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Abstract
Access restrictions are essential in standard information systems and became an issue
for ontologies in the following two aspects. Ontologies can represent explicit and im-
plicit knowledge about an access policy. For this aspect we provided a methodology to
represent and systematically complete role-based access control policies. Orthogonally,
an ontology might be available for limited reading access. Independently of a specific
ontology language or reasoner, we provided a lattice-based framework to assign labels
to an ontology’s axioms and consequences. We looked at the problems to compute and
repair one or multiple consequence labels and to assign a query-based access restric-
tion. An empirical evaluation has shown that the algorithms perform well in practical
scenarios with large-scale ontologies.
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1 Introduction
Access control is an essential operation in standard information systems to prevent
unauthorized access and use of information. As semantic technology is more and more
applied in real-world applications, access control also becomes an issue for ontologies in
the following two ways. Ontologies can, on the one hand, be a great help in representing
knowledge about an access policy, e.g. including the definition of user roles based on
the attributes of persons. An ontology might, on the other hand, be an object of
a computing system which is available for reading access under certain restrictions
only. Deciding what parts of an ontology can be provided to the requesting person
becomes much harder compared to systems where all the available information is stored
explicitly, since additional knowledge can be inferred by reasoning.

In this thesis, the twofold application of access restrictions and knowledge represen-
tation with Description Logic (DL) Web ontologies have been investigated, on the one
hand to represent knowledge about role-based access control (RBAC) policies and on
the other hand to represent knowledge under access restrictions. The results include:

• a methodology to create a representation of an RBAC policy in Description Log-
ics and to complete it in a computer-supported dialog with the security engineer
in a systematic and non-redundant procedure;

• a framework, which is independent of a specific ontology language or reasoner,
that allows to restrict reading access to explicit knowledge represented by an
ontology and implicit knowledge that follows from this ontology;

• user support for a security engineer to facilitate the task of assigning access
restrictions to individual axioms by grouping them document-based or query-
based in an intuitive manner;

• an empirical evaluation, showing that concepts and algorithms developed in this
PhD project perform well in practical scenarios with large-scale ontologies.

1



1.1 Access Restrictions to andwith Description LogicWeb On-
tologies

Description Logics [Baa+07b] have been successfully used to represent knowledge for
a wide variety of real-world application domains. The most popular application is
the Semantic Web. The World Wide Web Consortium (W3C) developed and recom-
mended the Web Ontology Language (OWL) as the standard ontology language for
the Semantic Web [MPSP09]. DLs provide the basis of OWL.

The relevant portions of a considered domain are described through a DL ontology.
Rather than having an ontology explicitly stating every piece of knowledge, one would
prefer to be able to infer additional knowledge that appears implicitly in this ontology.
For example, knowing that

• Martin’s camera is a digital single-lens reflex camera and knowing also that

• every digital single-lens reflex camera is a single-lens reflex camera,

it should be unnecessary to express that

• Martin’s camera is a single-lens reflex camera

because this is a direct consequence following from the other two pieces of knowledge
which we call axioms. For each consequence, one or more explanations can be given
in the form of minimal sets of axioms that imply the consequence. The available
highly-optimized DL reasoners compute consequences from axioms. In other words,
they make the implicit knowledge in the ontology explicit. The semantics of an ontol-
ogy language determines which consequences can be derived. DLs have a declarative
semantics, i.e. it depends only on the represented knowledge, which ensures that dif-
ferent implementations of reasoning services lead to the same results. This was not
guaranteed with early knowledge representation (KR) systems that had an operational
semantics, i.e. defined by means of the procedures that perform the reasoning tasks.

Two main aspects appear with respect to access restrictions and ontologies, which
are both covered by this thesis. These are

• restricting reading access to ontologies, and

• representing access restrictions with ontologies.

Especially the first aspect recently earned interest. Fine-grained access control
has been identified in [Bru+07] as an “important issue to meet business requirements”
that will “affect storage, query and reasoning systems” and hence is a “key issue to
explore.” This thesis provides a framework to restrict reading access to an ontology in
a fine-grained manner. The general idea of the framework is to assign a label to each
axiom which represents an access restriction and to be able to compute such a label
also for every consequence. The general idea also includes being able to change axiom
labels systematically in order to obtain intended consequence labels.

For the second aspect of representing access restrictions with ontologies, we focus
on RBAC [SFK00] policies in this thesis and show how to represent knowledge from

2 Chapter 1 Introduction



Figure 1.1: Access restricted semantic document store

such a policy with an ontology. This makes sense, as tasks related to RBAC policies
can be reduced to standard DL reasoning. Furthermore, we show how to systematically
complete this knowledge.

Both, the first and the second aspect, are represented in the following model for
systems managing documents and ontologies with access restrictions. This model is
called access restricted semantic document store. A typical instance of that model is
a Semantic Web system with access restrictions. Figure 1.1 depicts the main com-
ponents. It consists of storage for documents, storage for knowledge representation
and filters to restrict access on both. The explicit axioms and implicit consequences
represent knowledge from the documents. The set of axioms is contained in the set of
consequences, since every axiom trivially follows from the set of axioms. The color of
each user in the right part of Figure 1.1 represents the set of assigned user roles. The
color of the documents represents the set of user roles allowed to read the document.
Similarly, the color of the axioms and consequences represents the set of user roles
allowed to read the knowledge representation. Intuitively, the access restrictions that
apply for the documents should also apply for the axioms and their consequences.

