a TU Dresden, Faculty of Computer Science, Chair for Computer Networks/Chair for Automata Theory
E-mail: thomas.springer@tu-dresden.de, turhan@tcs.inf.tu-dresden.de

Abstract.
Ambient Intelligence systems need to represent information about their environment and recognize relevant situations to

perform appropriate actions proactively and autonomously. The context information gathered by these systems comes with
imperfections such as incompleteness or incorrectness. These characteristics need to be handled gracefully by the Ambient
Intelligence system. Moreover, the represented information must allow for a fast and reliable recognition of the current situation.

To solve these problems we propose a method for situation modeling using the Description Logics based ontology language
OWL DL and a framework for employing Description Logics reasoning services to recognize the current situation based on con-
text. The benefits from the approach are manifold: the semantics of Description Logics allow for graceful handling of incomplete
knowledge. The well-investigated reasoning services do not only allow recognizing the current situation, but also can add to the
reliability of the overall system. Moreover optimized reasoning systems are freely available and ready to use.

We underpin the feasibility of our approach by providing a case study based on a smart home application conducting an eval-
uation of different Description Logics reasoners with respect to our application ontology as well as a discussion of Description
Logics systems in Ambient Intelligence.

Keywords: Situation-Awareness, Description Logics, Reasoning services, OWL DL, Modeling context information

1. Introduction

Research on Ubiquitous Computing and especially
Ambience Intelligence (AmI) aims at creating systems
able to interact in an intelligent way with the envi-
ronment, especially the user. Weiser characterized this
kind of system as: “machines that fit the human envi-
ronment instead of forcing humans to enter theirs will
make using a computer as refreshing as a walk in the
woods” [53].

A system able to recognize the environment’s state
can adjust its behavior according to that state. For in-
stance, an application for supporting mobile workers
during their tasks in the field could adapt the input
and output modalities to improve the interaction with
the user. Speech input and output could be used if the
workers’ hands are not free, or gesture input could be

used if the surrounding noise level is very high. In a
similar way an assistance application for elderly peo-
ple could intelligently support planning of daily ac-
tivities like selecting convenient connections of public
transportation systems for carrying out shopping activ-
ities, visiting the doctor or meeting relatives or friends.

To realize such systems, they have to be able to
capture information about the environment and the in-
volved users based on heterogeneous and distributed
information sources, mainly sensors but also extracted
application data, user monitoring or other methods for
gathering context information. The information cap-
tured in this way is usually low-level and has to be ag-
gregated and abstracted to create a higher-level repre-
sentation of the overall situation a system is currently
in. Only the recognition of complex situations enables

1876-1364/09/$17.00 c© 2009 – IOS Press and the authors. All rights reserved

2 Employing Description Logic systems in Ambient Intelligence

systems of this kind to operate in a more autonomous,
adaptive and intelligent way.

Thus, ambient intelligent systems should be aware
of the current situation. We understand situation-
awareness as the ability of a system to logically ag-
gregate a type of a situation from a complex set of
features of the system’s context. The derived situation
type should be meaningful to the system in the sense
that it can adjust its behavior in a defined way to the
current situation.

A generalized view on situation-aware systems
based on knowledge-based systems as we use it in this
paper is depicted in Figure 1 introducing four process-
ing phases. The first phase of the recognition of a sit-
uation starts with the capturing of information about
the environment using sensor devices. In the second
phase, this information is aggregated and abstracted by
different operations performed by the sensing devices
or components of a context service. The third phase
adds the preprocessed data in an adequate format to
the knowledge base. Then situation types are inferred
from an updated knowledge base. In the fourth phase,
the application triggers appropriate actions based on
the situation types inferred in phase three.

This process involves approaches from several ar-
eas of computer science, namely pervasive and ubiq-
uitous computing, context awareness and artificial in-
telligence, as it was stated in [40] and [36]. Sensors,
actuators and other miniaturized, low-cost computing
devices installed in buildings, devices or even clothes
and the human body help to capture usually low-level,
physical information about the environment like tem-
perature, light intensity, or blood pressure. These tech-
nologies are mainly adopted in the first phase. Systems
developed for context-awareness aim at generalizing
the access to these heterogeneous information sources
and to apply technologies for aggregating and abstract-
ing the sensed information to context information us-
able in applications [18,13,45]. Context models are
created to establish a shared understanding between all
providers of context information, the context middle-
ware and the context-aware applications [19,48]. The
cross-system sharing of context and the modeling of
different context features, especially the quality of in-
formation are further goals of context models [14,41].
To sum up, context-aware systems provide a set of con-
text information that has to match a context model.

The preprocessing of sensor data is only half the
way to situation-aware systems. Classical AI methods
come into play in phase two and three of situation-
aware systems as described in Figure 1. The second

phase uses AI methods as feature extraction and ap-
proaches for classification and aggregation of sensed
data to obtain higher-level context information, as de-
scribed in [27] and [32]. In the third phase, differ-
ent AI techniques could be used to derive a situation
type from a complex set of context features. While
approaches like Neuronal Networks or Bayesian Net-
works could be adopted in the whole process from sen-
sor data abstraction up to decision making, we focus on
AI systems with explicit representation of knowledge
as defined in Figure 1. A major advantage of such sys-
tems is the reproducibility of inferences and decisions.

In phase four, the AmI system derives a decision
from the recognized situation types. The decoupling
of situation recognition and decision making enables
a clear separation of concerns and introduces flexibil-
ity for the AmI system. Especially, the association bet-
ween situation types and actions to be triggered can be
adjusted at run-time.

In this article, we focus on phase three, the recogni-
tion of situation types. This phase comprises the setup
of a knowledge base containing a description of the
situations to be considered in the application and the
reasoning about the situation based on that description
involving context as information about the current sit-
uation. To this end we discuss the role of context for
this kind of systems.

1.1. The role of context in situation-awareness

Context is usually implicit information which has
to be sensed or gathered from distributed and hetero-
geneous sources in order to be usable in applications.
Caused by the way context is gathered and as well as
by the fact that context reflects the state of a highly dy-
namic environment, it has special characteristics which
influence the modeling and processing of context. A
certain piece of information which models a certain as-
pect of the physical environment is called a context fea-
ture. We can identify certain characteristics of single
context features:

Quality: Context represents a model of aspects of
the environment abstracting from the real world.
Dependent on the method used for gathering or
abstracting context features, they have a certain
quality. The quality comprises the relevance of
the gathered information in a certain situation or
related to a certain entity, the accuracy of a mea-
sured value and the probability of a derived con-
text feature.

Employing Description Logic systems in Ambient Intelligence 3

Fig. 1. Conceptual architecture of situation-aware systems.

Incorrectness: Since context features are sensed, ex-
tracted or derived, failures in measurement or
wrong assumptions for derivation may lead to in-
correct information. A system or user can also
provide incorrect information to attack context-
based authentication and authorization mecha-
nisms.

Multiple sources: Moreover, a certain context feature
can be gathered from multiple alternative sources.
For instance, location information can be gath-
ered by the client, either using a GPS device, a
WLAN-based approach, or by the environment.

Heterogeneous sources: Because of its nature, con-
text is in most cases not explicitly available but
has to be gathered from heterogeneous sources. A
context source can be any type of sensor system,
database, or monitoring component. It can also be
derived from user input or application data (see
[45]).

In contrast to a single context feature, a set of con-
text features has the following characteristics:

Inconsistency: A set of context features relevant for a
certain application can be inconsistent because of
contradictory information.

Incompleteness: It can further be incomplete due to
the unavailability of certain context sources.

Multidimensional: Context information is multidi-
mensional because it reflects heterogeneous in-
formation about the state of a highly dynamic
environment comprising physical and techni-
cal information as well as personal information
like activity, user preferences, social relations or
business-related information.

Different abstraction levels: Information from dif-
ferent sources might be available at different lev-
els of abstraction. While a sensor system provides
low-level information sensed from the physical
environment like temperature or light intensity,
application data is usually available on a more ab-
stract level like contact information of a person.

These characteristics of context features require
AmI systems that can handle this kind of imperfect in-
formation gracefully. More precisely, an AmI system
must be able to integrate context information and to de-
liver a “consistent” view of the current situation. Based
on this view its main task is to recognize the type of
the current situation in order to invoke the appropriate
actions – even if the provided information is incom-
plete. While context information is usually provided at
different abstraction levels, it has to be integrated into
the knowledge base seamlessly. In addition, inconsis-
tencies in the knowledge base could occur due to in-
correct context and have to be detected by the system.
Moreover, AmI systems have to be predictable, reli-
able and the selection of actions should be transparent
to the developer and the user.

In this article, we present an approach to and a
framework for modeling of complex situations and in-
ferring the type of the current situation based on con-
text information integrated into the situation model.
We use the DL underlying OWL DL as the knowledge
representation formalism and realize the task of situa-
tion type recognition by the use of Description Logic
reasoning services. OWL DL is a formalism with clear
semantics that offers reasoning services that remedy
the above mentioned problems, especially the handling
of incomplete knowledge, the discovery of inconsis-

4 Employing Description Logic systems in Ambient Intelligence

tencies and the integration of context information at
different levels of abstraction. The reasoning services
in use are well-investigated. Moreover, sound, com-
plete and terminating reasoning algorithms are avail-
able for the Description Logic underlying OWL DL. In
addition, these methods are implemented in highly op-
timized reasoning systems which are freely available.
By adopting a standard ontology language and off-the-
shelf reasoning tools one can significantly reduce the
development overhead and achieve faster prototyping.
In addition to the already tested reasoning services of
DL reasoners the AmI systems created according to
the presented approach are very robust and reliable.
Based on a case study and performance measurements
we will demonstrate the advantages and limitations of
our approach which employs DL systems for the real-
ization of Ambient Intelligence.

In other research work OWL DL is mainly used
for two purposes. Firstly, ontologies are created to es-
tablish a shared understanding between different com-
ponents or even systems about the context informa-
tion which is exchanged between them. Examples are
the Standard Ontology for Ubiquitous and Pervasive
Applications (SOUPA) and the CONtext ONtology
(CONON) [14,19]. In both approaches a common con-
text vocabulary is defined based on a hierarchy of
ontologies. An upper ontology defines general terms
while domain-specific ontologies define the details for
certain application domains. Secondly, context or sit-
uation descriptions are employed in combination with
different reasoning schemes to derive higher-level con-
text or even situations from context.

Often these solutions adopt rule-based reasoning
which could lead to undecidability as it is the case
for [14], [15] and [19]. Other approaches for situa-
tion recognition adopt OWL DL as the base formalism
for the knowledge base, but either adopt the formalism
to their needs – as in [2] fuzzy logic and in [37] first
order logic was used – or use other reasoning mecha-
nisms than DL systems for the recognition task , e.g.
in [47] decision trees were used. Closer to the work
presented here comes the approach presented in [28],
where TBox classification of OWL DL ontologies was
applied to solve situation recognition. ABox realiza-
tion as the means for recognizing situations is for in-
stance used in [31].

While the use of a standard ontology language and
off-the-shelf reasoning tools ensures soundness, com-
pleteness and decidability the approach has also some
limitations. Situations are described by concepts in the
TBox at design time and thus, have to be known to

and explicitly modeled by the system developer. Only
the context features relevant for situation detection are
filled dynamically into the ABox at runtime. Hence,
the situations which can be detected by the AmI sys-
tem are limited to the situations modeled by the sys-
tem developer at design time. Adding new situation de-
scriptions or changing existing one’s means changing
the TBox at design time.

Systems like Bayesian networks or decision trees
are able to model and especially to learn the associa-
tions between context features and situation types from
a set of training examples and can thus, also be used
to build situation-aware systems. A clear advantage of
such approaches is that the developer does not have to
specify the complete knowledge about situations man-
ually, since it can be learned by the system based on
examples. Major drawbacks of these approaches are
that usually a large set of training examples is required
to adjust the system and that the situation model is im-
plicit so that system decisions are hardly reproducible.

In addition, probabilistic approaches are able to deal
with uncertain knowledge by attaching a probability
to all inferred values. With ontologies and Description
Logics just facts can be handled.

In the following, we first give an overview of OWL
DL, Description Logic and their reasoning services.
Then we show how to model complex situations based
on OWL DL. Especially we present a systematic mod-
eling method by the composition of basic situations
to complex scenarios. Next we describe how to ap-
ply DL reasoners for recognizing situation types from
context features. By the use of a case study from the
smart home domain we demonstrate the feasibility of
our approach and give modeling examples. We assess
the usefulness of DL systems for realizing AmI sys-
tems with respect to the expressivity of the formalism,
the handling of imperfect context information and the
performance of the DL reasoners and provide an eval-
uation of today’s available Description Logic reason-
ers. We end the article with a summary and an outlook
to future trends.

2. Description Logics for situation-aware systems

Description Logics (DLs) are a family of knowledge
representation formalisms. The main asset of DLs is
two-fold: on the one hand they are based on formal se-
mantics and on the other they come with powerful rea-
soning services. These reasoning services make facts
that are captured only implicitly in the represented

Employing Description Logic systems in Ambient Intelligence 5

knowledge explicit. Most of the DL reasoning services
are nowadays readily available in tools.

Historically, DLs stem from semantic networks [33,
44], which were introduced as a graphical knowledge
representation formalism. Early versions of semantic
networks lacked a clear definition of the meaning of
the formalism. Thus reasoning algorithms developed
for this kind of knowledge representation depended on
the understanding of the developer. As a consequence
implementations of the reasoning algorithms delivered
different results for the same semantic network. To
remedy this problem DLs were introduced as represen-
tation formalisms equipped with formal semantics [6],
which then allowed to give formal definitions of their
reasoning services. This in turn is the basis for imple-
mentations to be used in practical applications, which
deliver predictable and reliable results.

DL research focuses on algorithms for DL reason-
ing services, the analysis of these algorithms in terms
of computational complexity and the development of
efficient implementations. For instance in case of sub-
sumption tests, algorithms for a whole range of DLs
has been investigated, see [7,25,23]. Moreover, there
is a collection of very efficient DLs systems avail-
able that implement the investigated algorithms in op-
timized ways, see for instance [21,5,50,43]. These DL
systems are employed in many different practical ap-
plications. The most prominent application area for
DLs is the bio-medical domain, where the huge termi-
nologies are built to represent facts from the biological
domain as, for instance, genomic information [8,55]
or from the medical domain, such as anatomy facts
or medical procedures, see [38,17,16,39]. In the bio-
medical domain, the modeling of the domain know-
ledge in a formal representation language is a bene-
fit in itself, since this formalizes and to some extent
standardizes what the community understands about
certain terms in an unambiguous way. Thus by agree-
ing upon an ontology and the definition of concepts in
it, a community can create a shared understanding of
their domain of study as [56]. The obtained ontologies
simply serve as a community knowledge reference and
thereby remove heterogeneity in the community.

In the last couple of years the application area of the
Semantic Web [11] brought more attention to DLs and
their powerful reasoning systems. The semantic web
is a future version of today’s World Wide Web, where
web content or services will be annotated with formal
representation of their meaning. The annotation can
state in which context a keyword is used. Based on a
formal description of the keywords in an ontology, bet-

ter search results or matching services can be obtained
using reasoning methods. Despite a future vision, the
semantic web is already a strong motivation for the de-
velopment of powerful reasoning algorithms for very
expressive DLs on the one hand and for the implemen-
tation of DL systems and DL tools on the other, see
[21,20].

An important step towards realizing the semantic
web was the standardization of the web ontology lan-
guage OWL [10,24] and its DL-based dialect OWL
DL, which we will discuss in more detail in Sec-
tion 2.1.3 and which was used in our application.

In the remainder of this section we give a brief intro-
duction to the main ingredients of a Description Logic
system. We introduce some of the reasoning services
employed in practice and emphasize those used in our
application of context-aware systems.

2.1. Description Logics and their reasoning services

Typically, a Description Logic system consists of
four parts:

1. Description Language formalism for capturing
the notions from the domain.

2. TBox: a collection of concepts, which capture the
main categories of the domain of interest,

3. ABox: a collection of facts about concrete in-
stances in the application domain, and

4. the reasoning component.

The elements in TBox and ABox are formulated in
the description language. Typically the TBox is also
referred to as ontology. However, in the OWL lingo,
where individuals are allowed in the TBox in the form
of nominals, the term OWL ontology can refer to TBox
and ABox collectively. We use both terms interchange-
ably throughout the paper. The TBox and ABox to-
gether are often referred to as the knowledge base. The
concept descriptions in the knowledge base are given
in the actual description logic. Next, we take a brief
look at the syntax and semantics of the description
logicALC. For a thorough introduction to Description
Logics we refer the reader to [6].

2.1.1. DL knowledge bases
The main ingredients for representing terminologi-

cal knowledge are concept descriptions. For example,
such a concept description can characterize the cate-
gory of ‘mother’ as a female person who has a person
as a child, in the following way:

Person u Female u ∃has-child.Person.

6 Employing Description Logic systems in Ambient Intelligence

In this expression Person and Female are concepts
and has-child is a so-called role — a binary relation.

Starting from a set of primitive names, complex
concept descriptions can be composed by using con-
cept constructors. In Table 1 we see the concept con-
structors provided by the DL ALC. ALC is the min-
imal propositionally closed DL. ALC provides nega-
tion, conjunction and disjunction of concepts. Further-
more, it provides existential restrictions and value re-
strictions. Intuitively, existential restrictions state that
for every individual i1 which belongs to the concept
∃r.C, there is an individual i2 that is of concept C and
i1 and i2 are related via the role r. Value restrictions
state that for every individual i1 which belongs to the
concept ∀r.C, all individuals that are related to i1 via
the role r belong to concept C.

The semantics of concept descriptions are given in
a set-theoretic way. The semantics is defined in terms
of an interpretation I = (∆, ·I). The domain ∆ of I
is a non-empty set of individuals and the interpretation
function ·I maps each concept name to a set AI ⊆ ∆.
Each role name r is mapped to a binary relation rI ⊆
∆×∆.

Starting from an interpretation of concept and role
names, the extension of ·I to arbitrary concept descrip-
tions is defined inductively, as shown in the third col-
umn of Table 1.

The TBox allows to introduce names for concept de-
scriptions. For instance we can store

Mother ≡ Person u Female u ∃has-child.Person

as a concept definition in the TBox. Besides definitions
there are other forms of TBox statements.

Definition 1 (TBox axioms) LetA be a concept name
and C and D be concept descriptions, then a

primitive concept definition is an expression of the
form A v C.

concept definition is an expression of the formA ≡ C.
general concept inclusion (GCI) is an expression of

the form C v D.
concept equivalence is an expression of the form

C ≡ D.

All of the above statements are called TBox axioms.
The semantics of TBox axioms are given by the inter-
pretation function: AI ⊆ CI , AI = CI , CI ⊆ DI

or CI = DI respectively.

Primitive concept definitions and GCIs give only nec-
essary conditions while concept definitions and con-

cept equivalence axioms state necessary and sufficient
conditions for the concept. Obviously, GCIs are the
most general type of concept axioms.

If in a concept definition A ≡ D the concept de-
scription D refers directly or indirectly to the concept
name A, we call such a concept A a cyclic concept.
Based on this, we define different notions of a TBox.

Definition 2 (TBox) Let A,B be concept names and
let C,D be concept descriptions. A finite set of TBox
axioms T is called a TBox.

unfoldable TBoxes only contain (primitive) concept
definitions, where each name appears at most
once on the left-hand side of a (primitive) defi-
nition and the TBox must be acyclic, i.e. without
cyclic concepts.

cyclic TBoxes may contain cyclic (primitive) concept
definitions.

general TBoxes may contain GCIs and concept equiv-
alence.

An interpretation is a model of a TBox, if for all A v
C ∈ T , A ≡ C ∈ T , C v D ∈ T and C ≡ D ∈ T
it holds that AI ⊆ CI , AI ≡ CI , CI ⊆ DI and
CI = DI . An interpretation I satisfies a TBox T iff I
satisfies every axiom in T . In this case I is a model of
T .

OWL supports all of the above mentioned TBox ax-
ioms for modeling. The kind of TBox axioms a TBox
contains has great effect on the computational com-
plexity of reasoning methods for TBoxes – unfoldable
TBoxes are often easier to handle than general ones.

Besides concept constructors many DLs provide
means to declare properties of roles in the TBox. For
instance, roles can be declared to be

– a transitive role, which is interpreted as a transi-
tive relation.

– the inverse role of another role inverse(R1, R2),
which are interpreted as RI

2 = {(a, b) | (b, a) ∈
RI

1 }.
– a super-role of another one. Role inclusion ax-

ioms R v S enforce that every pair (a, b) ∈ RI

is also (a, b) ∈ SI . The set of these kind of state-
ments forms the role hierarchy.

All of these role declarations are supported in OWL
DL to build ontologies.

The knowledge about individual entities from the
application domain can be expressed by so-called
ABox assertions. For instance, we can state that the in-

Employing Description Logic systems in Ambient Intelligence 7

Table 1
DL syntax and semantics ofALC-concept descriptions and the corresponding OWL syntax.

constructor name DL syntax semantics OWL syntax

negation ¬C ∆ \ CI complementOf
conjunction C uD CI ∩DI intersectionOf
disjunction C tD CI ∪DI unionOf
existential restriction ∃r.C {x ∈ ∆ | ∃y : (x, y) ∈ rI ∧ y ∈ CI} someValuesFrom
value restriction ∀r.C {x ∈ ∆ | ∀y : (x, y) ∈ rI → y ∈ CI} allValuesFrom

dividual Alice is a software programmer and she has
the colleague Fred in the following way:

SoftwareProgrammer(Alice),
hasColleague(Alice, Fred)

There are two kinds of ABox assertions used for DL
systems—one kind expresses that an individual be-
longs to a concept and the other one specifies that two
individuals are related via a role.

Definition 3 (ABox, ABox assertion) LetC be an ar-
bitrary concept description, r a role name and i, j two
individual names be two individual names. Then a

concept assertion is a statement of the form C(i).
role assertion is a statement of the form r(i, j).

An ABox A is a set of concept assertions and role as-
sertions.

In order to capture ABoxes the interpretation function
is extended to individual names, which are mapped to
elements of the domain ∆.

Definition 4 (Semantics of ABox) Let C be an arbi-
trary concept, r be a role name and i, j be two individ-
uals. Then an interpretation I satisfies

– the concept assertion C(i) iff iI ∈ CI and
– the role assertion r(i, j) iff (iI , jI) ∈ rI .

An interpretation I satisfies an ABox A iff I satisfies
every assertion in A. In this case I is a model of A .

Equipped with the formalisms for TBoxes and ABoxes
and their meaning, we can turn to the reasoning ser-
vices available once we have represented our informa-
tion in this way.

2.1.2. DL reasoning services
Often the statements in the knowledge base cap-

ture other facts implicitly. To detect these facts and to
make them explicit is the idea behind DL reasoning
services. Furthermore the reasoning algorithms that in-

fer new facts must fulfill certain requirements to en-
sure that applications using these services are reliable.
To begin with, reasoning algorithms should be sound
and complete, i.e. every answer returned by the service
must be correct and we get all the answers. Further-
more the reasoning algorithm must be terminating so
that an answer is always obtained. Based on the formal
semantics of DLs, reasoning services can be defined
and, more interestingly for our application, the require-
ments for reasoning algorithms that provide these ser-
vices can be proven. These requirements hold for the
inference algorithms developed for DLs, and they are
implemented in today’s typical DL systems. In the fol-
lowing we introduce some of the reasoning services
that are readily available in DL systems and that we
have used in our application of context-aware systems.

When adding a concept definition to a TBox, it
is crucial to know whether the specified concept de-
scription contains a contradiction (w.r.t. the knowledge
base) or whether it could be fulfilled by any individual
and thus models something possibly meaningful. This
leads to the formal notion of consistency.

Definition 5 (Consistency) Let C be a concept de-
scription and T be a TBox. The concept description C
is consistent iff it has a model, i.e., there exists an in-
terpretation I where CI 6= ∅. In this case I is a model
of C. A TBox T is consistent iff every concept in T is
consistent.

If a concept or TBox is not consistent, it is called in-
consistent. Even for very expressive DLs inconsisten-
cies can be detected automatically by the DL reasoner.

Another terminological inference task is to deter-
mine whether one concept description is more general
than another, i.e., whether one concept descriptionC is
implied by another concept description D. This is the
case, if every individual that is an instance of C also is
an instance of D. The following definition formalizes
this notion of subsumption.

Definition 6 (Subsumption) Let C,D be concept de-
scriptions and T a TBox. The concept description C

8 Employing Description Logic systems in Ambient Intelligence

is subsumed w.r.t. T by the concept description D
(C vT D), iff CI ⊆ DI holds in every model I of T .

By TBox classification we denote the computation of
all the subsumption relationships that hold for the
named concepts in a TBox. By testing for subsump-
tion relationships or by classifying the whole TBox the
modeler can determine whether relations between no-
tions from the domain are faithfully captured in the
TBox. For instance, if two concepts, which stand for
different notions in the application domain, turn out to
be equivalent in the TBox, more information needs to
be provided to distinguish them by means of their de-
scriptions. Thus the subsumption tester in DL systems
can help to spot these modeling deficiencies. This kind
of test was helpful when we built our KB for the appli-
cation scenario that we will describe in Section 3.1.

Beyond the concepts in the TBox there are also
reasoning services available for the individuals in the
ABox.

Definition 7 (Instance of, ABox realization) Let C
be an arbitrary concept description, i an individual
name and (T ,A) a DL knowledge base. The individual
i is an instance of C w.r.t. (T ,A), iff aI ∈ CI for every
model I of (T ,A).

ABox realization of i w.r.t. (T ,A) returns all con-
cepts C defined in T for which iI ∈ CI for every
model I of (T ,A).

So, instance checking denotes the task of testing
whether a given individual is an instance of a given
concept. Realization of an individual, in turn denotes
the retrieval of all (most specific) named concepts from
the knowledge base that a given individual is an in-
stance of. ABox retrieval realizes this task for all indi-
viduals described in the ABox. This reasoning service
is the central one to realize the task of recognition of
situation types in our approach.

Another ABox reasoning service that we only men-
tion briefly here and that is a good alternative to re-
alize situation type recognition are conjunctive ABox
queries. Here one can pose more sophisticated queries
to the knowledge base. The queries itself are com-
plex expressions – typically conjunctions – containing
variables. These variables are instantiated by the DL
reasoner with ABox individuals to answer the query.
Conjunctive ABox queries are a very powerful way to
query the DL knowledge base. However, in the remain-
der of the paper we resort to ABox realization, since
this service is provided by most of the current DL rea-
soner systems and thus is a better starting point for
evaluation.

2.1.3. The web ontology language OWL
In 2004 the W3C made the web ontology language

OWL a recommendation for the semantic web. The
OWL standard incorporates ideas from the earlier on-
tology language DAML+OIL and from RDF Schema.

The W3C recommendation for OWL specifies three
dialects. While the most expressive dialect OWL full is
beyond the expressivity of DLs and reasoning in it is
undecidable, the other two dialects correspond to DLs
for which sound and complete reasoning procedures
exist. OWL DL can express ontologies written in the
DL SHOIN 1. The less expressive OWL lite can ex-
press ontologies written in the DL SHIF2.

In OWL lingo concepts are called classes and roles
are referred to as object properties. In Table 1 on page 7
in the third column some of the concept constructors
available in OWL DL are displayed in correspondence
to the DL ones. The semantics of the OWL DL con-
structors is the same as for DLs. Thus all reasoning ser-
vices introduced in the last section are applicable for
OWL DL as well.

The standardization of OWL has brought DLs and
their reasoning systems to the attention of people
from many different application areas and the ontol-
ogy language is used in many novel application areas
– context-aware systems are some of them. Next, we
turn to the usage of DLs (or OWL DL resp.) in this
application domain.

2.2. DLs for context-aware systems

The main idea how to use DL systems for context-
aware systems is to build a TBox with the main no-
tions from the domain and the description of types
of situations relevant to the application. This kind of
TBox needs to be “hand-crafted” by a human mod-
eler at design time. This task can be supported by the
automated consistency tests and classification that DL
systems provide. At run-time of the context-aware sys-
tem a description of the current situation is generated
by the context application and written into the ABox
in form of ABox assertions. Based on this description,
the DL system can determine automatically into which
situation-type this situation falls by computing ABox
realization for the situation ABox.

1SHOIN is the DL ALC augmented with number restrictions,
nominals, functional roles, transitive and inverse roles and role hier-
archies.

2SHIF is the DLALC augmented with functional roles, transi-
tive and inverse roles, and role hierarchies.

Employing Description Logic systems in Ambient Intelligence 9

Fig. 2. Using DL systems for recognizing situation types.

Description Logics have several characteristics that
make them a well-suited choice for context-aware sys-
tems. As knowledge representation formalisms DLs
are designed to model hierarchies of notions from the
respective domain. Thus DLs naturally support the
requirement of context-aware systems to be able to
model information on different levels of detail or ab-
straction as a means to deal with heterogeneous infor-
mation sources. Moreover the formalism of DLs al-
lows to combine information from different sources
and combine them to aggregates in form of complex
descriptions capturing different aspects of an informa-
tional entity.

However, the most important feature of DLs that
makes them suitable for context-aware systems is their
open-world semantics. Intuitively, this kind of seman-
tics assume that the KB does not have complete in-
formation about the world, but that some information
might be missing. So, from the absence of a fact in the
KB, say SoftwareProgrammer(Alice) it cannot be in-
ferred that the negation ¬SoftwareProgrammer
(Alice) holds. In systems that adopt closed world se-
mantics, such as databases, the absence of a fact means
that the contrary holds, since these systems assume
complete knowledge about the world. For context-
aware systems open world semantics is clearly the bet-
ter option, since context information is often incom-
plete. Thus DL systems offer a way to handle this kind
of characteristics of context information in a graceful
way.

As a collection of reasoning services DLs have even
more to offer for context-aware systems. DL reason-
ing services support the building of the TBox by de-
tecting inconsistencies or missing subsumption rela-

tions early. The reasoning task of classification gives
the modeler an overview of how aggregated concepts
relate to each other. Furthermore, ABox reasoning ser-
vices can be used to infer the situation type of a cer-
tain situation and thus solve the problem of the actual
context recognition. Since the methods for these rea-
soning tasks are implemented in highly optimized rea-
soner systems, these services are available to the am-
bient intelligence community directly.

To the best of our knowledge this approach of us-
ing DL systems for context-aware systems was first de-
scribed by us in [52], but was also pursued by others in
[54] and in [1]. The next section introduces the whole
approach in detail.

3. Approach for ontology-based recognition of
situation types

Our approach for situation-aware systems is based
on DL systems. As described in the Section 2.1 a DL
system consists of a knowledge base defined using the
Description Logics based language OWL DL and a
reasoning component providing a set of reasoning ser-
vices. With OWL DL a knowledge base consists of
a TBox and an ABox which together represent the
knowledge of the AmI system about the current situ-
ation. The TBox contains concepts organized in a hi-
erarchy which model the aspects of the situations rele-
vant to the considered AmI system. The ABox contains
a collection of facts describing the current situation of
the AmI system.

At design time the TBox is created by the system
developer. All conceptual knowledge about situations

10 Employing Description Logic systems in Ambient Intelligence

which should be recognized by the system have to
be expressed by OWL DL elements. Part of the pre-
sented approach is a modeling methodology to sys-
tematically decompose complex real world situations.
The main idea of the methodology is to identify these
aspects of situations which are relevant for decision
making. Although the analysis of the application sce-
nario and the identification of situation types remains
an intuitive task, the modeler is assisted by the DL sys-
tem when building the TBox. First, inconsistent de-
scriptions can be detected automatically and second,
the concept hierarchy can be computed automatically
so that the modeler can discover unintended sub/super
category-relations between concepts directly.

At run-time context information is added to the
ABox as the information about the current situation.
The reasoning service ABox realization is used as a
means to recognize the type of situation from the sit-
uation description in the knowledge base. We propose
a framework consisting of a context service, a DL sys-
tem and an AmI system. The context management, es-
pecially the management and access of heterogeneous,
alternative and distributed sources is covered by the
context service. The AmI system specifies the rele-
vant context information in a context profile. The con-
cept definitions in the TBox are used as a common vo-
cabulary specifying context to be exchanged between
all system components. The DL system manages the
knowledge base and provides the DL reasoning tasks.
A summarized view on the proposed approach is de-
picted in Figure 2.

3.1. Intelligent door lock scenario

To illustrate our approach we use a scenario taken
from the smart home domain. An automatic door lock
should pick the next action to be taken depending on
the person ringing at the door. We assume that the door
system is equipped with a video camera and a micro-
phone and provides information about the ringing per-
son. Based on this information the door lock has to de-
termine one of the following actions:

1. Open the door, if the person is authorized.
2. Ask a resident in case the person is unknown.
3. Do not respond at all or let the ringing person

leave a message if no resident is available (simi-
lar to: nobody at home).

In a first step the person ringing is identified (e.g. as
a resident of the house or a neighbour) or classified as
a member of a group of persons (e.g. a fire fighter or a

Fig. 3. Intelligent door-lock scenario.

postman). Per definition the door opens for authorized
persons only (e.g. a resident or family member). If the
person at the door cannot be unambiguously classified,
the decision whether to open is forwarded to a resident.
The door tries to contact a resident taking her current
situation into account (e.g. her activity and currently
used devices). If a resident is watching TV, the image
captured by the camera can be redirected to the TV set
being used. If no resident is at home, the system tries
to contact a resident via a cellular phone or another
mobile device currently in use. If no resident can be
reached within a short while, the system informs the
person at the door, offers to leave a message and keeps
the door closed.

Example: For the holiday season a neighbour is
asked to water the flowers while the residents are on
vacation. The door lock system identifies the person
ringing as the neighbour. Furthermore, the door system
checks whether the ringing neighbour is authorized by
a resident to enter the house. If in addition all residents
are on vacation, the neighbour can be recognized as an
authorized person and the door opens. We decided to
use this fairly simple scenario for our first case study to
ensure that it is easy to model. Nevertheless, as the sce-
nario description already shows, if modeled in detail,
it becomes sufficiently complex to illustrate pitfalls of
context modeling and the use of reasoning services.

3.2. Ontology-based situation modeling

Recalling the conceptual architecture in Figure 1,
the DL system bridges the context-awareness and deci-
sion making phases. Thus, the goal of the modeling of
situations is to recognize the current situation in a way
that a decision can be made about the actions to be trig-
gered based on the recognized situation. For instance,
if our example AmI system is in the situation, that an

Employing Description Logic systems in Ambient Intelligence 11

authorized person is ringing the doorbell, it should be
able to derive the action to open the door immediately.

3.2.1. Decomposing the scenario
It is the task of the AmI system developer to analyze

the application scenario, to identify relevant situations
and to derive the conceptual knowledge about these sit-
uations. To handle this complex exercise the notion of
situation decomposition is introduced as a systematic
approach for creating ontology-based situation mod-
els.

The main idea is to use a task-based approach to
identify major situations relevant to the triggering of
actions in the AmI system so that the system can fulfill
its foreseen tasks. Therefore, for all tasks the system
should perform, situation types have to be identified,
which allow an unambiguous selection of the actions
to be triggered by the AmI systems to fulfill the ap-
propriate task. The identified situation types can then
be decomposed into a hierarchy of sub-situations. This
method is derived from our observations, that these
sub-situations can be modeled by independent aspects
of a situation which can later be composed to model
the identified situation types. For example, in the door-
lock scenario the ringing person and the situation of
the residents of the house are independent aspects of
the overall situation.

For a systematic decomposition, the applications
scenario can be analyzed according to so called “as-
pects of interest”. These aspects should be atomic in
the ideal case, but at least fine-grained enough to be
modeled by a small set of concepts. This usually re-
sults in a step-by-step decomposition with an increas-
ing granularity in each step. For instance, in the door-
lock scenario, the identity or role of the ringing person,
and the presence of the residents are aspects of inter-
est. Each of these aspects can be decomposed further.
For instance, for the presence of the residents the as-
pects of reachability and the willingness to communi-
cate are of interest, which again depend on the activity,
location and the devices nearby. The following criteria
can be used for scenario decomposition:

Spatial decomposition: In almost every scenario it
will be possible to adopt a spatial decomposition.
In our scenario, interesting locations are the door,
where the ringing person is situated and the rooms
of the house were the residents stay. Moreover,
also outside locations might be of interest in the
case that no resident is at home and should be
contacted remotely due to urgency.

Temporal decomposition: Temporal aspects should
also be taken into account when decomposing the
scenario. Usually, different points in time con-
tribute independently or in relation to the overall
situation. In our example the resident might have
left the house 10 minutes ago when a postman is
ringing. Knowing that the resident went just out to
buy a newspaper which usually takes him 15 min-
utes, the system could inform the postman that it
expects the resident to be back in 5 minutes.

Acting persons: In many scenarios several persons
play different roles. The roles they play can also
be modeled as independent aspects of the over-
all scenario. In the door-lock example we dis-
tinguish between residents, relatives, neighbours
and different types of professions like postman,
fire fighter or police man.

In addition to these criteria further scenario-specific
aspects can be identified. In our scenario the technical
reachability, activity and presence of persons play an
important role.

The goal of the decomposition is the identification
of basic situations which can be unambiguously identi-
fied based on a small set of context features. Moreover,
basic situations should also be processable indepen-
dent from other basic situations. Therefore, in parallel
to the decomposition of situations, the context features
relevant for describing particular situations have to be
identified. In the door-lock scenario for instance the
location and the capabilities of the devices used by a
resident are relevant context features to determine the
reachability of the resident.

3.2.2. Modeling situations in the TBox
After this aspect-wise decomposition, the identified

sub-situations have to be modeled in the TBox. More-
over, tests should be performed to validate the consis-
tency and correctness of the created model. In addition,
performance aspects play an important role, so perfor-
mance issues at run-time might lead to changes of the
TBox as well. According to our experiences gained in
the process of modeling several scenarios, we encoun-
tered four main activities of knowledge base develop-
ment:

1. Building of the TBox,
2. Building of the test ABox,
3. Testing the inferences for the ontology, and op-

tionally
4. Performance tuning of the ontology w.r.t. the

needed inferences

12 Employing Description Logic systems in Ambient Intelligence

These activities, however, should be performed in-
terlaced and should not be read as a strict sequence.

Building the TBox The set up of the TBox can be per-
formed in a task-oriented and incremental way. That
means, in the beginning one task of the AmI system
can be selected and all identified sub-situations con-
tributing to the decision for performing that task have
to be modeled. The modeling should start with the
most fine-grained sub-situations which are indepen-
dent of each other, as stated above. More situations can
be added step-by-step as soon as one task is completely
covered. The sub-situations can also be modeled step-
by-step and later on used to compose more complex
situation.

In our modeling approach the resulting TBox is
twofold. One part of the ontology contains situa-
tion descriptions and the second part consists of gen-
eral concepts required for the definition of situations.
Generic concepts of the door-lock example are for in-
stance location, device and person. A situation is usu-
ally described based on several generic concepts. Sit-
uations are introduced into the TBox as named con-
cepts which are ordered in the expected subsumption
order manually. The situation concepts might be pro-
vided with a definition later on. As mentioned in the
introduction, generic ontologies could be used as up-
per ontologies which are refined according to the sce-
nario requirements. The basic relations from the sce-
nario domain should be captured as roles in the TBox.

Once the basic situations are introduced as named
concepts, the definition for these concepts should be
provided (or successively refined). At the early stages
these definitions should be “close to the intuition” of
the notion to be modeled and all language constructs
that express this intuition best should be used. Gener-
ally, it is a good strategy to model the TBox with as
little redundancy as possible. This eases debugging of
the ontology, i.e., tracking the cause of inconsistencies.
Furthermore, keeping redundancy low is a good design
principle when developing an ontology in a team. Fur-
thermore, it is advisable to perform consistency checks
often when extending the TBox. Sources of inconsis-
tencies can be tracked more easily, if only a few def-
initions have been changed since the last consistency
check.

For our application it is desirable to have a fine-
grained concept hierarchy for the hierarchy of situa-
tion concepts and for collection of concepts from the
sub-domain that will be central to distinguishing dif-
ferent context concepts (such as the collection of dif-

ferent resident concepts in the Doors scenario). So, the
concept hierarchy should be computed and checked
against the intended hierarchy. In case intended sub-
sumption relations are missing the concept definitions
must be revised and in case concepts collapse (i.e., are
equivalent although intended as different concepts),
the concepts must be refined. Often this involves the
modeling of a new aspect, as devices or persons in our
context applications. Each subdomain models a differ-
ent aspect of the context concepts collection in a sepa-
rate hierarchy.

At run-time of the application another benefit of
the fine-grained hierarchy is to infer relatively specific
context concepts via realization even in cases where
information about the situation of the application is
incomplete. For example, when the exact location of
the resident is unknown, the situation that the Resi-
dent is out of home can still be inferred and appropri-
ate actions can be taken. In contrast, if there is no fine-
grained concept hierarchy, we can probably only infer
a generic situation type, if this information does not
suffice to derive that the resident is currently traveling,
for example.

Building the test ABox In activity 2, we build an
ABox for testing

1. whether the vocabulary in the TBox is already
elaborated enough to be used for a detailed situ-
ation description and

2. whether concept definitions in the TBox are al-
ready precise enough to give the expected rea-
soning results for a situation description in the
ABox.

The situation descriptions in this ABox should be sim-
ilar to what is to be expected to occur in the applica-
tion in terms of aspects that are supplied at run-time
by the context service. If it turns out that the concepts
defined in the TBox do not allow to describe a situa-
tion detailed enough, or if necessary “ingredients” for
such a description are simply missing, the TBox must
be extended appropriately. Thus, the activities 1 and 2
should be carried out in parallel.

Testing Activity 3 starts as soon as the TBox is filled
with a few concept definitions. At the early stages it
should be tested whether the TBox is consistent, i.e.,
whether it contains contradictions. These consistency
tests should accompany the whole process of building
the TBox. As soon as the concepts in the TBox are suf-
ficiently elaborated to represent (sub-)situations from
the application it is interesting to determine whether

Employing Description Logic systems in Ambient Intelligence 13

the achieved level of detail is enough to infer the de-
sired information. To this end classification tests and
realization tests are performed. On the one hand it
must be checked if the classification results meet the
intuition of the modeler, for instance, if unintended
subsumption relations are detected. On the other hand
ABox realization has to be performed to check if the
most specific concepts are detected for the situation. If
the results do not meet the expectation of the modeler,
the concept definitions should be refined.

Performance tuning Activity 4 is performance tun-
ing. Now the knowledge base is analyzed w.r.t. the syn-
tactic constructs in use and run-times for the inferences
(needed at run-time of the application). The analysis
of the syntactic constructs should yield what syntac-
tic constructs are used and also how often they occur.
If, for example, just one transitive role is used in the
knowledge base, it should be carefully checked if the
transitivity of this role is essential for intended result of
the inferences. If syntactic constructs that are notorious
for making reasoning harder and degrading the per-
formance of DL reasoner, can be omitted or replaced
by others without losing (important) inferences, these
constructs should be deleted or replaced. Please refer
also to Section 5.1.

Another way of enhancing performance of the rea-
soner is to add information to the TBox. One can add
subsumption information so-called told subsumers to
the (primitive) definition of concepts. For example, the
concept C1 is a sub-concept of C2, but is not defined
in terms of C2, then the reasoner has to “discover” this
subsumption relation, which can be costly in terms of
run-time. If this subsumption information is added to
the definition of C1, the reasoner only needs to test
for consistency. Similarly, one can also add “told non-
subsumption” information, e.g. by adding more dis-
jointness constraints, to avoid the effort of discovering
non-subsumption by costly methods.

3.3. Filling the ABox

If the TBox is created the AmI system is ready to
run. During the startup of the AmI system the TBox
has to be loaded into the DL system and classified once
before the first ABox realization service usage can be
performed. As stated above context information is used
as the information describing the current situation. It
has to be added to the ABox as individuals to be pro-
cessable in the DL system. To cover a subset of the
characteristics of context named in Section 1.1 of the

introduction, we assume the availability of a context
service. This context service should be able to inte-
grate and manage heterogeneous and geographically
dispersed context sources. By accessing this context,
context features representing facts about the current
situation are written into the ABox.