In order to discuss technical concepts and results of the thesis by means of a
realistic practical scenario, the following section introduces an instance of an access
restricted semantic document store. This access restricted semantic document store
manages documents and knowledge about products and allows controlled access by
several types of users. The terminology which is used informally in the following
section is defined formally later in Chapter 2.

1.1 Access Restrictions to and with Description Logic Web Ontologies 3



1.2 Case Study: Access Restricted Semantic Product Docu-
mentation

The specific example scenario introduced here is part of the research project THE-
SEUS/PROCESSUS [THE10]. Within this project, semantically annotated documents
describe services offered and sold on a marketplace in the Web, like traditional goods
would be sold on Amazon, eBay and similar Web marketplaces. Different types of users
are involved with different permissions that allow them to create, advertise, sell, buy,
etc. the services. Documents and knowledge are managed with an access restricted se-
mantic document store, so that users can read and change the documents and query the
knowledge representation according to the user’s permissions. The service documents
are semantically annotated using a vocabulary for service descriptions [Obe+09] and
service documents [HBPK09]. In this scenario the documents are stored in a semantic
Wiki which allows storing documents and annotations at one place. For each document,
the annotations can be exported as a document ontology. For example the source text
of a Semantic MediaWiki1 article about a service called ecoCalculatorV1 could contain
the character sequence [[Category:EUecoService]] [[Category:HighperformanceService]] to
classify the service as EUecoService and as HighperformanceService. The document
ontology created by the OWL export of the Semantic MediaWiki would then contain
the DL axiom2 EUecoService �HighperformanceService(ecoCalculatorV1 ). Alterna-
tively, a document ontology could also be created manually by an ontology engineer
after reading a document.

An approach to keep the information and the knowledge about a service in the soft-
ware models, the source code, the documents, and the document ontologies consistent
has been presented in [HBPK08; HBPK09] during this PhD project. Its details are
out of scope of this thesis. However, it underlines the practical relevance of knowledge
about software documents that is represented in a document ontology.

The union of all document ontologies and imported ontologies forms a large on-
tology which can be used to infer implicit consequences with a DL reasoner and to
answer user queries. This scenario implies that the ontology contains knowledge which
is as sensitive as the source documents. To make the sensitivity level of each axiom of
the large ontology explicit, a label is assigned to each axiom. A similar label should
be computable for each consequence.

The document types contained in our example are user manual, marketing document,
customer contract document, terms of use document, installation guide, external technical
interface document, design document and rating entry, abbreviated by UM, MD, CCD,
ToUD, IG, ETID, DD, RE. Those document types are accessible by users with different
user roles. The roles contained in our example are marketplace visitor, customer, devel-
opment engineer, service vendor, legal department employee, service provider, marketing
employee, technical editor and customer service employee, abbreviated by MV, CU, DE,
SV, LDE, SP, ME, TE and CSE. Similar document types and target groups can be
found in product standards of big software companies. An access control system reg-

1
http://semantic-mediawiki.org

2
The syntax and semantics of DL axioms is introduced later in detail.
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MV × × ×
CU × × × × × × × × ×
DE × × × × × × × × × × × ×
SV × × × × × × × × × × × × × × ×
LDE × × × × × × × × × ×
SP × × × × × ×
ME × × × × × × × ×
TE × × × × × × × × × × ×
CSE × × × × × × × × ×

Table 1.1: Our example RBAC matrix

ulates the allowed permissions for each user according to her user role. The actions
in our example are mayApprove, mayWrite and mayRead, abbreviated by MA, MW and
MR. The allowed actions of user roles on document types are defined by the RBAC
matrix in Table 1.1. For example, a marketing document is intended to be publicly
available so that, e.g., a marketplace visitor can read it. This is indicated by a cross
at the intersection of the respective row and column. But a marketplace visitor is not
allowed to read a design document, indicated3 by a missing cross. Note that the defined
allowed actions abstract from further constraints. Obviously a customer has access only
to a customer contract document of her own purchased service, a development engineer
has access only to a design document of a software she is working on, etc.

Figure 1.2 provides a set of user roles and a relation between user roles, expressing
that one user role inherits all permissions from another user role in the direction the
arrow is pointing. For example, a customer is allowed to do anything a marketplace
visitor is allowed to do. As can be easily verified, this permission inheritance relation
is consistent with the RBAC matrix in Table 1.1. The permission inheritance relation
is an order on the set of user roles and is called user role hierarchy in an RBAC model.
In RBAC, a user role hierarchy adds further implicit permissions to the initial set of
explicit permissions. An RBAC matrix is a static representation of an RBAC policy,
and can for example be used for efficient access on explicit and implicit permissions.

The set of user roles and their user role hierarchy may be represented by a type
of partially ordered set, called a lattice (L,�). For example, a customer is allowed
to do anything a marketplace visitor is allowed to do, so CU,MV ∈ L and CU � MV.
The lattice can be computed from the RBAC matrix, as explained later. The lattice
can be applied in an access control model that allows a user labeled �u to read an
axiom labeled �a iff �u � �a. In such a model, an axiom label intuitively represents
a boundary dividing the set of user labels into those with and those without reading
permission. For example, an ontology axiom labeled with CU is readable by any user

3
In fact, this is only one possible reading of the matrix and others are discussed later. For the

time being only this reading is used.
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Figure 1.2: User roles with permission inheritance relation

labeled CU, CSE, LDE or SV. The following example contains an ontology O with
labeled axioms, where each axiom came from a different document ontology.

Example 1. Let (L,�) be the lattice shown in Figure 1.3, where elements �0, �2, �3, �5
represent user roles as illustrated. Moreover, let O be a labeled ontology from a
marketplace in the Semantic Web with the following five axioms

a1 : EUecoService �HighperformanceService(ecoCalculatorV1 )
a2 : HighperformanceService

� ServiceWithLowCustomerNr � LowProfitService
a3 : EUecoService � ServiceWithLowCustomerNr � LowProfitService
a4 : ServiceWithLowCustomerNr � ServiceWithComingPriceIncrease
a5 : LowProfitService � ServiceWithComingPriceIncrease

where the function lab assigns to each axiom ai the label �i, which is indicated also in
Figure 1.3. The consequence

c1 : ServiceWithComingPriceIncrease(ecoCalculatorV1 )

follows from each of the explanations {a1, a2, a4}, {a1, a2, a5}, {a1, a3, a4}, {a1, a3, a5}.
The consequence

c2 : LowProfitService(ecoCalculatorV1 )

follows from each of the explanations {a1, a2}, {a1, a3}. Additionally, the concept
assertions of ecoCalculatorV1 to the concepts EUecoService,HighperformanceService
and ServiceWithLowCustomerNr are consequences of O.

1.3 Requirements

User stories have been introduced for agile software projects to describe requirements
shortly and informally in few sentences [Coh04] from a user perspective. To define the
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Figure 1.3: Lattice with 4 user labels and an assignment of 5 axioms to labels

requirements for the scenario presented in the previous section, this section provides
the following user stories. The diagram in Figure 1.4 uses UML use case notation and
shows which actor is involved in which user story by a solid line. It also shows which
user story extends another one by an arrow pointing to the extended user story.

User Story 1 (Define visible sub-ontology). The security administrator defines the
visible sub-ontology for each user by means of labeled axioms.

User Story 2 (Retrieve visible sub-ontology). The user retrieves her visible sub-
ontology based on her user label.

User Story 3 (Compute label of a consequence). The security administrator is inter-
ested in the label of an inferred consequence. Intuitively, this should be based on the
labels of the explicit axioms.

User Story 4 (Retrieve visible consequences). The user wants to retrieve the set of
consequences which follow from her visible sub-ontology, i.e. the set of consequences
she could compute on her own. As explained before, the set of consequences includes
also the set of axioms.

User Story 5 (Distribute visible consequences as a view). Different users, which could
be be also groups of users, user roles, organizations, or organizational units, want to
retrieve their visible consequences. This allows reuse of explicit and implicit knowledge
across security domains as illustrated in Figure 1.5. For example, knowledge from
flyers and other marketing documents is distributed to the company Web site and
a marketplace portal whereas knowledge from design documents and test protocols
remains at the team portal.

User Story 6 (User dependent query answering). Users posing queries against the
system retrieve answers with respect to their user roles, as illustrated in Figure 1.6.

User Story 7 (Repair label of a consequence). The security administrator is not
satisfied with a consequence’s label. Since it can only be changed indirectly by changing
the axiom’s labels, she requests a proposed minimal axiom re-labeling.

1.3 Requirements 7



security
administrator

user

1 Define visible
sub-ontology 2 Retrieve visible

sub-ontology

3 Compute label of
a consequence

7 Repair label of
a consequence

8 Repair label of
several consequences

9 Repair label of
several consequences based on a

query

6 User dependent
query answering

5 Distribute visible
consequences as a view

12 Compute user role
hierarchy from RBAC

matrix

11 Create RBAC matrix from
explicit permissions and user

role hierarchy

10 Assign labels to a set
of axioms related to a

document

4 Retrieve visible
consequences

13 Find and formalize
constraints not explicit in an

RBAC matrix

Figure 1.4: User stories

User Story 8 (Repair label of several consequences). Given not only one conse-
quence, but a set of consequences and their respectively intended consequence label,
the security administrator requests a proposed minimal axiom re-labeling.

User Story 9 (Repair label of several consequences based on a query). Instead of enu-
merating a set of consequences with their intended label, the security administrator
defines this set intentionally by a query. The query could, e.g., address consequences
about a concept and all subconcepts in order to restrict knowledge along the subsump-
tion hierarchy similar to restricting access to files in a directory and all subdirectories.

User Story 10 (Assign labels to a set of axioms related to a document). Instead
of assigning labels to single axioms individually, the security administrator wants to
address a set of axioms. She wants to transfer the access restrictions that apply to
a document also to all axioms of the respective document ontology. Especially for a
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security administrator who is familiar with access restrictions to a file system but not
(yet) to ontologies, this might increase usability.

User Story 11 (Create RBAC matrix from explicit permissions and user role hi-
erarchy). Given a set of explicit permissions and a user role hierarchy, the security
administrator might be interested in computing a complete RBAC matrix containing
the union of explicit and implicit permissions.