To identify the context feature which have to be re-
trieved we apply the creation of a so called context pro-
file. This context profile contains all concepts from the
TBox for which the context service can provide infor-
mation. This context profile have to be created manu-
ally or may be derived automatically. The latter can be
achieved if the information about the managed infor-
mation provided by the context service can be mapped
to the concepts in the TBox.

The context profile is then used for either request
all information at once in case that the AmI system
is requested to perform an action. In our example this
is the case if someone is ringing at the door. This is
similar to taking a snapshot of all relevant information
about the current situation at a certain point in time. If
the AmI system should act proactively, it can subscribe
for all situations in the profile to the context service.
The system is then notified by the context service about
the changes of any of the information in the context
profile. If a change notification is received by the AmI
system it can update the ABox and perform reasoning
in order to check whether the situation has changed in
a way that an action has to be performed.

3.4. Perform reasoning

As already described in the previous section reason-
ing can be performed on demand or event-based. In
both cases all relevant and available context informa-
tion have to be added as individuals to the ABox. To
compute the types of the current situation the situation
is itself modeled as an individual of the general situa-
tion concept. The context information is related to that
situation based on roles which set different individuals
in relation. To compute the types of a situation, ABox
realization is performed on the situation individual. As
a result the DL reasoner responds with a list of concept
names. In particular, this list contains the most specific
concepts for that situation individual.

Dependent on the available context information, the
computed situation types, i.e., the concept names, are
more or less specific. If not enough information about
the current situation is available, the reasoner responds
with a generic situation concept. For instance, if no
information about the resident of the house are avail-

14 Employing Description Logic systems in Ambient Intelligence

able, just a concept describing that the doorbell rings
can be computed. If a large set of context information
is available, a very specific situation type can be com-
puted. As an example, if it is known that the location
of the resident is the “living room”, the TV is “on” and
the ringing person is the postman, concepts describing
that a postman is ringing and the resident should be in-
formed by presenting a video on the TV can be com-
puted. Thus, dependent on the amount of context in-
formation available, the computed situation types are
more or less specific. A result is available in any case,
even if the provided context information is incomplete.

Based on the computed situation types it is the task
of the AmI system to determine the right action. This is
a separate step in our approach to decouple the identifi-
cation of the current situation and the decision process
in order to enable a high flexibility within applications
for context dependent decision making.

4. A case study of situation-awareness based on
DL systems

We use the scenario introduced in Section 3.1 to im-
plement a case study of validating the feasibility of
our approach. Especially, a framework was developed
which serves as the foundation for implementing var-
ious application scenarios. In the following we intro-
duce a framework for DL-based situation-awareness
and the situation model created for our scenario.

4.1. Framework architecture

The main components of our framework are the
Context Service, responsible for providing the required
context information, the AmI system which is inter-
ested in the current situation and the DL System, re-
sponsible for processing ontologies and performing
ABox realization for situation recognition (see Fig-
ure 4.1). A further component is the Context Profile
used by AmI systems for requesting context infor-
mation from the context service as described in Sec-
tion 3.3.

4.1.1. Context Service
In our implementation we use the distributed context

service described in [45]. The context service is avail-
able to each application in the form of a local compo-
nent which provides an access interface for contexts.
The context service is able to manage a large set of
highly distributed context sources and handles the ac-

cess, transformation and distribution of applications to
context information in a transparent manner. Where
and how the information is gathered is not visible to
the context application, it just uses a well-defined API
for requesting context information based on context
profiles.

The context management inside the context service
is based on meta-model derived from topic maps. It
contains entities which may have a set of attributes.
Relations between entities are modeled as associa-
tions. The semantics of these elements is defined based
on an ontology specified in OWL DL. Thus, we de-
fined a mapping between the context domain model
supported by the context service as described in [45]
and our scenario ontology. Based on an extension of
the API for accessing context information we sup-
port now a profile-based access of context informa-
tion. Each time the Door-lock system should react on
the ringing of the door bell, it sends the context pro-
file with a request to fill it to the context service. The
context service responds with the requested informa-
tion integrated into the profile. The profile might be
completely or partially filled according to the current
availability of context sources.

4.1.2. DL system
The DL system is the second component of the

framework. It is able to maintain multiple ontologies
and provides the service to perform reasoning tasks
on these ontologies. An AmI application can register a
knowledge base (i.e., an OWL DL based ontology) at
the DL system, which processes the TBox of the on-
tology and builds up an internal representation of the
processed TBox. Each registered ontology is assigned
with a unique identifier for later referral. During the
run-time of context applications we assume a constant
TBox allowing the reuse of the internal representation
of the TBox built up at registration time. At run-time
the AmI application requests reasoning tasks based on
varying ABoxes.

Thus, the DL system is a system service which
can be used by several context applications in paral-
lel. It can be placed on a high-performance system
server residing within the infrastructure. Especially,
this enables the remote processing of reasoning tasks
for applications running on mobile or resource lim-
ited devices. The DL system is represented by off-the-
shelf DL reasoner systems, e.g., RACERPRO [22], the
FACT++ system [51] or PELLET [42]. They all imple-
ment the DIG interface [9] and thus, can be exchanged
on that basis.

Employing Description Logic systems in Ambient Intelligence 15

Fig. 4. Architecture of the framework for situation-awareness.

4.1.3. AmI Application
The AmI application is the component which coor-

dinates the context access and reasoning. It registers an
application specific ontology at the DL system and re-
quests reasoning tasks from this DL system. The con-
text is gathered from the context service component
which can be local to the application component or re-
mote on an infrastructure server. The context applica-
tion uses a context profile to request the context values
required for classifying the current situation or a cer-
tain aspect of a situation. The context service responds
with a filled context profile containing at least a subset
of the context values requested by the application.

The context values are used to create individuals of
an ABox according to the defined context ontology.
These individuals belong to a certain situation individ-
ual. The ABox is then sent to the DL system which
performs realization on the situation individual to clas-
sify the situation. Based on the classification of the sit-
uation, the context application can determine what ac-
tion has to be performed. Thus, the determination of
the action to perform is separated from the situation
detection.

The implementation of the AmI application is based
on a set of up-to-date technologies. We used Java as
implementation language for the framework according
to the Java 5.0 specification. For the integration of on-
tologies and deterministic reasoning schemes we used
the Semantic Web Framework Jena in Version 2.5.1.
In addition to using the DIG interface we also inte-
grated the DL reasoner Pellet in Version 1.5. via its
provided Java interface. To publish our upper ontol-
ogy we used Apache 2.2 as the web server. In ongoing
work we also embedded this framework in a more gen-
eral framework for situation-awareness. The extended
framework is described in [46] and covers the inte-
gration of heterogeneous sensors (e.g., wireless sensor

networks, microphones and other stand-alone sensing
devices), the integration of classifiers for these sensors
and the use of various reasoners for situation detection.

4.2. Implementing the intelligent door-lock scenario

We describe now how to model the ontology for the
door-lock scenario according to the methodology in-
troduced in Section 3. Starting with the decomposition
of the scenario and the identification of relevant con-
text information, the situation types for the door-lock
scenario were identified and modeled in the TBox.

4.2.1. Decomposing the scenario
The scenario can be decomposed based on the cri-

teria described in Section 3.2. Starting with the tasks
of the system – opening the door, asking a resident or
keeping the door closed – aspects of the overall situ-
ations can be identified. For all tasks a spatial decom-
position is relevant, i.e., aspects are the situations in
front of the door and in the house. Moreover, acting
persons can be identified and their current situations
can be modeled. For opening the door the identity and
role of the ringing person is relevant. For instance for
a resident or an authorized neighbour the door can be
opened immediately, while if the ringing person is not
authorized, the task of “asking a resident” has to be
performed.

Relevant context. To reason about the situation of the
door scenario, the following contextual information is
relevant: The identity and social relations of and bet-
ween persons or group of persons can be used to dis-
tinguish between residents, their relatives, friends and
neighbours (e.g., while some of them may be autho-
rized to enter the house, while others may only enter
if another person is already at home) and categories of
persons which can be determined by their clothes or

16 Employing Description Logic systems in Ambient Intelligence

Fig. 5. Context concepts for the intelligent door scenario.

other characteristic features (e.g., the uniform of a po-
lice man or fire fighter, or the pizza boy carrying pizza
boxes).

The location is relevant for persons who are resi-
dents or otherwise able to help the system to decide
about the action related to the ringing person, i.e., to
authorize ringing persons to enter. Especially of inter-
est is the location of the residents. Time as contextual

information is relevant in combination with other in-
formation, e.g. to determine the activity or current lo-
cation of a person (e.g. person is working if it is 8 am
and located at his office room). Information about the
presence describes if and how persons/residents would
like to be contacted (e.g. a resident is working at his
office and do not want to be disturbed by anybody).

Employing Description Logic systems in Ambient Intelligence 17

The concept activity of a person is relevant for
determining the presence of a person. Information
about the activity is usually not directly available but
has to be extracted out of several information, e. g. the
schedule, the activity, time, and persons nearby.

Information about the devices a person owns and
which of them are currently active and in use (e.g.
located close to the person) is relevant to determine
how to contact a person. In combination with the cur-
rent connectivity of the devices information can be ex-
tracted to describe how to contact a person (e. g. if the
device and connection supports audio and video com-
munication or email/text communication only).

4.2.2. Modeling situations in the TBox.
We modeled the doors ontology according to our ap-

proach described in Section 3.2 with the task based no-
tion of context in mind. The resulting ontology con-
tains concepts for describing the relevant context and
roles for describing the interrelations between these
concepts. Furthermore, the ontology contains concepts
describing the situation itself in form of a hierarchy of
contexts which describe certain aspects of the situation
(e.g., who is ringing, the presence, activity and loca-
tion of the residents and the interrelations between the
residents and the ringing person).

Modeling locations. Location is a fundamental con-
cept in the door scenario. We use the four basic con-
cepts InDoor, OutDoor, Mobile, and ImMobile to
describe the basic features of a location. Each loca-
tion in the ontology is a sub-concept of either InDoor
or OutDoor as well as either Mobile or ImMobile

using multiple inheritance. The role nearby defines
that two locations are close together. The properties
hasLightLevel and hasNoiseLevel describe the
features of locations relevant in our scenario to derive
the activity of a person at a certain location.
Building is a sub-concept of InDoor and Im−

mobile and consists of several parts (e.g., Rooms).
A sub-concept of Building is House which enables
the description of any house relevant to the situations
of the door lock scenario. Another sub-concept Home
describes the building which contains the “intelligent
door lock” system. For Home and House a close dis-
tance can be defined using the nearby role to describe
the neighbourhood of the home.

Each Building can consist of parts. We currently
defined only Rooms as parts. The other way around,
each room is part of a certain building described by
the role isPartOf. Several sub-concepts of Room are
defined to model the rooms relevant to the scenario

(e.g. LivingRoom, Kitchen, BathRoom, BedRoom,
and OfficeRoom). Locations of the category OutDoor

and Mobile are also defined within the ontology (e.g.
Car, Plane, Bus, and Train). These locations are rel-
evant for describing activities of residents.

Modeling of identity and social context. The identity
and social context of the persons relevant to the door
scenario are modeled based on the person concept.
Each person has a current location (role locatedAt)
and lives at a certain location (role livesAt). A
person which lives at Home is defined as a resident
Resident ≡ Person u ∃livesAt.Home. A res-
ident at home is described by: ResidentAtHome ≡
Resident u ∃locatedAt.(Home t ∃isPartOf.
Home). Similarly a resident currently out of home is
described by: ResidentOutOfHome ≡ Resident u
∃locatedAt.(Home t (∃isPartOf.Home)). The
social relations between residents and other persons
are modeled based on the concepts neighbour and
relative. A neighbour is a person who lives not at
home but at a house nearby home: Neighbour ≡
Person u ∃livesAt.(¬ Home u (∃nearby.Home)).

A relative is a relative of a resident by definition:
Relative ≡ Person u ∃isRelativeOf.Resident.
Service persons like police man or pizza boy are mod-
eled as sub-concepts of person. In the ontology several
service persons are modeled for example.

Modeling activity. The activity of residents is essen-
tial for determining the current presence of residents.
Because activity usually can not be captured directly, it
has to be derived from available information like time,
location and schedule.

For modeling features of a location we use so called
value partitions. A Value Partition is a design pat-
tern to define an exhaustive list of values for a cer-
tain set. For instance, for describing the light level of
a room the set of possible values can be defined by a
value partition LightLevel. The possible values are:
full, dimmed and off. Because Description Logics are
based on the open world assumption, value partitions
have to be used to restrict the valid values of a cer-
tain set (otherwise, further (currently undefined) values
could be elements of this set). A covering axiom has
to be defined to make the list of value types exhaus-
tive. The value partition Lightlevel can be defined
in form of a value partition as follows: LightLevel ≡
Off t Dimmed t Full (where Off, Dimmed and Full

are mutually disjoint).

18 Employing Description Logic systems in Ambient Intelligence

1. AudioEnabledDevice ≡ Handy t SmartPhone t PDA t Laptop t Phone t DoorBell

2. SMSEnabledDevice ≡ Handy t SmartPhone t CellularPhone

3. AudioEnabledConnectedDevice ≡ AudioEnabledDevice u
∃isConnectedVia.(∃ hasBandwidthLevel.(LowBandwidth t MediumBandwidth t HighBandwidth))

4. SMSEnabledConnectedDevice ≡ SMSEnabledDevice u ∃isConnectedVia.(WAN t PSTN)

5. AudioEnabledResidentContext ≡ ∃ hasContextResident.(Resident u (∃uses.AudioEnabledConnectedDevice))
6. DoorbellEnabledResidentContext ≡ ResidentAtHomeContext

7. ReachableInUrgencyContext ≡ ∃hasContextAgent.(FireFighter t Policeman)

8. DoNotDisturbResidentContext ≡
∃hasContextResident.(SleepingResident t VacationResident t (∃hasPresence.DoNotDisturb))

9. AudioReachableResidentContext ≡ AudioEnabledResidentContext u ReachableResidentContext

Fig. 6. Concept definitions from the Doors ontology.

The activity of a person can be set by definition or
can be derived from contextual information. We have
defined to classes of activities:

– Vacation containing the sub-concepts
BusinessTrip and Holiday

– Working containing the sub-concepts
Reading and Writing

To derive the activity of a resident the location
and its features are used. For instance the activity
sleeping of a resident is derived from the location
BedRoom and the LightLevel of the BedRoom which
have to be Dimmed or Off: SleepingResident ≡
Resident atHome u ∃locatedAt.(BedRoom u
(∃hasLightLevel.(Dimmed t Off))).

Modeling devices, connectivity and presence. The
reachability of a resident can be modeled based on the
used devices and their connectivity. It describes how
a resident can be contacted at a certain point in time
from a technical point of view. The ontology contains
concepts and properties to model the devices owned
(role isOwnedBy) and used (role isUsedBy) by a cer-
tain person and the network links which are supported
by these devices (role supportsLink).

Devices are modeled as sub-concepts of the root
concept Device. A basic feature of each device is its
mobility. Thus, each device is a sub-concept of either
Stationary or Mobile. Stationary devices relevant
for the scenario are PC and the Doorbell, relevant mo-
bile devices are CellularPhone, PDA and Laptop.
A device can be connected via a certain network link
(role isConnectedVia).

Network links are discriminated into wired and
wireless links. Wired links are for instance DSL
and Ethernet, wireless links are subdivided into PAN,
LAN and WAN links containing wireless links such as
Bluetooth, WLAN, GSM and UMTS. Each network has a
certain bandwidth level (role hasBandwidthLevel).

To describe the options of the door system to contact
a resident the communication categories of text, au-
dio and video are defined. Text communication can be
further discriminated into SMS messages and instant
messages. For each device the supported communica-
tion categories are defined, describing the communica-
tion capabilities of the devices (see definitions 1 and 2
in Figure 6.

To involve the bandwidth of the network connec-
tion the concept of the EnabledConnectedDevice is
defined. Examples are the definitions 3 and 4 in Fig-
ure 6. The inferred concept hierarchy for the modeled
devices is depicted in Figure 7.

Modeling situation types. A situation is described by
the concept Context and its sub-concepts. Each situa-
tion is described by a person or group of persons ring-
ing at the door (role hasContextPerson) and the res-
idents of the house (role hasContextResident). In
Figure 4.2 the complete hierarchy of situation concepts
of the door-lock scenario are depicted.

To enable a decision of the door system to open
the door automatically, ask a resident or let the ring-
ing person leaving a message, two basic contexts
are modeled which are called DoorContext and
PresenceContext. The DoorContext contains con-
cepts describing the aspects of the ringing person and
if residents are at home or not. This supports the de-
cision to open the door immediately if an authorized
person is ringing (i.e., a resident or a person autho-
rized by a resident). Furthermore, based on a black list
the system can immediately decide to keep the door
closed and to let the ringing person leave a message
without contacting a resident. A necessary prerequisite
therefore is to identify the person or their category.

If no clear decision is possible, one of the residents
should be contacted. To decide how to contact a resi-
dent the system reasons about the PresenceContext.

Employing Description Logic systems in Ambient Intelligence 19

The PresenceContext describes at one hand what
communication modes can be used to contact a resi-
dent from the technical point of view with the concept
ConnectedContext. On the other hand the willing-
ness of a person to communicate is modeled with the
concept ReachableContext. The ConnectedContext
is defined in definition 5 and 6 in Figure 6.

To describe the presence of a resident we use for in-
stance the definitions 7 and 8 in Figure 6. To combine
the aspects of technical connectivity and reachability,
the PresenceContext has been defined as in defini-
tion 9 in Figure 6.

4.2.3. Testing
To demonstrate the usage of the ontology we have

defined several situations based on individuals of the
concept hierarchy in the ABox. Two types of situa-
tions have been defined as instances of the concepts
DoorContext and PresenceContext.

5. Evaluation

The proposed approach of modeling situations with
OWL DL and the adoption of ABox realization for rec-
ognizing situation types focuses on the employment of
DL systems. The choice of DL systems for the imple-
mentation of AmI systems has several consequences
regarding the performance of DL reasoners, the ex-
pressivity of the formalism and the handling of imper-
fect context information. Therefore, we take a closer
look at DL systems to assess their usefulness with re-
spect to these requirements. Especially, we want to
point out the advantages and limits of the presented
approach.

5.1. Performance evaluation

The complexity of ABox reasoning for the DL em-
ployed in our case is NExpTime complete in the worst
case, see [49]. However, these worst case complexities
do not need to appear in concrete scenarios. Moreover,
there exist a couple of highly optimized DL reason-
ers for OWL DL that behave well in practice. Since
applications for Ambient Intelligence usually expect
computation times no longer than a couple of seconds
or even might require response within milliseconds in
some application domains, it is interesting to get an im-
pression of the performance of the reasoners for clas-
sification and realization. Some language constructs
have higher worst case complexity and thus, might

require longer computation times. A natural question
is whether it is advisable to disallow these constructs
from the ontology.

To answer these questions, benchmarks have been
performed using Protegé-OWL 3.4 beta from Stand-
ford University running under Windows XP. As hard-
ware platform a Lenovo T60 Laptop with 2 GByte of
memory and an Intel Centrino Duo processor running
at 2 GHz was used. To compare the performance of
the reasoners the times for classifying the concepts de-
fined in the TBox and for computing the inferred types
from the individuals in the ABox of our ontology were
measured. For the tests three different variants of our
Doors ontology were used:

Doors: The knowledge base (KB) described in the last
Section. contains 6 Situation individuals.

Doors-no-GCIs: Door KB without GCIs, i.e., dis-
jointness and domain and range restrictions for
roles were deleted.

Doors-easy-roles: transitivity, symmetric role and in-
verse roles statements as well as all domain and
range restrictions were deleted. Functional roles
were left in the TBox, since they do not increase
the run-time dramatically.

The DL expressivity of the Doors and Doors-no-
GCIs ontology variants is ALCHIF, while the DL ex-
pressivity of the Doors-easy-roles ontology is ALCF.
All ontology variants contain 135 concepts, 98 individ-
uals and 27 object properties. We tested four DL rea-
soners that implement ABox realization for OWL DL.
We used the well-known system RACERPRO [22], the
FACT++ system [51] and PELLET [42].

FACT++: is a successor system of the FACT sys-
tem [26], that was a ground-breaking TBox rea-
soning system developed in the late nineties.
FACT was the first DL system that could han-
dle GCIs in an efficient way. FACT++ is imple-
mented in C++. We used version 1.2.0 (25.9.2008)
of FACT++ for our tests. In contrast to the other
tableau-based systems, FACT++ implements an
eager approach for realization. It sets up its data
structures for realization already during the clas-
sification phase of the TBox. This results in
longer run-times for classification, but speeds-up
realization considerably, as we will see.

PELLET: The PELLET system is developed at the Uni-
versity of Maryland in 2003. It supports DL rea-
soning services for the DL SHOIQ(D) - where the
qualified number restrictions are limited to 1 or 0

20 Employing Description Logic systems in Ambient Intelligence

Fig. 7. Inferred concept hierarchy of device concept in the doors ontology.

and the concrete domains to what the OWL stan-
dard supports. Thus the PELLET system supports
the full range of concept constructors of OWL
DL. Besides the classical DL reasoning services,
PELLET offers a range of additional functionality.
For a full overview, please refer to the PELLET

web pages [42]. In our evaluation of the systems
we used PELLET 1.5.2 (1.5.2008).

RACERPRO: is the successor system of RACER pro-
vided by RacerSystems. This system is a com-
mercial system with free licenses for academic in-
stitutions. In comparison to RACER, RACERPRO

shows a much better performance. Furthermore,
RACERPRO offers more functionality than most
other DL reasoners [34,35], which helps to main-
tain and query the KB. As its successor RACER-
PRO also supports more expressive concrete do-
mains than the OWL standard demands. For our
evaluation we used the currently available stable
version 1.9.0 of RACERPRO and the beta version
of RACERPRO 1.9.2 beta.

With KAON2 [29] and HermiT [30] other DL reason-
ers are available. We have not included these reason-
ers in our test because of the lack of ABox realization
reasoning service adopted in our approach.

The measured run-times are shown in Table 2. It
contains measured times for the four reasoners. For
each reasoner we measured the times for classifying
all concepts of the TBox in our test ontologies and to
perform ABox realization, as stated in Definition 7.
The measured times for the classification task are be-

low 1s, except for PELLET. While classification is only
performed once during the start of the AmI system,
these times are mainly relevant for the design time.
Fast computation times especially allow for an inter-
active development of ontologies. The results for this
reasoning tasks are much more heterogeneous. For the
Doors ontology FACT++ needs orders of magnitude
less time than PELLET. As stated in the description
of FACT++ above, an eager approach was used for
the implementation of the ABox realization. Thus, data
structures for realization are already set up during the
classification of the TBox. Compared to RACERPRO

1.9.2 beta, FACT++ needs a little more time for classi-
fication than RACERPRO. The ABox realization task is
than performed much faster using FACT++ than using
RACERPRO.

For the Doors-no-GCIs ontology the deletion of
GCIs (see Definition 1) speeds-up the realization of
the individuals. Especially, PELLET profits from that
deletion. It performs the classification and realization
tasks one order of magnitude faster than for the com-
plete Doors ontology. But also both RACERPRO ver-
sions need less time for processing the Doors-no-GCIs
ontology. The reduction of the Doors ontology to the
Doors-easy-roles ontology causes an improvement of
the computation times of classification for all reason-
ers. Anyway, only the both versions of RACERPRO

can profit with respect to ABox realization. FACT++
and PELLET need more time for the realization of the
Doors-easy-roles ontologies ABox than for the Doors
ontology ABox.

Employing Description Logic systems in Ambient Intelligence 21

Table 2
TBox classification and ABox realization run-times (in s)

Doors Doors-no-GCIs Doors-easy-roles
TBox ABox TBox ABox TBox ABox

classification realization classification realization classification realization

FACT++ 0,8 0,02 0,71 0,02 0,73 0,06
PELLET 3,79 18,45 0,66 2,19 2,57 30,85
RACERPRO 1.9.0 0,6 2,02 0,48 1,13 0,38 0,76
RACERPRO 1.9.2 beta 0,62 0,74 0,39 0,2 0,26 0,51

At one hand the reduction of language constructs
used in the ontology may improve the performance of
DL reasoners. On the other hand reduction comes at
the cost of missing implicit subsumption or instance
relations. For the Doors-no-GCIs ontology several of
these relations can no longer be detected and not the
most specific context can be recognized from the in-
formation available. So, it is clearly not advisable for
this application to degrade expressivity to obtain better
run-times. In general, this trade-off should be consid-
ered during the development of AmI systems follow-
ing the proposed approach.

To sum up, today’s DL reasoners can compute re-
alization for ABoxes in a run time acceptable for the
the intelligent door lock scenarios. FACT++ provides
the best performance for ABox realization. While both
newer version of RACERPRO also responds in times
below 1s for ABox realization, PELLET is signifi-
cantly slower with that task. Compared to previous
measurements carried out with older versions of the
reasoners but using the same ontologies [52], reason-
ers show up significant improvements in performance
for both TBox classification and ABox reasoning. Be-
cause all reasoners are currently under development
performance improvements can be expected in the fu-
ture.

5.2. Expressivity Considerations

In addition to the performance of DL reasoners it is
also important to what degree OWL DL supports the
developer with the creation of situation descriptions.
Major questions are how complex a situation descrip-
tion can be, what aspects of a situation can be mod-
eled and which not, if it is transparent how situation
types are recognized and to what degree situation mod-
els can be refined and adjusted at run-time and during
the AmI systems life-cycle. Moreover, the modeling
effort should be assessed.

From the experiences of the authors the modeling of
aspects of situation types in the TBox is an intuitive

task. Situation aspects are described as concepts, re-
finements of concepts can be expressed by defining a
more specific context as a subconcept of an already de-
fined concept. This way of thinking about the world is
intuitive for developers, especially if they are familiar
with object orientation. Similar to this approach, child
concepts in OWL DL inherit all properties of their par-
ent concepts. Based on the creation of a concept hierar-
chy even complex scenarios remain to be manageable
when modeled with OWL DL.

In addition, the recognition of situation types is
completely transparent for the system developer. If the
design methodology proposed in Section 3 is adopted,
during the activity of testing the developer creates a
test ABox and performs ABox realization on the on-
tology to compute the most specific concepts charac-
terizing a situation. If the TBox is specified correctly,
the system behaves according to that specification. In
contrast to DL systems, in case of adopting neuronal
networks or Bayesian networks for situation recogni-
tion the phase for decision making is also performed
by the network. For the developer it is not transparent
how and why a certain situation was detected and a
particular action was triggered.

Anyway, OWL DL also has some limitations a de-
veloper should be aware of. One of the most obvious
limits of OWL DL was the limited expressivity and
reasoning capabilities regarding numbers. One would
like to specify ranges of numbers to map them to quali-
tative measures, like slow := has-velocity. (< 0) and (>
50). Another application of numbers would be to com-
pare, for example the velocity of the user with the max-
imal velocity that is supported by a certain network
technology. Although OWL DL offers XML data types
for the use of numbers in ontologies, they do not allow
to model the facts just mentioned, since there are only
unary predicates available in OWL. One would like to
model these facts by the use of concrete domains [4],
which are supported by RACERPRO. We tried to emu-
late the ranges by number restrictions in an earlier ver-
sion of the ontology, but since it was a very unintuitive

22 Employing Description Logic systems in Ambient Intelligence

way of modeling and the performance of the reasoners
was slowed down drastically, we gave up this approach
immediately.

Often one would like to express facts such as “the
provider of the available network is the same provider
that the user has a contract with” – sometimes called
agreements. The underlying DL concept constructor
for this is called role value maps (or feature chain
agreements). Unfortunately it is a well-known result
that these constructors make reasoning for even small
fragments of OWL DL (e.g.,ALC) undecidable. Thus,
these concept constructors were not included in OWL
DL. We tried to capture the above mentioned facts by
the use of inverse roles. Sometimes the above men-
tioned agreements do not only refer to a single concept,
but to roles. For example the role one would like to
add “hasUncle ≡ hasParent ◦ hasBrother” to the
ontology. These kind of statements are not supported
in OWL 1.0. However, it is planned to include them in
the forthcoming OWL 1.1 standard.

In the step of the authoring of the knowledge base
some typical effects can occur that lead to unexpected
or unintuitive reasoning results.

Primitive definition vs. full definition: Sometimes
when only necessary, but not the sufficient condi-
tions are supplied for a concept C, by giving only
a primitive definition and a subsumption relation
seems to be missing.

Open world vs. closed world: Especially for users
who have worked with systems that use closed
world semantics (such as Prolog or Data bases)
find it unintuitive, if from leaving out the fact that
an individual is, for example located in the house,
it cannot be derived that the individual is outside
of the house. An insistent case of this are at-most
restrictions, which can hardly ever be derived, but
have to be supplied by the modeler in most cases.

Value restrictions vs. domain & range restrictions:
often it is not clear whether the restriction of role-
fillers to a certain type of concepts is only valid
for a concept C or whether it is a property of a
role.

Last but not least, the extensibility of the knowledge
base at run-time plays an important role, especially in
very dynamic scenarios. As a fact, situation descrip-
tions are modeled at design time. That means, all rele-
vant situations have to be known at design time. More-
over, situation descriptions depend on a static set of
context features, i.e., new context types can’t be in-
volved in the situation model at run-time. Especially,

new aspects of a situation can’t be added at run-time
even if our situation model is extensible at design time.

5.3. Handling of context characteristics

For our approach we see the handling of the de-
scribed characteristics at different stages of context
processing which we understand as a stepwise exe-
cution of operations for context interpretation, aggre-
gation and derivation to produce higher-level context
which can be used at application level. We assume that
most of the processing is done within a context service
(see Figure 4.1). While the application requests as set
of context features according to a context profile at a
certain point in time (what we call “to make a snap-
shot”) the context service is responsible for handling
dynamics to provide up to date information. This in-
cludes to provide the history if requested by the ap-
plication. As for a certain context value multiple alter-
native sources can be available, they have to be main-
tained by the context service. These alternatives can
be exploited to handle incorrectness and quality vari-
ations. The context service can apply operations for
choosing the context value with the highest available
quality out of several alternative values. Furthermore,
it can compare alternative values to detect incorrect
values.

Moreover, DL reasoning can handle incomplete in-
formation gracefully. Incompleteness can be detected
by the context service based on the context profile.
Nevertheless, we can handle it in the DL system be-
cause meaningful reasoning is also possible on incom-
plete data.Even if the context service can provide a
subset of the requested context information, realization
still is able to recognize concepts, even if they might be
more general. However, even in such cases the system
is still able to recognize context and the application can
perform actions associated with that context.

Inconsistency can also be detected by the DL system
and can cause the context application to request addi-
tional, clarifying information from the context service.
We currently see the handling of data quality out of
scope of the application level model, assuming that the
handling is done by the context service as described
above. We have so far focused on modeling the appli-
cation domain, especially the context concepts useful
for certain application tasks and reasoning about the
situation the application is within.

Moreover, the approach to use DL reasoning for the
recognition of contexts offers a graceful way of han-
dling incomplete data. In such a case the realization

Employing Description Logic systems in Ambient Intelligence 23

would simply return contexts that might be too gen-
eral, but still a context is recognized and an action as-
sociated with the returned context will be performed.
Furthermore, the separation of context recognition and
choice of action allows adapting this association at
run-time according to user preferences.

6. Conclusions and Future work

We proposed a method for situation modeling us-
ing the Description Logics based ontology language
OWL DL and a framework for employing Description
Logics reasoning services to recognize the current sit-
uation based on context. Especially, we employed the
DL reasoning service ABox realization to identify the
most specific types of a situation, representing the cur-
rent situation. According to the introduced framework,
the application then determines the actions to be per-
formed in correspondence to the current situation.

The benefits from the approach are manifold: the se-
mantics of Description Logics allow for graceful han-
dling of incomplete knowledge. The well-investigated
reasoning services do not only allow recognizing the
current situation, but also can add to the reliability of
the overall system. Moreover optimized reasoning sys-
tems are freely available and ready to use.

On the one hand the explicit specification of the sit-
uation model in the TBox may limit the ways in which
an AmI system can adapt at run-time to changing situ-
ation types, but on the other hand the explicit specifi-
cation clearly provides transparency to application de-
velopers and users and thus contributes to the reliabil-
ity of the overall system. In addition, our approach re-
quires neither a learning phase nor a large amount of
training examples to set-up the initial knowledge base.
However, it does not support full dynamic adaptation
despite the separation into situation type inference and
decision making, which allows a certain degree of flex-
ibility at run-time.

The feasibility of the approach has been demon-
strated with a case study based on a smart home
application. The aspects of situations from that sce-
nario could be modeled completely. The evaluation has
shown that DL systems support the characteristics of
context, especially the issue of incomplete knowledge
can be handled very well. Further characteristics like
heterogeneous and distributed context sources as well
as multiple alternative context sources can also be han-
dled in our framework, this is achieved by the context
service adopted in our framework.

The performance of DL reasoners is appropriate for
scenarios which can tolerate response times of a few
seconds. Dependent on the chosen reasoner, the con-
structs used in the ontology and the number of con-
cepts, roles and individuals run-times in the range of
below 1s up to several second can be achieved by the
currently available reasoning tools. While these tools
are under development, mainly driven by the strong
community of Semantic Web research, significant per-
formance improvements can be expected for the future.

As pointed out in the evaluation in Section 5.2 there
are also some limitations of the expressivity of DLs, a
developer of AmI systems should be aware of. Solu-
tions to overcome these limitations exists. Especially,
mathematical or classification operations dealing with
numbers can already be performed during the context-
awareness phase. The approach presented in [46] sup-
ports a step-wise abstraction process of sensor mea-
surements and can be seen as one possible solution for
the issue of missing expressivity and reasoning capa-
bilities regarding numbers in DLs. Another solution is
to model these facts by the use of concrete domains [4],
which are supported by RACERPRO.

To sum it up, OWL DL is extremely helpful as a
standard, since it encourages the implementation of a
lot of ontology tools and reasoners helpful for context
applications. As a modeling language it offers wide
range of language constructs that allow to model a lot
of complex notions from context applications. How-
ever, some concept constructors central to modeling
with numbers are missing in OWL DL.

The research work presented in this article was par-
tially sponsored by Siemens AG. Moreover, the au-
thors would like to thank Bootawee Suntisrivaraporn
from TU Dresden and Michael Pirker from Siemens
AG, Intelligent Autonomous Systems for their helpful
comments on earlier versions of this paper.

References

[1] A. Agostini, C. Bettini, and D. Riboni. A performance evalua-
tion of ontology-based context reasoning. In Proc. of Fifth An-
nual IEEE International Conference on Pervasive Computing
and Communications - Workshops, pages 3–8. IEEE Computer
Society, 2007.

[2] C. B. Anagnostopoulos, Y. Ntarladimas, and S. Hadjiefthymi-
ades. Situational computing: An innovative architecture
with imprecise reasoning. Journal of Systems and Software,
80(12):1993–2014, 2007.

[3] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and
P. Patel-Schneider, editors. The Description Logic Handbook:

24 Employing Description Logic systems in Ambient Intelligence

Theory, Implementation, and Applications. Cambridge Univer-
sity Press, 2003.

[4] F. Baader and P. Hanschke. A Schema for Integrating Con-
crete Domains into Concept Languages. In Proceedings of
the Twelfth International Joint Conference on Artificial Intelli-
gence (IJCAI-91), pages 452–457, Sydney, 1991.

[5] F. Baader, C. Lutz, and B. Suntisrivaraporn. CEL—a
polynomial-time reasoner for life science ontologies. In
U. Furbach and N. Shankar, editors, Proc. of the 3rd Int.
Joint Conf. on Automated Reasoning (IJCAR-06), volume 4130
of Lecture Notes In Artificial Intelligence, pages 287–291.
Springer-Verlag, 2006. CEL download page: http://lat.
inf.tu-dresden.de/systems/cel/.

[6] F. Baader and W. Nutt. [3], chapter Basic Description Logics,
pages 43–96. Cambridge University Press, 2003.

[7] F. Baader and U. Sattler. An overview of tableau algorithms
for description logics. Studia Logica, 69:5–40, 2001.

[8] P. Baker, C. Goble, S. Bechhofer, N. Paton, R. Stevens, and
A. Brass. An ontology for bioinformatics applications. Bioin-
formatics, 15(6):510–520, 1999.

[9] S. Bechhofer. The dig description logic interface: Dig/1.1.
Technical Report, 2003.

[10] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L.
McGuinness, P. F. Patel-Schneider, and L. A. Stein. OWL web
ontology language reference. W3C Recommendation, Febru-
ary 2004. http://www.w3.org/TR/owl-ref/.

[11] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web.
Scientific American, 284(5):34–43, 2001.

[12] R. Brachman and H. Levesque. Readings in Knowledge Rep-
resentation. Morgan Kaufmann, Los Altos, 1985.

[13] G. Chen, M. Li, and D. Kotz. Design and implementation of
a large-scale context fusion network. pages 246 – 255, Aug.
2004.

[14] H. Chen, F. Perich, T. Finin, and A. Joshi. SOUPA: Standard
Ontology for Ubiquitous and Pervasive Applications. In Inter-
national Conference on Mobile and Ubiquitous Systems: Net-
working and Services, Boston, MA, August 2004.

[15] E. Christopoulou, C. Goumopoulos, and A. Kameas. An
ontology-based context management and reasoning process for
ubicomp applications. In sOc-EUSAI ’05: Proceedings of the
2005 joint conference on Smart objects and ambient intel-
ligence, pages 265–270, New York, NY, USA, 2005. ACM
Press.

[16] R. Cornet and A. Abu-Hanna. Using description logics for
managing medical terminologies. In P. B. M. Dojat, E. Kerav-
nou, editor, Artificial Intelligence in Medicine: 9th Conference
on Artificial Intelligence, in Medicine in Europe (AIME 2003),
Lecture Notes in Computer Science, pages 61–70. Springer,
2003.

[17] R. Cote, D. Rothwell, J. Palotay, R. Beckett, and L. Brochu.
The systematized nomenclature of human and veterinary
medicine. Technical report, SNOMED International, North-
field, IL: College of American Pathologists, 1993.

[18] A. K. Dey, D. Salber, and G. D. Abowd. A conceptual
framework and a toolkit for supporting the rapid prototyping
of context-aware applications. Human-Computer Interaction
(HCl) Journal, 16(2–4):97–166, 2001.

[19] T. Gu, H. Pung, and D. Zhang. Toward an OSGi-based infras-
tructure for context-aware applications. IEEE Pervasive Com-
puting, 3(4):66–74, Oct.-Dec. 2004.

[20] V. Haarslev, R. Möller, and M. Wessel. Querying the seman-
tic web with racer + nrql. In In Proceedings of the KI-2004
International Workshop on Applications of Description Logics
(ADLŠ04, 2004.

[21] V. Haarslev and R. Möller. Racer: A core inference engine for
the semantic web. In Proc. of the 2nd International Workshop
on Evaluation of Ontology-based Tools (EON2003), located
with ISWC, pages 27–36, 2003.

[22] V. Haarslev, R. Möller, and M. Wessel. RacerPro reasoner,
2005. See http://www.racer-systems.com/.

[23] C. Haase and C. Lutz. Complexity of subsumption in the EL
family of description logics: Acyclic and cyclic tboxes. In
M. Ghallab, C. D. Spyropoulos, N. Fakotakis, and N. Avouris,
editors, Proc. of the 18th European Conference on Artificial In-
telligence (ECAI08), volume 178 of Frontiers in Artificial In-
telligence and Applications, pages 25–29. IOS Press, 2008.

[24] I. Horrocks, P. Patel-Schneider, and F. van Harmelen. From
SHIQ and RDF to OWL: The making of a web ontology lan-
guage. Journal of Web Semantics, 1(1):7–26, 2003.

[25] I. Horrocks and U. Sattler. A tableau decision procedure for
SHOIQ. J. of Automated Reasoning, 39(3):249–276, 2007.

[26] I. R. Horrocks. Using an expressive description logic: Fact or
fiction. pages 636–647, 1998.

[27] P. Korpipää, J. Mäntyjärvi, J. Kela, H. Kernen, and E.-J. Malm.
Managing context information in mobile devices. IEEE Perva-
sive Computing, 2(3):42–51, 2003.

[28] M. Luther, Y. Fukazawa, M. Wagner, and S. Kurakake. Situ-
ational reasoning for task-oriented mobile service recommen-
dation. The Knowledge Engineering Review, 23(Special Issue
01):7–19, 2008.

[29] B. Motik and U. Sattler. A Comparison of Techniques for
Querying Large Description Logic ABoxes. In M. Hermann
and A. Voronkov, editors, Logic for Programming, Artificial
Intelligence, and Reasoning, volume 4246 of Lecture Notes in
Computer Science, pages 227–241, Phnom Penh, Cambodia,
November 13–17 2006. Springer. KAON2 download page:
http://kaon2.semanticweb.org/.

[30] B. Motik, R. Shearer, and I. Horrocks. Optimized Reasoning
in Description Logics using Hypertableaux. Lecture Notes in
Artificial Intelligence, pages 67–83, Bremen, Germany, July
17–20 2007. Springer.

[31] B. Mrohs, M. Luther, R. Vaidya, M. Wagner, S. Steglich,
W. Kellerer, and S. Arbanowski. OWL-SF–a distributed se-
mantic service framework. In Proc. of the Workshop on Context
Awareness for Proactive Systems (CAPS’05), Helsinki, pages
67–77, 2005.

[32] V. Peltonen, J. Tuomi, A. Klapuri, J. Huopaniemi, and T. Sorsa.
Computational auditory scene recognition. In In IEEE In-
tŠl Conf. on Acoustics, Speech, and Signal Processing, pages
1941–1944, 2002.

[33] M. R. Quillian. Word concepts: A theory and simulation
of some basic capabilities. Behavioral Science, 12:410–430,
1967. Republished in [12].

[34] Racer Systems GmbH & Co. KG. Racerpro reference manual
version 1.9, dec. 2005., 2005.

[35] Racer Systems GmbH & Co. KG. Racerpro User’s guide ver-
sion 1.9, dec. 2005., 2005.

[36] C. Ramos, J. C. Augusto, and D. Shapiro. Ambient intelligence
– the next step for artificial intelligence. IEEE Intelligent Sys-
tems, 23(2):15–18, March-April 2008.

Employing Description Logic systems in Ambient Intelligence 25

[37] A. Ranganathan and R. Campbell. An infrastructure for
context-awareness based on first order logic. Personal and
Ubiquitous Computing, (7):353–364, 2003.

[38] A. Rector. Medical informatics. In [3], pages 406–426. Cam-
bridge University Press, 2003.

[39] S. Schulz, B. Suntisrivaraporn, and F. Baader. SNOMED CT’s
problem list: Ontologists’ and logicians’ therapy suggestions.
In Proceedings of The Medinfo 2007 Congress, Studies in
Health Technology and Informatics (SHTI-series). IOS Press,
2007.

[40] N. Shadbolt. Ambient intelligence. IEEE Intelligent Systems,
18(4):2–3, 2003.

[41] K. Sheikh, M. Wegdam, and M. van Sinderen. Middleware
support for quality of context in pervasive context-aware sys-
tems. In PERCOMW ’07: Proceedings of the Fifth IEEE In-
ternational Conference on Pervasive Computing and Commu-
nications Workshops, pages 461–466, Washington, DC, USA,
2007. IEEE Computer Society.

[42] E. Sirin and B. Parsia. Pellet: An OWL DL reasoner. In
V. Haarslev and R. Möller, editors, Proc. of the 2004 De-
scription Logic Workshop (DL 2004), number 104 in CEUR
Workshop, 2004. See also http://www.mindswap.org/
2003/pellet/index.shtml.

[43] E. Sirin and B. Parsia. Pellet system description. In B. Parsia,
U. Sattler, and D. Toman, editors, Description Logics, volume
189 of CEUR Workshop Proceedings. CEUR-WS.org, 2006.

[44] J. F. Sowa, editor. Principles of Semantic Networks. Morgan
Kaufmann, Los Altos, 1991.

[45] T. Springer, K. Kadner, F. Steuer, and M. Yin. Middleware
support for context-awareness in 4G environments. In World of
Wireless, Mobile and Multimedia Networks, 2006. WoWMoM
2006. International Symposium on a, pages 203–211, 26-29
June 2006.

[46] T. Springer, P. Wustmann, I. Braun, W. Dargie, and M. Berger.
A comprehensive approach for situation-awareness based on
sensing and reasoning about context. In F. E. Sandnes,
Y. Zhang, C. Rong, L. T. Yang, and J. Ma, editors, UIC, volume
5061 of Lecture Notes in Computer Science, pages 143–157.
Springer, 2008.

[47] V. Stankovski and J. Trnkoczy. Application of decision trees
to smart homes. In Designing Smart Homes, volume 4008 of
Lecture Notes in Computer Science, pages 132–145. Springer

Berlin / Heidelberg, 2006.
[48] T. Strang and C. Linnhoff-Popien. A context modeling sur-

vey. In In: Workshop on Advanced Context Modelling, Reason-
ing and Management, UbiComp 2004 - The Sixth International
Conference on Ubiquitous Computing, Nottingham/England,
2004.

[49] S. Tobies. The complexity of reasoning with cardinality restric-
tions and nominals in expressive description logics. Journal of
Artificial Intelligence Research, 12:199–217, May 2000.

[50] D. Tsarkov and I. Horrocks. FaCT++ description logic rea-
soner: System description. In Proc. of the 3rd Int. Joint Conf.
on Automated Reasoning (IJCAR-06), 2006. FaCT++ down-
load page: http://owl.man.ac.uk/factplusplus/.

[51] D. Tsarkov and I. Horrocks. FaCT++ description logic rea-
soner: System description. Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics), 4130:292–297,
2006.

[52] A.-Y. Turhan, T. Springer, and M. Berger. Pushing doors for
modeling contexts with OWL DL – a case study. In J. Indul-
ska and D. Nicklas, editors, Proceedings of the Workshop on
Context Modeling and Reasoning (CoMoRea’06), pages 13–
17. IEEE Computer Society, March 2006.

[53] M. Weiser. The Computer for the 21st Century. Scientific
American, pages 66–75, Sep 1991.

[54] M. Wessel, M. Luther, and M. Wagner. The difference a day
makes – recognizing important events in daily context logs. In
P. Bouquet, J. Euzenat, C. Ghidini, D. L. McGuinness, L. Ser-
afini, P. Shvaiko, and H. Wache, editors, Proc. of the Interna-
tional Workshop on Contexts and Ontologies: Representation
and Reasoning (C&O:RR), volume 298 of CEUR Workshop
Proceedings. CEUR-WS.org, 2007.

[55] K. Wolstencroft, A. Brass, I. Horrocks, P. Lord, U. Sattler,
R. Stevens, and D. Turi. A little semantic web goes a long
way in biology. In Proc. of the 2005 International Semantic
Web Conference (ISWC 2005), number 3729 in Lecture Notes
in Computer Science, pages 786–800. Springer, 2005.

[56] K. Wolstencroft, P. W. Lord, L. Tabernero, A. Brass, and
R. Stevens. Protein classification using ontology classification.
In In Proceedings 14th International Conference on Intelligent
Systems for Molecular Biology ISMB’06 (Supplement of Bioin-
formatics), pages 530–538, 2006.

Situation Recognition for Service Management
Systems Using OWL 2 Reasoners

Waltenegus Dargie†, Eldora∗, Julian Mendez∗, Christoph Möbius†,
Kateryna Rybina†, Veronika Thost∗, Anni-Yasmin Turhan∗

∗, Chair for Automata Theory †, Chair of Computer Networks,
Institute for Theoretical Computer Science Institute of Systems Architecture

Technische Universität Dresden Technische Universität Dresden

email: lastname@tcs.inf.tu-dresden.de email: firstname. lastname@tu-dresden.de

Abstract— For service management systems the early recog-
nition of situations that necessitate a rebinding or a migration
of services is an important task. To describe these situations on
differing levels of detail and to allow their recognition even if
only incomplete information is available, we employ the ontology
language OWL 2 and the reasoning services defined for it. In this
paper we provide a case study on the performance of state of the
art OWL 2 reasoning systems for answering class queries and
conjunctive queries modeling the relevant situations for service
rebinding or migration in the differing OWL 2 profiles.

I. INTRODUCTION

Service management systems (SMS) are systems that,
broadly speaking, orchestrate the execution of complex ser-
vices in distributed (cluster) computing environments. The
prime goal of these systems is to ensure that computing
resources are efficiently utilized while functional and non-
functional requirements of individual services expressed in so-
called service level agreements (SLAs) are respected. One of
the resources managed by an SMS is power.

Unfortunately, a significant portion of the power consump-
tion of Internet-based servers is wasted due to underutilization
[6]—often Internet-based servers are utilized only between
30 to 70% of their full capacity even though their idle
power consumption amounts up to 60% of their peak power
consumption [2], [1]. An SMS can be employed in a cluster
environment to ensure that power is frugally consumed by
servers. In this regard, a key aspect of the SMS is its ability
to adapt the use of hardware resources according to the present
and anticipated workload. Depending on the type of services
that are being hosted and the priority and magnitude of the
processed workload, an SMS can carry out different forms of
adaptations to save power.

A. Service Management

One of the essential adaptation strategies is to switch
off underutilized machines as often as possible. This can
be achieved by consolidating services running on different
machines onto a selected number of machines, which are

This work is supported in a part by the German Research Foundation (DFG)
in the Collaborative Research Center 912 ‘Highly Adaptive Energy-Efficient
Computing’.

then optimally configured. Service consolidation in turn can
be achieved by either carrying out runtime service migration
[10] or service rebinding [11]. In a service migration, the
main memory content of a service is transferred from one
physical machine to another at runtime while the service is still
executing. In virtualized environments, this can be achieved by
encapsulating the service inside a virtual machine (VM) and
then migrating the VM itself. If the service is stateless, an SMS
may prefer the adaptation technique of service-rebinding. In
this case, another instance (service B) of a service being run
on an underutilized server (service A) will be started elsewhere
and all future requests directed to service A will be redirected
to service B. The aim is to gradually terminate service A and
switch off the server on which service A was running.

Clearly, adaptation techniques can be carried out if there are
‘symptoms’ indicating a need for adaptation. These symptoms
may refer to potential SLA violations or to some utilization
thresholds that are being crossed or, to put it more generally,
to some critical situations that can be sensed in the system.
The time between recognizing a critical situation and finishing
all necessary adaptation tasks can be considerably long – for
example, the migration of a VM can take several seconds or
even minutes, depending on its size and the available network
bandwidth [23]. During this delay, the performance of the
service may degrade and the power consumption of both the
target and the source servers may increase.

Ideally, the SMS should be notified in advance about situa-
tions, where a server is overloaded or underutilized and carry
out the appropriate adaptations. To this end, it is desirable to
describe contextual information that sufficiently characterizes
the execution environment (i.e., context pertaining to SLAs,
workloads, services, and servers etc.), then recognize situations
in the actual system that potentially lead to the violation of
one of the predefined thresholds, and decide on the suitable
adaptation strategy to alleviate this violation.

In order to do so the situations need to be represented on
differing levels of detail—a task Description Logics (DLs)
ontologies [5] are designed for. Moreover, the various aspects
of the overall managed system’s status are supplied by dif-
ferent information sources. For instance, the properties of the
different implementations of services may be given by the

software providers and can be stored in a database, while other
information such as the layout of the hardware and the current
system parameters can be retrieved from the OS directly. These
information sources yield information of different levels of
detail. Data integration can be performed by using DLs, see
[9], [7]. Most importantly, DL systems can handle incomplete
information gracefully, since they operate under the open
world assumption, i.e. missing is neither regarded true or false.
In contrast to this, in database systems missing information is
regarded to be false.

We follow a common approach to ontology-based situation
recognition: we use an ontology describing the managed
system and servers and employ DL reasoning to identify
situations of interest. This approach has been employed in
several domains for context-aware applications, for instance,
in the intelligent home domain [27], [22] and air surveillance
[3]. In [19], [3] it was demonstrated that the expressivity and
reasoning capabilities of DL systems suffice to model the
domain at hand faithfully.

B. OWL 2 for Situation Recognition

DLs are the logical formalism underlying the W3C standard
OWL. In OWL categories from the application domain can
be described by class expressions and binary relations by so-
called (object) properties. For example, the class Server, which
is hardware that has a CPU as a part and has memory as a
part can be characterized by the expression:1

Server ≡ Hardware u (∃hasPart.CPU) u (∃hasPart.Memory).
The definition assigns to the named class Server the complex
class expression on the right-hand side and uses the property
hasPart and the other named classes Hardware, CPU and
Memory. Now, based on Server we can define an IdleServer
as a server that has the power state ‘idle’ by writing:
IdleServer ≡ Server u ∃hasPowerState.Idle
Such definitions of classes are stored in the TBox. In addition,
characteristics of properties can be stated in the TBox, e.g.,
that the property hasPart is transitive or that the property
isPartOf is its inverse.2

The ABox stores concrete facts from the application, ex-
pressed by class assertions, which state that an individual
belongs to a (possibly complex) class or property assertions
that relate two individuals via a property.

Example 1: We can state in our ABox A1 that the individ-
ual named Server1 belongs to the class Server and that its
related power state is individual State2 , which belongs to the
class IdleState by writing the statements:

A1 = { Server(Server1), hasPowerState(Server1 ,State2),

IdleState(State2) }.

The TBox and the ABox together constitute the ontology.
For DL systems there are several reasoning services that can
infer from the explicitly given information in the ontology the

1We give the class expressions in DL syntax for better readability.
2For the exact syntax and semantics of DLs we refer the reader to [5].

implicitly captured facts. Subsumption can compute super- and
sub-class relationships for the classes defined in the TBox. For
example, it can be derived that the class IdleServer is a sub-
class of the class ∃hasPart.CPU. Class queries compute for a
given (complex) class Cq and an ontology all the individuals
in the ABox that belong to the given class Cq. For the query
class IdleServer and A1 we can derive the individual Server1 .
A more powerful way to query the ABox are conjunctive
queries. A conjunctive query is a conjunction of assertions that
may also contain variables, of which some can be existentially
quantified. For example, the conjunctive query
qex =
∃x, y.Server(x) ∧ hasPart(x, z) ∧ uses(y, z) ∧ Process(y)

asks for all pairs of servers and processes, where the process
uses some part of the server. In contrast to class queries,
conjunctive queries can return a tuple of individuals from the
ABox.

We model the basic categories and relations of the SMS
domain in a TBox, such as the hardware or the managed
services. The current state of the system managed by the
SMS is then captured at runtime in an ABox, similarly to
[27], [22], [3]. To recognize the relevant situations for the
SMS we employ answering of class queries or conjunctive
queries w.r.t. the ABox. Once such a situation is detected
for a (tuple of) ABox individual(s), the SMS invokes the
appropriate adaptations on the returned individuals to ensure
energy efficiency for the overall system.

The OWL 2 standard for ontology languages comprises
so-called OWL profiles which differ w.r.t. expressivity [28].
Depending on the profile, more class constructors and property
statements are allowed for the TBox.
• OWL 2 is the most expressive ontology language in

the W3C standard. Reasoning in the corresponding DL
SROIQ is 2NExpTime-complete [13], [14], i.e. class
queries can take more than double exponential time.

• OWL 2 EL corresponds to the DL EL++, where class
query answering is in P [4], i.e. can always be done in
polynomial time. However, conjunctive query answering
in the sublogic EL is already P -complete w.r.t. the size
of the ABox alone.

• OWL 2 QL allows only for very limited class descrip-
tions. For its corresponding DL DL-LiteR query answer-
ing is in AC0 (which is a proper subclass of the class of
P), if measured w.r.t. the size of the ABox alone [8].

The motivation for the different profiles are the good computa-
tional properties of the lightweight DLs EL++ and DL-LiteR
for answering class queries or conjunctive queries respectively.
There are non-commercial, optimized reasoners for answering
class queries or conjunctive queries. Although the computa-
tional complexity of the implemented algorithms is promis-
ingly low, it is not clear whether these implementations are
yet fast enough to realize situation recognition for applications
that deal with complex situations and require fast response
times—such as SMSs. While [19], [3] argued that the reason-
ing capabilities of DL systems suffice to recognize complex

situations, little is known about whether the performance of
the implementation of DL reasoners’ performance is yet good
enough for this kind of task. This question was addressed in
the study in [27] back in 2006 for class queries, where it
turned out that for fairly small ontologies and only applications
that require moderate response times (of about 20 seconds),
the performance of the DL reasoners was barely adequate.
Since then DL reasoners have evolved in terms of reasoning
services offered and in terms of performance. This motivates
our empiric study that measures the performance of today’s
reasoning systems for class queries and conjunctive queries
for the different OWL profiles. The application is to recognize
situations for an SMS that manages a video platform such that
it runs in an energy efficient way.

The paper is structured as follows: Section II describes the
ontology for the video platform use case and the modeling
of the relevant situations. Section III presents the empirical
evaluation how current DL reasoners perform on class and
conjunctive queries w.r.t. the different OWL profiles. As it is
custom our paper ends with some conclusions.

II. USE CASE: MANAGING A VIDEO PLATFORM SERVER

For a proof of concept for our DL-based approach for SMS,
we consider a video platform as application scenario, i.e.,
a distributed application over several servers, which allows
users to search for, upload, and download videos. Internally,
services for ranking and transcoding of videos (i.e., conversion
of video encodings) are executed. The up- and downloading
of videos are complex and resource-intensive processes. For
that reason, we apply an elaborate service management to
effectively exploit the available resources.

The two techniques considered to reduce the energy con-
sumption of the video server platform are service migration
and service rebinding. Service rebinding is performed in case
one server is not optimally utilized, while another server
still has available resources. Consider a server providing a
downloading service. If several users request this service at
the same time, the server becomes overloaded. To balance the
load, this downloading service can be rebound – by starting
an instance of this service on another server that has available
resources and by ‘redirecting’ future requests to the new
instance.

To recognize situations where the application of such
adaptation techniques can be beneficial, we create ontologies
capturing information about the system and then apply DL rea-
soners to detect situations apt for optimization. More precisely,
at design time the general domain knowledge about video
platforms (e.g., the kinds of services provided) and notions of
SMS (e.g., when a server has available resources) are described
in the TBox. The relevant situations to be recognized are
modeled as query classes or conjunctive queries–depending on
the reasoning task to be employed. The TBox and the queries
are assumed to be fixed over the runtime of the SMS.

The ABox describes the architecture of the specific ap-
plication managed by the SMS (e.g., available servers) and

its current state (e.g., load of the servers, executed imple-
mentations, etc.). Most of the data in the ABox has to be
collected at runtime. Due to the highly dynamic nature of the
system, the ABox is refreshed several times a minute. Each
ABox can be generated from many sources as, for instance,
sensor data delivered by the OS or a database describing
all implementations available to the SMS. For the task of
converting numerical data, such as sensor data, preprocessors
are applied, to convert the numeric data into named classes
(following the approach used in [3], [24]). For example, if the
load measured for a server Server1 has been constantly very
low, the assertions

hasLoadAverage(Server1 ,Load2), UnderUtilized(Load2)

are added to the ABox created for the past interval. Once the
ABox is refreshed, the DL reasoner performs answering of the
class or conjunctive queries provided at design time.

A. Modeling the OWL 2 Video Platform Ontology

Our TBox contains basic notions of the video platform
domain such as characteristics of a DownloadingService and
notions specific for SMS as AvailableResourceServer written
in the DL ALCIQ, which is a proper sub-logic of OWL 2.
For this DL, testing class queries is PSpace-complete [25],
while answering of conjunctive queries is even 2ExpTime-
complete [16]. Our ABox contains assertions describing the
architecture of the video platform and its current state based
on the available sensor data.

Example 2: Let’s assume that State1 from ABox A1 has
changed to ‘operating’ in the last interval. Now, the charac-
terization of Server1 , its resources, and states at runtime can
be captured by:
Server(Server1),
CPU(CPU1), hasPart(Server1 ,CPU1),
Memory(Memory1), hasPart(Server1 ,Memory1),
Operating(State1), hasPowerState(Server1 ,State1),
UnderUtilized(Load1), hasLoadAverage(Server1 ,Load1)

It turned out that even the expressivity of the lightweight
profiles allows to describe at least the main characteristics of
the domain knowledge of our application scenario. This is
because the TBox primarily captures the conceptual model
of the application, which is exactly the use-case DL-Lite
has been developed for. If needed, complex class definitions,
which cannot be represented in the lightweight profiles, can be
captured alternatively using fine-granular conjunctive queries
when modeling the rebinding situations.

Example 3: Consider the class definition for underutilized
servers, which have an average load that is underutilized or
that have a part that is an underutilized CPU or NIC:

UnderUtilizedServer ≡ ∃hasLoadAverage.UnderUtilized t
∃hasPart.(UnderUtilizedCPU t UnderUtilizedNIC)

It cannot be expressed in an OWL 2 EL/QL ontology, due
to disjunction (t). Thus, such a query concept would have to
consist of the right-hand side of the definition.

RebindingDownloadingServiceSituation =
∃hasServer.(AvailableResourceServer u ∃runs.∃hosts.DownloadingImplementation) u
∃hasServer.(¬OptimallyUtilizedServer u ∃runs.∃hosts.∃bindsTo.DownloadingService)

RebindingServiceSituation =
∃hasServer.(AvailableResourceServer u ∃runs.∃hosts.Implementation) u
∃hasServer.(¬OptimallyUtilizedServer u ∃runs.∃hosts.∃bindsTo.Service)

qRebindingDownloadingServiceSituation =
∃x, y. AvailableResourceServer(x) ∧ runs(x, z1) ∧ hosts(z1, z2) ∧ DownloadingImplementation(z2) ∧

bindsTo(z2, z3) ∧ DownloadingService(z3) ∧
¬OptimallyUtilizedServer(y) ∧ runs(y, z4) ∧ hosts(z4, z5) ∧ DownloadingImplementation(z5) ∧
bindsTo(z5, z6) ∧ isBoundTo(z6, z5) ∧ DownloadingService(z6)

qRebindingServiceSituation =
∃x, y. AvailableResourceServer(x) ∧ runs(x, z1) ∧ hosts(z1, z2) ∧ Implementation(z2) ∧

bindsTo(z2, z3) ∧ Service(z3) ∧
¬OptimallyUtilizedServer(y) ∧ runs(y, z4) ∧ hosts(z4, z5) ∧ Implementation(z5) ∧ bindsTo(z5, z6) ∧
isBoundTo(z6, z5) ∧ Service(z6)

Fig. 1. The situation when to rebind a (downloading) service captured as query classes and conjunctive queries.

B. Modeling the Rebinding Situations

To recognize critical situations, we apply either answering
of class queries or of conjunctive queries. For the former, the
situations need to be specified as classes, while for the latter,
the situations need to be described by conjunctive queries.

Example 4: A situation apt for rebinding a download-
ing service considers two servers, one with available
resources and one that is not optimally utilized. The
first one hosts the corresponding implementation and
the second one hosts the same implementation currently
bound by the service. The resulting query class is dis-
played in Figure 1 in the upper half as the class
RebindingDownloadingServiceSituation and the correspond-
ing conjunctive query qRebindingDownloadingServiceSituation in
the lower half of the figure. Note, that the fact that the same
implementation is used by the servers cannot be expressed
by a class description, since they only allow to describe tree-
like structures. Furthermore, conjunctive queries retrieve tuples
from the ABox, while a query concept can only retrieve a
single individual.

In Figure 1 a situation that generalizes the above one is char-
acterized in the query class RebindingServiceSituation and in
the query qRebindingDownloadingServiceSituation, respectively. In
this situation the service and the implementation are not further
specified, otherwise these situations are the same. Clearly, this
situation is refined by the first one.

It is fruitful to model such refinement of situations in
order to allow for graceful handling of incomplete in-
formation. Assume, that it is stated in the TBox that
every DownloadingServer is a Server and that every
DownloadingImplementation is an Implementation. Further-
more, assume that for a particular downloading implemen-
tation it cannot be retrieved that it is an implementation
of that kind, but only that it is an implementation (of
some kind). Thus the next ABox is incomplete. In such
a case a situation that might necessitate the rebinding of

a downloading service cannot be recognized. More pre-
cisely, the class RebindingDownloadingServiceSituation does
not have an instance in the current ABox and the query
qRebindingDownloadingServiceSituation yields no tuples. However,
the more general class RebindingServiceSituation would have
an instance and the query qRebindingServiceSituation would yield
a result tuple. Thus a counter measure could be invoked at least
for this kind of situation.

Class and conjunctive queries differ in the expressive power
for specifying the situations. While the former are limited
by the expressivity of the ontology language, the latter can
in addition make use of the variables to describe arbitrary
structures to describe the details of the situations. This addition
comes at the cost of higher computational complexity.

III. EVALUATION FOR THE OWL 2 PROFILES

The goal of our evaluation is to see whether current OWL
2 reasoners are appropriate for situation recognition in SMSs.
However, to adopt DL reasoning for this kind of scenario, the
reasoners have to be able to detect situations by processing
realistic amounts of data within short time. We consider
OWL 2 and the two profiles OWL 2 EL and OWL 2 QL
in our evaluation. However, the syntactic restrictions of the
lightweight profiles allow only for coarser modeling than full
OWL 2—some information simply cannot be modeled. An
interesting question is whether this leads to missing inferences
in our scenario.

A. Test Data and Reasoning Systems

a) Test ontologies: Our base TBox from Section II-A
contains 113 class and 66 property definitions and uses
ALCIQ a sub-logic of OWL 2. For both lightweight profiles,
we built variations of the base TBox manually—keeping as
much information as possible. Since the OWL 2 QL profile
does not support truly complex class descriptions, the situa-
tions in the OWL 2 QL TBox cannot be modeled as classes.

However, the necessary information can be captured in the
conjunctive queries. Thus we only test answering conjunctive
queries for the QL profile.

The ABoxes model a video platform running on four servers
and providing the services described in Section II. Since
the class assertions use only named classes, the ABoxes do
not vary for the profiles. We consider two different ABoxes
modeling two different states of the system. In order to
reflect realistic scenarios, the test ABoxes do not only contain
information about the situation to be detected, but model
the overall system state. We added data about other users
requesting video services, which are carried out on other
servers. This roughly doubles the sizes of both ABoxes. Each
of the test ABoxes contains about 380 individuals, more than
770 class, and more than 545 property assertions.

b) Test Queries: We modeled 13 situations as OWL 2
classes. Since OWL 2 EL does not offer universal quantifica-
tion, only 11 of them are modeled as OWL 2 EL classes.
For these 11 situations we formulated the corresponding
conjunctive queries included in our test suite. The class queries
have a size of about 10 counting the class and property names.
The conjunctive queries are formulated in the query languages
SPARQL and nrql. They contain on average 15 disjuncts of
conjunctions with 8 conjuncts each.

c) Reasoner Systems: The tests were run for seven DL
reasoners, which differ w.r.t. the DL they support and the rea-
soning services provided. Table I depicts the tested reasoners,
the used version and the closest DL of the respective profile
they implement (‘x’ stands for full coverage). Besides the
tableaux-based reasoners for expressive DLs in the first group
of Table I, we tested reasoners specialized on lightweight
profiles, which are listed in the second and third group of the
table. QUEST can be used for ontology based data access (i.e.,
a data base functions as ABox and can be queried directly).
We used QUEST with classical ABoxes here.

B. Evaluation

The tests were carried out on an Intel Core 2 Duo work-
station with 2 GB RAM using Java 1.6.0. on Ubuntu. Besides
recording the mere runtimes, we checked whether the reason-
ers delivered the same results for a query. For our class and
conjunctive queries, all reasoners agree on the result tuples.
However, when comparing the results for conjunctive queries
w.r.t. differing expressiveness of the profiles, it shows that

Query type Profile
Reasoner Version Class Conj. OWL EL QL
FACT++ [26] v1.6.1 x x x x
HERMIT [18] v1.3.6 x SHOIQ x x
PELLET [21] v2.3.0 x x SHOIN (D) x x
RACERPRO [12] v2.0 x x SHIQ(D) x x
ELK [15] v0.3.1 x EL+
JCEL [17] v0.18.0 x EL+
QUEST [20] v1.7-alpha x x

TABLE I
REASONERS AND THEIR SUPPORTED QUERIES AND PROFILES.

Load. Reason. Avg/Query Total

OWL HERMIT 0.180 1.832 0.148 2.012
PELLET 0.203 0.434 0.033 0.637
FACT++ 0.208 0.225 0.017 0.433
RACERPRO 0.199 24.163 1.985 24.362

EL ELK 0.228 0.078 0.004 0.306
FACT++ 0.245 0.063 0.002 0.308
HERMIT 0.212 0.120 0.004 0.332
JCEL 0.230 0.199 0.012 0.429
PELLET 0.197 0.576 0.045 0.773
RACERPRO 0.342 1.675 0.112 2.018

TABLE II
RUNTIMES FOR CLASS QUERIES IN SECONDS.

Load. Reason. Avg/Query Total
OWL RACERPRO 1.302 40.035 3.336 41.336

EL PELLET 0.522 2.344 0.195 2.866
RACERPRO 0.503 6.773 0.564 7.277

QL PELLET 0.541 1.918 0.160 2.460
QUEST 0.453 93.208 7.767 93.661
RACERPRO 0.349 6.604 0.550 6.953

TABLE III
RUNTIMES FOR CONJUNCTIVE QUERIES IN SECONDS.

RACERPRO detects all of the (expected) tuples for OWL 2,
while less tuples are returned for the lightweight profiles. As
to be expected, this is due to the loss in expressivity when
using a lightweight profile. We observed the same effect for
the lightweight profiles in the results of PELLET and QUEST.

1) Performance for Class Queries: For class queries we
ran tests for the OWL 2 and the OWL 2 EL profile. We used
the OWL API (version 3.4.1) to access the reasoners. The
results are displayed in Table II, sorted by profiles. The first
column depicts the time spent on loading the ontology. The
next one displays the time for answering all the queries. The
average runtime per query is displayed next. The last column
contains the runtime for the overall process and is thus the
most interesting for our application of situation recognition.
As expected, it shows that the overall runtime is 6-10 times
higher for OWL 2 than for the OWL 2 EL profile with the
exception of PELLET, which performs slight better for OWL.
OWL 2: Apart from RACERPRO, which took about 25 seconds,
all reasoners delivered a full situation recognition within 2
seconds.
OWL 2 EL: With an overall runtime of about 0.3 seconds,
ELK, FACT++, and HERMIT outperform the other systems.
All systems can perform situation recognition within 0.8
seconds besides RACERPRO, which, again, takes considerably
more time.

2) Performance for Conjunctive Queries: For the con-
junctive queries, the results for all of the three profiles are
displayed in Table III. As for class querying, reasoning in the
lightweight profiles is much faster.
OWL 2: Here RACERPRO needs about 41 seconds overall
runtime. Interestingly, compared to the corresponding class
query, it takes nearly twice as long, due to one outlier query.
OWL 2 EL: PELLET answers all queries in less than 3 seconds,
but takes about four times as long for class queries. With

7.2 seconds RACERPRO takes more than twice as long than
PELLET.
OWL 2 QL: The times of PELLET and RACERPRO are
similar to the OWL 2 EL case. QUEST, in contrast, shows
a significantly worse performance by taking more than 1.5
minutes. We conjecture that this is attributed to running a first
alpha version of it and with a traditional ABox (i.e., instead
of using a database).

All in all, the experiments show that most state of the art
reasoners can be applied for situation recognition in our SMS
application, since response times of half a minute would be
acceptable. Especially by the use of the lightweight profiles,
we achieve very good runtimes for reasoning. Surprisingly, the
loss of information, when using a light weight profile, turned
out to be only marginal for our video platform use case.

IV. CONCLUSIONS AND FUTURE WORK

We have supplied a study on employing state of the art
DL reasoners to perform situation recognition for service
management applied to a video platform. The task was to
recognize complex situations that might invoke rebinding of
services in order to achieve energy efficiency. To solve this
task the domain was modeled in an OWL 2 ontology, where
the ABox reflected realistic situations in the application. The
actual recognition of critical situations, was realized by class
or conjunctive query answering. Our experiments w.r.t. the
different OWL 2 profiles gave evidence that the performance
of today’s DL systems is sufficient to detect complex situations
fast enough. In particular, for the OWL 2 EL and the OWL 2
QL profile it can be done within 2 seconds.

Future work on the practical side includes to run QUEST in
the ODBA mode and to realize the whole situation recognition
more tightly coupled to a DB, such that the data collected
there can be queried directly, instead of generating and loading
an ABox. On the theoretical side, we would like to lift the
limitation of OWL regarding the modeling of fuzzy or even
temporal information by investigating query answering for
sequences of ABoxes, which contain this kind of information.

REFERENCES

[1] D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu. Energy
proportional datacenter networks. SIGARCH Comput. Archit. News,
38(3):338–347, 2010.

[2] F. Ahmad and T. N. Vijaykumar. Joint optimization of idle and cooling
power in data centers while maintaining response time. In Proc. of the
fifteenth edition of ASPLOS on Architectural support for programming
languages and operating systems, ASPLOS ’10, p. 243–256, USA, 2010.
ACM.

[3] F. Baader, A. Bauer, P. Baumgartner, A. Cregan, A. Gabaldon, K. Ji,
K. Lee, D. Rajaratnam, and R. Schwitter. A novel architecture for
situation awareness systems. In Proc. of the 18th Int. Conf. on Automated
Reasoning with Analytic Tableaux and Related Methods (Tableaux’09),
vol. 5607 of LNCS, p. 77–92. Springer, 2009.

[4] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope further.
In K. Clark and P. F. Patel-Schneider, eds. In Proc. of the OWLED
Workshop, 2008.

[5] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-
Schneider, eds.˙The Description Logic Handbook: Theory, Implementa-
tion, and Applications. Cambridge University Press, 2003.

[6] L. Barroso and U. Hölzle. The Case for Energy-Proportional Computing.
Computer, 40(12):33–37, Dec. 2007.

[7] A. Borgida, M. Lenzerini, and R. Rosati. Description logics for
databases. In [5], p. 462–484. Cambridge University Press, 2003.

[8] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati.
Tractable reasoning and efficient query answering in description logics:
The DL-Lite family. J. of Automated Reasoning, 39(3):385–429, 2007.

[9] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati.
Knowledge representation approach to information integration. In Proc.
of AAAI Workshop on AI and Information Integration, p. 58–65. AAAI
Press/The MIT Press, 1998.

[10] C. Clark, K. Fraser, S. Hand, J. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield. Live migration of virtual machines. In Proc. of
the 2nd Conference on Symposium on Networked Systems Design &
Implementation-Vol. 2, p. 273–286. USENIX Association, 2005.

[11] W. Dargie, A. Strunk, and A. Schill. Energy-aware service execution. In
Proc. of the 36th Annual IEEE Conference on Local Computer Networks,
2011.

[12] V. Haarslev, K. Hidde, R. Möller, and M. Wessel. The RacerPro
knowledge representation and reasoning system. Semantic Web Journal,
3(3):267–277, 2012.

[13] I. Horrocks, O. Kutz, and U. Sattler. The even more irresistible
SROIQ. In P. Doherty, J. Mylopoulos, and C. Welty, eds. Proc. of
the 10th Int. Conf. on the Principles of Knowledge Representation and
Reasoning (KR-06), p. 57–67. AAAI Press, 2006.

[14] Y. Kazakov. RIQ and SROIQ are harder than SHOIQ. In
G. Brewka and J. Lang, eds. Proc. of the 11th Int. Conf. on the
Principles of Knowledge Representation and Reasoning (KR-08), p.
274–284. AAAI Press, 2008.

[15] Y. Kazakov, M. Krötzsch, and F. Simančı́k. ELK reasoner: Architecture
and evaluation. In I. Horrocks, M. Yatskevich, E. Jimenez-Ruiz, editor,
Proc. of the OWL Reasoner Evaluation Workshop (ORE’12), vol. 858
of CEUR, 2012.

[16] C. Lutz. The complexity of conjunctive query answering in expressive
description logics. In A. Armando, P. Baumgartner, and G. Dowek, eds.
Proc. of the 4th International Joint Conference on Automated Reasoning
(IJCAR’08), nr. 5195 in LNAI, p. 179–193. Springer, 2008.

[17] J. Mendez. jCel: A modular rule-based reasoner. In In Proc. of the
1st Int. Workshop on OWL Reasoner Evaluation (ORE’12), vol. 858 of
CEUR, 2012.

[18] B. Motik, R. Shearer, and I. Horrocks. Optimized Reasoning in
Description Logics using Hypertableaux. In F. Pfennig, editor, Proc.
of the 23th Conf. on Automated Deduction (CADE-23), LNAI, p. 67–
83, Germany, 2007. Springer.

[19] B. Neumann and R. Möller. On scene interpretation with description
logics. In H. Christensen and H.-H. Nagel, eds. Cognitive Vision
Systems: Samping the Spectrum of Approaches, nr. 3948 in LNCS, p.
247–278. Springer, 2006.

[20] M. Rodriguez-Muro and D. Calvanese. Quest, an OWL 2 QL reasoner
for ontology-based data access. In Proc. of the 9th Int. WS on OWL:
Experiences and Directions (OWLED’12), vol. 849 of CEUR, 2012.

[21] E. Sirin and B. Parsia. Pellet system description. In B. Parsia, U. Sattler,
and D. Toman, eds. Description Logics, vol. 189 of CEUR, 2006.

[22] T. Springer and A.-Y. Turhan. Employing description logics in ambient
intelligence for modeling and reasoning about complex situations. J. of
Ambient Intelligence and Smart Environments, 1(3):235–259, 2009.

[23] A. Strunk and W. Dargie. Does live migration of virtual machines cost
energy? In Proc. of the 27th IEEE International Conference on Advanced
Information Networking and Applications (AINA-2013), 2013.

[24] K. Taylor and L. Leidinger. Ontology-driven complex event processing
in heterogeneous sensor networks. In Proc. of 8th Extended Semantic
Web Conference (ESWC’11), vol. 6644 of LNCS, p. 285–299. Springer,
2011.

[25] S. Tobies. Complexity Results and Practical Algorithms for Logics in
Knowledge Representation. PhD thesis, RWTH Aachen, 2001.

[26] D. Tsarkov, I. Horrocks, and P. F. Patel-Schneider. Optimising termi-
nological reasoning for expressive description logics. J. of Automated
Reasoning, 2007.

[27] A.-Y. Turhan, T. Springer, and M. Berger. Pushing doors for modeling
contexts with OWL DL – a case study. In J. Indulska and D. Nicklas,
eds. Proc. of the Workshop on Context Modeling and Reasoning
(CoMoRea’06). IEEE Computer Society, 2006.

[28] W3C OWL Working Group. OWL 2 web ontology language document
overview. W3C Recommendation, 27th October 2009. http://www.
w3.org/TR/2009/REC-owl2-overview-20091027/.

A Practical Approach for Computing Generalization
Inferences inEL

Rafael Peñaloza and Anni-Yasmin Turhan

TU Dresden, Germany,
Institute of Theoretical Computer Science

email: last name@tcs.inf.tu-dresden.de

Abstract. We present methods that compute generalizations of concepts or indi-
viduals described in ontologies written in the DescriptionLogicEL. These gener-
alizations are the basis of methods for ontology design and are the core of concept
similarity measures. The reasoning service least common subsumer (lcs) gener-
alizes a set of concepts. Similarly, the most specific concept (msc) generalizes
an individual into a concept description. ForEL with generalEL-TBoxes, the lcs
and the msc may not exist. However, it is possible to find a concept description
that is the lcs (msc) up to a certain role-depth.
In this paper we present a practical approach for computing the lcs and msc with
a bounded depth, based on the polynomial-time completion algorithm forEL and
describe its implementation.

1 Introduction

Ontologies have become a commonly used means to describe controlled vocabularies,
most prominently, in life sciences. Categories that form these vocabularies are some-
times only described in terms of specializations, i.e. by the “is-a” relation. Since the
standardization of the web ontology language OWL [25], moreapplications have be-
gun using this richer modeling language for describing notions from their domain in a
more precise and detailed way. The formalism underlying OWLare Description Logics
(DLs) [3], which are a family of logics with formal semantics. The formal semantics
of DLs are the basis for the definition of reasoning services such assubsumptionor
instance checking. Subsumption tests whether a sub- / super-concept relationship holds
between a pair of concept descriptions. Instance checking answers the question whether
it follows from the ontology that a given individual must belong to a concept. The rea-
soning algorithms for these reasoning services are well-investigated for a range of DLs
and implemented in powerful reasoner systems. In this paperwe want to devise com-
putation methods for inferences that can be employed to derive generalizations. These
inferences turn out to be useful for range of ontology-basedapplications such as e.g.
the life sciences [21, 9] or context-aware systems [22].

The newest version of the OWL standard [25] offers severalOWL profiles, which
correspond to DLs with varying expressivity. We are interested in the OWL EL profile,
which corresponds to the DLEL++, an extension of the DLEL where reasoning is
still tractable.EL-concept descriptions are composed from conjunctions or existential
restrictions. Despite its limited expressivity,EL has turned out to be useful to model

notions from life science applications. Most prominently,the medical ontology SnoMed
[21] and the Gene Ontology [9] are written inEL. For instance, it is possible to express
by

Myocarditis ⊑ inflammation ⊓ ∃has−location.heart

that myocarditis is a kind of inflammation that is located in the heart.
In fact, medical and context-aware applications deal with very large ontologies,

which are oftenlight-weight, in the sense that they can be formulated inEL or one of its
extensions from the so-calledEL-family. Members of theEL-family allow for reasoning
in polynomial time [2]. In particular, subsumption and instance checking are tractable
for EL andEL++, which was the main reason to standardize it in an own OWL 2 profile
[25]. The reasoning algorithms for theEL-family are based on a completion method
and have been implemented in optimized reasoners such as CEL [16].

We investigate here two inferences that generalize different entities from DL knowl-
edge bases. The first one is theleast common subsumer(lcs) [7], which generalizes a
collection of concept descriptions into a single concept description that is the least w.r.t.
subsumption. Intuitively, the lcs yields a new (complex) concept description that cap-
tures all the commonalities of the input concept descriptions. The second inference
is themost specific concept(msc) [4], which generalizes an individual into a concept
description. Intuitively, the msc delivers the most specific concept description that is
capable of describing the individual.

Applying Generalization Inferences

In the following we describe some of the most prominent applications of the lcs and the
msc.

Similarity measures.Concept similarity measures compute, given a pair of concept
descriptions, a numerical value between 0 and 1 that lies closer to 1 the more simi-
lar the concepts are. Similarity measures are an important means to discover, for in-
stance, functional similarities of genes modeled in ontologies. In [13] and, more re-
cently, in [19] several similarity measures were evaluatedfor the Gene Ontology and
it was concluded that the similarity measure from Resnik [20] performed well, if not
best. This similarity measure is an edge-based approach, which finds the most specific
common ancestor (msa)1 of the concepts to be compared in the concept hierarchy and
computes a similarity value based on the number of edges between the concepts in ques-
tion and their msa. Clearly, the msa can only yield a named concept from the TBox and
thus captures possibly onlysomeof the commonalities of the concepts to be compared.
The lcs, in contrast, capturesall commonalities and is thus a more faithful starting point
for a similarity measure. In fact, the lcs was employed for similarity measures for DLs
in [6] already. In a similar fashion a similarity measure forcomparing individuals can
be based on the msc [10]

1 Sometimes also calledleast common ancestor(lca)

Building ontologies.In [11] it was observed that users working with biological ontolo-
gies would like to develop the description of the application categories in an example-
driven way. More precisely, users would like to start by modeling individuals which are
then generalized into a concept description. In fact, in thebottom-up approach for the
construction of knowledge bases [4], a collection of individuals is selected for which
a new concept definition is to be introduced in the ontology. Such a definition can be
generated automatically by first generalizing each selected individual into a concept de-
scription (by computing the msc for each of them) and then applying the lcs to these
concept descriptions.

The lcs can also be employed to enrich unbalanced concept hierarchies by adding
new intermediate concepts [23].

Reconciling heterogeneous sources.The bottom-up procedure sketched before can also
be employed in applications that face the problem that different information sources
provide differing observations for the same state of affairs. For instance, in context-
aware systems a GPS sensor or a video camera can provide differing information on a
the location of a user. Alternatively, in medical applications, different diagnosing meth-
ods may yield differing results. It can be determined what the different sources agree
on by representing this information as distinct ABox individuals and then by finding a
common generalization of them by the bottom-up approach.

Information retrieval. The msc inference can be employed to obtain a query concept
from an individual to search for other, similar individualsin an ontology [15, 8].

In order to support all these ontology services for practical applications automati-
cally, computation algorithms for the generalization inferences inEL are needed. Un-
fortunately, the lcs inEL does not always exist, when computed w.r.t. cyclic TBoxes
[1]. Similarly, the msc inEL does not always exist, if the ABox is cyclic [12], mainly
because cyclic structures cannot be captured inEL-concept descriptions. In [12] the
authors propose to use an approximation of the msc by limiting the role-depth of the
concept description computed. We pursue this approach herefor the lcs and the msc
and thus would obtain only “common subsumers” and “specific concepts” that are still
generalizations of the input, but not necessarily the leastones w.r.t. subsumption. How-
ever, by our proposed method we obtainthe lcs or the msc w.r.t. the given role depth
bound. We argue that such approximations are still useful inpractice.

Recently, a different approach for obtaining the lcs (or themsc) in presence of cyclic
knowledge bases was proposed in [14] by extendingEL with concept constructors for
greatest fixpoints. In the so obtained DLELν reasoning stays polynomial and the lcs
and msc w.r.t. cyclic knowledge bases can be computed. However, the DL obtained by
adding constructors for greatest fixpoints is possibly not easy to comprehend for naive
users of ontologies.

For medical or context-aware applications knowledge basescan typically grow very
large in practice. Thus, in order to support the computationof the (role-depth bounded)
lsc or the msc for such applications, efficient computation of these generalizations for
EL is desirable. Our computation methods build directly on thecompletion method for
subsumption and instance checking forEL [2] for which optimizations already exists

and are employed in modern reasoner systems. This enables the implementation of the
role-depth bounded lcs and msc on top of existing reasoner systems. More precisely,
in our completion-based approach, we obtain the role-depthbounded lcs by traversing
the data-structures built during the computation of the subsumption hierarchy of the
ontology. The role-depth bounded msc can be obtained from the data-structures gener-
ated during the computation of all instance relations for the knowledge base. We have
recently implemented the completion-based computation ofthe role-depth bounded lcs
and msc in our system GEL.

This paper is structured as follows: after introducing basic notions of DLs, we dis-
cuss the completion algorithms for classification and instance checking inEL in Sec-
tion 3. We extend these methods to computation algorithms for the role-depth bounded
lcs in Section 4.1 and for the role-depth bounded msc in Section 4.2 and we describe
our initial implementation of the presented methods in Section 5. We conclude the paper
with an outline of possible future work.

2 Preliminaries

We now formally introduce the DLEL. Let NI , NC andNR be disjoint sets ofindi-
vidual names, concept namesandrole names, respectively.EL-concept descriptionsare
built according to the syntax rule

C ::= ⊤ | A | C ⊓ D | ∃r.C

whereA ∈ NC , andr ∈ NR.
A general concept inclusion(GCI) is a statement of the formC ⊑ D, whereC,D

areEL- concept descriptions. AnEL-TBoxis a finite set of GCIs. Observe that TBoxes
can be cyclic and allow for multiple inheritance. AnEL-ABoxis a set of assertions of the
form C(a), or r(a, b), whereC is anEL-concept description,r ∈ NR, anda, b ∈ NI .
An ontologyor knowledge baseK = (T ,A) consists of a TBoxT and an ABoxA.