User Story 12 (Compute user role hierarchy from RBAC matrix). Given the union
of explicit and implicit permissions in the form of an RBAC matrix, for example from
a legacy system, the security administrator is interested in a user role hierarchy that
is consistent with the RBAC matrix. This helps her to create a clearer policy with
fewer explicit permissions while keeping the union of explicit and implicit permissions.
Furthermore, she wants to use it as a basis for the labeling lattice in the user stories
given above.

1.3 Requirements 9



User Story 13 (Find and formalize constraints not explicit in an RBAC matrix).
Given the union of explicit and implicit permissions in the form of an RBAC matrix,
the system administrator is interested to find not only the user role hierarchy, but
further general constraints. For example, the constraint “no user is allowed to write
and approve the same document” is true in the RBAC matrix in Table 1.1, but only
the security administrator can decide if it is true in general. She is interested in
a computer-supported interview to find all constraints systematically and with no
redundant questions.

1.4 Research Questions

Based on the user stories above, this section lists the identified research questions.
The User Stories 1, 2, 3, 4, 5 and 6 can be made technically possible by answering the
following research questions.

1. For an access control model which allows multiple visible sub-ontologies from one
large ontology with respect to a criterion expressed by axiom labels, user labels
and a hierarchy between those labels, how can such a model be formalized and
what constraints need to be taken into account?

2. Given that all axioms of an ontology are labeled, what is the label of a conse-
quence which can be inferred and made explicit by a reasoner?

Repairing one or several consequence labels as described in User Stories 7 and 8
and the usability issues in User Stories 9 and 10 require an answer to the following
research questions.

3. Can the repair of a consequence label be reduced to a known problem, and what
optimizations are possible?

4. How can repair of a consequence label be extended to the repair of multiple
consequence labels in parallel?

5. How are conflicts handled that might appear when goal labels of multiple con-
sequences interfere with each other?

6. Is it possible to increase usability by reusing document access restrictions for
document ontologies or by assigning a label to a set of consequences intentionally
defined by a query?

In order to make User Stories 11, 12 and 13 technically possible, the following
research questions need to be solved.

7. Are DLs an appropriate formal representation of the explicit permissions defined
by an RBAC policy and is it possible to infer the implicit permissions from this
representation?

8. Can a labeling lattice be obtained from an existing RBAC matrix and what may
need to be changed?

10 Chapter 1 Introduction



9. Can the systematic and non-redundant identification of constraints in an RBAC
matrix be reduced to a known problem and what extensions may be necessary?

The following section provides a detailed architecture of an access restricted se-
mantic document store with the required components. It also provides an overview
on the chapters of this thesis and their relation to architecture components, research
questions and relevant publications created during this PhD project.

1.5 Architecture and Dissertation Outline

The overall architecture of an access restricted semantic document store is depicted in
Figure 1.7. Circles represent components, rectangles represent data, and each arrow
represents a flow of data. The blue blocks indicate which parts of the architecture are
covered by topics in the chapters of this thesis. In the following we give an overview
of the architecture and the topics covered in the chapters. Components and data of
the architecture introduced in the text are written emphasized.

Chapter 2 introduces technical preliminaries to make this thesis’ technical con-
cepts and results accessible. It covers knowledge representations, lattices and Formal
Concept Analysis (FCA), access control and inference control.

In the beginning of this PhD project, initial ideas have been published at PhD
Symposia.

[Kne08a] M. Knechtel. “Access restriction inside ontologies.” In: Proceedings of the
1st Internet of Services Doctoral Symposium 2008 at International Con-
ference on Interoperability of Enterprise Systems and Applications (I-ESA
2008). Edited by R. Ruggaber. Volume 374. CEUR Workshop Proceed-
ings. 2008.

[Kne08b] M. Knechtel. “Access rights and collaborative ontology integration for
reuse across security domains.” In: Proceedings of the ESWC 2008 Ph.D.
Symposium. Edited by P. Cudré-Mauroux. Volume 358. CEUR Workshop
Proceedings. Best Poster Award. 2008, pages 36–40.

Chapter 3 provides results from representing and completing RBAC policies. In
Section 3.1 we discuss how DLs can be applied to represent knowledge from an RBAC
policy. We argue that this makes sense since common tasks related to RBAC policies
can be reduced to standard DL reasoning tasks. This includes computing implicit
knowledge from explicit knowledge about permissions and querying for an access con-
trol decision. Both tasks are implemented in the architecture component to compute
the RBAC matrix from the DL representation. However, this does not create any new
knowledge that was neither explicit nor implicit before. In Section 3.2 we discuss how
to complete RBAC policies in the sense of adding new knowledge that has not yet been
represented in a computer or followed from this representation but has been known to
an expert, e.g. the security engineer. This is a knowledge acquisition task. In a system-
atic, non-redundant computer-supported dialog with this expert, the knowledge about
an RBAC policy is completed. One part is obtaining a user role hierarchy in the form

1.5 Architecture and Dissertation Outline 11
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of a lattice, which can be used as the basis for the labeling lattice in the next chapter.
In Section 3.3 we extend the completion of RBAC policies so that implications known
a priori are exploited in order to pose fewer questions to the security engineer. Most
of the results have been published in the following papers and a filed patent:

[DK09] F. Dau and M. Knechtel. “Access Policy Design Supported by FCA Meth-
ods.” In: Proceedings of the 17th International Conference on Concep-
tual Structures (ICCS 2009). Edited by F. Dau and S. Rudolph. Vol-
ume 5662. Lecture Notes in Computer Science. 2009, pages 141–154.
(Cited on page 38).