The semantics ofEL is defined by means of interpretationsI = (∆I , ·I) consisting
of a non-emptydomain∆I and aninterpretation function·I that assigns binary rela-
tions on∆I to role names, subsets of∆I to concepts and elements of∆I to individual
names. The interpretation function·I is extended to concept descriptions in the usual
way. For a more detailed description of the semantic of DLs see [3].

An interpretationI satisfiesa concept inclusionC ⊑ D, denoted asI |= C ⊑ D if
CI ⊆ DI ; it satisfiesan assertionC(a) (or r(a, b)), denoted asI |= C(a) (I |= r(a, b),
resp.) ifaI ∈ CI ((aI , bI) ∈ rI , resp.). An interpretationI is amodelof a knowledge
baseK = (T ,A) if it satisfies all GCIs inT and all assertions inA.

We say thatC is subsumedby D w.r.t. T (writtenC ⊑T D) if for every modelI
of T it holds thatI |= C ⊑ D. The computation of the subsumption hierarchy of all
named concepts in a TBox is calledclassification.

Finally, an individuala ∈ NI is an instanceof a concept descriptionC w.r.t. K
(writtenK |= C(a)) if I |= C(a) for all modelsI of K. ABox realizationis the task of
computing, for each individuala in A, the set of named concepts fromK that havea as
an instance and that are least (w.r.t.⊑).

In this paper we are interested in computing generalizations by least common sub-
sumers and most specific concepts, which we now formally define. Notice that our
definition is general for any DL and not necessarily specific for EL.

Definition 1 (least common subsumer).Let L be a DL,K = (T , A) be aL-KB. The
least common subsumer(lcs) w.r.t. T of a collection of conceptsC1, . . . , Cn is the
L-concept descriptionC such that

1. Ci ⊑T C for all 1 ≤ i ≤ n, and
2. for eachL-concept descriptionD holds: if Ci ⊑T D for all 1 ≤ i ≤ n, then

C ⊑T D.

We will mostly consider the DLEL in this paper. Although defined as ann-ary opera-
tion, we will often write the lcs as a binary operation in the remainder of the paper for
simplicity.

Definition 2 (most specific concept).LetL be a DL,K = (T , A) be aL-KB. Themost
specific concept(msc) w.r.t.K of an individuala from A is theL-concept description
C such that

1. K |= C(a), and
2. for eachL-concept descriptionD holds:K |= D(a) impliesC ⊑T D.

Both inferences depend on the DL in use. For the DLs with conjunction as concept
constructor the lcs and msc are, if exist, unique up to equivalence. Thus it is justified to
speak ofthe lcs or themsc. Our computation methods for generalizations are basedon
the completion method, which we introduce in the following section.

3 Completion Algorithms for EL
In principle, completion algorithms try to construct minimal models of the knowledge
base. In case of classification algorithms such a model is constructed for the TBox and
in case of ABox realization for the whole knowledge base. We describe the completion
algorithm for ABox realization inEL, originally described in [2], which can be easily
restricted to obtain algorithms for classification. While the former is the basis for com-
puting the role-depth bounded msc, the latter is used to obtain the role-depth bounded
lcs.

For anEL-KB K = (T ,A) we want to test whetherK |= D(a) holds. The comple-
tion algorithm first adds toK a concept name for the complex concept descriptionD
used in the instance check, i.e.,K = (T ∪ {Aq ≡ D},A), whereAq is a fresh concept
name inK. The instance checking algorithm forEL normalizes the knowledge base
in two steps: first the ABox is transformed into a simple ABox.An ABox is asimple
ABox, if it only contains concept names in concept assertions. AnEL-ABox A can be
transformed into a simple ABox by first replacing each complex assertionC(A) in A
byA(a) with a fresh nameA and, second, introduceA ≡ C in the TBox.

To describe the second normalization step, we need some notation. Let X be a
concept description, a TBox, an ABox or a knowledge base.CN(X) denotes the set

NF1 C ⊓ D̂ ⊑ E −→ { D̂ ⊑ A,C ⊓A ⊑ E }
NF2 ∃r.Ĉ ⊑ D −→ { Ĉ ⊑ A,∃r.A ⊑ D }
NF3 Ĉ ⊑ D̂ −→ { Ĉ ⊑ A,A ⊑ D̂ }
NF4 B ⊑ ∃r.Ĉ −→ { B ⊑ ∃r.A,A ⊑ Ĉ }
NF5 B ⊑ C ⊓D −→ { B ⊑ C,B ⊑ D }

whereĈ, D̂ 6∈ CN(T) ∪ {⊤} andA is a new concept name.

Fig. 1.EL normalization rules

of all concept names andRN(X) denotes the set of all role names that appear inX .
The signature ofX (denotedsig(X)) is thenCN(X) ∪ RN(X). Now, anEL-TBox
T is in normal form if all concept axioms have one of the following forms, where
C1, C2 ∈ sig(T) andD ∈ sig(T) ∪ {⊥}:

C1 ⊑ D, C1 ⊓ C2 ⊑ D, C1 ⊑ ∃r.C2 or ∃r.C1 ⊑ D.

Any EL-TBox can be transformed into normal form by introducing newconcept names
and by simply applying the normalization rules displayed inFigure 1 exhaustively.
These rules replace the GCI on the left-hand side of the ruleswith the set of GCIs
on the right-hand side.

Clearly, for a KBK = (T ,A) the signature ofA may be changed only during the
first of the two normalization steps and the signature ofT may be extended during both
of the normalization steps. The normalization of the KB can be done in linear time.

The completion algorithm for instance checking is based on the one for classifying
EL-TBoxes introduced in [2]. LetK =(T , A) be a normalizedEL-KB, i.e., with a simple
ABox A and a TBoxT in normal form. The completion algorithm works on four kinds
of completion sets: S(a), S(a, r), S(C) andS(C, r) for eacha ∈ IN(A), eachC ∈
CN(K), and eachr ∈ RN(K). The sets of the kindS(a) andS(a, r) contain individuals
and concept names. The completion algorithm for classification uses only the latter
two kinds of completion sets:S(C) andS(C, r), which contain only concept names
fromCN(K). Intuitively, the completion rules make implicit subsumption and instance
relationships explicit in the following sense:

– D ∈ S(C) implies thatC ⊑T D,
– D ∈ S(C, r) implies thatC ⊑T ∃r.D.
– D ∈ S(a) implies thata is an instance ofD w.r.t.K,
– D ∈ S(a, r) implies thata is an instance of∃r.D w.r.t.K.

SK denotes the set of all completion sets of a normalizedK. The completion sets are
initialized for eachC ∈ CN(K), eachr ∈ RN(K), and eacha ∈ IN(A) as follows:

– S(C) := {C,⊤}
– S(C, r) := ∅
– S(a) := {C ∈ CN(A) | C(a) appears inA} ∪ {⊤}
– S(a, r) := {b ∈ IN(A) | r(a, b) appears inA}.

CR1 If C ∈ S(X), C ⊑ D ∈ T , andD 6∈ S(X)
thenS(X) := S(X) ∪ {D}

CR2 If C1, C2 ∈ S(X), C1 ⊓ C2 ⊑ D ∈ T , andD 6∈ S(X)
thenS(X) := S(X) ∪ {D}

CR3 If C ∈ S(X), C ⊑ ∃r.D ∈ T , andD 6∈ S(X, r)
thenS(X, r) := S(X, r) ∪ {D}

CR4 If Y ∈ S(X, r), C ∈ S(Y), ∃r.C ⊑ D ∈ T , and
D 6∈ S(X) thenS(X) := S(X) ∪ {D}

Fig. 2.EL completion rules

Then these sets are extended by applying the completion rules shown in Figure 2 until
no more rule applies. In these rulesC,C1, C2 andD are concept names andr is a role
name, whileX andY can refer to concept or individual names in the algorithm for
instance checking. In the algorithm for classification,X andY refer to concept names.
After the completion has terminated, the following relations hold between an individual
a, a roler and named conceptsA andB:

– subsumption relation betweenA andB from K holds iffB ∈ S(A)
– instance relation betweena andB from K holds iffB ∈ S(a),

which has been shown in [2].
To decide the initial query:K |= D(a), one has to test now, whetherAq appears in

S(a). In fact, instance queries for all individuals and all namedconcepts from the KB
can be answered now; the completion algorithm does not only perform one instance
check, but complete ABox realization. The completion algorithm for EL runs in poly-
nomial time in size of the knowledge base.

4 Computing Role-depth Bounded Generalizations

We employ the completion method now to compute first the role-depth bounded lcs and
then the role-depth bounded msc inEL.

4.1 Computing the Role-depth Bounded LCS

As mentioned in the introduction, the lcs does not need to exist for cyclic TBoxes.
Consider the TBoxT = {A ⊑ ∃r.A ⊓C, B ⊑ ∃r.B ⊓C}. The lcs ofA andB is then

C ⊓ ∃r.(C ⊓ ∃r.(C ⊓ ∃r.(C ⊓ · · ·

and cannot be expressed by a finite concept description. To avoid such infinite nestings,
we limit the role-depth of the concept description to be computed. Therole-depthof a
concept descriptionC (denotedrd(C)) is the maximal number of nested quantifiers of
C. Now we can define the lcs with limited role-depth.

Definition 3 (Role-depth boundedL-lcs). Let T be anL-TBox andC1, . . . , Cn L-
concept descriptions andk ∈ IN. Then theL-concept descriptionC is therole-depth
boundedL-least common subsumerof C1, . . . , Cn w.r.t. T and role-depthk (written
k-lcs(C1, . . . , Cn)) iff

1. rd(C) ≤ k,
2. Ci ⊑T C for all 1 ≤ i ≤ n, and
3. for eachL-concept descriptionsD with rd(D) ≤ k it holds that,

Ci ⊑T D for all 1 ≤ i ≤ n impliesC ⊑T D.

The computation algorithm for the role-depth bounded lcs w.r.t. generalEL-TBoxes,
constructs the concept description from the set of completion sets. More precisely, it
combines and intersects the completion sets in the same fashion as in the cross-product
computation in the lcs algorithm forEL-concept descriptions (without TBoxes) from
[4]. The method we present here to compute the role-depth bounded lcs was described
in [17].

However, the completion sets may contain concept names thatwere introduced dur-
ing normalization. The returned lcs-concept description should only contain concept
names that appear in the initial TBox, thus we need to “de-normalize” the concept de-
scriptions obtained from the completion sets. However, theextension of the signature
by normalization according to the normalization rules fromFigure 1 does not affect
subsumption tests forEL-concept descriptions formulated w.r.t. the initial signature of
T . The following Lemma has been shown in [17].

Lemma 1. Let T be anEL-TBox andT ′ the TBox obtained fromT by applying the
EL normalization rules,C, D beEL-concept descriptions withsig(C) ⊆ sig(T) and
sig(D) ⊆ sig(T ′) andD′ be the concept description obtained by replacing all names
A ∈ sig(T ′) \ sig(T) fromD with ⊤. ThenC ⊑T ′ D iff C ⊑T D′.

Lemma 1 guarantees that subsumption relations w.r.t. the normalized TBoxT ′ between
C andD, also hold w.r.t. the original TBoxT for C andD′, which is basically obtained
fromD by removing the names introduced by normalization, i.e., concept names from
sig(T ′) \ sig(T).

We assume that the role-depth of each input concept of the lcshas a role-depth less
or equal tok. This assumption is motivated by the applications of the lcson the one hand
and on the other by the simplicity of presentation, rather than a technical necessity. The
algorithm for computing the role-depth bounded lcs of twoEL-concept descriptions is
depicted in Algorithm 1.

The procedurek-lcs first adds concept definitions for the input concept descriptions
to (a copy of) the TBox and transforms this TBox into the normalized TBoxT ′. Next,
it calls the procedureapply-completion-rules, which applies theEL completion rules
exhaustively to the TBoxT ′, and stores the obtained set of completion sets inS. Then
it calls the functionk-lcs-r with the concept namesA andB for the input concepts, the
set of completion setsS, and the role-depth limitk. The result is then de-normalized
and returned (lines 4 to 6). More precisely, in case a complexconcept description is
returned fromk-lcs-r, the procedureremove-normalization-names removes concept
names that were added during the normalization of the TBox.

Algorithm 1 Computation of a role-depth boundedEL-lcs.
Procedurek-lcs (C,D, T , k)
Input: C,D: EL-concept descriptions;T : EL-TBox; k: natural number
Output: k-lcs(C,D): role-depth boundedEL-lcs ofC andD w.r.t T andk.

1: T ′ := normalize(T ∪ {A ≡ C,B ≡ D})
2: ST ′ := apply-completion-rules(T ′)
3: L := k-lcs-r (A,B,ST ′ , k)
4: if L = A then return C
5: else if L = B then return D
6: else return remove-normalization-names(L)
7: end if

Procedurek-lcs-r (A, B, S, k)
Input: A,B: concept names;S: set of completion sets;k: natural number
Output: k-lcs(A,B): role-depth boundedEL-lcs ofA andB w.r.t T andk.

1: if B ∈ S(A) then return B
2: else ifA ∈ S(B) then return A
3: end if
4: common-names := S(A) ∩ S(B)

5: if k = 0 then return
d

P∈common−names

P

6: else return
d

P∈common−names

P ⊓
d

r∈RN(T)

(d
(E,F) ∈ S(A,r)×S(B,r)

∃r. k-lcs-r (E,F,S, k − 1)
)

7: end if

The functionk-lcs-r gets a pair of concept names, a set of completion sets and a
natural number as inputs. First, it tests whether one of the input concepts subsumes the
other w.r.t.T ′. In that case the name of the subsuming concept is returned. Otherwise
the set of concept names that appear in the completion sets ofboth input concepts is
stored incommon-names (line 4).2 In case the role-depth bound is reached (k = 0),
the conjunction of the elements incommon-names is returned. Otherwise, the ele-
ments incommon-names are conjoined with a conjunction over all rolesr ∈ RN(T),
where for eachr and each element of the cross-product over ther-successors of the
currentA andB a recursive call tok-lcs-r is made with the role-depth bound reduced
by 1 (line 6). This conjunction is then returned tok-lcs.

ForL = k-lcs(C,D, T , k) it holds by construction thatrd(L) ≤ k.3 We now show
that the result of the functionk-lcs is a common subsumer of the input concept de-
scriptions. It was shown in [17] that all conditions of Definition 3 are fulfilled fork-
lcs(C,D, T , k).

Theorem 1. Let C andD be EL-concept descriptions,T an EL-TBox,k ∈ IN, then
k-lcs(C,D, T , k) ≡ k-lcs(C,D).

2 Note, that the intersectionS(A) ∩ S(B) is never empty, since both sets contain⊤.
3 Recall our assumption: the role-depth of each input conceptis less or equal tok.

For cases wherek-lcs returns a concept description with role-depth of less thank we
conjecture that it is the exact lcs.

The complexity of the overall method is exponential. However, if a compact repre-
sentation of the lcs with structure sharing is used, the lcs-concept descriptions can be
represented polynomially.

If a k-lcs is too general and a bigger role depth of thek-lcs is desired, the comple-
tion of the TBox does not have to be redone for a second computation. The completion
sets can simply be “traversed” further.

4.2 Computing the Role-depth Bounded MSC

The msc was first investigated forEL-concept descriptions and w.r.t. unfoldable TBoxes
and possibly cyclic ABoxes in [12]. Similar to the lcs, the msc does not need to exist,
since cyclic structures cannot be expressed byEL-concept descriptions. Now we can
define the msc with limited role-depth.

Definition 4 (role-depth boundedL-msc).Let K =(T , A) be aL-KB anda an indi-
vidual in A andk ∈ IN. Then theL-concept descriptionC is therole-depth bounded
EL-most specific conceptof a w.r.t. K and role-depthk (writtenk-mscK(a)) iff

1. rd(C) ≤ k,
2. K |= C(a), and
3. for eachEL-concept descriptionD with rd(D) ≤ k holds: K |= D(a) implies

C ⊑T D.

In case the exact msc has a role-depth less thank the role-depth bounded msc is the
exact msc.

Again, we construct the msc by traversing the completion sets to “collect” the msc.
More precisely, the set of completion sets encodes a graph structure, where the sets
S(X) are the nodes and the setsS(X, r) encode the edges. Traversing this graph struc-
ture, one can construct anEL-concept. To obtain a finite concept in the presence of
cyclic ABoxes or TBoxes one has to limit the role-depth of theconcept to be obtained.

Definition 5 (traversal concept).Let K be anEL-KB, K′′ be its normalized form,SK
the completion set obtained fromK andk ∈ IN. Then thetraversal concept of a named
conceptA (denotedk-CSK(A)) with sig(A) ⊆ sig(K′′) is the concept obtained from
executing the procedure calltraversal-concept-c(A, SK, k) shown in Algorithm 2.

Thetraversal concept of an individuala (denotedk-CSK(a)) with a ⊆ sig(K) is the
concept description obtained from executing the procedurecall traversal-concept-i(a,
SK, k) shown in Algorithm 2.

The idea is that the traversal concept of an individual yields its msc. However, the traver-
sal concept contains names that were introduced during normalization. The returned
msc should be formulated w.r.t. the signature of the original KB, thus the normalization
names need to be removed or replaced.

Algorithm 2 Computation of a role-depth boundedEL-msc.

Procedurek-msc (a,K, k)
Input: a: individual fromK; K =(T , A) anEL-KB; k ∈ IN
Output: role-depth boundedEL-msc ofa w.r.t.K andk.

1: (T ′, A′) := simplify-ABox(T , A)
2: K′′ := (normalize(T ′), A′)
3: SK := apply-completion-rules(K)
4: return Remove-normalization-names (traversal-concept-i(a,SK, k))

Proceduretraversal-concept-i (a, S, k)
Input: a: individual name fromK; S: set of completion sets;k ∈ IN
Output: role-depth traversal concept (w.r.t.K) andk.

1: if k = 0 then return
d

A ∈ S(a) A

2: else return
d

A ∈ S(a) A ⊓d
r∈RN(K′′)

d
A ∈ CN(K′′)∩S(a,r)

∃r. traversal-concept-c (A,S, k − 1) ⊓
d

r∈RN(K′′)

d
b ∈ IN(K′′)∩S(a,r)

∃r. traversal-concept-i (b,S, k − 1)

3: end if

Proceduretraversal-concept-c (A, S, k)
Input: A: concept name fromK′′; S: set of completion sets;k ∈ IN
Output: role-depth bounded traversal concept.

1: if k = 0 then return
d

B∈S(A) B

2: else return
d

B∈S(A)

B ⊓ d
r∈RN(K′′)

d
B∈S(A,r)

∃r.traversal-concept-c (B,S, k − 1)

3: end if

Lemma 2. LetK be anEL-KB,K′′ its normalized version,SK be the set of completion
sets obtained forK, k ∈ IN a natural number anda ∈ IN(K). Furthermore letC = k-
CSK(a) andĈ be obtained fromC by removing the normalization names. Then

K′′ |= C(a) iff K |= Ĉ(a).

This lemma guarantees that removing the normalization names from the traversal con-
cept preserves the instance relationships. Intuitively, this lemma holds since the con-
struction of the traversal concept conjoins exhaustively all named subsumers and all
subsuming existential restrictions to a normalization name up to the role-depth bound.
Thus removing the normalization name does not change the extension of the conjunc-
tion. The proof can be found in [18]. We are now ready to devisea computation algo-
rithm for the role-depth bounded msc: procedurek-msc as displayed in Algorithm 2.

The procedurek-msc has an individuala from a knowledge baseK, the knowledge
baseK itself and numberk for the role depth-bound as parameter. It first performs the
two normalization steps onK, then applies the completion rules from Figure 2 to the
normalized KBK′′ and stores the set of completion sets inSK. Afterwards it computes
the traversal-concept ofa from SK w.r.t. role-depth boundk. In a post-processing step
it appliesRemove-normalization-names to the traversal concept.

Obviously, the concept description returned from the procedurek-msc has a role-
depth less or equal tok. The other conditions of Definition 4 are fulfilled as well, which
has been shown in [18] yielding the correctness of the overall procedure.

Theorem 2. LetK = (T ,A) be anEL-KB anda an individual inA andk ∈ IN.
Thenk-msc(a,K, k) ≡ k-mscK(a).

Thek-msc can grow exponential in the size of the knowledge base.

5 Implementation of GEL

The completion algorithm for classifyingEL TBoxes was first implemented in the CEL

reasoner [5]. We used its successor systemJCEL [16] as a starting point for our imple-
mentation for the computation of the role-depth bounded lcsand msc. The implemen-
tation was done in Java and provides a simple GUI for the ontology editor PROTÉGÉ as
can be seen in the screen-shot in Figure 3.

Fig. 3. LCS plugin

Our implementation of the methods presented here accesses the internal data struc-
tures ofJCEL directly, providing a full integration of GEL into JCEL. The reasoning
methods in GEL are in this first version realized in a naive way and are still in need of
optimizations in order to handle the large knowledge bases that can be encountered in
practice.

The concept descriptions returned by the lcs and the msc can grow exponentially
in the worst case. On top of that, the returned concept descriptions are quite redundant
in our current implementation, which might be acceptable ifused as an input for a

similarity measure, but surely not if presented to a human reader. It is future work to
investigate methods for minimal rewritings of concept descriptions w.r.t. a generalEL
knowledge base in order to be able to present redundancy-freeconcept descriptions. Our
tool will be made available as a plug-in for the ontology editor PROTÉGÉ and an API
for thek-limited lcs and -msc is planned. The former system sonic [24] implemented
the lcs and msc as well, but allowed only for acyclic, unfoldable TBoxes.

6 Conclusions

In this paper we have presented a practical method for computing the role-depth bounded
lcs and the role-depth bounded msc ofEL-concepts w.r.t. a general TBox. We have ar-
gued that such generalization inferences are useful for ontology-based applications in
many ways. Our approach for computing (approximations of) these inferences is based
on the completion sets that are computed during classification of a TBox or realization
of an ABox. Thus, any of the available implementations of theEL completion algorithm
can be easily extended to an implementation of the two generalization inferences con-
sidered here. The same idea can be adapted for the computation of generalizations in
the probabilistic DL Prob-EL01

c [17, 18].
These theoretical results complete the (approximative) bottom-up approach for gen-

eralEL- (and Prob-EL01
c -) KBs. Continuing on the theoretical side, we want to inves-

tigate the bottom-up constructions (i.e. lcs and msc computations) in more expressive
members of theEL-family. We want to extend the approximative methods toEL++,
which extendsEL, for example, by transitive roles and role hierarchies. Such an exten-
sion would enable generalization reasoning services for the OWL 2 EL profile. Another
interesting extension is to allow for more expressive meansfor probabilities.

Although a non-redundant representation of the concept descriptions obtained by
the approximative lcs and msc is desirable when presented toa human reader, it is not
clear whether a minimal representation of the obtained concept descriptions is favorable
in every case. It might depend on the similarity measures employed whether a redundant
representation of a concept is preferable over a compact one.

On the practical side, our future work will include evaluations of the usefulness
of the offered reasoning services for biomedical applications and the development and
testing of optimizations regarding the performance of the implementation.

Acknowledgments:We would like to thank Andreas Ecke and Julian Mendez for their
implementation effort.

References

1. F. Baader. Least common subsumers and most specific concepts in a description logic with
existential restrictions and terminological cycles. In G.Gottlob and T. Walsh, editors,Proc.
of the 18th Int. Joint Conf. on Artificial Intelligence (IJCAI-03), pages 325–330. Morgan
Kaufmann, 2003.

2. F. Baader, S. Brandt, and C. Lutz. Pushing theEL envelope. InProc. of the 19th Int.
Joint Conf. on Artificial Intelligence (IJCAI-05), Edinburgh, UK, 2005. Morgan-Kaufmann
Publishers.

3. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors.The
Description Logic Handbook: Theory, Implementation, and Applications. Cambridge Uni-
versity Press, 2003.

4. F. Baader, R. Küsters, and R. Molitor. Computing least common subsumers in description
logics with existential restrictions. In T. Dean, editor,Proc. of the 16th Int. Joint Conf. on
Artificial Intelligence (IJCAI-99), pages 96–101, Stockholm, Sweden, 1999. Morgan Kauf-
mann, Los Altos.

5. F. Baader, C. Lutz, and B. Suntisrivaraporn.CEL—a polynomial-time reasoner for life sci-
ence ontologies. In U. Furbach and N. Shankar, editors,Proc. of the 3rd Int. Joint Conf.
on Automated Reasoning (IJCAR-06), volume 4130 ofLecture Notes In Artificial Intelli-
gence, pages 287–291. Springer-Verlag, 2006.CEL download page:http://lat.inf.
tu-dresden.de/systems/cel/ .

6. A. Borgida, T. Walsh, and H. Hirsh. Towards measuring similarity in description logics. In
Proc. of the 2005 Description Logic Workshop (DL 2005), volume 147 ofCEUR Workshop
Proceedings, 2005.

7. W. W. Cohen, A. Borgida, and H. Hirsh. Computing least common subsumers in description
logics. In W. Swartout, editor,Proc. of the 10th Nat. Conf. on Artificial Intelligence (AAAI-
92), pages 754–760, San Jose, CA, 1992. AAAI Press/The MIT Press.

8. S. Colucci, E. Di Sciascio, F. M. Donini, and E. Tinelli. Partial and informative common sub-
sumers in description logics. Inproc. of 18th European Conference on Artificial Intelligence
(ECAI 2008). IOS Press, 2008.

9. T. G. O. Consortium. Gene Ontology: Tool for the unification of biology. Nature Genetics,
25:25–29, 2000.

10. C. d’Amato, N. Fanizzi, and F. Esposito. A semantic similarity measure for expressive de-
scription logics. InPro.c of Convegno Italiano di Logica Computazionale, CILC05, 2005.

11. M. C. Keet, M. Roos, and M. S. Marshall. A survey of requirements for automated reasoning
services for bio-ontologies in OWL. InProceedings of Third international Workshop OWL:
Experiences and Directions (OWLED 2007), 2007.

12. R. Küsters and R. Molitor. Approximating most specific concepts in description logics with
existential restrictions.AI Communications, 15(1):47–59, 2002.

13. P. W. Lord, R. D. Stevens, A. Brass, and C. A. Goble. Investigating semantic similarity mea-
sures across the gene ontology: The relationship between sequence and annotation.Bioin-
formatics, 19(10):1275–1283, 2003.

14. C. Lutz, R. Piro, and F. Wolter. Enriching el-concepts with greatest fixpoints. InProc. of the
19th European Conf. on Artificial Intelligence (ECAI-10). IOS Press, 2010.

15. T. Mantay and R. Möller. Content-based information retrieval by computation of least com-
mon subsumers in a probabilistic description logic. InProc. International Workshop on
Intelligent Information Integration, ECAI’98, Aug. 23-28, Brighton UK, 1998,, 1998.

16. J. Mendez and B. Suntisrivaraporn. Reintroducing CEL asan OWL 2 EL reasoner. In
B. Cuenca Grau, I. Horrocks, B. Motik, and U. Sattler, editors,Proc. of the 2008 Description
Logic Workshop (DL 2009), volume 477 ofCEUR-WS, 2009.

17. R. Peñaloza and A.-Y. Turhan. Role-depth bounded leastcommon subsumers by completion
for EL- and Prob-EL-TBoxes. In V. Haarslev, D. Toman, and G. Weddell, editors,Proc. of
the 2010 Description Logic Workshop (DL’10), 2010.

18. R. Peñaloza and A.-Y. Turhan. Towards approximative most specific concepts by completion
for EL01 with subjective probabilities. In T. Lukasiewicz, R. Peñaloza, and A.-Y. Turhan, ed-
itors,Proceedings of the First International Workshop on Uncertainty in Description Logics
(UniDL’10), 2010.

19. C. Pesquita, D. Faria, A. O. Falco, P. Lord, and F. M. Couto. Semantic similarity in biomed-
ical ontologies.PLoS Comput Biol, 5, 2009.

20. P. Resnik. Using information content to evaluate semantic similarity in a taxonomy. InProc.
of the 14th Int. Joint Conf. on Artificial Intelligence (IJCAI-95), pages 448–453, 1995.

21. K. Spackman. Managing clinical terminology hierarchies using algorithmic calculation of
subsumption: Experience with snomed-rt.Journal of the American Medical Informatics
Assoc., 2000. Fall Symposium Special Issue.

22. T. Springer and A.-Y. Turhan. Employing description logics in ambient intelligence for mod-
eling and reasoning about complex situations.Journal of Ambient Intelligence and Smart
Environments, 1(3):235–259, 2009.

23. A.-Y. Turhan. On the Computation of Common Subsumers in Description Logics. PhD
thesis, TU Dresden, Institute for Theoretical Computer Science, 2007.

24. A.-Y. Turhan and C. Kissig. SONIC — Non-standard inferences go OIL ED. In D. Basin and
M. Rusinowitch, editors,Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR-04),
volume 3097 ofLecture Notes in Computer Science, pages 321–325. Springer, 2004. SONIC

is available fromhttp://wwwtcs.inf.tu-dresden.de/ ˜ sonic/ .
25. W3C OWL Working Group. OWL 2 web ontology language document overview.

W3C Recommendation, 27th October 2009.http://www.w3.org/TR/2009/
REC-owl2-overview-20091027/ .

Computing Role-depth Bounded Generalizations
in the Description Logic ELOR

Andreas Ecke1?, Rafael Peñaloza1,2??, and Anni-Yasmin Turhan1? ? ?

1 Institute for Theoretical Computer Science,
Technische Universität Dresden

2 Center for Advancing Electronics Dresden
{ecke,penaloza,turhan}@tcs.inf.tu-dresden.de

Abstract. Description Logics (DLs) are a family of knowledge repre-
sentation formalisms, that provides the theoretical basis for the standard
web ontology language OWL. Generalization services like the least com-
mon subsumer (lcs) and the most specific concept (msc) are the basis of
several ontology design methods, and form the core of similarity mea-
sures. For the DL ELOR, which covers most of the OWL 2 EL profile,
the lcs and msc need not exist in general, but they always exist if re-
stricted to a given role-depth. We present algorithms that compute these
role-depth bounded generalizations. Our method is easy to implement,
as it is based on the polynomial-time completion algorithm for ELOR.

1 Introduction

Description logics (DLs) are knowledge representation formalisms with formal
and well-understood semantics [4]. They supply the foundation for the web on-
tology language OWL 2 standardized by the W3C [20]. Since then, DLs became
more widely used for the representation of knowledge from several domains.

Each DL offers a set of concept constructors by which complex concepts
can be built. These concepts describe categories from the application domain at
hand. A DL knowledge base consists of two parts: the TBox captures the termi-
nological knowledge about categories and relations, and the ABox captures the
assertional knowledge, i.e., individual facts, from the application domain. Promi-
nent inferences are subsumption, which determines subconcept relationships and
instance checking, which tests for a given individual and concept whether the
individual belongs to the concept.

The lightweight DL EL offers limited expressivity but allows for polyno-
mial time reasoning [3]. These good computational properties are maintained
by several extensions of EL—most prominently by EL++, the DL underlying the
OWL 2 EL profile [15], which allows for the use of nominals, i.e., singleton con-
cepts, when building complex concept descriptions. The reasoning algorithms
? Supported by DFG Graduiertenkolleg 1763 (QuantLA).

?? Partially supported by DFG within the Cluster of Excellence ‘cfAED’
? ? ? Partially supported by the German Research Foundation (DFG) in the Collaborative

Research Center 912 “Highly Adaptive Energy-Efficient Computing”.

for (fragments of) EL++ have been implemented in highly optimized reasoner
systems such as jCEL [14] and ELK [10]. It is worth pointing out that the initial
reasoning algorithm for handling nominals in EL [3] turned out to be incomplete,
but a complete method has been recently devised in [11].

In this paper we describe methods for computing generalizations in the EL-
family with the help of the standard reasoning algorithms. We consider the
following two inferences: The least common subsumer (lcs), which computes for
a given set of concepts a new concept that subsumes the input concepts and is
the least one w.r.t. subsumption; and the most specific concept which provides
a concept which has a given individual as an instance and is the least one w.r.t.
subsumption. Both inferences have been employed for several applications. Most
prominently the lcs and the msc can be employed in the ‘bottom-up approach’
for generating TBoxes, where modellers can generate a new concept from picking
ABox individuals that instantiate the desired concept and then generalizing this
set into a single concept automatically–first by applying the msc to each of
the individuals and then generalizing the obtained concepts by applying the lcs
[5]. Other applications of the lcs and the msc include similarity measures [8, 6,
13], which are the core of ontology matching algorithms and more (see [7, 16]).
In particular for large bio-medical ontologies the lcs can be used effectively to
support construction and maintenance. Many of these bio-medical ontologies,
notably SNOMED CT [19] and the FMA Ontology [18], are written in the EL-
family of lightweight DLs.

It is known that for concepts captured in a general TBox or even just a cyclic
TBox, the lcs does not need to exist [1], since cycles cannot be captured in an
EL-concept. Therefore, an approximation has been introduced in [16], that limits
the maximal nesting of quantifiers of the resulting concept descriptions. These
so-called role-depth bounded lcs (k-lcs), can be computed for EL and for EL
extended by role inclusions using completion sets produced by the subsumption
algorithm [16, 9]. In this paper, we describe a subsumption algorithm for the DL
ELOR—building on the one for ELO (EL extended by nominals) from [11]. Our
algorithm is given in terms of the completion algorithm in order to extend the
methods for the k-lcs to ELOR.

Recently, necessary and sufficient conditions for the existence of the lcs w.r.t.
general EL-TBoxes have been devised [21]. By the use of these conditions the
bound k for which the role-depth bounded lcs and the lcs coincide can be deter-
mined, if the lcs exists; i.e., if such k is finite.

Similarly to the lcs, the msc does not need to exist, if the ABox [12] con-
tain cycles. To obtain an approximative solution, the role-depth of the resulting
concept can be limited as suggested in [12]. A computation algorithm for the
role-depth bounded msc has been proposed in [17] for EL. If nominals are allowed,
the computation of the msc is trivial, since the msc of an individual a is simply
the nominal that contains a (i.e., {a}). Thus, we consider the computation of
the role-depth bounded msc in EL w.r.t. an ELOR knowledge base.

We introduce the basic notions of DL and the reasoning services considered
in the next section. In Section 3 we give a completion-based classification algo-

Syntax Semantics

concept name A (A ∈ NC) AI ⊆ ∆I

top concept > ∆I

nominal {a} (a ∈ NI) {a}I = {aI}
conjunction C uD (C uD)I = CI ∩DI

existential restriction ∃r.C (r ∈ NR) (∃r.C)I = {d ∈ ∆I | ∃e.(d, e) ∈ rI ∧ e ∈ CI}
GCI C v D CI ⊆ DI

RIA r1 ◦ · · · ◦ rn v s rI
1 ◦ · · · ◦ rI

n ⊆ sI

Concept assertion C(a) aI ∈ CI

Role assertion r(a, b) (aI , bI) ∈ rI

Table 1. Concept constructors and TBox axioms for ELOR.

rithm for ELOR, which serves as a basis for the computation algorithms of the
role-depth bounded lcs and msc presented subsequently. The paper ends with
conclusions and future work.3

2 Preliminaries

ELOR-concepts are built from mutually disjoint sets NC of concept names, NR

of role names and NI of individual names using the syntax rule:

C,D ::= > | A | {a} | C uD | ∃r.C,

where A ∈ NC , r ∈ NR and a ∈ NI . The individuals appearing in concepts are
also called nominals. The sub-logic of ELOR that does not allow for individuals
in concepts is called ELR.

As usual, the semantics of ELOR-concepts is defined through interpretations.
An interpretation I = (∆I , ·I) consists of an interpretation domain ∆I and an
interpretation function ·I that maps concept names A to subsets AI ⊆ ∆I and
role names to binary relations on the domain ∆I . This function is extended to
complex concepts as shown in the upper part of Table 1.

Concepts can be used to model notions from the application domain in the
TBox. Given two concepts C and D, a general concept inclusion axiom (GCI)
is of the form C v D. We use C ≡ D as an abbreviation for C v D and D v C.
Given the roles r1, . . . , rn and s, a role inclusion axiom (RIA) is an expression
of the form r1 ◦ · · · ◦ rn v s. An ELOR-TBox is a finite set of GCIs and RIAs.
An interpretation is a model for a TBox T if it satisfies all GCIs and RIAs in
T , as shown in the middle part of Table 1. An EL-TBox is an ELR-TBox (i.e.,
without the nominal constructor) that does not contain any RIAs.

Knowledge about individual facts of the application domain can be captured
by assertions. Let a, b ∈ NI , r ∈ NR and C a concept, then C(a) is a concept
3 Because of space constraints, some proofs are deferred to the appendix of long version

of this paper at http://lat.inf.tu-dresden.de/research/papers.html.

assertion and r(a, b) a role assertion. An ABox A is a finite set of (concept or
role) assertions. An interpretation is a model for an ABox A if it satisfies all
concept and role assertions in A, as shown in the lower part of Table 1.

A knowledge base (KB) K = (T ,A) consists of a TBox T and an ABox A. An
interpretation is a model of K = (T ,A) if it is a model of both T and A. With
Sig(T) we denote the signature of a TBox T , i.e. the set of all concept names,
role names, and individual names that appear in T . By Sig(A) and Sig(K) we
denote the analogous notions for ABoxes and KBs, respectively.

Important reasoning tasks considered for DLs are subsumption and instance
checking. A concept C is subsumed by a concept D w.r.t. a TBox T (denoted
C vT D) if CI ⊆ DI holds in all models I of T . A concept C is equivalent
to a concept D w.r.t. a TBox T (denoted C ≡T D) if C vT D and D vT C
hold. The reasoning service classification of a TBox T computes all subsumption
relationships between the named concepts occurring in T . A reasoning service
dealing with a whole KB is instance checking. An individual a is an instance
of a given concept C w.r.t. K (denoted K |= C(a)) if aI ∈ CI holds in all
models I of K. ABox realization computes, for every concept name in K, the
set of individuals from the ABox that belong to that concept. These reasoning
problems can all be decided for ELOR, and hence also in EL, in polynomial time
[3].

There are two central inferences discussed in this paper that compute gen-
eralizations. The first is called the least common subsumer (lcs); it computes,
for two given concepts, a (possibly complex) concept that subsumes both input
concepts and that is the least concept with this property w.r.t. subsumption.
The second is called the most specific concept (msc), which computes for a given
individual a the least concept w.r.t. subsumption that has a as an instance w.r.t.
K.

The lcs does not need to exist if computed w.r.t. general EL-TBoxes, i.e.,
TBoxes that use complex concepts in the left-hand sides of GCIs, or even just
cyclic TBoxes [2]. The reason is that the resulting concept cannot capture cycles.
Thus, we follow here the idea from [16] and compute only approximations of the
lcs and of the msc by limiting the nesting of quantifiers of the resulting concept.

The role depth rd(C) of a concept C denotes the maximal nesting depth of
the existential quantifier in C. Sometimes it is convenient to write the resulting
concept in a different DL than the one the inputs concepts are written in. Thus
we distinguish a ‘source DL’ Ls and a ‘target DL’ Lt. With these notions at
hand, we can define the first generalization inference.
Definition 1 (lcs, role-depth bounded lcs). The least common subsumer
of two Ls-concepts C1, C2 w.r.t. an Ls-TBox T (written: lcsT (C1, C2)) is the
Lt-concept description D s.t.:
1. C1 vT D and C2 vT D, and
2. for all Lt-concepts E, C1 vT E and C2 vT E implies D vT E.

Let k ∈ IN. If the concept D has a role-depth up to k and Condition 2 holds
for all such E with role-depth up to k, then D is the role-depth bounded lcs
(k-lcsT (C1, C2)) of C1 and C2 w.r.t. T and k.

The role-depth bounded lcs is unique up to equivalence, thus we speak of the
k-lcs. In contrast, common subsumers need not be unique. Note that for target
DLs that offer disjunction, the lcs is always trivial: lcs(C1, C2) = C1 tC2. Thus
target DLs without disjunction may yield more informative lcs.

Similarly to the lcs, the msc does not need to exist if computed w.r.t. cyclic
ABoxes. Again we compute here approximations of the msc by limiting the role-
depth of the resulting concept as suggested in [12].
Definition 2. Let K = (T ,A) be a KB written in Ls and a be an individual
from A. An Lt-concept description C is the most specific concept of a w.r.t. K
(written mscK(a)) if it satisfies:
1. K |= C(a), and
2. for all Lt-concepts D, K |= D(a) implies C vT D.

If the concept C has a role-depth up to k and Condition 2 holds for all such D
with role-depth up to k, then C is the role depth bounded msc of a w.r.t. K and
k (k-mscK(a)).
The msc and the k-msc are unique up to equivalence in EL and ELOR. In
ELOR the msc is trivial, since mscK(a) = {a}. Thus we consider in this paper a
more interesting case, where the target DL Lt for the resulting concept is a less
expressive one without nominals, namely EL or ELR.

3 The k-lcs in ELOR
The algorithms to compute the role-depth bounded lcs are based on completion-
based classification algorithms for the corresponding DL. For the DL ELOR, a
consequence-based algorithm for classification of TBoxes was presented in [11],
building upon the completion algorithm developed in [3]. The completion algo-
rithm presented next adapts the ideas of the complete algorithm.

3.1 Completion Algorithm for ELOR-TBoxes
The completion algorithms work on normalized TBoxes. We define for ELOR
the set of basic concepts for a TBox T :

BCT = (Sig(T) ∩ (NC ∪NI)) ∪ {>}.
Let T be an ELOR-TBox and A,A1, A2, B ∈ BCT ; then T is in normal form if
– each GCI in T is of the form: A v B,A1 uA2 v B,A v ∃r.B, or ∃r.A v B.
– each RIA in T is of the form: r v s or r1 ◦ r2 v s.

Every ELOR-TBox can be transformed into normal form in linear time by apply-
ing a set of normalization rules given in [3]. These normalization rules essentially
introduce new named concepts for complex concepts used in GCIs or new roles
used in complex RIAs.

Before describing the completion algorithm in detail, we introduce the reach-
ability relation R, which plays a fundamental role in the correct treatment of
nominals in TBox classification algorithms [3, 11].

Definition 3 (R). Let T be an ELOR-TBox in normal form, G ∈ NC a
concept name, and D ∈ BCT . G RD iff there exist roles r1, . . . , rn ∈ NR and
basic concepts A0, . . . , An, B0, . . . , Bn ∈ BCT , n ≥ 0 such that Ai vT Bi for all
0 ≤ i ≤ n, Bi−1 v ∃ri.Ai ∈ T for all 1 ≤ i ≤ n, A0 is either G or a nominal,
and Bn = D.

Informally, the concept name D is reachable from G if there is a chain of exis-
tential restrictions starting from G or a nominal and ending in D. This implies
that, for G RD, if the interpretation of G is not empty, then the interpreta-
tion of D cannot be empty either. This in turn causes additional subsumption
relationships to hold. Note that, if D is reachable from a nominal, then G RD
holds for all concept names G, since the interpretation of D can never be empty.

The basic idea of completion algorithms in general is to generate canonical
models of the TBox. To this end, the elements of the interpretation domain are
represented by named concepts or nominals from the normalized TBox. These el-
ements are then related via roles according to the existential restrictions derived
for the TBox. More precisely, let T be a normalized TBox, G ∈ Sig(T)∩NC∪{>}
and A ∈ BCT , we introduce a completion set SG(A). We store all basic concepts
that subsume a basic concept A in the completion set SA(A) and all basic
concepts B for which ∃r.B subsumes A in the completion set SA(A, r). These
completion sets are then extended using a set of rules. However, the algorithm
needs to keep track also of completion sets of the form SG(A) and SG(A, r) for
every G ∈ (Sig(T) ∩NC) ∪ {>}, since the non-emptiness of an interpretation of
a concept G may imply additional subsumption relationships for A. The com-
pletion set SG(A) therefore stores all basic concepts that subsume A under the
assumption that G is not empty. Similarly SG(A, r) stores all concepts B for
which ∃r.B subsumes A under the same assumption.

For every G ∈ (Sig(T) ∩ NC) ∪ {>}, every basic concept A and every role
name r, the completion sets are initialized as SG(A) = {A,>} and SG(A, r) = ∅.
These sets are then extended by applying the completion rules shown in Figure 1
(adapted from [11]) exhaustively.

To compute the reachability relation R used in rule OR7, the algorithm
can use Definition 3 with all previously derived subsumption relationships; that
is, Ai v Bi if it finds Bi ∈ SAi(Ai). Thus the computation of R and the
application of the completion rules need to be carried out simultaneously.

It can be shown that the algorithm terminates in polynomial time, and is
sound and complete for classifying the TBox T . In particular, when no rules are
applicable anymore the completion sets have the following properties.

Proposition 1. Let T be an ELOR-TBox in normal form, C,D ∈ BCT , r ∈
Sig(T) ∩NR, and G = C if C ∈ NC and G = > otherwise. Then, the following
properties hold:
C vT D iff D ∈ SG(C), and
C vT ∃r.D iff there exists E ∈ BCT such that E ∈ SG(C, r) and D ∈ SG(E).
We now show how to use these completion sets for computing the role-depth
bounded lcs for ELOR-concept w.r.t. a general ELOR-TBox.

OR1 If A1 ∈ SG(A), A1 v B ∈ T and B 6∈ SG(A),
then SG(A) := SG(A) ∪ {B}

OR2 If A1, A2 ∈ SG(A), A1 uA2 v B ∈ T and B 6∈ SG(A),
then SG(A) := SG(A) ∪ {B}

OR3 If A1 ∈ SG(A), A1 v ∃r.B ∈ T and B 6∈ SG(A, r),
then SG(A, r) := SG(A, r) ∪ {B}

OR4 If B ∈ SG(A, r), B1 ∈ SG(B), ∃r.B1 v C ∈ T and C 6∈ SG(A),
then SG(A) := SG(A) ∪ {C}

OR5 If B ∈ SG(A, r), r v s ∈ T and B /∈ SG(A, s),
then SG(A, s) := SG(A, s) ∪ {B}

OR6 If B ∈ SG(A, r1), C ∈ SG(B, r2), r1 ◦ r2 v s ∈ T and C /∈ SG(A, s),
then SG(A, s) := SG(A, s) ∪ {C}

OR7 If {a} ∈ SG(A1) ∩ SG(A2), G RA2, and A2 /∈ SG(A1),
then SG(A1) := SG(A1) ∪ {A2}

Fig. 1. Completion rules for ELOR

3.2 Computing the Role-depth Bounded ELOR-lcs

In order to compute the role-depth bounded lcs of two ELOR-concepts C and D,
we extend the methods from [16] for EL-concepts and from [9] for ELR-concepts,
where we compute the cross-product of the tree unravelings of the canonical
model represented by the completion sets for C and D up to the role-depth k.
Clearly, in the presence of nominals, the right completion sets need to be chosen
that preserve the non-emptiness of the interpretation of concepts derived by R.

An algorithm that computes the role-depth bounded ELOR-lcs using com-
pletion sets is shown in Figure 2. In the first step, the algorithm introduces two
new concept names A and B as abbreviations for the (possibly complex) con-
cepts C and D, and the augmented TBox is normalized. The completion sets are
then initialized and the completion rules from Figure 1 are applied exhaustively,
yielding the saturated completion sets ST . In the recursive procedure k-lcs-r for
concepts A and B, we first obtain all the basic concepts that subsume both A
and B from the sets SA(A) and SB(B). For every role name r, the algorithm
then recursively computes the (k−1)-lcs of the concepts A′ and B′ in the sub-
sumer sets SA(A, r) and SB(B, r), i.e. for which A vT ∃r.A′ and B vT ∃r.B′.
These concepts are added as existential restrictions to the k-lcs.

The algorithm only introduces concept and role names that occur in the
original TBox T . Therefore those names introduced by the normalization are
not used in the concept for the k-lcs and an extra denormalization step as in
[16, 9] is not necessary.

Notice that for every pair (A′, B′) of r-successors of A and B it holds that
A RA

′ and B RB
′. Intuitively, we are assuming that the interpretation of

both A and B is not empty. This in turn causes the interpretation of ∃r.A′
and ∃r.B′ to be not empty, either. Thus, it suffices to consider the completion

Procedure k-lcs(C,D, T , k)
Input: C,D: ELOR-concepts; T : ELOR-TBox; k ∈ IN
Output: role-depth bounded ELOR-lcs of C,D w.r.t. T and k

1: T ′ := normalize(T ∪ {A ≡ C,B ≡ D})
2: ST := apply-completion-rules(T ′)
3: return k-lcs-r(A,B, ST , k, A,B,Sig(T))

Procedure k-lcs-r(X,Y, ST , k, A,B,Sig(T))
Input: A,B: concept names, X,Y : basic concepts with A RX,B RY ; k ∈ IN;

ST : set of saturated completion sets; Sig(T): signature of T
Output: role-depth bounded ELOR-lcs of X,Y w.r.t. T and k

1: common-names := SA(X) ∩ SB(Y) ∩ BCT
2: if k = 0 then
3: return

l

P ∈common-names

P

4: else
5: return

l

P ∈common-names

P u
l

r∈Sig(T)∩NR

(l

C∈SA(X,r),

D∈SB(Y,r)

∃r.k-lcs-r
(
C,D,ST , k−1, A,B, Sig(T)

))

Fig. 2. Computation algorithm for role-depth bounded ELOR-lcs.

sets SA and SB , without the need to additionally compute SA′ and SB′ , or
the completion sets SC for any other basic concept C encountered during the
recursive computation of the k-lcs. This allows for a goal-oriented optimization
in cases where there is no need to classify the full TBox.

3.3 Computing the Role-depth Bounded msc w.r.t. ELOR-KBs

We now turn our attention to the other generalization inference: the computa-
tion of the most specific concept representing a given individual. Recall that,
since ELOR allows the use of nominals, computing the (exact) ELOR-msc for
a given individual is a trivial task: the most specific ELOR-concept describing
an individual a ∈ NI is simply the nominal {a}. However, it may be of interest
to compute the msc w.r.t. a less expressive target DL. Next, we describe how to
compute the depth-bounded EL-msc of an individual w.r.t. an ELOR-KB.

As we have defined them, KBs consist of two parts: the TBox, which rep-
resents the conceptual knowledge of the domain, and the ABox, which states
information about individuals. In the presence of nominals, this division be-
tween concepts and individuals is blurred. In fact, it is possible to simulate
ABox assertions using GCIs as described by the following proposition.

Lemma 1. An interpretation I satisfies the concept assertion C(a) iff it satis-
fies the GCI {a} v C. It satisfies the role assertion r(a, b) iff it satisfies the GCI
{a} v ∃r.{b}.

Procedure k-msc (a,K, k)
Input: a: individual from K; K =(T ,A) an ELOR-KB; k ∈ IN
Output: role-depth bounded EL-msc of a w.r.t. K and k.
1: T ′ := T ∪ absorb-ABox(K)
2: T ′′ := normalize(T ′)
3: SK := apply-completion-rules(T ′′)
4: return traversal-concept ({a},SK, k,Sig(K))

Procedure traversal-concept (A, SK, k, Sig(K))
Input: A: basic concept from T ′; SK: set of completion sets; k ∈ IN;

Sig(K): signature of original KB K
Output: role-depth bounded traversal concept w.r.t. K and k.
1: if k = 0 then
2: return

d
B∈S>(A)∩(BCT \NI) B

3: else
4: return

d
B∈S>(A)∩(BCT \NI)

B u

d
r∈Sig(K)∩NR

d
B∈S>(A,r)

∃r.traversal-concept (B,SK, k−1, Sig(K))

Fig. 3. Computation algorithm for the role-depth bounded EL-msc w.r.t. ELOR-KBs.

Using this result, we can ‘absorb’ the ABox into the TBox and restrict our
attention to reasoning w.r.t. TBoxes only, without losing generality. Figure 3
describes the algorithm for computing the EL-k-msc w.r.t. an ELOR-KB.

As before, correctness of this algorithm is a consequence of the invariants
described by Proposition 1. The set S>({a}) contains all the basic concepts that
subsume the nominal {a}; that is, all concepts whose interpretation must contain
the individual aI . Likewise, S>({a}, r) contains all the existential restrictions
subsuming {a}. Thus, a recursive conjunction of all these subsumers provides
the most specific representation of the individual a.

Since the target language is EL, no nominals may be included in the output.
However, the recursion includes also the EL-msc of the removed nominals, hence
indeed providing the most specific EL representation of the input individual.
As in the computation of the lcs presented above, the only completion sets
relevant for computing the msc are those of the form S>(A) and S>(A, r). Once
again, this means that it is possible to implement a goal-oriented approach that
computes only these sets, as needed, when building the msc for a given individual.

In this section we have shown how to compute generalization inferences with
a bounded role-depth in the DL ELOR that extends EL by allowing nominals
and complex role inclusion axioms in the KB. With the exception of data-types
and disjointness axioms, this covers the full expressivity of the OWL 2 EL profile
of the standard ontology language OWL 2. Given its status as W3C standard, it
is likely that more and bigger ontologies built using this profile, thus the gener-

alization inferences investigated in this paper and their computation algorithms
for approximation will become more useful to ontology engineers. In fact, there
already exist ontologies that use nominals in their representation. For example,
the FMA ontology [18] is written in ELOR and currently contains 85 nominals.

4 Conclusions

We have studied reasoning services in extensions of the light-weight description
logic EL by nominals and role inclusions, which yields the DL ELOR. One of
the characterizing features of EL and its extension ELOR is that they allow for
polynomial time reasoning. Efficient reasoning becomes expedient when dealing
with huge knowledge bases such as the biomedical ontologies SNOMED and
the Gene Ontology. Additionally, ELOR covers a large part of the OWL 2 EL
profile. Given its status as a W3C recommendation, it is likely that the usage of
the EL-family of DLs becomes more widespread in the future.

Especially for the huge ontologies written in extensions of EL, tools that
aid the user with the construction and maintenance of the knowledge base are
necessary. As previous work has shown, the generalization inferences lcs and msc
can be effectively used for such tasks. Besides this, the generalizations can be
used as a basis for other inferences, like the construction of semantic similarity
measures and information retrieval procedures.

The contributions of the paper are manyfold. First, we have given a com-
pletion algorithm for ELOR knowledge bases, inspired by a consequence-based
classification algorithm for EL with nominals [11]. This completion algorithm is
then employed to extend the algorithms for computing approximations of the
lcs and of the msc for the DL ELOR. In general, the lcs and msc do not need to
exist, even for EL, thus we approximate them by limiting the role-depth of the
resulting concept description, up to a maximal bound specified by the user.

We extended here the computation algorithm of the k-lcs to the DL ELOR,
using the new completion algorithm, by allowing nominals as part of the re-
sulting concept. Since the k-msc is trivial in ELOR due to nominals, we give a
computation algorithm for the k-msc for the target language EL, which works for
ELOR-KBs. Using these algorithms, the generalization inferences can be used
for a large set of ontologies built for the OWL 2 EL profile. Both algorithms have
the property that, if the exact lcs or msc exist, then our algorithms compute the
exact solution for a sufficiently large role-depth bound k. Such a k can be com-
puted for EL using the necessary and sufficient conditions for the existence of
the lsc and msc given in [21].

As future work we intend to study methods of finding these generalizations
in further extensions of EL. Initial steps in this direction have been made by con-
sidering EL with subjective probability constructors [17]. In a different direction,
we also intend to implement a system that can compute the lcs and the msc, by
modifying and improving existing completion-based reasoners.

References

1. F. Baader. Least common subsumers and most specific concepts in a descrip-
tion logic with existential restrictions and terminological cycles. In G. Gottlob
and T. Walsh, editors, Proc. of the 18th Int. Joint Conf. on Artificial Intelligence
(IJCAI-03), pages 325–330. Morgan Kaufmann, 2003.

2. F. Baader. Terminological cycles in a description logic with existential restrictions.
In G. Gottlob and T. Walsh, editors, Proc. of the 18th Int. Joint Conf. on Artificial
Intelligence (IJCAI-03), pages 319–324. Morgan Kaufmann, 2003.

3. F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proc. of the
19th Int. Joint Conf. on Artificial Intelligence (IJCAI-05), Edinburgh, UK, 2005.
Morgan-Kaufmann Publishers.

4. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, edi-
tors. The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2003.

5. F. Baader, R. Küsters, and R. Molitor. Computing least common subsumers in
description logics with existential restrictions. In T. Dean, editor, Proc. of the 16th
Int. Joint Conf. on Artificial Intelligence (IJCAI-99), pages 96–101, Stockholm,
Sweden, 1999. Morgan Kaufmann, Los Altos.

6. A. Borgida, T. Walsh, and H. Hirsh. Towards measuring similarity in description
logics. In Proc. of the 2005 Description Logic Workshop (DL 2005), volume 147 of
CEUR Workshop, 2005.

7. S. Brandt and A.-Y. Turhan. Using non-standard inferences in description logics
— what does it buy me? In G. Görz, V. Haarslev, C. Lutz, and R. Möller, editors,
Proc. of the 2001 Applications of Description Logic Workshop (ADL 2001), num-
ber 44 in CEUR Workshop, Vienna, Austria, September 2001. RWTH Aachen. See
http://CEUR-WS.org/Vol-44/.

8. C. d’Amato, N. Fanizzi, and F. Esposito. A semantic similarity measure for expres-
sive description logics. In Pro.c of Convegno Italiano di Logica Computazionale,
CILC05, 2005.

9. A. Ecke and A.-Y. Turhan. Role-depth bounded least common subsumers for EL+

and ELI. In Y. Kazakov, D. Lembo, and F. Wolter, editors, Proc. of the 2012 De-
scription Logic Workshop (DL 2012), volume 846 of CEUR Workshop Proceedings.
CEUR Workshop, 2012.

10. Y. Kazakov, M. Krötzsch, and F. Simanč́ık. ELK reasoner: Architecture and eval-
uation. In I. Horrocks, M. Yatskevich, and E. Jimenez-Ruiz, editors, Proceedings of
the OWL Reasoner Evaluation Workshop (ORE’12), volume 858 of CEUR Work-
shop. CEUR-WS.org, 2012.

11. Y. Kazakov, M. Krötzsch, and F. Simanč́ık. Practical reasoning with nominals in
the EL family of description logics. In G. Brewka, T. Eiter, and S. A. McIlraith,
editors, Proc. of the 12th Int. Conf. on the Principles of Knowledge Representation
and Reasoning (KR-12), pages 264–274. AAAI Press, 2012.

12. R. Küsters and R. Molitor. Approximating most specifc concepts in description
logics with existential restrictions. In F. Baader, G. Brewka, and T. Eiter, editors,
Proc. of the 24th German Annual Conf. on Artificial Intelligence (KI’01), volume
2174 of Lecture Notes In Artificial Intelligence, pages 33–47. Springer, 2001.

13. K. Lehmann and A.-Y. Turhan. A framework for semantic-based similarity mea-
sures for ELH-concepts. In L. F. del Cerro, A. Herzig, and J. Mengin, editors,
Proceedings of the 13th European Conference on Logics in Artificial Intelligence,
Lecture Notes in Artificial Intelligence, pages 307–319. Springer Verlag, 2012.

14. J. Mendez. jCel: A modular rule-based reasoner. In In Proc. of the 1st Int. Work-
shop on OWL Reasoner Evaluation (ORE’12), volume 858 of CEUR Workshop,
2012.

15. B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu, A. Fokoue, and C. Lutz. OWL 2
web ontology language profiles. W3C Recommendation, 27 October 2009. http:
//www.w3.org/TR/2009/REC-owl2-profiles-20091027/.

16. R. Peñaloza and A.-Y. Turhan. A practical approach for computing generalization
inferences in EL. In M. Grobelnik and E. Simperl, editors, Proc. of the 8th European
Semantic Web Conf. (ESWC’11), Lecture Notes in Computer Science. Springer,
2011.

17. R. Peñaloza and A.-Y. Turhan. Instance-based non-standard inferences in EL with
subjective probabilities. In F. Bobillo, P. C. G. Costa, C. d’Amato, N. Fanizzi, K. B.
Laskey, K. J. Laskey, T. Lukasiewicz, M. Nickles, and M. Pool, editors, Uncertainty
Reasoning for the Semantic Web II, number 7123 in Lecture Notes in Computer
Science, pages 80–98. Springer, 2013.

18. C. Rosse and J. L. V. Mejino. A reference ontology for biomedical informatics: the
foundational model of anatomy. Journal of Biomedical Informatics, 36:478–500,
2003.

19. K. Spackman. Managing clinical terminology hierarchies using algorithmic calcu-
lation of subsumption: Experience with SNOMED-RT. Journal of the American
Medical Informatics Assoc., 2000. Fall Symposium Special Issue.

20. W3C OWL Working Group. OWL 2 web ontology language document overview.
W3C Recommendation, 27th October 2009. http://www.w3.org/TR/2009/
REC-owl2-overview-20091027/.

21. B. Zarries̈ and A.-Y. Turhan. Most specific generalizations w.r.t. general EL-tboxes.
In Proceedings of the 23rd International Joint Conference on Artificial Intelligence
(IJCAI’13), Beijing, China, 2013. AAAI Press. To appear.

Instance-based Non-standard Inferences in EL with
Subjective Probabilities

Rafael Peñaloza and Anni-Yasmin Turhan?

Institute for Theoretical Computer Science, TU Dresden, Germany,
email: last name@tcs.inf.tu-dresden.de

Abstract. For practical ontology-based applications representing and reason-
ing with probabilities is an essential task. For Description Logics with subjec-
tive probabilities reasoning procedures for testing instance relations based on the
completion method have been developed.
In this paper we extend this technique to devise algorithms for solving non-
standard inferences for EL and its probabilistic extension Prob-EL01

c : computing
the most specific concept of an individual and finding explanations for instance
relations.

1 Introduction

The ontology language recommended for the semantic web OWL [11, 25] is based
on Description Logics (DLs) [4]. Description logics are knowledge representation for-
malisms with formal semantics. Based on these semantics, powerful reasoning services
have been defined and reasoning algorithms have been investigated. In recent years,
so-called lightweight DLs have been devised; these DLs have a limited expressiveness,
which allows for efficient reasoning [6]. For the lightweight DL EL, typical DL reason-
ing services such as classification of TBoxes, i.e., computation of all sub- / supercon-
cept relations of named concepts, or the realization of ABoxes, i.e., computation of the
named concepts each of the ABox individuals belongs to, can be done in polynomial
time. The basis for ABox realization is instance checking, which tests whether a given
individual from the ABox belongs to a given concept. In the so-called EL-family of
DLs, which are the tractable extensions of EL, this inference can be computed using
completion algorithms, which extend the ones for concept subsumption [2, 3].

The DLs from the EL-family are employed most prominently in the medical field,
for instance in the well-known knowledge base SNOMED CT [23], as well as in context-
aware applications. In both of these application areas, the need for characterizing un-
certain observations, which are only known to hold with some probability, has been
long recognized. While several probabilistic extensions of DLs have been proposed—
see [14] for a survey—these are typically very expressive and thus no longer tractable
and they cannot handle subjective probabilities. A simple probabilistic variant of EL
that can express subjective probabilities is Prob-EL01

c , recently introduced in [15]. This
logic allows only a fairly limited use of uncertainty. More precisely, it is only possible to
? Partially supported by the German Research Foundation (DFG) in the Collaborative Research

Center 912 “Highly Adaptive Energy-Efficient Computing”.

express that a concept may hold (P>0C), or that it holds almost surely (P=1C). Despite
its limited expressivity, this logic is interesting due to its nice algorithmic properties; as
shown in [15], subsumption and instance checking can also be performed in polynomial
time.

In this paper we employ the above mentioned completion algorithms to compute
two non-standard inferences for DLs that allow to express subjective probability: the
most specific concept and explanation of instance relations in Prob-EL01

c .

Many practical applications that need to represent observed information, such as
medical applications or context-aware applications, need to characterize that these ob-
servations only hold with certain probability. Furthermore, these applications face the
problem that information from different sources does not coincide, e.g., different di-
agnoses yield differing results. These applications need to “integrate” differing obser-
vations for the same state of affairs [24]. A way to determine what information the
different information sources agree upon is to represent this information in the ABox
by different individuals and then to find a common generalization of these individuals.
A description of such a generalization of a group of ABox individuals can be obtained
by applying the so-called bottom-up approach for constructing knowledge bases [5].
In this approach a set of individuals is generalized into a single concept description by
first generating the most specific concept (msc) of each individual and then applying
the least common subsumer (lcs) to the set of obtained concept descriptions to extract
their commonalities.

The second step, i.e., a computation procedure for the approximate lcs has been in-
vestigated for EL and Prob-EL01

c in [21]. In this paper we present a similar procedure
for the msc. For the Description Logic EL the msc need not exist [1], if computed with
respect to general EL-TBoxes. However, it is still possible to find a concept description
that is the msc up to a fixed role-depth. This so-called k-msc is still a generalization of
the input, but not necessarily the least one—in this sense, it is only an approximation of
the msc. We first describe a practical approach for computing the role-depth bounded
msc, based on the polynomial-time completion algorithm for EL, and then extend it
to the probabilistic variant Prob-EL01

c . Our algorithms are based upon the completion
algorithms for ABox realization in EL and in Prob-EL01

c and thus can be easily imple-
mented on top of reasoners of these DLs. All the proofs can be found in [18].

The second non-standard inference that we explore in this paper is the explanation
of a given consequence. In case a large knowledge base is edited by hand, it is not trivial
for the developer to see why a particular consequence holds [10, 12]. In our case of
instance checking, we want to identify those statements in the TBox and the ABox that
cause an instance relationship to follow from the knowledge base. More precisely, we
want to compute minimal axiom sets (MinAs) that entail the consequence. We compute
these sets using a glass-box approach for axiom-pinpointing [22, 7]. Even for ontology-
based context-aware systems, which may operate on automatically generated ABoxes,
the identification of MinAs that cause an unwanted consequence is crucial, since it is
the first step to edit the knowledge base such that the consequence is resolved. More
than in the crisp case, finding the axioms that entail a consequence for a knowledge
base written in a DL with probabilities is a difficult task to do by hand.

A method to compute MinAs for subsumptions in EL was devised in [9] as an ex-
tension of the completion algorithm for TBox classification. In this paper we devise a
method to compute MinAs for instance relationships as an extension of the completion
algorithm for ABox realization for Prob-EL01

c .
This paper extends earlier work presented in [20, 21] by algorithms for computing

explanations for instance relationships in EL and Prob-EL01
c . To the best of our knowl-

edge, explanation has not yet been investigated for DLs that allow to express proba-
bilities. We start this undertaking by giving the basic notions in Section 2. In Section
3 we recall the completion algorithms for ABox realization. Section 4 discusses the
computation algorithm for the role-depth bounded msc. In Section 5 we introduce the
algorithm for computing explanations.

2 EL and Prob-EL
In this section we introduce the DL EL and its probabilistic variant Prob-EL01

c . Let
NI , NC and NR be disjoint sets of individual-, concept- and role names, respectively.
Prob-EL01

c -concept descriptions are built using the syntax rule

C,D ::= > | A | C uD | ∃r.C | P>0C | P=1C,

where A ∈ NC , and r ∈ NR. EL-concept descriptions are Prob-EL01
c -concept descrip-

tion that do not contain the constructors P>0 or P=1.
A knowledge base K = (T ,A) consists of a TBox T and an ABox A. An EL-

(Prob-EL01
c -) TBox is a finite set of general concept inclusions (GCIs) of the form

C v D, where C,D are EL- (Prob-EL01
c -) concept descriptions. An EL-ABox is a set of

assertions of the form C(a) or r(a, b), where C is an EL-concept description, r ∈ NR,
and a, b ∈ NI . A Prob-EL01

c -ABox is a set of assertions of the form C(a), r(a, b),
P>0r(a, b), or P=1r(a, b), where C is a Prob-EL01

c -concept description, r ∈ NR, and
a, b ∈ NI .

The semantics of EL is defined by means of interpretations I = (∆I , ·I) consisting
of a non-empty domain ∆I and an interpretation function ·I that assigns binary rela-
tions on ∆I to role names, subsets of ∆I to concepts and elements of ∆I to individual
names. For a more detailed description of this semantics, see [4].

We say that the interpretation I satisfies a general concept inclusion C v D, de-
noted as I |= C v D, if CI ⊆ DI ; it satisfies an assertion C(a), denoted as I |= C(a)
if aI ∈ CI and it satisfies an assertion r(a, b), denoted as I |= r(a, b) if (aI , bI) ∈ rI .
It is a model of a knowledge base K = (T ,A) if it satisfies all GCIs in T and all
assertions in A.

The semantics of Prob-EL01
c is a generalization of the semantics of EL, that consid-

ers a set of possible worlds. A probabilistic interpretation is of the form

I = (∆I ,W, (Iw)w∈W , µ),

where ∆I is the (non-empty) domain, W is a (non-empty) set of worlds, µ is a discrete
probability distribution onW , and for each world w ∈W , Iw is a classical EL interpre-
tation with domain ∆I , where aIw = aIw′ for all a ∈ NI , w,w′ ∈W . The probability

that a given element of the domain d ∈ ∆I belongs to the interpretation of a concept
name A is

pId (A) := µ({w ∈W | d ∈ AIw}).
The functions Iw and pId are extended to complex concepts in the usual way for the
classical EL-constructors, where the extension to the new constructors P∗ is defined as

(P>0C)
Iw := {d ∈ ∆I | pId (C) > 0},

(P=1C)
Iw := {d ∈ ∆I | pId (C) = 1}.

The probabilistic interpretation I satisfies a general concept inclusion C v D, denoted
as I |= C v D, if for every w ∈ W it holds that CIw ⊆ DIw . It is a model of a
TBox T if it satisfies all general concept inclusions in T . Let C,D be two Prob-EL01

c

concepts and T a TBox. We say that C is subsumed by D w.r.t. T (C vT D) if for
every model I of T it holds that I |= C v D. The concepts c and D are equivalent, if
C vT D and D vT C holds. The probabilistic interpretation I satisfies the assertion
P>0r(a, b) if µ({w ∈ W | Iw |= r(a, b)}) > 0, and analogously for P=1r(a, b). I
satisfies the ABox A if there is a w ∈W such that Iw |= A.

Finally, an individual a ∈ NI is an instance of a concept description C w.r.t. K
(K |= C(a)) if I |= C(a) for all models I of K. The ABox realization problem is to
compute for each individual a in A the set of named concepts from K that have a as
an instance and that are least (w.r.t. v). One of our main interests in this paper is to
compute most specific concepts.

Definition 1 (most specific concept). Let L be a DL, K = (T , A) be a L-knowledge
base. The most specific concept (msc) of an individual a from A is the L-concept de-
scription C s. t.

1. K |= C(a), and
2. for each L-concept description D holds: K |= D(a) implies C vT D.

The msc depends on the DL in use. For the DLs with conjunction as concept constructor
the msc is, if it exists, unique up to equivalence. Thus it is justified to speak of the msc.

3 Completion Algorithms for ABox Realization

In this section we briefly sketch the completion algorithms for instance checking in the
DLs EL [2] and Prob-EL01

c [15].

3.1 The Completion Algorithm for EL

Assume we want to test for an EL-knowledge base K = (T ,A) whether K |= D(a)
holds. The completion algorithm first augments the knowledge base by introducing a
concept name for the complex concept description D for the instance check; that is, it
redefines the knowledge base to K = (T ∪ {Aq ≡ D},A), where Aq is a new concept
name not appearing in K. The instance checking algorithm for EL works on knowledge

NF1 C u D̂ v E −→ { D̂ v A,C uA v E }
NF2 ∃r.Ĉ v D −→ { Ĉ v A,∃r.A v D }
NF3 Ĉ v D̂ −→ { Ĉ v A,A v D̂ }
NF4 B v ∃r.Ĉ −→ { B v ∃r.A,A v Ĉ }
NF5 B v C uD −→ { B v C,B v D }

where Ĉ, D̂ 6∈ BCT and A is a new concept name.

Fig. 1. EL normalization rules (from [2])

bases containing only axioms in a structured normal form. Every knowledge base can
be transformed into a normalized one via a two-step procedure.

First the ABox is transformed into a simple ABox. An ABoxA is a simple ABox, if
for every concept assertion C(a) ∈ A, C is a concept name. An arbitrary EL-ABox A
can be transformed into a simple ABox by first replacing each complex assertion C(A)
in A by A(a) where A is a fresh concept name and, second, introducing A ≡ C into
the TBox.

After this step, the TBox is transformed into a normal form as well. For a concept
description C let CN(C) denote the set of all concept names and RN(C) denote the set
of all role names that appear in C. The signature of a concept description C (denoted
sig(C)) is given by CN(C) ∪ RN(C). Similarly, the set of concept (respectively role)
names that appear in a TBox is denoted by CN(T) (respectively RN(T)). The signature
of a TBox T (denoted sig(T)) is CN(T)∪RN(T). The signature of an ABoxA (denoted
sig(A)) is the set of concept (role / individual) names CN(A) (RN(A)/IN(A) resp.)
that appear in A. The signature of a knowledge base K = (T , A) (denoted sig(K)) is
sig(T) ∪ sig(A).

An EL-TBox T is in normal form if all concept axioms have one of the following
forms, where C1, C2 ∈ sig(T) and D ∈ sig(T) ∪ {⊥}:

C1 v D, C1 u C2 v D, C1 v ∃r.C2 or ∃r.C1 v D.

Any EL-TBox can be transformed into normal form by introducing new concept names
and by applying the normalization rules displayed in Figure 1 exhaustively, where BCT
is the set containing all the concept names appearing in T and the concept >. These
rules replace the GCI on the left-hand side of the rules with the set of GCIs on the
right-hand side. Clearly, for a knowledge base K = (T ,A) the signature of A may be
changed only during the first of the two normalization steps and the signature of T may
be extended during both of them. The normalization of the knowledge base can be done
in linear time.

The completion algorithm for instance checking is based on the one for classifying
EL-TBoxes introduced in [2]. The completion algorithm constructs a representation
of the minimal model of K. Let K = (T ,A) be a normalized EL-knowledge base,
i.e., with a simple ABox A and a TBox T in normal form. The completion algorithm
works on four kinds of completion sets: S(a), S(a, r), S(C) and S(C, r) for each a ∈
IN(A), C ∈ CN(K) and r ∈ RN(K). These completion sets contain concept names

CR1 If C ∈ S(X), C v D ∈ T , and D 6∈ S(X)
then S(X) := S(X) ∪ {D}

CR2 If C1, C2 ∈ S(X), C1 u C2 v D ∈ T , and D 6∈ S(X)
then S(X) := S(X) ∪ {D}

CR3 If C ∈ S(X), C v ∃r.D ∈ T , and D 6∈ S(X, r)
then S(X, r) := S(X, r) ∪ {D}

CR4 If Y ∈ S(X, r), C ∈ S(Y), ∃r.C v D ∈ T , and
D 6∈ S(X) then S(X) := S(X) ∪ {D}

Fig. 2. EL completion rules

from CN(K). Intuitively, the completion rules make implicit subsumption and instance
relationships explicit in the following sense:

– D ∈ S(C) implies that C vT D,
– D ∈ S(C, r) implies that C vT ∃r.D.
– D ∈ S(a) implies that a is an instance of D w.r.t. K,
– D ∈ S(a, r) implies that a is an instance of ∃r.D w.r.t. K.

SK denotes the set of all completion sets of a normalized K. The completion sets are
initialized for each a ∈ IN(A) and each C ∈ CN(K) as follows:

– S(C) := {C,>} for each C ∈ CN(K),
– S(C, r) := ∅ for each r ∈ RN(K),
– S(a) := {C ∈ CN(A) | C(a) appears in A} ∪ {>}, and
– S(a, r) := {b ∈ IN(A) | r(a, b) appears in A} for each r ∈ RN(K).

Then these sets are extended by applying the completion rules shown in Figure 2 until
no more rule applies. In these rules X and Y can refer to concept or individual names,
while C,C1, C2 and D are concept names and r is a role name. After the completion
has terminated, the following relations hold between an individual a, a role r and named
concepts A and B:

– subsumption relation between A and B from K holds iff B ∈ S(A)
– instance relation between a and B from K holds iff B ∈ S(a),

as shown in [2]. To decide the initial query: K |= D(a), one has to test whether Aq

appears in S(a). In fact, instance queries for all individuals and all named concepts from
the knowledge base can be answered from the resulting completion sets; the completion
algorithm does not only perform one instance check, but complete ABox realization.
The completion algorithm runs in polynomial time in size of the knowledge base.

3.2 The Completion Algorithm for Prob-EL01
c

Before describing the completion algorithm for Prob-EL01
c , we modify the notion of

basic concepts. The set BCT of Prob-EL01
c basic concepts for a knowledge base K is

the smallest set that contains

PR1 If C′ ∈ S∗(X, v) and C′ v D ∈ T , then S∗(X, v) := S∗(X, v) ∪ {D}
PR2 If C1, C2 ∈ S∗(X, v) and C1 u C2 v D ∈ T , then S∗(X, v) := S∗(X, v) ∪ {D}
PR3 If C′ ∈ S∗(X, v) and C′ v ∃r.D ∈ T , then S∗(X, r, v) := S∗(X, r, v) ∪ {D}
PR4 If D ∈ S∗(X, r, v), D′ ∈ Sγ(v)(D, γ(v)) and ∃r.D′ v E ∈ T ,

then S∗(X, v) := S∗(X, v) ∪ {E}
PR5 If P>0A ∈ S∗(X, v), then S∗(X,P>0A) := S∗(X,P>0A) ∪ {A}
PR6 If P=1A ∈ S∗(X, v), v 6= 0, then S∗(X, v) := S∗(X, v) ∪ {A}
PR7 If A ∈ S∗(X, v) and v 6= 0, P>0A ∈ PT0 , then S∗(X, v′) := S∗(X, v

′) ∪ {P>0A}
PR8 If A ∈ S∗(X, 1) and P=1A ∈ PT1 , then S∗(X, v) := S∗(X, v) ∪ {P=1A}
PR9 If r(a, b) ∈ A, C ∈ S(b, 0), ∃r.C v D ∈ T , then S(a, 0) := S(a, 0) ∪ {D}
PR10 If P>0r(a, b) ∈ A, C ∈ S(b, P>0r(a, b)) and ∃r.C v D ∈ T ,

then S(a, P>0r(a, b)) := S(a, P>0r(a, b)) ∪ {D}
PR11 If P=1r(a, b) ∈ A, C ∈ S(b, v) with v 6= 0 and ∃r.C v D ∈ T ,

then S(a, v) := S(a, v) ∪ {D}

Fig. 3. Prob-EL01
c completion rules

1. the concept >,
2. all concept names used in K, and
3. all concepts of the form P>0A or P=1A,

where A is a concept name in K. A Prob-EL01
c -TBox T is in normal form if all its

axioms are of one of the following forms

C v D, C1 u C2 v D, C v ∃r.A, ∃r.A v D,
where C,C1, C2, D ∈ BCT and A is a concept name. The normalization rules in Fig-
ure 1 can also be used to transform a Prob-EL01

c -TBox into this extended normal form.
We still assume that the ABoxA is a simple ABox; that is, for all assertions C(a) inA,
C is a concept name. We denote as PT0 and PT1 the set of all concepts of the form P>0A
and P=1A respectively, occurring in a normalized knowledge baseK. Analogously,RT0
denotes the set of all assertions of the form P>0r(a, b) appearing in K.

The completion algorithm for Prob-EL01
c follows the same idea as the algorithm

for EL, but uses several completion sets to deal with the information of what needs
to be satisfied in the different worlds of a model. Intuitively, we will build a general
description of all models, using the set of worlds V := {0, ε, 1} ∪ PT0 ∪ RT0 , where
the probability distribution µ assigns a probability of 0 to the world 0, and the uniform
probability 1/(|V |−1) to all other worlds. The main idea is that the world 1 will include
all the entailments that hold with probability 1, and ε those that hold with probability
greater than 0.

For each individual name a, concept name A, role name r and world v, we store the
completion sets S0(A, v), Sε(A, v), S0(A, r, v), Sε(A, r, v), S(a, v), and S(a, r, v).

The algorithm initializes the sets as follows for every A ∈ BCT , r ∈ RN(K), and
a ∈ IN(A):

– S0(A, 0) = {>, A} and S0(A, v) = {>} for all v ∈ V \ {0},
– Sε(A, ε) = {>, A} and Sε(A, v) = {>} for all v ∈ V \ {ε},
– S(a, 0) = {>} ∪ {A | A(a) ∈ A}, S(a, v) = {>} for all v 6= 0,
– S0(A, r, v) = Sε(A, r, v) = ∅ for all v ∈ V , S(a, r, v) = ∅ for v 6= 0,
– S(a, r, 0) = {b ∈ IN(A) | r(a, b) ∈ A}.

These sets are then extended by exhaustively applying the rules shown in Figure 3,
where X ranges over BCT ∪ IN(A), S∗(X, v) stands for S(X, v) if X is an individual
and for S0(X, v), Sε(X, v) if X ∈ BCT , and γ : V → {0, ε} is defined by γ(0) = 0,
and γ(v) = ε for all v ∈ V \ {0}.

This algorithm terminates in polynomial time. After termination, the completion
sets store all the information necessary to decide subsumption of concept names, as
well as checking whether an individual is an instance of a given concept name [15]. For
the former decision, it holds that for every pair A,B of concept names: B ∈ S0(A, 0)
iff A vK B. In the case of instance checking, we have that K |= A(a) iff A ∈ S(a, 0).

4 Computing the k-MSC using Completion

The msc was first investigated for EL-concept descriptions and w.r.t. unfoldable TBoxes
and possibly cyclic ABoxes in [13]. It was shown that the msc does not need to exists
for cyclic ABoxes. Consider the ABox A = {r(a, a), C(a)}. The msc of a is then

C u ∃r.(C u ∃r.(C u ∃r.(C u · · ·

and cannot be expressed by a finite concept description. For cyclic TBoxes it has been
shown in [1] that the msc does not need to exists even if the ABox is acyclic.

To avoid infinite nestings in presence of cyclic ABoxes it was proposed in [13] to
limit the role-depth of the concept description to be computed. This limitation yields an
approximation of the msc, which is still a concept description with the input individual
as an instance, but it does not need to be the least one (w.r.t. v) with this property.
We follow this idea to compute approximations of the msc also in presence of general
TBoxes.

The role-depth of a concept description C (denoted rd(C)) is the maximal number
of nested quantifiers of C. This allows us to define the msc with limited role-depth for
EL.

Definition 2 (role-depth bounded EL-msc). LetK =(T ,A) be an EL-knowledge base
and a an individual in A and k ∈ IN. Then the EL-concept description C is the
role-depth bounded EL-most specific concept of a w.r.t. K and role-depth k (written
k-mscK(a)) iff

1. rd(C) ≤ k,
2. K |= C(a), and
3. for all EL-concept descriptions E with rd(E) ≤ k holds: K |= E(a) implies
C vT E.

Notice that in case the exact msc has a role-depth less or equal to k the role-depth
bounded msc is the exact msc.

Example 3. As an example we consider the labeled knowledge baseKex = (Tex,Aex).
In this labeled knowledge base each axiom and assertion is associated with a label
(printed in the same line), which will be used later.

Tex = {∃r.> v A, ax1
B v ∃r.C, ax2
D v E} ax3

and Aex = {B(a), as1
D(b), as2
r(a, b), as3
s(a, c), as4
r(c, a) } as5

Obviously the ABox Aex is cyclic due to the last two assertions. Note, that c is an
instance of A due to as5 and ax1. Now, for k = 3 we obtain the following role-depth
bounded msc for a:

3-mscKex
(a) = B u

∃r.D u
∃s.(A u ∃r.(B u ∃r.D u ∃s.A))).

Next we describe how to obtain the k-msc in general.

4.1 Computing the k-msc in EL by Completion

The computation of the msc relies on a characterization of the instance relation. While
in earlier works this was given by homomorphisms [13] or simulations [1] between
graph representations of the knowledge base and the concept in question, we use the
completion algorithm as such a characterization. Moreover, we construct the msc by
traversing the completion sets to “collect” the msc. More precisely, the set of completion
sets encodes a graph structure, where the sets S(X) are the nodes and the sets S(X, r)
encode the edges. Traversing this graph structure, one can construct an EL-concept. To
obtain a finite concept in the presence of cyclic ABoxes or TBoxes one can limit the
number of edges than can be traversed during this construction.

Definition 4 (traversal concept). Let K be an EL-knowledge base, K′ be its normal-
ized form, SK the completion set obtained from K and k ∈ IN. Then the traversal con-
cept of a named concept A (denoted k-CSK(A)) with sig(A) ⊆ sig(K′) is the concept
obtained from executing the procedure call traversal-concept-c(A, SK, k) shown in Al-
gorithm 1.

The traversal concept of an individual a (denoted k-CSK(a)) with a ∈ sig(K) is the
concept description obtained from executing the procedure call traversal-concept-i(a,
SK, k) shown in Algorithm 1.

The idea is that the traversal concept of an individual yields its msc. However, the
traversal concept contains names from sig(K′) \ sig(K), i.e., concept names that were
introduced during normalization—we call this kind of concept names normalization
names in the following. The returned msc should be formulated w.r.t. the signature
of the original knowledge base, thus the normalization names need to be removed or
replaced.

Algorithm 1 Computation of a role-depth bounded EL-msc.

Procedure k-msc (a,K, k)
Input: a: individual from K; K =(T , A) an EL-knowledge base; k ∈ IN
Output: role-depth bounded EL-msc of a w.r.t. K and k.
1: (T ′, A′) := simplify-ABox(T , A)
2: K′ := (normalize(T ′), A′)
3: SK := apply-completion-rules(K)
4: return Remove-normalization-names (traversal-concept-i(a,SK, k))

Procedure traversal-concept-i (a, S, k)
Input: a: individual name from K; S: set of completion sets; k ∈ IN
Output: role-depth traversal concept (w.r.t. K) and k.
1: if k = 0 then return

d
A ∈ S(a)A

2: else return
d
A ∈ S(a)A ud

r∈RN(K′)

d
A ∈ CN(K′)∩S(a,r)

∃r. traversal-concept-c (A,S, k − 1) u
d

r∈RN(K′)

d
b ∈ IN(K′)∩S(a,r)

∃r. traversal-concept-i (b, S, k − 1)

3: end if

Procedure traversal-concept-c (A, S, k)
Input: A: concept name from K′; S: set of completion sets; k ∈ IN
Output: role-depth bounded traversal concept.
1: if k = 0 then return

d
B∈S(A)B

2: else return
d

B∈S(A)

B u d
r∈RN(K′)

d
B∈S(A,r)

∃r.traversal-concept-c (B,S, k − 1)

3: end if

Lemma 5. Let K be an EL-knowledge base, K′ its normalized version, SK be the set
of completion sets obtained for K, k ∈ IN a natural number and a ∈ IN(K). If C =

k-CSK(a) and Ĉ is obtained from C by removing the normalization names, then

K′ |= C(a) iff K |= Ĉ(a).

This lemma guarantees that removing the normalization names from the traversal con-
cept preserves the instance relationships. Intuitively, this lemma holds since the con-
struction of the traversal concept conjoins exhaustively all named subsumers and all
subsuming existential restrictions to a normalization name up to the role-depth bound.
Thus removing the normalization name does not change the extension of the conjunc-
tion. The proof can be found in [18].

The procedure k-msc uses an individual a from a knowledge baseK, the knowledge
base K itself and a number k for the role depth-bound as parameters. It first performs
the two normalization steps on K, then applies the completion rules from Figure 2 to
the normalized knowledge base K′, and then stores the set of completion sets in SK.
Afterwards it computes the traversal-concept of a from SK w.r.t. role-depth bound k. In
a post-processing step it applies Remove-normalization-names to the traversal concept
obtained in the previous step.