[DK10] F. Dau and M. Knechtel. “Systems and Methods for Generating Con-
straints for use in Access Control.” Patent (United States). Application
Number 12/823,884. Date of application 25.6. 2010. (Cited on page 38).

[KH08] M. Knechtel and J. Hladik. “RBAC Authorization Decision with DL
Reasoning.” In: Proceedings of the IADIS International Conference
WWW/Internet (ICWI 2008). Edited by P. Isaías, M. B. Nunes, and
D. Ifenthaler. 2008, pages 169–176. (Cited on pages 38, 39).

[KHD08] M. Knechtel, J. Hladik, and F. Dau. “Using OWL DL Reasoning to decide
about authorization in RBAC.” In: Proceedings of the 5th International
Workshop on OWL: Experiences and Directions (OWLED 2008). Edited
by C. Dolbear, A. Ruttenberg, and U. Sattler. Volume 432. CEUR Work-
shop Proceedings. 2008. (Cited on pages 38, 39).

Chapter 4 provides results for access restrictions to explicit (and implicit) knowl-
edge represented in an ontology (and following from that ontology). The basis is an
ordered criterion for access restrictions which can be represented with a labeling lat-
tice. One instance is a set of user roles and the user role hierarchy, which can express
that some user role has at least all permissions of another user role. In Section 4.1 we
introduce labeled axioms which are axioms that receive an element from the labeling
lattice as a label. Users also receive a label from that lattice, e.g. representing their
assigned user roles, and a user is allowed to see an axiom if her label dominates the
axiom label. Based on this label comparison, a filter delivers the visible sub-ontology
to a user. In Section 4.2 we show that the label for a consequence, called the boundary,
can be computed from the labels of the axioms. In Section 4.3 we introduce how to
repair the boundary. This becomes necessary, if the security administrator wants to
change the computed boundary to another label. The only way to achieve this is by
changing some axiom labels. We show how to compute a change set, which is a set of
axioms that require a new label in order to yield the desired boundary. This problem
is further generalized to repairing multiple boundaries simultaneously in Chapter 5.
All our algorithms are black-box based, i.e. they can be used with any off-the-shelf
reasoner without the need for modifications. This means, access restrictions to an
ontology can be enforced without special reasoners. Most of the results have been
published in:
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[BKP09a] F. Baader, M. Knechtel, and R. Peñaloza. Computing Boundaries for
Reasoning in Sub-Ontologies. LTCS-Report 09-02. Available at http://
lat.inf.tu-dresden.de/research/reports.html. Germany: Chair of
Automata Theory, Institute of Theoretical Computer Science, Technische
Universität Dresden, 2009. (Cited on page 61).

[BKP09b] F. Baader, M. Knechtel, and R. Peñaloza. “A Generic Approach for Large-
Scale Ontological Reasoning in the Presence of Access Restrictions to the
Ontology’s Axioms.” In: Proceedings of the 8th International Semantic
Web Conference (ISWC 2009). Edited by A. Bernstein, D. R. Karger,
T. Heath, L. Feigenbaum, D. Maynard, E. Motta, and K. Thirunarayan.
Volume 5823. Lecture Notes in Computer Science. 2009, pages 49–64.
(Cited on pages 61, 85).

[KP10a] M. Knechtel and R. Peñaloza. “A Generic Approach for Correcting Access
Restrictions to a Consequence.” In: Proceedings of the 7th Extended Se-
mantic Web Conference (ESWC 2010). Edited by L. Aroyo, G. Antoniou,
E. Hyvönen, A. ten Teije, H. Stuckenschmidt, L. Cabral, and T. Tudo-
rache. Volume 6088. Lecture Notes in Computer Science. 2010, pages 167–
182. (Cited on pages 61, 85).

[KP10b] M. Knechtel and R. Peñaloza. “Correcting Access Restrictions to a Conse-
quence.” In: Proceedings of the 23rd International Workshop on Descrip-
tion Logics (DL 2010). Edited by V. Haarslev, D. Toman, and G. Weddell.
Volume 573. CEUR Workshop Proceedings. 2010, pages 220–231. (Cited
on pages 61, 85).

Chapter 5 provides results which facilitate practical applications with the frame-
work of Chapter 4, since the goal of this dissertation is not only to provide a theo-
retically solid, but also a practically usable framework. Security administrators might
(yet) be unfamiliar with the task of assigning access restrictions to ontology axioms,
so we introduce two techniques. In Section 5.1 we introduce document-based access
restrictions. The idea is to reuse access restrictions which have been defined by the
RBAC matrix for document types. We show how to apply them to the respective
document ontology and all contained axioms. It might happen that the same axiom
is contained in several document ontologies where the intuition would be that a user
is allowed to read the axiom if she is allowed to read at least one of those documents.
In Section 5.2 we show how to describe access restrictions intentionally by means of a
query, called query-based access restriction. All results of that query, including implicit
consequences and their intended label are collected in a goal set. It can be enforced
by a changed axiom labeling specified by a change set. We show that this problem is
in fact a generalization of repairing one consequence’s boundary from Chapter 4 and
that it can be solved with an extension. For goal sets containing a conflict, we pro-
vide two conflict resolution strategies. Alternatively to our label filtering framework,
query-based access restrictions could be enforced by query rewriting. In a comparison,
we show that label filtering is independent of a concrete ontology language and has
higher knowledge availability in the sense that more answers are delivered to a user
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that are uncritical since they do not uncover any secret. Most of the results have been
published in:

[KS08] M. Knechtel and D. Schuster. “Semantische Integration und Wiederver-
wendung von Produktontologien für offene Marktplätze im Web.” In:
Tagungsband des Gemeinschaften in Neuen Medien Workshops (GeNeMe
2008). Edited by K. Meißner and M. Engelien. In German. 2008,
pages 177–188. (Cited on page 89).

[KS10] M. Knechtel and H. Stuckenschmidt. “Query-Based Access Control for
Ontologies.” In: Proceedings of the 4th International Conference on Web
Reasoning and Rule Systems (RR 2010). Edited by P. Hitzler and T.
Lukasiewicz. Volume 6333. Lecture Notes in Computer Science. 2010,
pages 73–87. (Cited on page 89).

Chapter 6 provides empirical results for the algorithms from Chapters 4 and 5
which show that our algorithms perform well in practical scenarios with large-scale
ontologies. In Section 6.1 we describe our test data and environment covering the
implementation language, the test PC system, the DL reasoners, the labeling lattices,
the ontologies, and the assignment of labels in the labeled ontologies. Section 6.2
provides our results from experiments with the algorithms for computing a conse-
quence’s boundary, repairing this boundary and repairing the boundaries of several
consequences simultaneously. Most of the results have been published in the papers
mentioned above for Chapters 4 and 5.

Chapter 7 summarizes the technical and empirical results achieved during the PhD
project and suggests directions for future work.
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People can’t share knowledge if they

don’t speak a common language.

Thomas H. Davenport

2 Preliminaries
This chapter introduces the preliminaries necessary to describe the technical contribu-
tions of this thesis. It is divided into four sections.

First, an introduction to KR with Description Logics deals with its history and
applications with focus on the Semantic Web. It further deals with basic terminol-
ogy on ontologies and reasoning, and services on explaining and debugging implicit
knowledge.

Second, an introduction to lattices contains the definition as a partially ordered
set and the equivalent definition as an algebraic structure. The mathematical theory
of FCA is introduced since it can be used to describe and discuss objects of a domain
with their attributes and to identify concepts and the hierarchical order amongst them
in the form of a concept lattice.

In the last two sections, an introduction to access control, applicable for systems
with explicit knowledge, and inference control, applicable for systems with implicit
knowledge, is given. The access control matrix is introduced as basic model for access
control systems and based on that, details for lattice-based access control (LBAC) and
RBAC are introduced. For inference control, two basic mechanisms are introduced:
one applicable while the system is running and one applicable before the system is
running.

2.1 Knowledge Representation with Description Logics

KR is an area of artificial intelligence with the goal of representing knowledge in a
manner, so that computers can process and use it. Reasoning is the task of infer-
ring implicit knowledge from explicit knowledge. A range of formalisms with different
expressivity and reasoning problems of different complexity are available. This in-
cludes propositional logic, first-order logic, Semantic Networks, conceptual graphs,
Topic Maps, Semantic Web standards RDF, RDFS, OWL, etc. [HLP07].

DL systems [Baa+07b] are formal knowledge representation and reasoning systems
which provide inference services that deduce implicit knowledge from the explicitly rep-
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resented knowledge. For these inference services to be practically feasible the underly-
ing inference problems must at least be decidable, which is one of the characteristics
of DLs.

In this section we bring DLs into a historical context and introduce some appli-
cations. We define important notions for DL systems and introduce explanation and
debugging services. These services help to understand consequences and to detect
and remove modeling errors contained in the explicit knowledge causing non-intended
consequences.

History and Application

DLs evolved from the early KR formalisms Semantic Networks and Frames, both al-
ready introducing the notion of classes of individuals and relations between the classes.

In Semantic Networks [Qui67], a class or an individual is realized by a vertex and
a relation is realized by a labeled edge. The special is-a relation relates two classes or
an individual and a class. Relations are inherited along is-a edges.

In Frame systems [Min81], classes are realized as Frames where each Frame has a
name, a collection of more general Frames, and a collection of slots. The slots specify
relations to other classes, similar to the edges in Semantic Networks.

The problem of both, Semantic Networks and Frames, is the lack of formally defined
semantics. The meaning of a given knowledge representation is left to the intuition
of the programmer who builds a reasoner. Consequently for the is-a relation there
are at least 6 different meanings for an is-a relation between two classes, and at least
4 different meanings for an is-a relation between an individual and a class [Bra83].
Figure 2.1 provides an example Semantic Network. Since vertices may represent classes
or individuals, it is not necessarily clear that Kermit was intended to be an individual
frog while CommonFrog is a subclass of the class Frog. The has-color edge can be
read with two different interpretations: (1) the color of frogs is green only or (2) frogs
have (among others) the color green. In many systems, inheritance is only by default,
i.e. as long as no conflict arises: for example the CommonFrog is brown, overriding a
default color green of Frog. Due to the lack of formal semantics, different reasoning
algorithms for the same formalism could yield different results on the same knowledge
representation. This can be avoided by a declarative semantics, defined formally and
independently of a specific reasoner. For Semantic Networks and Frames, the semantics
introduced in [SGC79; Hay79] employed a relatively small fragment of first-order logic.
Based on these KR formalisms, logic-based concept languages were developed which
are now known as Description Logics.