Example 6. We use the knowledge base from Example 3, to apply the algorithm k-msc
to the individual a from Aex again for k = 3. Since the TBox Tex is in normal form
and the ABox Aex is simple, completion can be applied directly. After completion we
have the following elements in the completion sets:

S(A) = {>, A}
S(B) = {>, A,B}
S(C) = {>, C}
S(D) = {>, D,E}

S(a) = {>, A,B}
S(b) = {>, D,E}
S(c) = {>, A}

S(B, r) = {>, C}
S(a, r) = {>, D,E}
S(a, s) = {>, A}
S(c, r) = {>, A}

The here omitted completion sets do not change after initialization and are empty. We
obtain:

k-msc(a,Kex, 3) = > uA uB u
∃r.(> uD u E) u
∃s.(> uA u ∃r.(> uA uB u ∃r.(> uD u E) u ∃s.(> uA))).

The resulting concept description is larger than the k-msc derived in Example 3, since
all the elements from the completion set are conjoined to the result concept description
in traversal-concept-i and traversal-concept-c. However, it is easy to see that the result
is a concept description equivalent to the k-msc w.r.t. Kex.

Obviously, the concept description returned from the procedure k-msc has a role-
depth less or equal to k. Thus the first condition of Definition 2 is fulfilled. As we prove
next, the concept description obtained from the procedure k-msc fulfills also the second
condition from Definition 2.

Lemma 7. Let K = (T ,A) be an EL-knowledge base and a an individual in A and
k ∈ IN. If C = k-msc(a,K, k), then K |= C(a).

The claim can be shown by induction on k. Each name in C is from a completion set of
(1) an individual or (2) a concept, which is connected via existential restrictions to an
individual. The full proof can be found in [18].

Lemma 8. Let K = (T ,A) be an EL-knowledge base, a an individual appearing in
A, and k ∈ IN. If C = k-msc(a,K, k), then for every EL-concept description E with
rd(E) ≤ k the following holds: K |= E(a) implies C vT E.

Again, the full proof can be found in [18]. Together, these two Lemmas yield the cor-
rectness of the overall procedure.

Theorem 9. Let K = (T ,A) be an EL-knowledge base and a an individual in A and
k ∈ IN.
Then k-msc(a,K, k) ≡ k-mscK(a).

It is important to notice that, while the completion sets can be computed in polynomial
time, the k-msc can grow exponential in the size of the knowledge base. In addition to
that and as the example already indicated, the concept description obtained from k-msc
contains a lot of redundant information and thus is quite larger. However for practical
usability it is necessary to rewrite the concept to an equivalent, but smaller one. A
heuristic for this has been proposed in [16]. The algorithm and the rewriting heuristic
are implemented in the GEL system1.

1 See http://gen-el.sourceforge.net/

4.2 Computing the k-msc in Prob-EL01
c by Completion

The role-bounded msc for a Prob-EL01
c -knowledge base can be computed in a similar

fashion to the one described before for EL. The knowledge base is first normalized and
the completion procedure is executed to obtain all the completion sets.

In order to compute the msc, we simply accumulate all concepts to which the in-
dividual a belongs, given the information stored in the completion sets. This process
needs to be done recursively in order to account for both, the successors of a explicitly
encoded in the ABox, and the nesting of existential restrictions masked by normaliza-
tion names. In the following we use the abbreviation S>0(a, r) :=

⋃
v∈V \{0} S(a, r, v).

We then define traversal-concept-i(a,S, k) as
l

B∈S(a,0)
B u

l

r∈RN(K′′)

(l

r(a,b)∈K′′
∃r.traversal-concept-i(b, S, k − 1) u

l

B∈CN(K′′)∩S(a,r,0)
∃r.traversal-concept-c(B,S, k − 1) u

l

B∈CN(K′′)∩S(a,r,1)
P=1(∃r.traversal-concept-c(B,S, k − 1)) u

l

B∈CN(K′′)∩S>0(a,r)

P>0(∃r.traversal-concept-c(B,S, k − 1))
)
,

where traversal-concept-c(B, S, k + 1) is
l

C∈S0(B,0)

B u
l

r∈RN

(l

C∈S0(B,r,0)

∃r.traversal-concept-c(C,S, k) u

l

C∈S0(B,r,1)

P=1(∃r.traversal-concept-c(C,S, k)) u

l

C∈S>0
0 (B,r)

P>0(∃r.traversal-concept-c(C,S, k))
)

and traversal-concept-c(B,S, 0) =
d
C∈S0(B,0)

B. Once the traversal concept has been
computed, it is possible to remove all normalization names preserving the instance re-
lation, which gives us the msc in the original signature of K. As in the case for EL, the
proof of correctness of this method can be found in [18].

Theorem 10. Let K a Prob-EL01
c -knowledge base, a ∈ IN(A), and k ∈ IN; then

Remove-normalization-names(traversal-concept-i(a,S, k)) ≡ k-mscK(a).

5 Computing Explanations for Instance Relations in Prob-EL01
c

By definition, an individual a is always an instance of its (role-depth bounded) msc.
However, it is not always obvious why this is the case. We thus provide a method for
describing the axiomatic causes for a to be an instance of a concept name A.

Definition 11 (MinA). Let K = (T ,A) be an Prob-EL01
c -knowledge base, a an indi-

vidual in A and A a concept name such that K |= A(a). A minimal axiom set (MinA)
for K w.r.t. A(a) is a sub-knowledge base K′ = (S,B), with S ⊆ T ,B ⊆ A such that

– K′ |= A(a) and
– for all strict subsets S ′ ⊂ S,B′ ⊂ B, it holds that (i) (S ′,B) 6|= A(a) and

(ii) (S,B′) 6|= A(a).

Intuitively, a MinA is a sub-ontology that still entails the instance relationship be-
tween a and A, and that is minimal (w.r.t. set inclusion) with this property. As the
following example illustrates there may be several MinAs for one consequence.

Example 12. Continuing with our running example, we have that Kex |= A(a), and
there are two MinAs for Kex w.r.t. this instance relationship, namely

K1 = ({∃r.> v A,B v ∃r.C}, {B(a)}), and
K2 = ({∃r.> v A}, {r(a, b)}).

It is a simple task to verify that indeed these two knowledge bases entail A(a), and that
they satisfy the minimality requirement w.r.t. set inclusion.

The process of computing MinAs is called pinpointing. As it has been done before
for other kinds of reasoning problems, we show that the completion algorithm for Prob-
EL01

c can be modified into a pinpointing algorithm. Rather than directly computing
the MinAs, we will construct a monotone Boolean formula—called the pinpointing
formula—that encodes all these MinAs. To define this formula, we first assume that
every axiom and every assertion α in K is labeled with a unique propositional variable
lab(α) and denote as lab(K) the set of all propositional variables labeling axioms and
assertions in K. A monotone Boolean formula over lab(K) is a Boolean formula that
uses only variables from lab(K), the binary connectives conjunction (∧) and disjunction
(∨), and the constant t (for “truth”). As customary in propositional logic, we identify
a valuation with the set of propositional variables that it makes true. Finally, given a
valuation V ⊆ lab(K), we define

KV := ({α ∈ T | lab(α) ∈ V}, {α ∈ A | lab(α) ∈ V}).

Definition 13 (pinpointing formula). Given a Prob-EL01
c -knowledge baseK = (T ,A),

an individual name a occurring in A and a concept name A, the monotone Boolean
formula φ over lab(K) is a pinpointing formula for K w.r.t. A(a) if for every valuation
V ⊆ lab(K) it holds that

KV |= A(a) iff V satisfies φ.

Example 14. Recall that we have given every axiom and assertion of Kex a unique
label, depicted in Example 3. Hence, for instance lab(∃r.> v A) = ax1. The following
is a pinpointing formula for Kex w.r.t. A(a):

ax1 ∧ (as3 ∨ (ax2 ∧ as1)).

The MinAs for an instance relation can be obtained from the pinpointing formula φ
by computing the minimal valuations that satisfy φ.

Proposition 15. If φ is a pinpointing formula for K w.r.t. A(a), then the set

{KV | V is a minimal valuation satisfying φ}

is the set of all MinAs for K w.r.t. A(a).

We take advantage of this proposition and describe an algorithm that computes a
pinpointing formula for a given instance relationship.2 If one is interested in the specific
MinAs, it is only necessary to find the minimal valuations that satisfy this formula. This
can be done by e.g. bringing the pinpointing formula to disjunctive normal form first
and then removing all the non-minimal disjuncts. In general, a pinpointing formula
may yield a more compact representation of the set of all MinAs, and hence be of more
practical use.

We will use a so-called glass-box approach for computing pinpointing formulas
for all the instance relationships that follow from a knowledge base K. The idea is
to extend the completion algorithm for deciding instances in Prob-EL01

c with a tracing
mechanism that encodes all the axiomatic causes for a consequence—in this case, either
a subsumption or an instance relation—to follow. Since EL is a sub-logic of Prob-EL01

c

and classification can be reduced to instance checking,3 our approach can also find
the pinpointing formulas for the different subsumption relations that follow from the
knowledge base. Thus, we generalize previous results on axiom-pinpointing in EL [9]
in two ways by developing explanations also for the entailed instance relationships and
include the probabilistic concept constructors from Prob-EL01

c .
In order to describe the pinpointing algorithm, we assume first that the knowledge

baseK is already in normal form; recall that our example knowledge baseKex is in nor-
mal form. The pinpointing extension of the completion algorithm for Prob-EL01

c also
stores completion sets S(a, v), S(a, r, v), S0(C, v), S0(A, r, v), Sε(A, v), and, Sε(A, r, v)
for the different individual-, and role names a, r, respectively, and basic concept A ap-
pearing in the knowledge base. However, the elements of these sets are not only con-
cept names from CN(K) as in Section 3, but rather pairs of the form (D,ϕ), where
D ∈ CN(K) and ϕ is a monotone Boolean formula. Intuitively, (D,ϕ) ∈ S(C) means
that D is a subsumer of C w.r.t. K, and ϕ stores information of the axioms responsible
for this fact. For the other three kinds of completion sets the idea is analogous.

The pinpointing algorithm initializes these completion sets as follows: for every
A ∈ BCT , r ∈ RN(K), and a ∈ IN(A)

– S0(A, 0) = {(>, t), (A, t)} and S0(A, v) = {(>, t)} for all v ∈ V \ {0},
– Sε(A, ε) = {(>, t), (A, t)} and Sε(A, v) = {(>, t)} for all v ∈ V \ {ε},
– S(a, 0) = {(>, t)} ∪ {(A, p) | A(a) ∈ A, p = lab(A(a))},
– S(a, v) = {(>, t)} for all v 6= 0,
– S0(A, r, v) = Sε(A, r, v) = ∅ for all v ∈ V , S(a, r, v) = ∅ for v 6= 0,
– S(a, r, 0) = {(b, p) ∈ IN(A) | r(a, b) ∈ A, p = lab(A(a))}.

2 In fact, our method produces pinpointing formulas for all instance relationships that follow
from the knowledge base at once.

3 Indeed, A vK B iff K∪ {A(a)} |= B(a), where a is an individual name not appearing in K.

PpR1 If (C′, ϕ) ∈ S∗(X, v), α = C′ v D ∈ T , and lab(α) = p
then S∗(X, v) := S∗(X, v) d (D,ϕ ∧ p)

PpR2 If (C1, ϕ1), (C2, ϕ2) ∈ S∗(X, v), α = C1 u C2 v D ∈ T , and lab(α) = p
then S∗(X, v) := S∗(X, v) d (D,ϕ1 ∧ ϕ2 ∧ p)

PpR3 If (C′, ϕ) ∈ S∗(X, v), α = C′ v ∃r.D ∈ T , and lab(α) = p
then S∗(X, r, v) := S∗(X, r, v) d (D,ϕ ∧ p)

PpR4 If (D,ϕ) ∈ S∗(X, r, v), (D′, ϕ′) ∈ Sγ(v)(D, γ(v)), α = ∃r.D′ v E ∈ T , and
lab(α) = p then S∗(X, v) := S∗(X, v) d (E,ϕ ∧ ϕ′ ∧ p)

PpR5 If (P>0A,ϕ) ∈ S∗(X, v), then S∗(X,P>0A) := S∗(X,P>0A) d (A,ϕ)

PpR6 If (P=1A,ϕ) ∈ S∗(X, v), v 6= 0, then S∗(X, v) := S∗(X, v) d (A,ϕ)

PpR7 If (A,ϕ) ∈ S∗(X, v) and v 6= 0, P>0A ∈ PT0
then S∗(X, v′) := S∗(X, v

′) d (P>0A,ϕ)

PpR8 If (A,ϕ) ∈ S∗(X, 1) and P=1A ∈ PT1 , then S∗(X, v) := S∗(X, v) d (P=1A,ϕ)

PpR9 If α1 = r(a, b) ∈ A, (C,ϕ) ∈ S(b, 0), α2 = ∃r.C v D ∈ T ,
lab(α1) = p1, and lab(α2) = p2 then S(a, 0) := S(a, 0) d (D,ϕ ∧ p1 ∧ p2)

PpR10 If α1 = P>0r(a, b) ∈ A, (C,ϕ) ∈ S(b, P>0r(a, b)), α2 = ∃r.C v D ∈ T ,
lab(α1) = p1, and lab(α2) = p2
then S(a, P>0r(a, b)) := S(a, P>0r(a, b)) d (D,ϕ ∧ p1 ∧ p2)

PpR11 If α1 = P=1r(a, b) ∈ A, (C,ϕ) ∈ S(b, v) with v 6= 0, α2 = ∃r.C v D ∈ T ,
lab(α1) = p1, and lab(α2) = p2 then S(a, v) := S(a, v) d (D,ϕ ∧ p1 ∧ p2)

Fig. 4. Prob-EL01
c completion rules for axiom-pinpointing

For describing the extended completion rules, we need some more notation. For a set
S and a pair (D,ϕ), the operation S d (D,ϕ) is defined as follows: if there exists a ψ
such that (D,ψ) ∈ S, then S d (D,ϕ) := S \ {(D,ψ)} ∪ {(D,ψ ∨ ϕ)}; otherwise,
S d (D,ϕ) := S ∪ {(D,ϕ)}. In other words, if the concept name D already belongs
to S with some associated formula ψ, we modify the formula by adding ϕ to it as a
disjunct; otherwise, we simply add the pair (D,ϕ) to S.

The completion sets are then extended by exhaustively applying the rules shown in
Figure 4, where X ranges over BCT ∪ IN(A), S∗(X, v) stands for S(X, v) if X is an
individual and for S0(X, v), Sε(X, v) if X ∈ BCT , and γ : V → {0, ε} is defined by
γ(0) = 0, and γ(v) = ε for all v ∈ V \ {0}.

To ensure termination of this algorithm, the completion can only be applied if their
application modifies at least one of the completion sets; that is, if either a new pair is
added, or the second element of an existing pair is modified to a (strictly) more general
Boolean formula. Under this applicability condition, this modified algorithm always
terminates, although not necessarily in polynomial time. In fact, every completion set
can contain at most as many pairs as there are concept names in K, and hence polyno-
mially many. Whenever the formula of a pair is changed, it is done so by generalizing
it in the sense that it has more models than the previous one. As there are exponentially

many models, such changes can only be done an exponential number of times. Thus,
in total we can have at most exponentially many rule applications, which take each at
most exponential time; that is, the pinpointing algorithm runs in exponential time in the
size of K.

As stated before, these completion sets make the subsumption and instance rela-
tionships explicit, together with a formula that describe which axioms are responsible
for each of these relationships. It is easy to see that the concepts appearing in the com-
pletion sets are exactly the same that will be obtained by applying the standard com-
pletion rules from Section 3. We thus know that A vK B iff there is some ψ with
(B,ψ) ∈ S0(A, 0) and K |= A(a) iff (A,ψ) ∈ S(a, 0) for some monotone Boolean
formula ψ. Moreover, the pinpointing algorithm maintains the following invariants:

– if (B,ψ) ∈ S0(A, 0), then for every valuation V satisfying ψ, A vKV B,
– if (A,ψ) ∈ S(a, 0), then for every valuation V satisfying ψ, KV |= A(a).

It can also be shown that when the algorithm has terminated, the converse implications
also hold; this is a consequence of the results from [8].

Theorem 16. Given a Prob-EL01
c -knowledge base in normal form, the pinpointing al-

gorithm terminates in exponential time. After termination, the following holds for every
concept name A and individual name a appearing in K:

if (A,ψ) ∈ S(a, 0), then ψ is a pinpointing formula for K w.r.t. A(a).

We have so far described how to find the MinAs of a normalized knowledge base
w.r.t. instance and subsumption relations. We now show how to extend this method to
deal also with non-normalized knowledge bases; that is, to obtain the MinAs referring to
the original axioms of the knowledge base and not to their normalized versions. Before
going into the details, it is worth noticing that the relationship between original axioms
and normalized axioms is many-to-many: one axiom in the original knowledge base
may produce several axioms in the normalized one, while one axiom in the normalized
knowledge base can be due to the presence of several axioms from the original one.
An example of the latter can be given by the two axioms A v B, A v B u C. The
normalization rules change these axioms into A v B,A v C, but the first axiom has
two sources; that is, it will appear in the normalized knowledge base whenever any of
the two original axioms is present.

Let K̂ be an arbitrary Prob-EL01
c -knowledge base andK its normalized version. If φ

is a pinpointing formula for K w.r.t. an instance or subsumption relation, that uses only
basic concepts appearing in K̂, then we can modify φ into a pinpointing formula for the
original knowledge base K̂ as follows. As in the case of normalized knowledge bases,
each axiom in K̂ is associated with a unique propositional variable. Each normalized
axiom in K has a finite number of original axioms that created it—at most as many
as there were in the original knowledge base. We modify the pinpointing formula φ
by replacing the propositional formula associated to each normalized axiom by the
disjunction of the labels of all its sources. We thus obtain a new pinpointing formula
that speaks of the original ontology K̂. In the above example, let lab(A v B) = p1
and lab(A v B u C) = p2, and suppose that the labels of the normalized ontology
are lab(A v B) = q1, lab(A v C) = q2, and that the knowledge base also contains

an assertion A(a) with label q3. The pinpointing formula for the normalized ontology
w.r.t.B(a) is q1∧q3. For the original ontology, this formula is changed to (p1∨p2)∧q3.

It is worth commenting on the execution time of the pinpointing algorithm and the
complexity of finding all MinAs. Recall that computing all MinAs is crucial when re-
solving an unwanted consequence of a knowledge base. As described before, the algo-
rithm takes exponential time to compute all instance and subsumption relations between
concept names and individual names, with their respective pinpointing formulas. These
formulas may be exponential in the size of the knowledge base K, however finding one
or all the minimal valuations satisfying a formula is only exponential on the number
of propositional variables appearing in that formula, hence, we can compute one or all
MinAs from each of these pinpointing formulas in exponential time in the size of K.
Since classification of an EL TBox is a special case of our setting—where the ABox A
is empty and no probabilistic concepts are used—our algorithm yields an optimal up-
per bound on the complexity of pinpointing for Prob-EL01

c . Indeed, it has been shown
that finding all MinAs for one subsumption relation in EL requires already exponential
time [17]. Additionally, other kinds of tasks like finding a MinA of least cardinality
or the first MinA w.r.t. some underlying ordering, can be also solved by computing
the related valuations over the pinpointing formula; this is in particular beneficial, as
the various optimizations developed in the SAT community, and in particular the very
efficient modern SAT/SMT-solvers, can be exploited.

6 Conclusions

In this paper we have presented a practical method for computing the role-depth bounded
msc in EL- and in Prob-EL01

c - w.r.t. a general TBox or cyclic ABoxes. Our approach is
based on the completion sets that are computed during realization of a knowledge base.
Thus, any of the available implementations of the EL completion algorithm, as for in-
stance JCEL4 [16] can be easily extended to an implementation of the (approximative)
msc computation algorithm – as it is provided in the GEL system5. We also showed that
the same idea can be adapted for the computation of the msc in the probabilistic DL
Prob-EL01

c .
Together with the completion-based computation of role-depth bounded (least) com-

mon subsumers given in [19] these results complete the bottom-up approach for general
EL- and Prob-EL01

c -knowledge bases. This approach yields a practical method to com-
pute commonalities for differing observations regarding individuals. To the best of our
knowledge this has not been investigated for DLs that can express uncertainty.

We have also applied the ideas of axiom-pinpointing to compute explanations for
instance relationships that follow from a Prob-EL01

c -knowledge base. To the best of
our knowledge this is also the first time that axiom-pinpointing has been applied to
instance relationships, even for crisp DLs. The glass-box approach proposed modifies
the computation of the completion sets to include an encoding of the axiomatic causes
for a concept to be added to each set. Understanding the causes for some unexpected
instance relationships is an important first step towards correcting a knowledge base,

4 http://jcel.sourceforge.net/
5 http://gen-el.sourceforge.net/

specially in the case of automatically generated ones, as done through the bottom-up
approach described before. In general, finding out the precise axioms responsible for an
unwanted consequence is a very hard task, even for experts, due to the large number of
axioms available. When dealing with uncertainty, the difficulty grows, as the probabil-
ities may interact in unexpected ways. Thus, being able to explain the consequences of
a Prob-EL01

c ontology automatically is of special importance.

References

1. F. Baader. Least common subsumers and most specific concepts in a description logic with
existential restrictions and terminological cycles. In G. Gottlob and T. Walsh, editors, Proc.
of the 18th Int. Joint Conf. on Artificial Intelligence (IJCAI-03), pages 325–330. Morgan
Kaufmann, 2003.

2. F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proc. of the 19th Int.
Joint Conf. on Artificial Intelligence (IJCAI-05), Edinburgh, UK, 2005. Morgan-Kaufmann
Publishers.

3. F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope further. In K. Clark and P. F.
Patel-Schneider, editors, In Proc. of the OWLED Workshop, 2008.

4. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors. The
Description Logic Handbook: Theory, Implementation, and Applications. Cambridge Uni-
versity Press, 2003.

5. F. Baader, R. Küsters, and R. Molitor. Computing least common subsumers in description
logics with existential restrictions. In T. Dean, editor, Proc. of the 16th Int. Joint Conf. on
Artificial Intelligence (IJCAI-99), pages 96–101, Stockholm, Sweden, 1999. Morgan Kauf-
mann, Los Altos.

6. F. Baader, C. Lutz, and A.-Y. Turhan. Small is again Beautiful in Description Logics. KI –
Künstliche Intelligenz, 24(1):25–33, April 2010.

7. F. Baader and R. Peñaloza. Axiom pinpointing in general tableaux. Journal of Logic and
Computation, 20(1):5–34, 2010. Special Issue: Tableaux and Analytic Proof Methods.

8. F. Baader and R. Peñaloza. Axiom pinpointing in general tableaux. Journal of Logic and
Computation, 20(1):5–34, 2010. Special Issue: Tableaux and Analytic Proof Methods.

9. F. Baader, R. Peñaloza, and B. Suntisrivaraporn. Pinpointing in the description logic EL+.
In Proc. of the 30th German Annual Conf. on Artificial Intelligence (KI’07), volume 4667 of
Lecture Notes In Artificial Intelligence, pages 52–67, Osnabrück, Germany, 2007. Springer.

10. F. Baader and B. Suntisrivaraporn. Debugging SNOMED CT using axiom pinpointing in the
description logic EL+. In Proceedings of the International Conference on Representing and
Sharing Knowledge Using SNOMED (KR-MED’08), Phoenix, Arizona, 2008.

11. S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F. Patel-
Schneider, and L. A. Stein. OWL web ontology language reference. W3C Recommendation,
February 2004. http://www.w3.org/TR/owl-ref/.

12. A. Kalyanpur, B. Parsia, M. Horridge, and E. Sirin. Finding all justifications of OWL DL
entailments. In The Semantic Web, 6th International Semantic Web Conference, 2nd Asian
Semantic Web Conference, ISWC 2007 + ASWC 2007, Busan, Korea, November 11-15, 2007,
volume 4825 of Lecture Notes in Computer Science, pages 267–280, 2007.

13. R. Küsters and R. Molitor. Approximating most specific concepts in description logics with
existential restrictions. AI Communications, 15(1):47–59, 2002.

14. T. Lukasiewicz and U. Straccia. Managing uncertainty and vagueness in description logics
for the semantic web. J. Web Sem., 6(4):291–308, 2008.

15. C. Lutz and L. Schröder. Probabilistic description logics for subjective probabilities. In
F. Lin and U. Sattler, editors, Proc. of the 12th Int. Conf. on the Principles of Knowledge
Representation and Reasoning (KR-10), 2010.

16. J. Mendez, A. Ecke, and A.-Y. Turhan. Implementing completion-based inferences for the
EL-family. In R. Rosati, S. Rudolph, and M. Zakharyaschev, editors, Proc. of the 2011
Description Logic Workshop (DL 2011), volume 745. CEUR, 2011.

17. R. Peñaloza and B. Sertkaya. On the complexity of axiom pinpointing in the el family
of description logics. In F. Lin, U. Sattler, and M. Truszczynski, editors, Proceedings of the
Twelfth International Conference on Principles of Knowledge Representation and Reasoning
(KR 2010). AAAI Press, 2010.

18. R. Peñaloza and A.-Y. Turhan. Completion-based computation of most specific concepts
with limited role-depth for EL and prob-EL01. LTCS-Report LTCS-10-03, Chair f. Automata
Theory, Inst. for Theoretical Computer Science, TU Dresden, Germany, 2010.

19. R. Peñaloza and A.-Y. Turhan. Role-depth bounded least common subsumers by completion
for EL- and Prob-EL-TBoxes. In V. Haarslev, D. Toman, and G. Weddell, editors, Proc. of
the 2010 Description Logic Workshop (DL’10), 2010.

20. R. Peñaloza and A.-Y. Turhan. Towards approximative most specific concepts by completion
for EL01 with subjective probabilities. In T. Lukasiewicz, R. Peñaloza, and A.-Y. Turhan, ed-
itors, Proceedings of the First International Workshop on Uncertainty in Description Logics
(UniDL’10), 2010.

21. R. Peñaloza and A.-Y. Turhan. A practical approach for computing generalization inferences
in EL. In M. Grobelnik and E. Simperl, editors, Proc. of the 8th European Semantic Web
Conf. (ESWC’11), Lecture Notes in Computer Science. Springer, 2011.

22. S. Schlobach and R. Cornet. Non-standard reasoning services for the debugging of descrip-
tion logic terminologies. In G. Gottlob and T. Walsh, editors, Proc. of the 18th Int. Joint
Conf. on Artificial Intelligence (IJCAI-03), pages 355–362, Acapulco, Mexico, 2003. Mor-
gan Kaufmann, Los Altos.

23. K. Spackman. Managing clinical terminology hierarchies using algorithmic calculation of
subsumption: Experience with snomed-rt. Journal of the American Medical Informatics
Assoc., 2000. Fall Symposium Special Issue.

24. T. Springer and A.-Y. Turhan. Employing description logics in ambient intelligence for mod-
eling and reasoning about complex situations. Journal of Ambient Intelligence and Smart
Environments, 1(3):235–259, 2009.

25. W3C OWL Working Group. OWL 2 web ontology language document overview.
W3C Recommendation, 27th October 2009. http://www.w3.org/TR/2009/
REC-owl2-overview-20091027/.

Most Specific Generalizations w.r.t. General EL-TBoxes

Benjamin Zarrieß and Anni-Yasmin Turhan∗

Institute for Theoretical Computer Science, Technische Universität Dresden, Germany
{zarriess,turhan}@tcs.inf.tu-dresden.de

Abstract

In the area of Description Logics the least common
subsumer (lcs) and the most specific concept (msc)
are inferences that generalize a set of concepts or
an individual, respectively, into a single concept. If
computed w.r.t. a general EL-TBox neither the lcs
nor the msc need to exist. So far in this setting no
exact conditions for the existence of lcs- or msc-
concepts are known. This paper provides necessary
and sufficient conditions for the existence of these
two kinds of concepts. For the lcs of a fixed number
of concepts and the msc we show decidability of the
existence in PTime and polynomial bounds on the
maximal role-depth of the lcs- and msc-concepts.
This bound allows to compute the lcs and the msc,
respectively.

1 Introduction
Description Logics (DL) allow to model application domains
in a structured and well-understood way. Due to their formal
semantics, DLs can offer powerful reasoning services.

In recent years the lightweight DL EL became popular as
an ontology language for large-scale ontologies. EL provides
the logical underpinning of the OWL 2 EL profile of the W3C
web ontology language [W3C OWL Working Group, 2009],
which is used in important life science ontologies, as for in-
stance, SNOMED CT [Spackman, 2000] and the thesaurus of
the US national cancer institute (NCI) [Sioutos et al., 2007],
which contain ten thousands of concepts. The reason for the
success of EL is that it offers limited, but sufficient expres-
sive power, while reasoning can still be done in polynomial
time [Baader et al., 2005].

In DLs basic categories from an application domain can be
captured by concepts and binary relations by roles. Implica-
tions between concepts can be specified in the so-called TBox.
A general TBox allows complex concepts on both sides of im-
plications. Facts from the application domain can be captured
by individuals and their relations in the ABox.

∗Partially supported by the German Research Foundation (DFG)
in the Collaborative Research Center 912 “Highly Adaptive Energy-
Efficient Computing”.

Classical inferences for DLs are subsumption, which com-
putes the sub- and super-concept relationships of named con-
cepts and instance checking, which determines for a given
individual whether it belongs to a given concept. Reasoning
support for the design and maintenance of large ontologies
can be provided by the bottom-up approach, which allows to
derive a new concept from a set of example individuals, see
[Baader et al., 1999]. For this kind of task the generaliza-
tion inferences least common subsumer (lcs) and most spe-
cific concept (msc) are investigated for lightweight DLs like
EL. The lcs of a collection of concepts is a complex concept
that captures all commonalities of these concepts. The msc
generalizes an individual into a complex concept, that is the
most specific one (w.r.t. subsumption) of which the individual
is an instance of.

Unfortunately, neither the lcs nor the msc need to exist, if
computed w.r.t. general EL-TBoxes [Baader, 2003] or cyclic
ABoxes written in EL [Küsters and Molitor, 2002]. Let’s
consider the TBox statements:

Penicillin v Antibiotic u ∃kills.S-aureus,

Carbapenem v Antibiotic u ∃kills.E-coli,

S-aureus v Bacterium u ∃resistantMutant.Penicillin,

E-coli v Bacterium u ∃resistantMutant.Carbapenem

We want to compute the lcs of Penicillin and Carbapenem.
Now, both concepts are defined by the type of bacterium they
kill. These, in turn, are defined by the substance a mutant
of theirs is resistant to. This leads to a cyclic definition and
thus the common subsumer cannot be captured by a finite EL-
concept, since this would need to express the cycle. If com-
puted w.r.t. a TBox that extends the above one by the axioms:

Antibiotic v ∃kills.Bacterium,

Bacterium v ∃resistantMutant.Antibiotic,

then the lcs of Penicillin and Carbapenem is just Antibiotic.
We can observe that the existence of the lcs does not merely
depend on whether the TBox is cyclic. In fact, for cyclic EL-
TBoxes exact conditions for the existence of the lcs have been
devised [Baader, 2004]. However, for the case of general EL-
TBoxes such conditions are unknown.

There are several approaches to compute generalizations
even in this setting. In [Lutz et al., 2010] an extension of

EL with greatest fixpoints was introduced, where the gener-
alization concepts always exist. Computation algorithms for
approximative solutions for the lcs were devised in [Baader
et al., 2007; Peñaloza and Turhan, 2011b] and for the msc in
[Küsters and Molitor, 2002]. The last two methods simply
compute the generalization concept up to a given k, a bound
on the maximal nestings of quantifiers. If the lcs or msc ex-
ists and a large enough k was given, then these methods yield
the exact solutions. However, to obtain the least common
subsumer and the most specific concept by these methods in
practice, a decision procedure for the existence of the lcs or
msc, resp., and a method for computing a sufficient k are still
needed. This paper provides these methods for the lcs and the
msc.

In this paper we first introduce basic notions for the DL EL
and its canonical models, which serve as a basis for the char-
acterization of the lcs introduced in the subsequent section.
There we show that the characterization can be used to verify
whether a given generalization is the most specific one and
that the size of the lcs, if it exists, is polynomially bounded in
the size of the input, which yields a decision procedure for the
existence problem. In Section 4 we show the corresponding
results for the msc. We end with some conclusions.

2 Preliminaries
2.1 The Description Logic EL
Let NC , NR and NI be disjoint sets of concept, role and in-
dividual names. Let A ∈ NC and r ∈ NR. EL-concepts are
built according to the syntax rule

C ::= > | A | C uD | ∃r.C
An interpretation I = (∆I , ·I) consists of a non-empty

domain ∆I and a function ·I that assigns subsets of ∆I to
concept names, binary relations on ∆I to role names and ele-
ments of ∆I to individual names. The function is extended to
complex concepts in the usual way. For a detailed description
of the semantic of DLs see [Baader et al., 2003].

Let C, D denote EL-concepts. A general concept inclu-
sion (GCI) is an expression of the form C v D. A (general)
TBox T is a finite set of GCIs. A GCI C v D is satisfied
in an interpretation I if CI ⊆ DI . An interpretation I is a
model of a TBox T if it satisfies all GCIs in T .

Let a, b ∈ NI , r ∈ NR and C a concept, then C(a) is a
concept assertion and r(a, b) a role assertion. An interpreta-
tion I satisfies an assertion C(a) if aI ∈ CI and r(a, b) if
(aI , bI) ∈ rI holds. An ABox A is a finite set of assertions.
An interpretation I is a model of an ABox A if it satisfies
all assertions in A. A knowledge base (KB) K consists of
a TBox and an ABox (K = (T ,A)). An interpretation is a
model of K = (T ,A) if it is a model of T and A.1

Important reasoning tasks considered for DLs are sub-
sumption and instance checking. A conceptC is subsumed by
a concept D w.r.t. a TBox T (denoted C vT D) if CI ⊆ DI
holds in all models I of T . A concept C is equivalent to a

1Since we only use the DL EL, we write ‘concept’ instead of
‘EL-concept’ and assume all TBoxes, ABoxes and KBs to be written
in EL in the following.

concept D w.r.t. a TBox T (denoted C ≡T D) if C vT D
and D vT C hold. A reasoning service dealing with a KB is
instance checking. An individual a is instance of the concept
C w.r.t. K (denoted K |= C(a)) if aI ∈ CI holds in all mod-
els I of K. These two reasoning problems can be decided for
EL in polynomial time [Baader et al., 2005].

Based on subsumption and instance checking our two in-
ferences of interest least common subsumer (lcs) and most
specific concept (msc) are defined.

Definition 1. Let C,D be concepts and T a TBox. The con-
cept E is the lcs of C, D w.r.t. T (lcsT (C,D)) if the proper-
ties

1. C vT E and D vT E, and

2. C vT F and D vT F implies E vT F .

are satisfied. If a conceptE satisfies Property 1 it is a common
subsumer of C and D w.r.t. T .

The lcs is unique up to equivalence, while common sub-
sumers are not unique, thus we write G ∈ csT (C,D).

The role depth rd(C) of a concept C denotes the maximal
nesting depth of ∃ inC. If, in Definition 1 the conceptsE and
F have a role-depth up to k, thenE is the role-depth bounded
lcs (k-lcsT (C,D)) of C and D w.r.t. T .
NI,A is the set of individual names used in an ABox A.

Definition 2. Let a ∈ NI,A and K = (T ,A) a KB. A con-
cept C is the most specific concept of a w.r.t. K (mscK(a)) if
it satisfies:

1. K |= C(a), and 2. K |= D(a) implies C vT D.

If in the last definition the concepts C and D have a role-
depth limited to k, then C is the role depth bounded msc of a
w.r.t. K (k-mscK(a)). The msc and the k-msc are unique up
to equivalence in EL.

2.2 Canonical Models and Simulation Relations
The correctness proof of the computation algorithms for the
lcs and msc depends on the characterization of subsumption
and instance checking, respectively. In case of an empty
TBox, homomorphisms between syntax trees of concepts
[Baader et al., 1999] were used. A characterization w.r.t.
general TBoxes using canonical models and simulations was
given in [Lutz and Wolter, 2010], which we want to use in the
following.

Let X be a concept, TBox, ABox or KB, then NC,X
(NR,X) denotes the set of concept names (role names) oc-
curring in X and sub(X) denotes the subconcepts in X .

Definition 3. Let C be a concept and T a TBox.
The canonical model IC,T of C and T is defined as follows:

∆IC,T := {dC} ∪ {dD | ∃r.D ∈ sub(C) ∪ sub(T)};
AIC,T := {dD | D vT A}, for all A ∈ NC,T
rIC,T := {(dD, dE) | D vT ∃r.E for ∃r.E ∈ sub(T)

or ∃r.E is conjunct in D}, for all r ∈ NR,T .

The notion of a canonical model can be extended to a KB.

Definition 4. LetK = (T ,A) be a KB. The canonical model
IK w.r.t. K is defined as follows:

∆IK := {da | a ∈ NI,A} ∪ {dC | ∃r.C ∈ sub(K)}
AIK := {da | K |= A(a)} ∪ {dC | C vT A},

for all A ∈ NC,K;

rIK := {(dC , dD) | C vT ∃r.D,∃r.D ∈ sub(T)}
∪{(da, db) | r(a, b) ∈ A}, for all r ∈ NR,K;

aIK := da, for all a ∈ NI,A.
To identify some properties of canonical models we use

simulation relations between interpretations.
Definition 5. Let I1, I2 be interpretations. S ⊆ ∆I1 ×∆I2
is a simulation between I1 and I2 if the following conditions
are satisfied for all A ∈ NC and for all r ∈ NR:
(S1) If (e1, e2) ∈ S and e1 ∈ AI1 , then e2 ∈ AI2 .
(S2) If (e1, e2) ∈ S and (e1, e

′
1) ∈ rI1 , then there exists

e′2 ∈ ∆I2 s.t. (e2, e
′
2) ∈ rI2 and (e′1, e

′
2) ∈ S.

The tuple (I, d) denotes an interpretation I with d ∈ ∆I .
If there exists a simulation S ⊆ ∆I × ∆J with (d, e) ∈ S,
we write (I, d) . (J , e) and say (J , e) simulates (I, d). We
write (I, d) ' (J , e) if (I, d) . (J , e) and (J , e) . (I, d)
holds. We summarize some important properties of canonical
models.
Lemma 6. [Lutz and Wolter, 2010] Let C be a concept and
T a TBox.

1. IC,T is a model of T .

2. For all models I of T and all d ∈ ∆I holds:
d ∈ CI iff (IC,T , dC) . (I, d).

3. C vT D iff dC ∈ DIC,T iff (ID,T , dD) . (IC,T , dC).
This Lemma gives us a characterization of subsumption. A

similar Lemma was shown for the instance relationship.
Lemma 7. [Lutz and Wolter, 2010] Let K be a KB. IK satis-
fies: 1. IK is a model of K. 2. K |= C(a) iff da ∈ CIK .

Next, we recall some known operations on interpretations.
Taking an element d of the domain of an interpretation as
the root, the interpretation can be unraveled into a possibly
infinite tree. The nodes of the tree are words that correspond
to paths starting in d. We have that π = dr1d1r2d2r3... is
a path in an interpretation I, if the domain elements di and
di+1 are connected via rIi+1 for all i.

Definition 8. Let I be an interpretation with d ∈ ∆I . The
tree unraveling Id of I in d is defined as follows:
∆Id := {dr1d1r2...rndn | (di, di+1) ∈ rIi+1, i ≥ 0, d0 = d}
AId := {σd′ | σd′ ∈ ∆Id ∧ d′ ∈ AI}
rId := {(σ, σrd′) | (σ, σrd′) ∈ ∆Id ×∆Id}.
The length of an element σ ∈ ∆Id , denoted by |σ|, is the

number of role names occurring in σ. If σ is of the form
dr1d1r2...rmdm, then dm is the tail of σ denoted by tail(σ) =
dm. The interpretation I`d denotes the finite subtree of the tree
unraveling Id up to depth `. Such a tree can be translated into
an `-characteristic concept of an interpretation (I, d).

Definition 9. Let (I, d) be an interpretation. The `-
characteristic concept X`(I, d) is defined as follows:

• X0(I, d) :=
d{A ∈ NC | d ∈ AI}

• X`(I, d) :=

X0(I, d) u
l

r∈NR

l
{∃r.X`−1(I, d′) | (d, d′) ∈ rI}

3 Existence of Least Common Subsumers
In this section we develop a decision procedure for the prob-
lem whether for two given concepts and a given TBox the
least common subsumer of these two concepts exists w.r.t. the
given TBox. If not stated otherwise, the two input concepts
are denoted by C and D and the TBox by T .

Similar to the approach used in [Baader, 2004] we proceed
by the following steps:

1. Devise a method to identify lcs-candidates for the lcs.
The set of lcs-candidates is a possibly infinite set of common
subsumers of C and D w.r.t. T , such that if the lcs exists then
one of these lcs-candidates actually is the lcs.

2. Characterize the existence of the lcs. Find a condition
such that the problem whether a given common subsumer of
C andD w.r.t. T is least (w.r.t.vT), can be decided by testing
this condition.

3. Establish an upper bound on the role-depth of the lcs.
We give a bound ` such that if the lcs exists, then it has a role-
depth less or equal `. By such an upper bound one needs to
check only for finitely many of the lcs-candidates if they are
least (w.r.t. vT).

The next subsection addresses the first two problems, af-
terwards we show that such a desired upper bound exists.

3.1 Characterizing the Existence of the lcs
The characterization presented here is based on the product
of canonical models. This product construction is adopted
from [Baader, 2003; Lutz et al., 2010] where it was used to
compute the lcs in ELwith gfp-semantics and in the DL ELν ,
respectively.

To obtain the k-lcsT (C,D) we build the product of the
canonical models (IC,T , dC) and (ID,T , dD) and then take
the k-characteristic concept of this product model.

Lemma 10. Let k ∈ N.

1. Xk(IC,T × ID,T , (dC , dD)) ∈ csT (C,D).

2. Let E ∈ csT (C,D) with rd(E) ≤ k. It holds that
Xk(IC,T × ID,T , (dC , dD)) vT E.

This and all the proofs omitted in this paper due to space
constraints can be found in [Zarrieß and Turhan, 2013].

In the following we take Xk(IC,T × ID,T , (dC , dD)) as a
representation of the k-lcsT (C,D). It is implied by Lemma
10 that the set of k-characteristic concepts of the product
model (IC,T × ID,T , (dC , dD)) for all k is the set of lcs-
candidates for the lcsT (C,D), which can be stated as follows.

Corollary 11. The lcsT (C,D) exists iff there exists a k ∈ N
such that for all ` ∈ N: k-lcsT (C,D) vT `-lcsT (C,D).

P,C

S,E

∈ AI ∈ BI killsI resistantMutantI

P,C

S,E S,B

P,A

B,E

A,C

B,B

A,A

A

B

A u ∃ kills.(B u ∃resistantMutant.A)

B u ∃resistantMutant.A

A

IP,T1 × IC,T1 IP,T2 × IC,T2 IA,T2IAu∃kills.(Bu∃resistantMutant.A),T1

Figure 1: Product of canonical models of T1 and T2

Obviously, this doesn’t yield a decision procedure for the
problem whether the k-lcsT (C,D) is the lcs, since subsump-
tion cannot be checked for infinitely many ` in finite time.

Next, we address step 2 and show a condition on the com-
mon subsumers that decides whether a common subsumer is
least or not. The main idea is that the product model captures
all commonalities of the input concepts by means of canon-
ical models. Thus we compare the canonical models of the
common subsumers and the product model using simulation-
equivalence '.

Lemma 12. Let E be a concept. E ≡T lcsT (C,D) iff
(IC,T × ID,T , (dC , dD)) ' (IE,T , dE).

Proof sketch. For any F ∈ csT (C,D) it holds by Lemma 6,
Claim 3 that (IF,T , dF) is simulated by (IC,T , dC) and
(ID,T , dD) and therefore also by (IC,T × ID,T , (dC , dD)).

Assume (IE,T , dE) is simulation-equivalent to the product
model. We need to show that E ≡T lcsT (C,D). By transi-
tivity of . it is implied that (IF,T , dF) . (IE,T , dE) and
E vT F by Lemma 6. Therefore E ≡T lcsT (C,D).

For the other direction assume E ≡T lcsT (C,D). It has
to be shown that (IE,T , dE) simulates the product model.
Let J(dC ,dD) be the tree unraveling of the product model.
Since E is more specific than the k-characteristic concepts
of the product model for all k (by Corollary 11), (IE,T , dE)
simulates the subtree J k(dC ,dD) of J(dC ,dD) limited to ele-
ments up to depth k, for all k. For each k we consider the
maximal simulation from J k(dC ,dD) to (IE,T , dE). Note that
((dC , dD), dE) is contained in any of these simulations. Let
σ be an element of ∆J(dC,dD) at an arbitrary depth `. We
show how to determine the elements of ∆IE,T , that simu-
late this fixed element σ. Let Sn(σ) be the maximal set of
elements from ∆IE,T that simulate σ in each of the trees
J n(dC ,dD) with n ≥ `. We can observe that the infinite se-
quence (S`+i(σ))i=0,1,2,... is decreasing (w.r.t.⊇). Therefore
at a certain depth we reach a fixpoint set. This fixpoint set
exists for any σ. It can be shown that the union of all these
fixpoint sets yields a simulation from the product model to
(IE,T , dE).

By the use of this Lemma it can be verified whether a given
common subsumer is the least one or not, which we illustrate
by an example.

Example 13. Consider again the TBox from the introduction
(now displayed with abbreviated concept names)

T1 = {P v A u ∃kills.S, S v B u ∃resistantMutant.P,

C v A u ∃kills.E, E v B u ∃resistantMutant.C}
and the following extended TBox

T2 = T1 ∪ {A v ∃kills.B, B v ∃resistantMutant.A}.
In Figure 1 we can see that

A u ∃kills.(B u ∃resistantMutant.A) ∈ csT1(P,C),

but it is not the lcs, because its canonical model cannot sim-
ulate the product model (IP,T1 × IC,T1 , (dP, dC)). The con-
cept A, however, is the lcs of P and C w.r.t. T2. We have
(IP,T2 × IC,T2 , (dP, dC)) . (IA,T2 , dA) since any element
from ∆IP,T2

×IC,T2 in AIP,T2
×IC,T2 or BIP,T2

×IC,T2 is simu-
lated by A or B , respectively.

The characterization of the existence of the lcs given in
Corollary 11 can be reformulated using Lemma 12.
Corollary 14. The lcsT (C,D) exists iff there exists a k such
that the canonical model ofXk(IC,T ×ID,T , (dC , dD)) w.r.t.
T simulates (IC,T × ID,T , (dC , dD)).

This corollary still doesn’t yield a decision procedure for
the existence problem, since the depth k is still unrestricted.
Such a restriction will be developed in the next section.

3.2 A Polynomial Upper Bound on the Role-depth
of the lcs

In this section we show that, if the lcs exists, its role-depth
is bounded by the size of the product model. First, con-
sider again the TBox T2 from Example 13, where A vT2
∃kills.(B u ∃resistantMutant.A) holds, which results in a loop
in the product model through the elements A,A and B,B .
Furthermore, the cycles in the product model involving the
roles kills and resistantMutant are captured by the canonical
model IA,T2 . Therefore A ≡T2 lcsT2(P,C). On this observa-
tion we build our general method.

We call elements (dF , dF ′) ∈ ∆IC,T ×ID,T synchronous
if F = F ′ and asynchronous otherwise. The structure of
(IC,T ×ID,T , (dC , dD)) can now be simplified by consider-
ing only synchronous successors of synchronous elements.

In order to find a number k, such that the prod-
uct model is simulated by the canonical model of

K = Xk(IC,T × ID,T , (dC , dD)), we first represent the
model (IK,T , dK) as a subtree of the tree unraveling of the
product model J(dC ,dD) with root (dC , dD). We construct
this representation by extending the subtree J k(dC ,dD) by new
tree models at depth k. We need to ensure that the result-
ing interpretation, denoted by Ĵ k(dC ,dD), is a model of T ,
that is simulation-equivalent to (IK,T , dK). The elements

σ ∈ ∆J
k
(dC,dD) with |σ| = k that we extend and the corre-

sponding trees we append to them are selected as follows: Let
M be a conjunction of concept names and ∃r.F ∈ sub(T).
If σ ∈ MJ

k
(dC,dD) and M vT ∃r.F , then we append the

tree unraveling of the canonical model I∃r.F,T . Further-
more, we consider elements that have a tail that is a syn-
chronous element. If tail(σ) = (dF , dF), then F is called
tail concept of σ. To select the elements with a synchronous
tail, that we extend by the canonical model of their tail con-
cept, we use embeddings of J k(dC ,dD) into (IK,T , dK). Let
H = {Z1, ..., Zn} be the set of all functional simulations
Zi from J k(dC ,dD) to (IK,T , dK) with Zi((dC , dD)) = dK .
We say that σ with tail concept F is matched by Zi if
Zi(σ) ∈ F IK,T . The set of elements σ ∈ ∆J

k
(dC,dD) with

|σ| = k, that are matched by a functional simulation Zi is
called matching set, denoted by M(Zi). Now consider the
setM(H) := {M(Z1), ...,M(Zn)}. If σ is contained in all
maximal matching sets fromM(H), then we extend σ by the
tree unraveling of the canonical model of its tail concept w.r.t.
T .

We can show that the resulting interpretation Ĵ k(dC ,dD) has
the desired properties.

Lemma 15. LetK = Xk(IC,T ×ID,T , (dC , dD)). Ĵ k(dC ,dD)

is a model of T and Ĵ k(dC ,dD) ' (IK,T , dK).

Having this representation of the canonical model of the
k-lcsT (C,D) we first show a sufficient condition for the ex-
istence of the lcs.

Corollary 16. If all cycles in (IC,T × ID,T , (dC , dD)), that
are reachable from (dC , dD) consist of synchronous elements,
then the lcsT (C,D) exists.

Proof sketch. There exists an ` ∈ N such that all paths in the
tree unraveling J(dC ,dD) of (IC,T ×ID,T , (dC , dD)) starting
in (dC , dD) have a maximal asynchronous prefix up to length
`, i.e., if there exists an element at depth ≥ ` + 1, then it is a
synchronous element. Consider the number

m := max({rd(F) | F ∈ sub(T) ∪ {C,D}}).
We unravel (IC,T × ID,T , (dC , dD)) up to depth `+m+ 1

such that we get J `+m+1
(dC ,dD). Now it is ensured that the cor-

responding model Ĵ `+m+1
(dC ,dD) contains all paths with a maxi-

mal asynchronous prefix up to length `. It is implied that
Ĵ `+m+1
(dC ,dD) = J(dC ,dD). From Lemma 15 and Corollary 14 it

follows that X`+m+1(IC,T ×ID,T , (dC , dD)) is the lcs.

As seen in Example 13 for T2, this is not a necessary con-
dition for the existence of the lcs.

d0p =

σ0p` =

d1

σ1

d2

σ2

d3

σ3

· · ·

· · ·

r1

r1

r2

r2

r3

r3

r4

r4

S S S S

Figure 2: simulation chain of p and p`

Another consequence of Lemma 15 is, that if the product
model (IC,T × ID,T , (dC , dD)) has only asynchronous cy-
cles reachable from (dC , dD), then the lcsT (C,D) does not
exist. Since in this case J(dC ,dD) is infinite but Ĵ k(dC ,dD) is fi-
nite for all k ∈ N, a simulation from (IC,T ×ID,T , (dC , dD))

to Ĵ k(dC ,dD) never exists for all k. For instance, this case ap-
plies to Example 13 w.r.t. to T1.

The interesting case is where we have both asynchronous
and synchronous cycles reachable from (dC , dD) in the
product model. In this case we choose a k that is large
enough and then check whether the canonical model of
Xk(IC,T × ID,T , (dC , dD)) w.r.t. T simulates the product
model.

We show in the next Lemma that the role-depth of the
lcsT (C,D), if it exists, can be bounded by a polynomial, that
is quadratic in the size of the product model.

Lemma 17. Let n := |∆IC,T ×ID,T | and
m := max({rd(F) | F ∈ sub(T)∪{C,D}}). If lcsT (C,D)

exists then (IC,T × ID,T , (dC , dD)) . Ĵ n2+m+1
(dC ,dD) .

Proof sketch. Assume lcsT (C,D) exists. From Corollary 14
and Lemma 15 it follows that there exists a number ` such
that

(IC,T × ID,T , (dC , dD)) . Ĵ `(dC ,dD). (1)

Every path in Ĵ `(dC ,dD) has a maximal asynchronous prefix of
length ≤ `. From depth ` + 1 on there are only synchronous
elements in the tree Ĵ `(dC ,dD). From (1) it follows that every
path p in (IC,T × ID,T , (dC , dD)) starting in (dC , dD), is
simulated by a corresponding path p` in Ĵ `(dC ,dD) also starting
in (dC , dD). The simulation chain of p and p` is depicted in
Figure 2. The idea is to use the simulating path p` to construct
a simulating path in Ĵ `(dC ,dD) (also starting in (dC , dD)) with
a maximal asynchronous prefix of length ≤ n2, where n2
is the number of pairs of elements from ∆IC,T ×ID,T . Intu-
itively, if p` has a maximal asynchronous prefix that is longer
than n2, then there are pairs in the simulation chain that occur
more than once. This is used to construct a simulating path
with a shorter maximal asynchronous prefix step-wise. After
a finite number of steps the result is a simulating path, such
that all pairs consisting of asynchronous elements in the cor-
responding simulation chain are pairwise distinct. Therefore
we need only asynchronous elements from Ĵ `(dC ,dD) up to
depth n2 to simulate the product model. Then we addm+1 to
n2 to ensure that Ĵ n2+m+1

(dC ,dD) contains all paths from J(dC ,dD)

starting in (dC , dD), that have a maximal asynchronous pre-

fix of length ≤ n2. As argued above Ĵ n2+m+1
(dC ,dD) simulates

(IC,T × ID,T , (dC , dD)).

Using Lemma 12 and Lemma 17 we can now show the
main result of this paper.
Theorem 18. Let C,D be concepts and T a general TBox.
It is decidable in polynomial time whether the lcsT (C,D) ex-
ists. If the lcsT (C,D) exists it can be computed in polynomial
time.

Proof. First we compute the bound k as given in Lemma
17 and then the k-characteristic concept K of (IC,T ×
ID,T , (dC , dD)). The canonical model of K can be build
according to Definition 3 in polynomial time [Baader et al.,
2005]. Next we check whether (IC,T × ID,T , (dC , dD)) .
(IK,T , dK) holds, which can be done in polynomial time. If
yes, K is the lcs by Lemma 12 and if no, the lcs doesn’t exist
by Lemma 17.

The results from this section can be easily generalized to
the lcs of an arbitrary set of concepts M = {C1, ..., Cm}
w.r.t. a TBox T . But in this case the size of the lcs is already
exponential w.r.t. an empty TBox [Baader et al., 1999]. In
this general case we have to take the product model

(IC1,T × · · · × ICm,T , (dC1
, · · · , dCm

)),

whose size is exponential in the size of M and T , as input for
the methods introduced in this section. Then the same steps
as for the binary version can be applied.

4 Existence of Most Specific Concepts
We show now that the results obtained for the lcs, can be
easily applied to the existence problem of the msc.
Example 19 (From [Küsters and Molitor, 2002]). The msc
of the individual a w.r.t. the following KB

K1 = (∅,A1), with A1 = {r(a, a)}
doesn’t exist, whereas w.r.t. the modified KB

K2 = ({C v ∃r.C},A2), with A2 = A1 ∪ {C(a)}
C is the msc of a.

To decide existence of the msc of an individual a w.r.t. a
KB K = (T ,A), we again start with defining the set of msc-
candidates for the msc by taking the k-characteristic concept
of the canonical model (IK, da) of K.
Lemma 20. Let k ∈ N. It holds that K |= Xk(IK, da)(a)
and for a concept E with rd(E) ≤ k, K |= E(a) implies
Xk(IK, da) vT E.

Therefore Xk(IK, da) ≡T k-mscK(a). Now we use the
canonical model of Xk(IK, da) w.r.t. the TBox component
T ofK and the model (IK, da) to check whetherXk(IK, da)
is the most specific concept.
Lemma 21. For a concept C it holds that C ≡T mscK(a) iff
(IK, da) ' (IC,T , dC).

By this Lemma the existence of the msc can be character-
ized as follows.

Corollary 22. The mscK(a) exists iff there exists a k such
that the canonical model of Xk(IK, da) w.r.t. T simulates
(IK, da).

To decide whether an appropriate k exists such that
Xk(IK, da) simulates (IK, da), we further examine the
structure of (IK, da). In Example 19 da has a self-loop in the
model (IK1

, da), but the canonical models of Xk(IK1
, da)

are finite for all k ∈ N, because the TBox is empty. Therefore
a simulation never exists. In comparison, the model (IK2 , da)
has additionally a self-loop at dC and the canonical models of
Xk(IK2 , da) w.r.t. T2 also contain this loop.

Intuitively, in the general case, the elements in ∆IK , that
are elements in bIK (for b ∈ NI,A), correspond to the
asynchronous elements of the product of canonical models
and the elements dC ∈ ∆IK for some concept C, corre-
spond to the synchronous elements. The model (IK, da) also
has an analogous structure compared to the product model
(IC,T × ID,T , (dC , dD)) in the sense that elements in ∆IK ,
that belong to concepts only have successor elements that be-
long to concepts. Therefore similar arguments as presented in
Section 3.2 can be used to show, that a representation of the
canonical model of Xk(IK, da) as a subtree of the tree un-
raveling of (IK, da) can be obtained. This representation is
denoted by Ĵ kda . This model is used to show an upper bound
on the role-depth k of the msc.
Lemma 23. Let m := max({rd(F) | F ∈ sub(K)})
and n := |NI,A|. If the mscK(a) exists, then
(IK, da) . Ĵ n2+m+1

da
.

The results of this section can be summarized in the fol-
lowing theorem.
Theorem 24. Let K = (T ,A) be a KB and a ∈ NI,A. It is
decidable in polynomial time whether the mscK(a) exists. If
the mscK(a) exists, it can be computed in polynomial time.

Proof sketch. First we compute the bound k as given in
Lemma 23 and then the k-characteristic conceptXk(IK, da).
The canonical model of K can be build according to Defi-
nition 4 in polynomial time [Baader et al., 2005]. Then we
check whether (IK, da) . (IC,T , dC) holds, which can be
done in polynomial time. If yes, C is the msc and if no, the
msc doesn’t exist by Corollary 22.

All the proofs omitted here due to space constraints are
given in [Zarrieß and Turhan, 2013].

5 Conclusions
In this paper we have studied the conditions for the existence
of the lcs and of the msc, if computed w.r.t. general TBoxes
or cyclic ABoxes, respectively, written in the DL EL. In this
setting neither the lcs nor the msc need to exist. It was an
open problem to give necessary and sufficient conditions for
their existence. We showed that the existence problem of the
msc and the lcs of two concepts is decidable in polynomial
time. Furthermore, we showed that the role-depth of these
most specific generalizations can be bounded by a polyno-
mial. This upper bound k can be used to compute the msc
or lcs, if it exists. Otherwise the computed concept can still
serve as an approximation [Peñaloza and Turhan, 2011b].

References
[Baader et al., 1999] F. Baader, R. Küsters, and R. Molitor.

Computing least common subsumers in description logics
with existential restrictions. In T. Dean, editor, Proc. of the
16th Int. Joint Conf. on Artificial Intelligence (IJCAI-99),
pages 96–101, Stockholm, Sweden, 1999. Morgan Kauf-
mann, Los Altos.

[Baader et al., 2003] F. Baader, D. Calvanese, D. McGuin-
ness, D. Nardi, and P.F. Patel-Schneider, editors. The De-
scription Logic Handbook: Theory, Implementation, and
Applications. Cambridge University Press, 2003.

[Baader et al., 2005] F. Baader, S. Brandt, and C. Lutz.
Pushing the EL envelope. In Proceedings of the Nine-
teenth International Joint Conference on Artificial Intel-
ligence IJCAI-05. Morgan-Kaufmann Publishers, 2005.

[Baader et al., 2007] F. Baader, B. Sertkaya, and A.-Y.
Turhan. Computing the least common subsumer w.r.t. a
background terminology. Journal of Applied Logic,
5(3):392–420, 2007.

[Baader, 2003] F. Baader. Least common subsumers and
most specific concepts in a description logic with existen-
tial restrictions and terminological cycles. In Georg Gott-
lob and Toby Walsh, editors, Proceedings of the 18th Inter-
national Joint Conference on Artificial Intelligence, pages
319–324. Morgan Kaufman, 2003.

[Baader, 2004] F. Baader. A graph-theoretic generalization
of the least common subsumer and the most specific con-
cept in the description logic EL. In J. Hromkovic and
M. Nagl, editors, Proceedings of the 30th International
Workshop on Graph-Theoretic Concepts in Computer Sci-
ence (WG 2004), volume 3353 of Lecture Notes in Com-
puter Science, pages 177–188. Springer-Verlag, 2004.

[Küsters and Molitor, 2002] R. Küsters and R. Molitor. Ap-
proximating most specific concepts in description log-
ics with existential restrictions. AI Communications,
15(1):47–59, 2002.

[Lutz and Wolter, 2010] C. Lutz and F. Wolter. Deciding in-
separability and conservative extensions in the description
logic EL. Journal of Symbolic Computation, 45(2):194–
228, 2010.

[Lutz et al., 2010] C. Lutz, R. Piro, and F. Wolter. Enrich-
ing EL-concepts with greatest fixpoints. In Proceedings
of the 19th European Conference on Artificial Intelligence
(ECAI’10). IOS Press, 2010.

[Peñaloza and Turhan, 2011b] R. Peñaloza and A.-Y.
Turhan. A practical approach for computing generaliza-
tion inferences in EL. In M. Grobelnik and E. Simperl,
editors, Proc. of the 8th European Semantic Web Conf.
(ESWC’11), Lecture Notes in Computer Science. Springer,
2011.

[Sioutos et al., 2007] N. Sioutos, S. de Coronado, M. W.
Haber, F. W. Hartel, Wen-Ling Shaiu, and Lawrence W.
Wright. NCI thesaurus: A semantic model integrating
cancer-related clinical and molecular information. J. of
Biomedical Informatics, 40(1):30–43, 2007.

[Spackman, 2000] K. Spackman. Managing clinical termi-
nology hierarchies using algorithmic calculation of sub-
sumption: Experience with SNOMED-RT. Journal of the
American Medical Informatics Assoc., 2000. Fall Sympo-
sium Special Issue.

[W3C OWL Working Group, 2009] W3C OWL Working
Group. OWL 2 web ontology language docu-
ment overview. W3C Recommendation, 27th Oc-
tober 2009. http://www.w3.org/TR/2009/
REC-owl2-overview-20091027/.

[Zarrieß and Turhan, 2013] B. Zarrieß and A.-Y. Turhan.
Most specific generalizations w.r.t. general EL-TBoxes.
LTCS-Report 13-06, Chair of Automata Theory, In-
stitute of Theoretical Computer Science, Technische
Universität Dresden, Dresden, Germany, 2013. See
http://lat.inf.tu-dresden.de/research/
reports.html.

A Framework for Semantic-based Similarity
Measures for ELH-Concepts

Karsten Lehmann1,2 and Anni-Yasmin Turhan3?

1 Optimisation Research Group, NICTA; Karsten.Lehmann@nicta.com.au
2 Artificial Intelligence Group, Australian National University
3 Institute for Theoretical Computer, TU Dresden, Germany;

turhan@tcs.inf.tu-dresden.de

Abstract. Similarity measures for concepts written in Description Log-
ics (DLs) are often devised based on the syntax of concepts or simply by
adjusting them to a set of instance data. These measures do not take the
semantics of the concepts into account and can thus lead to unintuitive
results. It even remains unclear how these measures behave if applied to
new domains or new sets of instance data.
In this paper we develop a framework for similarity measures for ELH-
concept descriptions based on the semantics of the DL ELH. We show that
our framework ensures that the measures resulting from instantiations
fulfill fundamental properties, such as equivalence invariance, yet the
framework provides the flexibility to adjust measures to specifics of the
modelled domain.

1 Introduction

Concept similarity measures map a pair of concepts from an ontology to a value
between 0 and 1 indicating how similar the concepts are. These measures are
an important means to discover similar concepts in ontologies. In bio-medical
ontology-based applications, for example the Gene ontology [5], they are em-
ployed to discover functional similarities of genes. Furthermore, concept similar-
ity measures are used in ontology alignment algorithms [9].

A common approach to find and evaluate similarity measures is to have test
data and to tune a similarity measure until it matches the results of a human
expert. The disadvantage of this approach is that the behavior of such a measure
is hard to predict when applied to new test data, or when used for ontologies
modeling a different domain. As a consequence an ontology developer cannot
competently decide whether a measure obtained in this way is suitable for a
particular task.

Description Logics (DLs) are a family of knowledge representation formalisms
with formal semantics. A good similarity measure for DL concepts should take
the semantics of the underlying formalism into account, instead of assessing

? Partially supported by the German Research Foundation (DFG) in the Collaborative
Research Center 912 “Highly Adaptive Energy-Efficient Computing”.

similarity in a purely syntactical way. Similarity measures are often tailored for
particular applications. Thus, one similarity measure will hardly meet the needs
of all applications.

In [8] the intended behavior of a measure was discussed and partially cap-
tured in terms of properties. These properties were adapted from metric spaces
which are related to similarity measures. We follow this approach to address
the problems mentioned above. We extend this set of properties by including
DL specific ones and mathematically describe those from [8] in terms of DL.
The formalization of the properties allows us to prove whether or not an ob-
tained measure has the desired properties. Additionally, we investigate existing
DL similarity measures to determine which of the properties they fulfill. We then
propose the framework simi for similarity measures for ELH-concepts. If instan-
tiated with the right functions and operators as building blocks, simi yields
measures for which (most of) the formalized properties can be guaranteed. At
the same time the framework retains flexibility as it allows users to choose from
the list which properties the resulting measure should have and to build their
measure accordingly. Furthermore, the resulting similarity measures can be com-
puted efficiently, provided that functions employed can be computed efficiently
as well.

Our choice for the DL ELH is motivated by the fact that large, well-known bio-
medical ontologies such as the Gene Ontology [5] or Snomed [21] are written in
(extensions of) ELH. Furthermore, ELH is a fragment of the DL that corresponds
to the OWL 2 EL profile, which is part of the W3C standard for an ontology
language for the Semantic Web [23, 19].

The paper is structured as follows: we start with preliminaries on DLs. In
Section 3, we introduce the set of properties desirable for similarity measures
and in Section 4 we devise a framework for constructing similarity measures
that fulfill (most of) the introduced properties. The paper ends with conclusions
and directions for future work.

2 Preliminaries

In this section we introduce the basic notions of DLs. For a thorough introduction
see [1]. Starting from a finite set of concept names NC and a finite set of role
names NR, complex concepts can be defined using concept constructors. Let A,
B ∈ NC , then EL-concepts are formed according to the following syntax rule:

C ::= > | A | C uD | ∃r.C

where r ∈ NR and C, D denote arbitrary EL-concepts. A concept of the form
∃r.C is called an existential restriction and one of the from C u D is called
a conjunction. We call the DL, that only offers conjunction as a concept con-
structor, L0. The semantics of concepts is given in terms of interpretations. An
interpretation I = (∆, ·) consists of the interpretation domain ∆I a non-empty
set and an interpretation function ·I that assigns role names to binary relations
on ∆I and concepts to subsets of ∆I . The top-concept > is mapped to ∆I . The

extension of the interpretation function to conjunctions is (C uD)I := CI ∩DI
and to existential restrictions (∃r.C)I := {d ∈ ∆I | ∃e ∈ ∆I : (d, e) ∈ rI and
e ∈ CI}.

A concept definition assigns a concept name to a complex concept. We call
A = C a concept definition and A v C a primitive concept definition. A finite
set of (possibly primitive) concept definitions is a TBox T . If the (primitive)
definitions in a TBox are acyclic and do not contain multiple definitions we call
the TBox unfoldable. Concept names occurring on the left-hand side of a defi-
nition are called defined concepts. All other concept names are called primitive
concepts. Let s, r ∈ NR. A role inclusion axiom (RIA) is a statement of the
form: r v s. The DL that extends EL by RIAs is called ELH. An interpretation
is a model for s v r iff sI ⊆ rI . A finite set of RIAs is called RBox R. An in-
terpretation I is a model of the TBox T (RBox R) iff it satisfies all its concept
definitions (RIAs). We write s vR r, if sI ⊆ rI holds in all models of R and
s ≡R r, if s vR r and r vR s hold.

A DL knowledge base (KB) K consists of the TBox and the RBox and we say
that an interpretation I is a model of K, if it is a model for the corresponding
TBox and RBox.

Based on the semantics of concepts, reasoning problems can be defined. The
concept C is subsumed by the concept D w.r.t. the KB K (C vK D) iff CI ⊆ DI
holds for all models I of K. C andD are equivalent w.r.t. K (C ≡K D) iff C vK D
and D vK C.

For a given concept C, expansion replaces exhaustively all occurrences of
defined concepts in C by the right-hand sides of their concept definitions. For
unfoldable TBoxes all reasoning problems can be reduced to reasoning for con-
cepts by using expansion of concepts w.r.t. the TBox [1].

We denote the set of concepts for a specific DL L with C(L), e.g., C(EL) is
the set of all EL-concepts. We call concepts that are either concept names or
existential restrictions atoms and denote the set of atoms by NA.

For EL-concepts a unique normal form (modulo associativity and commuta-
tivity), was given in [2], which we extend to ELH-concepts in presence of RBoxes.
To treat equivalent roles, we define [r] = {s ∈ NR | r≡Rs} and fix a function f
that picks one role ri from each equivalence class and replaces each occurrence
of a role from [ri] with ri. Given an RBox R and an ELH-concept C, C is in
ELH-normal form, if the following 4 rules have been applied exhaustively to the
concept C and its subconcepts:

1. A u > −→ A, 2. A uA −→ A, 3. ∃r.C ′ −→ ∃f([r]).C ′,

4. ∃r.C ′ u ∃s.D′ −→ ∃r.C ′ if r vR s and C ′ v D′

The transformation of ELH-concepts into ELH-normal form can be done in poly-
nomial time.

3 Properties for Concept Similarity Measures

Formally, a concept similarity measure sim is a function mapping from pairs of
ELH-concepts to the interval [0, 1]. To identify properties of similarity measures
for concepts, [8] used metric spaces as a starting point, which was also done in
other areas of similarity research (see [22, 16, 17, 20]). A metric can be interpreted
as a dissimilarity measure. The distance represents the dissimilarity between two
objects—the lower their distance, the higher the similarity. Using a metric d, we
can obtain a similarity function s by defining s(a, b) := 1 − d(a, b). If we adapt
the properties of a metric accordingly, we obtain the following properties for
similarity functions.

Definition 1. Let D be a set. A function s : D ×D −→ [0, 1] is called a simi-
larity function for D iff for all a, b, c ∈ D holds

1. s(a, b) = 1 ⇐⇒ a = b, (identity of indiscernibles)
2. s(a, b) = s(b, a), and (symmetry)
3. 1 + s(a, b) ≥ s(a, c) + s(c, b) (triangle inequality).

Next we present definitions of properties of concept similarity measures and the
underlying intuitions for these properties. We start with a formal definition of
the properties and discuss each of them afterwards.

Definition 2. Let C,D,E ∈ C(ELH). A similarity measure sim is

1. symmetric iff sim(C,D) = sim(D,C).
2. fulfilling the triangle inequality property iff

1 + sim(D,E) ≥ sim(D,C) + sim(C,E).

3. equivalence invariant iff C ≡ D =⇒ sim(C,E) = sim(D,E).
4. equivalence closed iff sim(C,D) = 1 ⇐⇒ C ≡ D.
5. subsumption preserving iff C v D v E =⇒ sim(C,D) ≥ sim(C,E).
6. reverse subsumption preserving iff C v D v E =⇒ sim(C,E) ≤ sim(D,E).
7. structurally dependent iff for all sequences (Cn)n of atoms with ∀i, j ∈ N, i 6=

j : Ci 6v Cj the concepts

Dn :=
l

i≤n
Ci uD and En :=

l

i≤n
Ci u E

fulfill the condition limn→∞ sim(Dn, En) = 1.

The properties 1. to 4. are adopted from the literature, whereas to the best of
our knowledge the properties 5. to 7. are introduced for DLs in this paper.

Symmetry is a rather controversial property for similarity in general—while
some consider it essential [18], cognitive sciences seems to favor an asym-
metric notion of similarity [22, 4]. Even for DL concepts Janowicz et al.
[13, 12] prefer asymmetry (but devise symmetric measures), whereas most
[3, 7, 6, 10, 8] consider it a fundamental property of similarity of concepts.

Triangle property is inherited from metrics. Two papers mentioned triangle
inequality in the context of DLs: [8] argues in favor, while [12] argue against
it, because of Tversky’s [22] work.

DLs allow the same thing to be described in different ways. Two concepts can
be syntactically different and yet semantically equivalent. A similarity measure
for complex concepts should depend on the semantics rather than the syntax of
the concepts to measure.

Equivalence invariance ensures that two equivalent concepts have the same
similarity towards a third concept. Equivalence invariance is widely accepted
as a necessary property for measures for DL concepts ([13, 12, 6, 8]). Yet
we found that the methods used to ensure equivalence invariance were not
always sound (see Section 3.1).

Equivalence closure holds for a similarity measure if and only if two concepts
are totally similar if and only if they are equivalent. This corresponds with
the idea that indiscernible things are identical. Equivalence closure is consid-
ered to be a basic property for concept similarity measures [8, 12] especially
since it is inherited from metrics.

One asset of DLs is their reasoning services. An intuitive idea is to charac-
terize similarity of concepts in terms of these services. The subsumption relation
yields a total partial order on concepts. Consider the case where C,D,E ∈
C(ELH) and C v D v E. A natural requirement of similarity measures is to
reflect this constellation.

Subsumption preservation expresses that the similarity of C and D is higher
than the one of C and E because C is ‘closer’ to D than to E.

Reverse subsumption preservation states likewise that the similarity of D
and E is higher than the similarity of C and E, since E is ‘closer’ to D than
to C.

In [15] we also employ the reasoning service least common subsumer to capture
the characteristics of total dissimilarity of concept similarity.

Tversky [22] presents the feature model, where an object is described by a set
of features. The similarity of two objects is measured by a relation between the
number of common features of both objects and the number of unique features
of each object. The basic rule is that if

1. the number of common features increases and
2. the number of uncommon features is constant

then the similarity must increase.

Structural dependence reflects this basic rule. Concepts are our objects to
compare and the atoms of a conjunction represent the features of the object.
The intuition is that the more features (atoms) two complex concepts share,
the higher their similarity should be.

For a more detailed explanation of the last property and for a presentation of
examples illustrating the above properties see [15].

Table 1. Overview of similarity measures and their properties

symm. triang. eq. inv. eq. cl. subs. rev. subs. struc. dep. DL

simi � - � � � - � ELH
Jacc [11] � � � � � � � L0

[13] � - - - - - � SHI
[12] � - - - - - � ALCHQ
[7] - - - - - - - ALC
[10] � - � - � � - ALN
[6] � - � - � � - ALC
[8] � - � - � � - ALE

3.1 Inspecting Existing Concept Similarity Measures

We distinguish two kinds of concept similarity measures: structural measures and
interpretation based measures. Structural measures are defined using the syntax
of the concepts to measure. Since conjunction and disjunction are commutative
and associative, these measures are invariant to the order of the atoms in a con-
junction or disjunction. The measures differ regarding the similarity of primitive
concepts: [12] uses the TBox whereas [7] and [10] use the canonical interpreta-
tion which takes the set of ABox individuals as the interpretation domain (for
an introduction to ABoxes see [1]).

Interpretation based measures are defined using interpretations and cardi-
nality, instead of the syntax of the (possibly) complex concepts to measure.
Therefore, they are trivially equivalence invariant. The two interpretation based
measures we investigated [6, 8] are using the canonical interpretation IA. These
measures need a populated and representative ABox as a significant domain.

Table 1 presents an overview of similarity measures for concepts written
in different DLs (including our measure simi to be defined in Section 4) and
whether or not they fulfill the properties from Definition 2. The proofs can be
found in [15]. The first four measures are purely structural measures. The next
two are structural measures which use the canonical interpretations to measure
primitives. The last two are purely interpretation based measures.

We included the Jaccard index [11], which is originally a set measure, here
adapted to L0. Interestingly, this is the only measure of those investigated that
fulfills the triangle inequality.

Our thorough investigation of the similarity measures defined in the literature
showed that defining a similarity measure that fulfills most of the properties from
Definition 2 is by no means a trivial task—in particular if the DL allows the use
of roles, as the lightweight DL ELH already does.

4 Developing Concept Similarity Measures for ELH
We present simi, a framework for similarity measures for concepts written in the
DL ELH based on the semantics of the logic. It operates on (complex) concepts

and an RBoxR, which contains role inclusion axioms. If concepts to be processed
contain concepts defined in an unfoldable TBox T , we assume that these concepts
are expanded w.r.t. T , i.e., all concept names occurring in them are primitive
names.

Another preprocessing step is to transform the concepts into ELH-normal
form (defined in Section 2). Concepts in this normal form are unique (mod-
ulo associativity and commutativity), which ensures that simi (and any other
measure processing concepts in this normal form) is equivalence invariant. We
assume for the remainder of the paper that the concepts are in ELH-normal form.

The framework simi constructs similarity measures from several free parame-
ters, i.e., it allows functions to be combined in such a way that, if these functions
fulfill certain properties, then the resulting similarity measure can be shown to
fulfill all properties from Definition 2 except reverse subsumption preserving and
the triangle inequality. Furthermore, it can be computed efficiently.

Simi is inspired by the Jaccard index and it is a conservative extension of
the Jaccard index, in the sense that ∀C,D ∈ C(L0) : simi(C,D) = Jacc(C,D)
(proven in [15]). Another inspiration is the equivalence of concepts, which can
be regarded as a trivial similarity measure: the similarity of two concepts is 1
if they are equivalent and 0 otherwise. To determine if C ≡ D is true, one can
use the subsumption test to find out whether or not C v D and D v C are
true. We generalize this approach in simi by introducing a generalization of
the subsumption operator. Since such an operator is in general an asymmetric
function, we call it directed simi and denote it with simid (to be introduced in
Section 4.1). Now, once the values simid(C,D) and simid(D,C) are computed,
we have to combine them with an operator to obtain a value for simi. Instead
of fixing a specific operator, we identify the properties such an operator needs
to provide such that simi fulfills as many of the properties as possible. We call
such an operator a fuzzy connector (denoted with ⊗). A fuzzy connector ⊗ is an
operator on the interval [0, 1], ⊗ : [0, 1]2 −→ [0, 1] such that for all x, y ∈ [0, 1]
the following properties are true.

– Commutativity: x⊗ y = y ⊗ x,
– Equivalence closed: x⊗ y = 1 ⇐⇒ x = y = 1,
– Weak monotonicity: x ≤ y =⇒ 1⊗ x ≤ 1⊗ y,
– Bounded: x⊗ y = 0 =⇒ x = 0 or y = 0 and
– Grounded: 0⊗ 0 = 0.

Using a fuzzy connector, simi is simply defined as

simi(C,D) := simid(C,D)⊗ simid(D,C)

where C and D are arbitrary ELH-concepts.
The commutativity of a fuzzy connector ensures that simi is symmetric,

the property equivalence closed provides the same property for the resulting
similarity measure and weak monotonicity is sufficient to prove that simi fulfills
subsumption preserving. Examples for fuzzy connectors are the average and
triangular norms (t-norms, ⊗) [14] which fulfill the property that for all x, y ∈
[0, 1] : x⊗ y = 0 =⇒ x = 0 or y = 0 as shown in [15].

4.1 A Directed Similarity Measure: simid

To formulate simid, we need a bit of notation. If convenient, we treat concepts
as sets of atoms. Let C ∈ C(ELH), then it can be written as C =

d
i≤n Ci where

∀i ≤ n : Ci ∈ NA. The function (·̂) maps concepts to sets of atoms, so for C,

Ĉ := {C1, C2, . . . , Cn}. Now, the starting point for the derivation of simid is the
function

d(C,D) :=
|Ĉ ∩ D̂|
|Ĉ|

which is inspired by the Jaccard Index. This function can be used to measure the
similarity of sets of concept names. In order to be able to incorporate existential
restrictions, we rewrite the numerator of d to

|Ĉ ∩ D̂| =
∑

C′∈Ĉ

max
D′∈D̂

f(C ′, D′), (1)

where the function f : NC −→ {0, 1} is defined as f(C ′, D′) := 1 if C ′ = D′ and
0 otherwise.

The simplifying assumption for f is that two different concept names denote
always totally dissimilar concepts. However, this assumption may not be correct
in all cases. Therefore, we generalize f by introducing a measure for concept
names. In order to work for existential restrictions, this measure has to be able
to deal with role names, too. In addition, we have to ensure some properties for
this measure to guarantee properties for simi. We call this measure for (concept
or role) names a primitive measure and denote it with pm. More formally, it
is a function of type pm : N2

C ∪ N2
r −→ [0, 1] with the property that for all

A,B ∈ NC and r, s, t ∈ Nr the following holds:

– pm(A,B) = 1 ⇐⇒ A = B,

– pm(r, s) = 1 ⇐⇒ s v r,
– s vR r =⇒ pm(s, r) > 0, and

– t vR s =⇒ pm(r, s) ≤ pm(r, t).

The first two properties are sufficient to ensure that simi fulfills equivalence
closed and the last one is needed to prove that simi fulfills subsumption pre-
serving. Note that pm does not need to be symmetric.

To incorporate existential restrictions into d we have three cases to consider.
Namely, we need to be able to compute the similarity of two concept names, of
a concept name and an existential restriction and of two existential restrictions.
The first case is handled directly by the primitive measure pm. In the second
case, we assert that a concept name and an existential restriction are always
totally dissimilar and thus their similarity is 0. For the third case, let ∃r.C∗
and ∃s.D∗ be the two existential restrictions. To compute the similarity of both
atoms, we proceed component-wise. The similarity of the role names is computed
using the primitive measure pm and the similarity of the concepts C∗ and D∗

is computed by a recursive call to d. Then, to combine both values we use a
number w ∈ (0, 1) and the formula

d(∃r.C∗,∃s.D∗) := pm(r, s) · [w + (1− w) · d(C∗, D∗)].

Forcing w > 0, enables us for d(C∗, D∗) = 0 to distinguish between the cases
where the roles are similar and where they are not. In the first case, the similarity
is w, whereas in the second one, the similarity is 0.

As a suitable w, we suggest the value n where one would say that the concepts

C := ∃r. · · · ∃r.︸ ︷︷ ︸
n

A and D := ∃r. · · · ∃r.︸ ︷︷ ︸
n

B

with pm(A,B) = 0 are regarded (almost) totally similar.

In Equation 1, we search for each atom of C for that atom of D with the
highest similarity value. This method does not always yield satisfactory results.
Consider the case, where pm(A,B1) = 0.5 and pm(A,B2) = 0.5 and we want
to measure A towards B1 u B2, then the current version of function d does not
take into account that A is ‘known to be similar’ to each of B1 and B2 alone and
thus should even be more similar to their combination. The function chooses one
‘best matching partner’ instead of combining the two sources of similarity.

To deal with this effect, we propose to replace the maximum operator with
a triangular conorm (t-conorm, ⊕) [14] which is bounded, meaning that for all
x, y ∈ [0, 1] : x ⊕ y = 1 =⇒ x = 1 or y = 1. There are several reasons for
the use of a t-conorm. First, the operator max is an instance of a bounded
t-conorm. Second, all t-conorms yield values greater or equal to those of max
which is consistent with our expectation that the value should be higher or equal
to the maximum. Also, 0 acts as neutral element for t-conorms. Therefore, all
atoms from D that are totally dissimilar do not influence the value. If we use
the probabilistic sum (x⊕sum y = x+ y − xy) instead of the maximum for our
example above, then we obtain the value 0.75 instead of 0.5, since the measure
takes both similarity values (towards B1 and B2) into account.

Another parameter of simid is the weighting function (denoted g). It weights
the atoms by assigning each of them a value greater than 0, so g : NA −→ R>0.
The effect is that some atoms can ‘contribute more’ to the similarity than others,
thus a part of the vocabulary can be picked by g to supply a context under
which the concepts from the KB are assessed. Let’s assume we are interested in
similarity regarding Anatomy and our KB, say Snomed, contains atoms from
two different subject areas like Anatomy and medical procedures. Now, weighting
the atoms related to Anatomy higher would result in their similarity having a
greater influence on the overall similarity value between concepts.

Note, that the KB does not need to be changed or adapted to achieve this.
Several different such weighting functions can easily be employed for the same
KB. To incorporate the weighting function we generalize the cardinality of a
set of atoms to the sum of the weights of its elements. To obtain a well-defined
measure, the weight needs to be added to the numerator of d as well.

By combining the above presented parts, we can already obtain a definition
of simid except for some corner cases involving >. If we want to be formally
correct, then the type of the function simid depends on the used parameters as
well as on the concepts to be measured. However, for better readability, we omit
writing these parameters.

Definition 3 (simid). Let C,D ∈ C(ELH) \ {>}, E,F ∈ C(ELH), A,B ∈ NC

and r, s ∈ NR. Directed simi is the function simid : C(ELH)2 −→ [0, 1] defined
(w.r.t. a bounded t-conorm ⊕, a primitive measure pm, a weighting function g
and w ∈ (0, 1)) by

simid(>,>) := simid(>, D) := 1,

simid(C,>) := 0,

simid(C,D) :=

∑

C′∈Ĉ

[g(C ′) ·
⊕

D′∈D̂
simia(C ′, D′)]

∑

C′∈Ĉ

g(C ′)
,

where simia measures the similarity of two atoms and is defined as

simia(A,B) := pm(A,B),

simia(∃r.E,A) := simia(A,∃r.E) := 0,

simia(∃r.E,∃s.F) := pm(r, s) · [w + (1− w)simid(E,F)].

4.2 Properties of simid and simi

We present the lemma needed to prove various properties of simi. The proofs
can be found in [15] (p. 67 ff). In the following we assume that the primitive
measure is pm, the weighting function is g, the t-conorm is ⊕ and the fuzzy
connector is ⊗.

Lemma 1. Let C,D,E ∈ C(ELH). Then

1. simid(C,D) = 1 ⇐⇒ D v C.
2. D v E =⇒ simid(C,E) ≤ simid(C,D).

Proof. We present a proof sketch for the left-to-right implication of the first
statement. Let simid(C,D) = 1. If C = > then D v C = > is true. Let C 6= >.

To prove D v C we have to show that ∀C ′ ∈ Ĉ ∃D′ ∈ D̂ : D′ v C ′. Let C ′ be
an arbitrary atom of C. simid(C,D) = 1 implies that

∑

C′∈Ĉ

g(C ′) =
∑

C′∈Ĉ

[g(C ′) ·
⊕

D′∈D̂

simia(C ′, D′)].

Because of g(C ′) ·⊕D′∈D̂ simia(C ′, D′) ≤ g(C ′) we derive that for all C ′ ∈
Ĉ :

⊕
D′∈D simia(C ′, D′) = 1. Since the t-conorm is bounded, ∃D′ ∈ D such

that simia(C ′, D′) = 1. The rest of the proof uses structural induction and case
distinction.

If C ′ = A then simia(C ′, D′) = 1 leads to D′ = A which implies D′ v C ′.
Next, let C ′ = ∃r.C∗. simia(C ′, D′) = 1 implies that D′ is of the form D′ =
∃s.D∗ and 1 = pm(r, s) · [w+ (1−w)simid(C∗, D∗)]. This leads to pm(r, s) = 1
which according to the definition of the primitive measure implies s v r. Since
w < 1, simid(C∗, D∗) = 1. Using the induction hypothesis we can derive D∗ v
C∗, therefore D′ v C ′.