Description Logics are today embodied in many knowledge-based systems and have
been used to develop various real-life applications. The most popular application is the
Semantic Web. The W3C developed and recommended OWL as the standard ontology
language for the Semantic Web [MPSP09], and DLs provide its basis. We will go into
more detail of the Semantic Web below. A variety of further applications, from natural
language processing, configuration of technical systems, software information systems,
heterogeneous databases integration, support for planning, etc., is described, e.g., in
the Description Logic Handbook [Baa+07b]. The most notable application outside
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Figure 2.1: An example Semantic Network

information science is in bioinformatics where medical knowledge is codified with DLs.
For example, the Snomed ct1 ontology contains almost 400,000 axioms and more
than five million consequences follow from that axioms. The ontology is used in more
than forty countries around the world.

Some state-of-the-art DL reasoners, available and continuously maintained until
today, are RACER [HM01], KAON 2 [HMS04], FaCT++ [TH05], CEL [BLS06], Pellet
[Sir+07], and HermiT [MSH07].2

Description Logics in the Semantic Web

In the remaining section, we go into more detail of the Semantic Web and its application
of DLs. It has long been realized that the Web could benefit from having its content
made available in a machine processable form, which enables computers to interpret
data. While the Web language HTML is focused on presentation and text formatting
rather than content, languages such as XML do add some support for capturing the
meaning of Web content. The Semantic Web has been envisioned as an evolution from
a linked document repository into a platform where “information is given well-defined
meaning, better enabling computers and people to work in cooperation” [BLHL01] and,
to limit the scope, which “will enable machines to COMPREHEND [original emphasis ]
semantic documents and data, not human speech and writings” [BLHL01]. This is to
be achieved by augmenting the existing layout information with semantic annotations
that add descriptive terms to Web content, with the meaning of such terms being
defined in ontologies. The DARPA Agent Markup Language (DAML) and Ontology
Inference Layer (OIL) ontology languages for the Semantic Web are syntactic variants
of DLs [Hor02] and have been the starting point for the W3C Web Ontology Working
Group. They finished their work in 2004 with the publication of the OWL standard
[Bec+04]. In 2007 the W3C OWL Working Group began working on refinements and
extensions to OWL, and finished in 2009 with the publication of the OWL2 standard
[MPSP09].

In order to enable reuse of existing content and to minimize manual effort of seman-
tic annotations, methods for information extraction have been investigated. Intuitively,
those methods try to make good guesses based on statistical data, document structure

1
http://www.ihtsdo.org/snomed-ct/

2
For a list of DL reasoners see, e.g., http://www.cs.man.ac.uk/~sattler/reasoners.html.
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Figure 2.2: Basic architecture of a DL system interacting with an application

and language structure. For example, somebody not able to read Korean can still guess
that on the Korean Wikipedia page about the city Dresden, the number followed by
the unit “km2” is the city’s area, the number followed by “m” is the city’s elevation
above mean sea level, etc. The accuracy of those methods is intrinsically below 100%.
Basic named entities can be extracted with close to 90% accuracy, relations can be
extracted with an accuracy currently not much higher than 70% even in restricted
domains [Sar08].

Description Logic Terminology

The purpose of this section is to introduce the syntax and semantics of DLs in compact
manner. For more details we refer the reader to [Baa+07b]. We will first introduce the
basic Description Logic ALC and then describe several of its extensions, specifically
those used in Semantic Web standards.

The basic components of a DL-based knowledge representation system, for short
DL system, are illustrated in Figure 2.2. DL systems consist of an ontology which
represents explicit knowledge and a reasoner which makes implicit consequences of this
knowledge explicit. The explicit and implicit knowledge is exploited by the application
by interacting with the DL system.

A DL is a symbolic language defining concepts, individuals and relationships among
them. Intuitively, concepts represent classes of individuals and roles represent relations
between individuals. For a basic DL, called attributive language with complement ALC,
we define syntax and semantics in the following.

Definition 1 (Syntax of ALC). Let CN, IN, RN be disjoint sets of concept names,
individual names and role names, respectively. Each individual name a ∈ IN is an
individual. Each role name P ∈ RN is a role description (role for short). Concept
descriptions (concepts for short) in ALC are inductively defined as:

• each concept name A ∈ CN, bottom ⊥ and top � are concepts

• if C,D are concepts, and P is a role, then ¬C (negation), C �D (intersection),
C � D (union), ∀P.C (value restriction), ∃P.C (existential quantification) are
concepts

Example 2. With the given syntax for concept and role descriptions we can, e.g.,
describe digital cameras. Suppose that DigitalCamera, SLR and Zoom are concepts.
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Then DigitalCamera � SLR and DigitalCamera � ¬SLR are ALC-concepts, intu-
itively describing those digital cameras that are single-lens reflex cameras and those
that are not single-lens reflex cameras. If we suppose in addition that hasComponent
is a role, we can form the concepts DigitalCamera � ∃hasComponent.Zoom and
DigitalCamera � ∀hasComponent.¬Zoom, describing digital cameras that have a
zoom, and those cameras that have no zoom.