Recall, simi(C,D) := simid(C,D) ⊗ simid(D,C). The resulting function has
the following properties.

Theorem 1. The function simi fulfills

1. symmetry,
2. equivalence invariance,
3. equivalence closed,
4. subsumption preserving.

Let g′ be a weighting function with inf{g(C ′) | C ′ ∈ C(ELH)} > 0. Furthermore,
let ⊗′ be a fuzzy connector s.t. for all sequences (xn)n and (yn)n (xi, yi ∈ [0, 1])
with limn→∞ xn = limn→∞ yn = 1 and limn→∞ xn⊗′yn = 1. Then simi together
with ⊗′ and g′ fulfills structural dependence.

The main reason why simi neither fulfills the triangle inequality nor reverse
subsumption preserving is that the computation of simid(C,D) does not use the
similarity values between the atoms of C (and between the atoms of D). Consider
C := A u d

i≤nBi, where the Bi are very similar to each other, D := A u B0

and E := A then the similarity of D and E is approximately 0.5, the similarity
of C and D is close to 1 (since each Bi is very similar to B0) but the similarity
of C and E converges to 0 with increasing n. For the proofs of other properties
of simi and further details see [15].

An important property of simi is that it can be computed efficiently, provided
that the involved parameter functions can be computed efficiently as well.

Lemma 2. If the specific fuzzy connector, the bounded t-conorm, the primitive
measure and the weighting function can be computed in polynomial time, then
simi can be computed in time polynomial in the size of the concepts to measure.

5 Conclusions

Similarity measures are important procedures for central ontology management
tasks such as alignment of ontologies. Often these measures are built in an ad-hoc
way by simply tuning them to test data.

In this paper we have proposed a different approach to construct a whole
range of such measures for ELH-concepts. Our starting point was a set of for-
mally defined properties for concept similarity measures, which make use of the

semantics of DL concepts and of DL reasoning services. We devised a framework
that, if instantiated with appropriate functions and operators as discussed in this
paper, allows to generate similarity measures that have 5 of the proposed 7 prop-
erties (reverse subsumption preservation and triangle inequality are missing). In
that sense one could claim that our framework for similarity measures is not only
semantics-based, but also provides the measures with semantics. Moreover, our
approach does not restrict users to a single similarity measure, but allows them to
design their own measures by selecting the functions and operators appropriate
to yield the needed individual similarity measure. If the selected functions con-
form to the framework described in this paper, the resulting similarity measure
is equipped with the properties.

Similarity is often perceived as a context-dependent characteristic. Even in
this case our framework can offer support, in the sense that the directed measure
simid allows atoms appearing in the concept to be weighted differently using
the weighting function g. Different instantiations of g allow different thematic
subdomains of the domain of discourse to be highlighted.

To test our framework empirically is a non-trivial task, since each application
may require a different instantiation of simi with functions and operators. To
aquire such instantiations suitable for each application requires profound knowl-
edge of the application in question. Thus for now it remains future work to
compare the outcome of simi instantiations with other well-accepted similarity
measures.

On the theoretical side it would be interesting to investigate such frameworks
for more expressive DLs and for the concepts defined w.r.t. general TBoxes. Since
a unique normal form is the main means to achieve an equivalence invariant
similarity measure, it is not obvious how to extend simi to these more expressive
scenarios.

References

[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, edi-
tors. The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2003.

[2] F. Baader, R. Küsters, and R. Molitor. Computing least common subsumers in
description logics with existential restrictions. In T. Dean, editor, Proc. of the 16th
Int. Joint Conf. on Artificial Intelligence (IJCAI-99), pages 96–101, Stockholm,
Sweden, 1999. Morgan Kaufmann, Los Altos.

[3] A. Borgida, T. J. Walsh, and H. Hirsh. Towards measuring similarity in descrip-
tion logics. In Proceedings of the International Workshop on Description Logics
(DL2005), 2005.

[4] B. Bowdle and D. Gentner. Informativity and asymmetry in comparisons. Cog-
nitive Psychology, 34(3):244–286, 1997. PMID: 9466832.

[5] T. G. O. Consortium. Gene Ontology: Tool for the unification of biology. Nature
Genetics, 25:25–29, 2000.

[6] C. d’Amato, N. Fanizzi, and F. Esposito. A semantic similarity measure for ex-
pressive description logics. In Convegno Italiano di Logica Computazionale (CILC
2005), 2005.

[7] C. d’Amato, N. Fanizzi, and F. Esposito. A dissimilarity measure for ALC concept
descriptions. In Proceedings of the ACM symposium on Applied computing, SAC
’06, pages 1695–1699, 2006.

[8] C. d’Amato, S. Staab, and N. Fanizzi. On the influence of description logics ontolo-
gies on conceptual similarity. In Proceedings of the 16th Knowledge Engineering
Conference (EKAW2008), volume 5268, pages 48–63, 2008.

[9] J. Euzenat and P. Valtchev. Similarity-based ontology alignment in OWL-lite. In
Proceedings of the 16th European Conference on Artificial Intelligence (ECAI-04),
pages 333–337. IOS Press, 2004.

[10] N. Fanizzi and C. d’Amato. A similarity measure for the ALN description logic.
In Convegno Italiano di Logica Computazionale (CILC 2006), 2006.

[11] P. Jaccard. Étude comparative de la distribution florale dans une portion des alpes
et des jura. Bulletin de la Societe Vaudoise des Sciences Naturelles, 37:547–579,
1901.

[12] K. Janowicz. SIM-DL: Towards a semantic similarity measurement theory for
the description logic ALCNR in geographic information retrieval. SeBGIS 2006,
OTM Workshops 2006, pages 1681–1692, 2006.

[13] K. Janowicz and M. Wilkes. SIM-DLA: a novel semantic similarity measure for de-
scription logics reducing Inter-Concept to Inter-Instance similarity. In Proceedings
of the 6th European Semantic Web Conference on The Semantic Web Research
and Applications, pages 353–367, 2009.

[14] E. P. Klement, R. Mesiar, and E. Pap. Triangular Norms. SV, 2000.
[15] K. Lehmann. A framework for semantic invariant similarity measures for ELH

concept descriptions. Master’s thesis, TU Dresden, 2012. Available from:
http://lat.inf.tu-dresden.de/research/mas.

[16] M. Li, X. Chen, X. Li, B. Ma, and P. M. B. Vitányi. The similarity metric. In Pro-
ceedings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms,
pages 863—872, 2003.

[17] M. Li and M. R. Sleep. Melody classification using a similarity metric based
on Kolmogorov complexity. In Proceedings of the Sound and Music Computing
Conference (SMC’04), 2004.

[18] D. Lin. An Information-Theoretic definition of similarity. In Proceedings of the
Fifteenth International Conference on Machine Learning, pages 296–304, 1998.

[19] B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu, A. Fokoue, and C. Lutz. OWL
2 web ontology language profiles. W3C Recommendation, 27 October 2009.
http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/.

[20] N. Nikolova and J. Jaworska. Approaches to measure chemical similarity - a
review. QSAR & Combinatorial Science, 22:1006–1026, 2003.

[21] K. Spackman. Managing clinical terminology hierarchies using algorithmic cal-
culation of subsumption: Experience with snomed-rt. Journal of the American
Medical Informatics Assoc., 2000. Fall Symposium Special Issue.

[22] A. Tversky. Features of similarity. In Psychological Review, volume 84, pages
327–352, 1977.

[23] W3C OWL Working Group. OWL 2 web ontology language document overview.
W3C Recommendation, 27th October 2009. http://www.w3.org/TR/2009/REC-
owl2-overview-20091027/.

Towards Instance Query Answering for Concepts Relaxed by Similarity Measures

Andreas Ecke∗
Theoretical Computer Science,

TU Dresden, Germany

Rafael Peñaloza†
Theoretical Computer Science,

TU Dresden, Germany
Center for Advancing Electronics Dresden

Anni-Yasmin Turhan‡
Theoretical Computer Science,

TU Dresden, Germany

Abstract
In Description Logics (DL) knowledge bases (KBs)
information is typically captured by crisp concept
descriptions. However, for many practical applica-
tions querying the KB by crisp concepts is too re-
strictive. A controlled way of gradually relaxing a
query concept can be achieved by the use of simi-
larity measures.
To this end we formalize the task of instance query
answering for crisp DL KBs using concepts relaxed
by similarity measures. We identify relevant prop-
erties for the similarity measure and give first re-
sults on a computation algorithm.

1 Introduction
Description Logics (DLs) are a family of knowledge repre-
sentation formalisms that have unambiguous semantics. A
particular DL is characterized by a set of concept construc-
tors, which allow to build complex concept descriptions. In-
tuitively, concept descriptions characterize categories from an
application domain. In addition, binary relations on the do-
main of interest can be captured by roles. These in turn can
be used in concept descriptions. The terminological knowl-
edge of an application domain is stored in the TBox, where
complex concept descriptions can be assigned to concept
names. Facts from the application domain and relations be-
tween them are represented by individuals in the ABox. TBox
and ABox together form the DL knowledge base (KB).

The formal semantics of DLs allow the definition of a
variety of reasoning services. The most prominent ones
are subsumption, i.e. to compute whether a sub-concept re-
lationship holds between two concept descriptions and in-
stance query answering, where for a given concept descrip-
tion all individuals from an ABox that are instances of the
concept are computed. These reasoning services are imple-
mented in highly optimized reasoning systems, see for ex-
∗Supported by the German Research Foundation (DFG)

Graduiertenkolleg 1763 (QuantLA).
†Partially supported by DFG within the Cluster of Excellence

‘cfAED’
‡Partially supported by DFG in the Collaborative Research Cen-

ter 912 “Highly Adaptive Energy-Efficient Computing”.

ample [Tsarkov and Horrocks, 2006; Kazakov et al., 2012;
Haarslev et al., 2012].

DLs of varying expressivity are the underlying logics for
the W3C standardized ontology language OWL 2 and its pro-
files [Motik et al., 2009]. This has led to an increased use of
DLs and DL reasoning systems in the recent years in many
application areas. By now there is a large collection of KBs
written in these languages. However, many applications need
to query the knowledge base in a less strict fashion.

In the application area of service matching OWL TBoxes
are employed to describe types of services. Here, a user re-
quest for a service specifies several conditions for the desired
service. These conditions are represented by a concept de-
scription. For such a concept description the OWL ABox
that contains the individual services is searched for a service
matching the specified request by employing instance query
answering. In cases where an exact match with the provided
requirements is not possible, a “feasible” alternative needs
to be retrieved from the ABox containing the services. This
means that those individuals from the ABox should be re-
trieved for the given query concept that fulfill the main con-
ditions, while for some conditions only a relaxed variant is
fulfilled.

A natural idea on how to relax the notion of instance
query answering is to simply employ fuzzy DLs and per-
form query answering on a fuzzy variant of the initial query
concept. However, on the one hand reasoning in fuzzy
DLs easily becomes undecidable [Borgwardt et al., 2012;
Borgwardt and Peñaloza, 2012; Cerami and Straccia, 2013]
and on the other hand depending on the user and on the
request, different ways of relaxing the query concept are
needed. For instance, for a request to a car rental company to
rent a particular car model in Beijing, it might be acceptable
to get an offer for a similar car model to be rented in Beijing,
instead of getting the offer to rent the requested car model
in London. Whereas for a handicapped user in a wheelchair
it might not be acceptable to relax the requested car model
from a two-door one to a four-door one. Here fuzzy concepts
would relax the initial concept in an unspecific and uniform
way. Ideally, relaxed instance query answering should allow
to

1. choose which aspects of the query concept can be re-
laxed and

2. choose the degree to how much these aspects can be re-
laxed.

The reasoning service addressed in this paper is a relaxed no-
tion of instance querying, such that it allows for a given query
concept the selective and gradual extension of the answer set
of individuals. We develop a formal definition of this reason-
ing service in Section 3.

Our approach for achieving selective and gradual extension
of the answer sets is to employ concept similarity measures to
relax the query concept. A concept similarity measure yields,
for a pair of concept descriptions, a value from the interval
[0, 1]—indicating how similar the concepts are. The goal is to
compute for a given concept C, a concept similarity measure
∼ and a degree t (t ∈ [0, 1]), a set of concept descriptions
such that each of these concepts is similar to C by a degree
of at least t, if measured by ∼, and finding all their instances.

For DLs there is whole range of similarity measures de-
fined (see for example [Borgida et al., 2005; d’Amato et
al., 2005; Lehmann and Turhan, 2012]), which could be em-
ployed for this task. In particular the similarity measures gen-
erated by the framework described in [Lehmann and Turhan,
2012] allow users to specify which part of the vocabulary
used in their knowledge base is to be regarded more impor-
tant when it comes to the assessment of similarity of concepts.
Thus, these measures naturally allow to select which aspect
of the query concept to relax.

The core reasoning problem encountered in our algorithm
for relaxed instance query answering is to compute for an in-
dividual a and the query concept description C a concept de-
scription C ′ that mimics C, i.e. a concept description that is
‘sufficiently similar’ to C w.r.t. the used similarity measure∼
and the degree t.

We propose in this paper an algorithm to compute the
above mentioned reasoning service of relaxed instance query
answering in the lightweight DL EL. For instance, for the
Gene ontology [Gene Ontology Consortium, 2000], which is
written in EL and is used (among other things) to solve the
task of finding genes that realize similar functionality [Lord
et al., 2003], a proliferation of different similarity measures
has been defined [Lord et al., 2003; Schlicker et al., 2006;
Mistry and Pavlidis, 2008; Alvarez and Yan, 2011]. In prin-
ciple these measures could be used in our approach to query
ABoxes. We identify properties of concept similarity mea-
sures that allow to compute relaxed instances of concepts.

The paper is organized as follows: after introducing basic
notions on DLs and concept similarity measures in Section 2,
we develop a formal notion of relaxed instances in Section 3.
In order to compute relaxed instances it is necessary, as we
shall see, to compute mimics of a concept and an individual.
An way of finding a mimic and its application to construct
an algorithm that computes all relaxed instances of a query
concept is provided in Section 4. As customary, the paper
ends with conclusions and future work.

2 Preliminaries
In this section we introduce the basic notions of Description
Logics and similarity measures between concepts. For a thor-
ough introduction to Description Logics, see [Baader et al.,

Syntax Semantics

top concept > >I = ∆I

conjunction C uD (C uD)I = CI ∩DI

existential
restriction

∃r.C (∃r.C)I = {d ∈ ∆I |
∃e.(d, e) ∈ rI ∧ e ∈ CI}

concept
definition A ≡ C AI = CI

concept
assertion C(a) aI ∈ CI

role assertion r(a, b) (aI , bI) ∈ rI

Table 1: Concept constructors, TBox axioms and ABox as-
sertions for EL.

2003]. While we try to formalize the notion of relaxed in-
stances of a concept w.r.t. a similarity measure independently
from a specific DL, Section 4 will show how instance query-
ing for relaxed concepts can be computed in the restricted DL
EL.

LetNC ,NR, andNI be non-empty, disjoint sets of concept
names, role names, and individual names. A concept descrip-
tion (or short concept) is constructed from concept names by
applying concept constructors such as conjunction, negation,
quantification, or the top concept >. In particular, EL only
admits the concept constructors conjunctions, existential re-
strictions and the top concept, as seen in Table 1. We denote
the set of allL-concept descriptions constructed is such a way
by C(L).

For example, using the following EL-concept description,
one can describe a service which currently waits for requests,
but runs on an overloaded server:

Service u ∃has-state.WaitingForRequest
u ∃runs-on(Server u ∃has-condition.Overloaded)

The semantics of concept descriptions is defined by means
of interpretations I = (∆I , ·I) consisting of a non-empty
domain ∆I and an interpretation function ·I that assigns bi-
nary relations on ∆I to role names, subsets of ∆I to concept
names, and elements of ∆I to individual names. The inter-
pretation function can be recursively extended to EL-concept
descriptions as shown in Table 1.

An EL-knowledge base (KB) K = (T ,A) consists of an
EL-TBox T , which captures the terminological knowledge,
and an EL-ABox A, which contains the assertions about spe-
cific individual. In this paper we only consider unfoldable
TBoxes, i.e., sets of concept definitions such that each con-
cept name occurs at most once on the left-hand side of a con-
cept definition and there are no cyclic dependencies between
defined concepts. An ABox is a set of concept and role asser-
tions. The semantics of interpretations is extended to concept
definitions and assertions as shown in Table 1. We say that
an interpretation I is a model of a TBox T (ABox A), if it
satisfies all concept definition in T (assertions in A). I is a
model of a knowledge base K = (T ,A) if it is a model for
both T and A.

There exists a number of inferences for DLs. Three com-

monly used inferences are concept subsumption, concept
equivalence and instance checking. Concept subsumption
tests if a concept C is subsumed by a conceptD w.r.t. a TBox
T (denoted C vT D), i.e. CI ⊆ DI for all models I of
T . Similarly, two concepts C and D are equivalent w.r.t. T
(denoted C ≡T D), if C vT D and D vT C. Finally, an
individual a is an instance of a query concept description C
w.r.t. a KB K, if aI ∈ CI for all models I of K.

Besides these standard reasoning tasks, other inferences
have been developed for certain applications. The most spe-
cific concept, first introduced in [Nebel, 1990], is such a non-
standard inference. This inference computes a concept de-
scription that describes an individual a from the knowledge
base as exact as it is possible in the used DL.
Definition 1. Let L be a DL and K = (T ,A) be an L-KB.
The concept description C is the most specific concept of an
individual a w.r.t. K (denoted msc(a)) iff
• a is an instance of C, and
• for all concept descriptionsD ∈ C(L), if a is an instance

of D, then C vT D.

Similarity measures. For a DL L, a concept similarity
measure ∼: C(L) × C(L) → [0, 1] is a function that assigns
a similarity value C ∼ D to each pair C,D of L-concept de-
scriptions. A value C ∼ D = 0 means that C and D are
totally dissimilar, while a value C ∼ D = 1 means that C
and D are totally similar.

A collection of properties for concept similarity measures
is given in [Lehmann and Turhan, 2012]. In particular, a sim-
ilarity measure ∼ for L-concept descriptions is:

1. symmetric iff C ∼ D = D ∼ C for all C,D ∈ C(L);
2. fulfilling the triangle inequality iff

1 + D ∼ E ≥ D ∼ C + C ∼ E
for all C,D,E ∈ C(L);

3. equivalence invariant iff for all C,D,E ∈ C(L) with
C ≡ D it holds that C ∼ E = D ∼ E;

4. equivalence closed iff C ∼ D = 1⇐⇒ C ≡ D.
In this paper, we only consider symmetric similarity mea-

sures, since they better capture our intuitive understanding of
similarity. However, all definitions and results can easily be
extended to asymmetric similarity measures. Furthermore,
the triangle inequality was found to be hard to achieve for
similarity measures for even restricted DLs like EL, and thus
will not be discussed here.

Observe that the property ‘equivalence closed’ interacts
with relaxed instances of a query concept C in the following
way: clearly, if we want only relaxed instances with a similar-
ity of exactly 1, then equivalence closed similarity measures
should result in exactly the instances of C, while similarity
measures that are not equivalence closed might result in ad-
ditional individuals.

Most previously proposed concept similarity measures can
be divided into two groups: structural measures, which are
defined using the syntax of the concepts, and interpretation
based measures, which are defined using interpretations and

cardinality instead of the syntax. We later describe a result
for structural similarity measures, therefore we will describe
these in more detail: Basically, a similarity measure ∼ on L-
concepts descriptions is called structural, if it computes the
similarity of two concepts C andD recursively by computing
the similarity of concept names in C andD and the similarity
of the existential restrictions occurring in C and D and com-
bining these values monotonically to the overall similarity.
For structural similarity measures to be equivalence invari-
ant, the concepts often need to be transformed into a normal
form before comparing them [Lehmann and Turhan, 2012].
For a similarity measure ∼, we call the normal form used for
the computation of the similarity the ∼-normal form.

3 Relaxed Instances
In this section we introduce the main reasoning problems that
we want to solve, as well as a first approach for obtaining a
solution.

Our main goal is to generalize query answering to allow
for more relaxed solutions. Intuitively, given a concept C, we
are interested in finding all the certain instances ofC, but also
in finding those individuals that are close to being instances
of C; we call these individuals the relaxed instances of C. To
emphasize the contrast, we some times call the instances of
C certain instances of C.

Before we can try to compute these relaxed instances, we
need to formalize the notion of relaxed instances of a query
concept. In principle there are are many ways to do so and
we discuss next some of these options.

One natural approach would be to try to decide which indi-
viduals are similar to any of the certain instances of C. How-
ever, this method would require the definition of a similarity
measure on the elements of the domain, rather than on the
concepts. Such a DL with a similarity measure on the domain
elements was introduced in [Lutz et al., 2003]. However, for
this DL the similarity measure (or more precisely, a distance
metric) is part of the interpretation and cannot be adjusted to
different user needs.

A different idea that has been proposed is to simply gen-
eralize the concept C by considering named concepts that
subsume C. Thus for a named concept C, consider its di-
rect subsumers in the concept hierarchy. This idea is easy
to implement and understand, but provides only very rough
approximations to the concept C determined by the set of
concept names only. Moreover, users have no control on the
quality of the approximation provided; in fact even the di-
rect subsumers might describe a concept that is already very
dissimilar to C.

We follow a different approach, in which we ask for the
instances of those concepts that are similar to C. We can then
control how inclusive the relaxed instance solutions should
be, by adjusting the degree t of similarity allowed.

Definition 2 (relaxed instance). Let L be some DL, C be
an L-concept, ∼ a similarity measure over L-concepts, and
t ∈ (0, 1]. The individual a ∈ NI is a relaxed instance of C
w.r.t. theL-knowledge baseK,∼ and the threshold t, denoted
a ∈∼t C, iff there exists a concept descriptionX ∈ C(L) such
that C ∼ X ≥ t and a ∈ XI for all models I of K.

CI

∆I

Figure 1: Relaxed instances w.r.t. two different similarity
measures. Darker colors represent the relaxed instances of
C w.r.t. higher degrees t.

For brevity, we will denote as Relax∼t (C) the set of all re-
laxed instances of C w.r.t. K, ∼ and t. Clearly, the elements
of Relax∼t (C) depend strongly on the value of t, but also on
the similarity measure ∼ chosen, as shown in Figure 1. For
a fixed similarity measure ∼, if t ≤ t′, then it holds that
Relax∼t′ (C) ⊆ Relax∼t (C). In the figure, the central circle
represents the interpretation of the concept C. The other lines
show the interpretation of Relax∼t (C) with darker lines grad-
ually representing large values t. We use two different kinds
of lines (continuous vs. dashed) to represent two different
similarity measures, that relax the concepts based on differ-
ent features. As can be seen, the sets obtained can greatly
differ from each other.

As mentioned before, our goal is to find all the instances in
Relax∼t (C). Following Definition 2, this task could be per-
formed by first computing all concepts X that are similar to
C with degree at least t, and then obtaining all the instances
of these concepts X; in symbols,

Relax∼t (C) =
⋃

C∼X≥t
{a | a is an instance of X}.

However, this approach suffers from two main drawbacks.
First, the set of all concepts that are similar to C with degree
at least t might be infinite, thus requiring an infinite number
of queries to obtain Relax∼t (C), even though this set contains
only finitely many individuals. Second, it is not known how
to compute the similar concepts X . Similarity measures tell
us only how similar two given concepts are, but not how to
build a concept that is similar to another with at least some
given degree.

To avoid these issues, we consider a different reasoning
problem, that considers the computation of a concept that has
a given individual a as an instance and resemblesC most. We
call this the mimic of C w.r.t. a.

Definition 3 (mimic). Let L be a DL, K be an L-knowledge
base, a ∈ NI be an individual name, C be an L-concept
description, and ∼ be a similarity measure. An L-concept
D is called a mimic of C w.r.t. a, denoted M(C, a), iff the
following two conditions hold:

• a is an instance of D, i.e., aI ∈ DI for all models I of
K, and

• for allL-concept descriptionsE holds, if a is an instance
of E, then C ∼ D ≥ C ∼ E.

CI = M(C, a)I

msc(a)a

msc(b)
b

M(C, b)I

Figure 2: Two individuals, their most specific concepts (dot-
ted), and the mimics of a concept C w.r.t. the individuals
(dashed).

Intuitively, a mimic of C w.r.t. a is a concept that is as sim-
ilar to C as possible, while still having a as an instance. As
for relaxed instances, the mimic strongly depends on the sim-
ilarity measure chosen. Figure 2 depicts the idea of mimics.
In the figure, a and b are two named individuals. The former
is an instance of C while the latter is not. The dotted lines
depict their most specific concepts. Since a is an instance of
C, C is also a mimic of C w.r.t. a: C ∼ C = 1. The dashed
line depicts a mimic of C w.r.t. b. Notice that this mimic must
contain the msc of b, but need not be a subsumer of C.

We must point out that the mimic of C w.r.t. an individual
a need not be unique, even modulo concept equivalence. For
example, let K be a knowledge base consisting of the empty
TBox T and the ABox A = {A u B(a)}, and ∼ be a sim-
ilarity measure with A ∼ C = 0.5, B ∼ C = 0.5 and
(A u B) ∼ C = max{A ∼ C,B ∼ C} = 0.5. Then A,
B, and A u B, are all mimics of C w.r.t. a, as they all have
a similarity value of 0.5 to C. In fact, there can be infinitely
many such mimics for a given concept C and individual a.
As we will see, it suffices to compute one of them.

Using mimics, we can compute the relaxed instances of a
concept. The idea is to compute, for each individual a ap-
pearing in the knowledge base K, the mimic of C w.r.t. a. If
this mimic has similarity at least t with C, then a is a relaxed
instance of C; otherwise, it cannot be a relaxed instance, as
no concept can have a greater similarity degree with C while
still containing a. This is formalized in the following propo-
sition. The proof is a simple consequence of the arguments
given above.

Proposition 4. LetK be a knowledge base, a be an individual
occurring inK, C be a concept description,∼ be a similarity
measure and t ∈ [0, 1]. Then a ∈ Relax∼t (C) iff there is a
mimic D of C w.r.t. individual a such that C ∼ D ≥ t.

In the next section we will study the problem of computing
a mimic for a given concept C w.r.t. an individual a. Since
all mimics must have the same degree of similarity w.r.t. C,
a simple similarity computation provides us with a decision
whether a is a relaxed instance of C or not, up to degree t.
As computing a mimic may be an expensive task, we also
provide an optimization criterion: if a mimic D of C w.r.t. a
is similar to C to degree at least t, then all certain instances
of D must also be relaxed instances of C, and hence there is
no need of computing their corresponding mimics.

4 Computing Mimics in EL
In general there are infinitely many concepts, for which an
individual a is an instance of, and thus enumerating them and
computing the similarity to C to find the mimic is not a feasi-
ble option. However, under some circumstances we can limit
the number of concepts that need to be tested in order to find
a mimic.

Recall that the notion of a mimic combines a property that
is based on the semantics (it must have a as an instance) and
a syntactic property (it must be similar to C). The semantic
property gives us a starting point on how to find a mimic. A
mimic D of C w.r.t. a must always have a as an instance, and
hence, by definition of the msc, msc(a) vT D holds. For
equivalence invariant similarity measures the idea is to use
the msc(a) as a lower bound for the mimic guaranteeing the
semantic property, and to only consider concept descriptions
that can be obtained from syntactic manipulations of msc(a)
that result in a generalized concept, i.e., by removing some
concept names or existential restrictions.
Definition 5 (generalized concept). Let C be a concept de-
scription of the form

C =
d

i∈I Ai u
d

j∈J ∃rj .Ej ,

with Ai ∈ NC for all i ∈ I , and rj ∈ NR, Ej is a concept
description for all j ∈ J . Then a concept description D is a
generalized concept of C iff it has the form

D =
d

i∈I′ Ai u
d

j∈J′ ∃rj .E′j
with I ′ ⊆ I , J ′ ⊆ J and E′j is a generalized concept of Ej

for j ∈ J ′.
This idea, however, only works if the msc is given in a

particular syntactic form. It needs to be fully expanded.
Definition 6 (fully expanded concept). Let T be an EL-
TBox. A concept description C is fully expanded w.r.t. T
iff for all concept definitions D = E ∈ T with C vT D we
have that E is a generalized concept of C.

The idea is that C contains all its subsumers explicitly as
sub-concept descriptions. Now, we can show that the mimic
of C w.r.t. a must be a generalized concept of the fully ex-
panded most specific concept of a.
Lemma 7. Let K = (T ,A) be an EL-knowledge base, a be
an individual from A, C be an EL-concept description, and
∼ be an equivalence invariant similarity measure. Let further
E = msc(a) be the fully expanded most specific concept of a.
Then there is a mimic D = M(C, a) of C w.r.t. a and K that
is a generalized concept of E.

Proof. We show that any concept F which has a as an in-
stance must be equivalent to a generalized concept of the fully
expanded msc. Since the mimic of C w.r.t. a has a as an in-
stance and ∼ is equivalence invariant, the lemma follows.

Let F be a concept description with aI ∈ F I for all mod-
els I of K. Then E vK F by definition of the msc. Since
E is fully expanded and contains all its subsumers explicitly,
any part of the concept description F must also be part of the
concept description E. Thus F is a generalized concept of
E.

In general, the msc may contain a chain of infinitely nested
existential restrictions for cyclic ABoxes, and hence describ-
ing it as a concept would require infinite size. Then there are
still infinitely many generalized concepts (of finite size) that
need to be checked to find a mimic. This means that Lemma 7
does not always provide a solution to the problem. However,
the query concept C (in ∼-normal form) has always a finite
role-depth, and most structural similarity measures used in
practice compute the similarity recursively between concepts
at the same role-depth. Therefore, for these similarity mea-
sures, it is possible to limit the role-depth of the most specific
concept and still get the same result.
Definition 8. Let K be an EL-KB. By rd(C) we denote the
role-depth of a concept C, i.e. the maximal number of nested
quantifiers.

The EL-concept description C is the role-depth bounded
most specific concept (denoted k-msc(a)) of an individual a
w.r.t. K and the role-depth bound k iff
• rd(C) ≤ k,
• aI ∈ CI for all models I of K, and
• for all EL-concepts D ∈ C(L) with rd(D) ≤ k and all
aI ∈ DI for all models I of K it holds that C vT D.

The role-depth bounded msc is a commonly used approx-
imation of the msc, since it always exists and is unique.
An algorithm to compute the k-msc in the EL-family, even
w.r.t. general TBoxes, has been introduced in [Peñaloza and
Turhan, 2011] and [Ecke et al., 2013]. Using this, we can
now show that for structural similarity measures we can find
the mimic always as a generalized concept of the role-depth
bounded msc.
Lemma 9. Let K = (T ,A) be an EL-knowledge base, a be
an individual from A, C be an EL-concept description in ∼-
normal form, and ∼ be a structural, equivalence invariant
similarity measure with the following property:

X ∼ d
i∈I Ai ≥ X u ∃r.B ∼ d

i∈I Ai. (1)

Let further k = rd(C) and E = k-msc(a) be the fully ex-
panded role-depth bounded most specific concept of a. Then
there is a mimic D = M(C, a) of C w.r.t. a that is a general-
ized concept of E.

Proof. By Lemma 7 we know that there exists a mimic F of
C w.r.t. a that is a generalized concept of the (possibly infi-
nite) msc(a). Since E is the fully expanded k-msc of a, F
must also be a generalized concept of E up to role-depth k
(but of course, it may contain additional existential restric-
tions which increase the role-depth of F). We show by in-
duction on k, that there is a generalized concept F ′ of E with
F ′ ∼ C ≥ F ∼ C. This will imply that F ′ is a mimic of C
w.r.t. a, which proves the lemma.

For the case k = 0, C =
d

i∈I Ai and E =
d

j∈J Bj

are conjunctions of concept names and since F a generalized
concept of E up to role-depth k = 0, we know that F is of
the form F =

d
j∈J′ Bj u

d
h∈H ∃rh.Fh with J ′ ⊆ J . But

then property (1) yields for F ′ =
d

j∈J′ Bj :

F ′ ∼ C ≥ F ′ ud
h∈H ∃rh.Fh ∼ C = F ∼ C.

Procedure relaxed-instance?(a,C,K,∼, t)
Input: a: individual in K; C: EL-concept description;

K: EL-knowledge base; ∼: similarity measure;
t: similarity degree;

Output: whether a ∈∼t C w.r.t. K
1: k := rd(C)
2: E := k-msc(a) w.r.t. K
3: guess a generalized concept F of E
4: if F ∼ C ≥ t then
5: return true
6: else
7: return false

Figure 3: Computation algorithm for relaxed instances in EL.

For the case k > 0, C =
d

i∈I Ai u
d

h∈H ∃sh.Ch and
E =

d
j∈J Bj u

d
l∈L ∃rl.El are conjunctions of concept

names and existential restrictions with rd(Ch), rd(El) ≤ k−1
for h ∈ H , l ∈ L. Once again, since F is a general-
ized concept of E up to role-depth k, it must be of the form
F =

d
j∈J′ Bj u

d
l∈L′ ∃rl.Fl with J ′ ⊆ J , L′ ⊆ L and

each Fl is a generalized concept of El up to role-depth k−1.
But then, the induction hypothesis yields for each h ∈ H and
l ∈ L′ that F ′l ∼ Ch ≥ Fl ∼ Ch for generalized concepts
F ′l of El. Then also F ′ =

d
j∈J′ Bj u

d
l∈L′ ∃rl.F ′l is a gen-

eralized concept of E and since the similarity measure ∼ is
structural, this yields: F ′ ∼ C ≥ F ∼ C.

We have now identified some constraints on the similarity
measure such that we can always find the mimic of C w.r.t.
a from a finite set of concept descriptions: the generalized
concepts of the fully expanded role-depth bounded msc of
the individual a.

Instead of computing the mimic D = M(C, a) of C w.r.t.
a and testing whether the similarity between the C and D
is at least t, it is enough to find any concept D′ with a as
an instance and C ∼ D′ ≥ t to show that a is a relaxed
instance of C; Such a non-deterministic algorithm that, given
an EL-KB K, an individual a, an EL-concept description C,
a similarity measure ∼, and a similarity degree t, computes
whether a is a relaxed instance of C w.r.t. ∼ and t, is given
in Figure 3. The algorithm works by computing the k-msc of
a with k = rd(C) and then guessing a generalized concept F
of E with similarity F ∼ C ≥ t, if such a concept exists.

Corollary 10. Let K = (T ,A) be an EL-knowledge base,
C be an EL concept in ∼-normal form, a be an individual
in K, ∼ be a structural equivalence invariant similarity mea-
sure fulfilling Property 1 from Lemma 9 and t ∈ [0, 1]. Then
relaxed-instance?(a,C,K,∼, t) computes whether a ∈∼t C
w.r.t. K.

Proof. Lemma 9 shows that a mimic of C w.r.t. a is a gener-
alized concept of E = k-msc(a) for k = rd(C). Thus, if the
algorithm returns false, we know that no generalized concept
F exists with C ∼ F ≥ t, and in particular also the mimic
of C w.r.t. a must have a similarity of less than t to C. Thus
no concept that has a as an instance is similar enough to C
and thus a 6∈∼t C. If the algorithm returns true, the guessed

concept F shows a ∈∼t C, since a is an instance of F and
F ∼ C ≥ t.

Guessing a generalized concept F of a concept description
E can be done in time linear to size ‖E‖ of E by recursively
guessing for each concept name and each existential restric-
tion inE whether they should occur in F or not. However, the
size of E = k-msc(a) can be exponential in k and polyno-
mial in ‖K‖ [Peñaloza and Turhan, 2011]. Since k = rd(C)
is bounded linearly by ‖C‖, the algorithm runs in NEXP-time
(provided that ∼ can be computed in NEXP-time). However,
the algorithm runs in NP-time in ‖K‖ (provided that ∼ can
be computed in NP), and since C is an input concept, its role-
depth can be assumed to be rather low. Hence, we conjecture
that the exponential blow-up of the msc usually plays only a
minor role in practical applications.

To obtain a deterministic algorithm, the mimic of C w.r.t.
a can be computed by enumerating all generalized concepts
of k-msc(a) and taking one with the maximal similarity to
C. Of course, there are a few optimizations possible: if the
individual a belongs to C, we can directly return true, since
the mimic will always be C itself. If we find a generalized
concept F with C ∼ F ≥ t, we can stop to search for even
more similar concepts and return true. And finally, if we find
a mimicD for an individual awithC ∼ D ≥ t, we know that
all other instances of D besides a will be relaxed instances of
C as well, without needing to compute their mimics.

5 Conclusions
In this paper we have studied a new inference service for de-
scription logics, which consists in computing the relaxed in-
stances of a given query concept C w.r.t. a similarity mea-
sure ∼ and a similarity degree t. This problem is relevant
to the field of artificial intelligence in general, and to knowl-
edge representation and reasoning in particular, as it provides
a formal and unambiguous method for computing answers
for a relaxed notion of instance query. Thus it is useful for
ontology-based applications that need to obtain answers that
fit the query criteria only to a certain degree.

The inference has two main degrees of freedom: in the
choice of the similarity measure, and in the degree of relax-
ation of the concept. The similarity degree t allows the user to
tune how strict or relaxed the answers provided are: a degree
closer to 1 will yield only a few additional individuals that do
not belong to C, while relaxing to a level closer to 0 yields
almost all individuals in the ontology as relaxed instances.
The similarity measure provides also criteria on how the re-
laxed instances are obtained. Intuitively, different similarity
measures yield different weights on specific criteria. For ex-
ample, one could require that small changes inside existential
restrictions produce a high level of dissimilarity.

As a step for computing the relaxed instances of a concept
C, we introduced the problem of finding a mimic of the query
concept C w.r.t. a given individual a. Such a mimic is a con-
cept D that contains a as instance, and has the highest simi-
larity possible to C; i.e., it is a concept that tries to imitate C
while containing a. Computing mimics w.r.t. all individuals
appearing in an ontology provides a method for finding the
relaxed instances of C.

The problem of finding a mimic is non-trivial. We have
provided an algorithm capable of finding such a mimic, based
on the msc of an individual a for certain structural similarity
measures. While this computation is expensive, some obvi-
ous optimizations can be used to reduce the number of times
these mimics are constructed.

As future work, we plan to expand on the two main in-
ference problems described in this paper. First, we intend to
improve the algorithms that compute the mimics. On the one
hand, we will try to find one such mimic efficiently. On the
other, it would also be beneficial to compute the most general
mimic, if it exists; this concept would have the most pos-
sible instances, and hence would be useful as an optimiza-
tion approach. Second, we will try to find tight complexity
bounds on the problems of computing relaxed instances and
finding mimics for a given concept. Third, we plan to obtain a
better understanding on the properties of similarity measures
that can impact (positively or negatively) on the complexity
and run-time of solving these problems. As we have men-
tioned before, both inferences depend strongly on the simi-
larity measure chosen. However, we do not know precisely
which measures would allow for better results, be it in terms
of execution time, or in terms of precision and fine-grained
tuning.

References
[Alvarez and Yan, 2011] M. A. Alvarez and C. Yan. A

graph-based semantic similarity measure for the gene on-
tology. J. Bioinformatics and Computational Biology,
9(6):681–695, 2011.

[Baader et al., 2003] F. Baader, D. Calvanese, D. McGuin-
ness, D. Nardi, and P.F. Patel-Schneider, editors. The De-
scription Logic Handbook: Theory, Implementation, and
Applications. Cambridge University Press, 2003.

[Borgida et al., 2005] A. Borgida, T. Walsh, and H. Hirsh.
Towards measuring similarity in description logics. In
Proc. of the 2005 Description Logic Workshop (DL 2005),
volume 147 of CEUR Workshop Proceedings, 2005.

[Borgwardt and Peñaloza, 2012] S. Borgwardt and R. Peña-
loza. Undecidability of fuzzy description logics. In Proc.
of the 12th Int. Conf. on the Principles of Knowledge
Representation and Reasoning (KR-12), pages 232–242.
AAAI Press, 2012.

[Borgwardt et al., 2012] S. Borgwardt, F. Distel, and
R. Peñaloza. How fuzzy is my fuzzy description logic?
volume 7364 of Lecture Notes In Artificial Intelligence,
pages 82–96. Springer-Verlag, 2012.

[Cerami and Straccia, 2013] M. Cerami and U. Straccia. On
the (un)decidability of fuzzy description logics under
lukasiewicz t-norm. Inf. Sci., 227:1–21, 2013.

[d’Amato et al., 2005] C. d’Amato, N. Fanizzi, and F. Es-
posito. A semantic similarity measure for expressive de-
scription logics. In Proc. of Convegno Italiano di Logica
Computazionale, CILC05, 2005.

[Ecke et al., 2013] A. Ecke, R. Peñaloza, and A.-Y. Turhan.
Computing role-depth bounded generalizations in the de-
scription logic ELOR. In Proceedings of the 36th German

Conference on Artificial Intelligence (KI 2013), volume
8077 of Lecture Notes in Artificial Intelligence, Koblenz,
Germany, 2013. To appear.

[Gene Ontology Consortium, 2000] The Gene Ontology
Consortium. Gene Ontology: Tool for the unification of
biology. Nature Genetics, 25:25–29, 2000.

[Haarslev et al., 2012] V. Haarslev, K. Hidde, R. Möller, and
M. Wessel. The RacerPro knowledge representation and
reasoning system. Semantic Web Journal, 3(3):267–277,
2012.

[Kazakov et al., 2012] Y. Kazakov, M. Krötzsch, and
F. Simančík. ELK reasoner: Architecture and evalua-
tion. In Proceedings of the OWL Reasoner Evaluation
Workshop (ORE’12), volume 858 of CEUR Workshop
Proceedings. CEUR-WS.org, 2012.

[Lehmann and Turhan, 2012] K. Lehmann and A.-Y.
Turhan. A framework for semantic-based similarity
measures for ELH-concepts. In Proceedings of the 13th
European Conference on Logics in Artificial Intelligence,
Lecture Notes in Artificial Intelligence, pages 307–319.
Springer Verlag, 2012.

[Lord et al., 2003] P. W. Lord, R. D. Stevens, A. Brass, and
C. A. Goble. Investigating semantic similarity measures
across the gene ontology: The relationship between se-
quence and annotation. Bioinformatics, 19(10):1275–
1283, 2003.

[Lutz et al., 2003] C. Lutz, F. Wolter, and M. Zakharyaschev.
Reasoning about concepts and similarity. In Proceedings
of the 2003 International Workshop on Description Logics
(DL2003), CEUR-WS, 2003.

[Mistry and Pavlidis, 2008] M. Mistry and P. Pavlidis. Gene
ontology term overlap as a measure of gene functional
similarity. BMC Bioinformatics, 9, 2008.

[Motik et al., 2009] B. Motik, B. Cuenca Grau, I. Horrocks,
Z. Wu, A. Fokoue, and C. Lutz. OWL 2 web on-
tology language profiles. W3C Recommendation, 27
October 2009. http://www.w3.org/TR/2009/
REC-owl2-profiles-20091027/.

[Nebel, 1990] B. Nebel. Reasoning and revision in hybrid
representation systems. Springer-Verlag New York, Inc.,
New York, NY, USA, 1990.

[Peñaloza and Turhan, 2011] R. Peñaloza and A.-Y. Turhan.
A practical approach for computing generalization infer-
ences in EL. In Proceedings of the 8th European Semantic
Web Conference (ESWC’11), Lecture Notes in Computer
Science. Springer-Verlag, 2011.

[Schlicker et al., 2006] A. Schlicker, F. S. Domingues,
J. Rahnenführer, and T. Lengauer. A new measure for
functional similarity of gene products based on gene on-
tology. BMC Bioinformatics, 7:302, 2006.

[Tsarkov and Horrocks, 2006] D. Tsarkov and I. Horrocks.
FaCT++ description logic reasoner: System description.
In Proc. of the 3rd Int. Joint Conf. on Automated Reason-
ing (IJCAR-06), 2006. FaCT++ download page: http:
//owl.man.ac.uk/factplusplus/.