Whereas syntax defines which collection of symbols are legal expressions, semantics
defines the meaning of these expressions. The name “Description Logics” already
indicates a formal logic-based semantics. Like any DLs, the semantics of ALC concept
descriptions is defined through interpretations. Intuitively, the interpretation of a
concept is the set of all individuals that belong to that concept and the interpretation
of a role is a binary relation between individuals.

Definition 2 (Semantics of ALC). An interpretation I = (∆I , ·I) consists of a non-
empty set ∆I (the domain of the interpretation) and an interpretation function ·I ,
which assigns to every individual name a an element aI ∈ ∆I , to every concept name
A a set AI ⊆ ∆I and to every role name P a binary relation P I ⊆ ∆I × ∆I . The
interpretation function is extended to concept descriptions by the following inductive
definitions:

�I = ∆I

⊥I = ∅
¬CI = ∆I \ CI

(C �D)I = CI ∩DI

(C �D)I = CI ∪DI

(∀P.C)I = {a ∈ ∆I | ∀b. (a, b) ∈ P I → b ∈ CI}
(∃P.C)I = {a ∈ ∆I | ∃b. (a, b) ∈ P I ∧ b ∈ CI}.

The concept and role descriptions are not enough to formulate statements about
our world. For example, we might want to say “a single-lens reflex camera is a camera.”
The set of allowed axioms and their syntax and semantics is defined for each DL. For
ALC the following axioms are allowed.

Definition 3 (Syntax of ALC axioms). Let a, b be individual names, P be an ALC role
description and C,D be ALC concept descriptions. Terminological ALC axioms have
the form of a general concept inclusion C � D or an equivalence C ≡ D. Assertional
ALC axioms have the form of a concept assertions C(a) or a role assertion P (a, b).

Again, the semantics of ALC axioms is defined through interpretations.

Definition 4 (Semantics of ALC axioms). The interpretation I satisfies (is a model
of ) the general concept inclusion (GCI) C � D if it fulfills the semantics condition
CI ⊆ DI , the equivalence C ≡ D if CI = DI , the concept assertion C(a) if aI ∈ CI ,
and the role assertion P (a, b) if (aI , bI) ∈ P I , respectively. We write I |= α if an
interpretation I satisfies an axiom α.

We call a set of axioms an ontology. For the Semantic Web community, [RS07]
gives the following definition based on [Gru93]. The additions compared to [Gru93] are
in bold text.
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An ontology is a formal explicit specification of a shared conceptualisa-
tion of a domain of interest.

In our context we stick to a much more precise definition in this thesis, which
still allows the above generic definition. A set of axioms of allowed syntax forms an
ontology, also called a knowledge base. An ontology has a model if all of its axioms can
be satisfied at the same time. Formally, we give the following definition:

Definition 5 (Ontology). A DL ontology O is a finite set of axioms, with disjoint
subsets T,A of terminological axioms (often called TBox) and assertional axioms (often
called ABox). Let I be an interpretation, then I satisfies (also is a model of ) O,
written as I |= O, if for each axiom α ∈ O, I |= α. Two axioms or two sets of axioms
are equivalent if they have the same models.

The TBox expresses how concepts or roles are related to each other. The ABox
introduces names for individuals and the restrictions that they have to satisfy. The
TBox contains vocabulary which is used to describe a concrete world in the ABox. In
a simplified view, an ABox can be seen as an instance of a relational database with
only unary or binary relations. However, while a database instance represents exactly
one interpretation, namely the one where classes and relations in the schema are inter-
preted by the objects and tuples in the instance, an ABox represents many different
interpretations, namely all its models. The former is called “closed-world semantics”,
the latter “open-world semantics.” The difference is that absence of information in a
database instance is interpreted as negative information, while absence of information
in an ABox only indicates a lack of knowledge. Moreover, the TBox imposes semantic
relationships between the concepts and roles in the ABox that do not have counterparts
in database semantics.

As stressed in the introduction, an important motivation for building a knowledge
representation is to identify implicit consequences following from the explicit knowl-
edge. Consequences following from a DL ontology have the same structure as axioms,
but they are not necessarily contained in the ontology. Formally, a consequence is
defined as follows.

Definition 6 (Consequence). An axiom c follows from3 an ontology O, written as
O |= c if for all models I of O if holds that I |= c.

If a consequence follows from an ontology, we say that the ontology entails the
consequence.

The Defintion 5 and Definition 6 together imply that every axiom contained in an
ontology follows from this ontology. Conversely, O |= c does obviously not necessarily
mean c ∈ O. Note that this is a rather restricted definition of a consequence. Litera-
ture considers more types of consequences such as, e.g., the fact that a concept C is
satisfiable (∃I. CI �= ∅) or that an ontology O is consistent (∃I. I |= O). We use this
restricted definition only. To give an example, a subsumption C � D follows from O
iff CI ⊆ DI for all models I of O. For a second example, an instance relation C(a)
follows from O iff aI ∈ CI for all models I of O.

3
Literature also often uses the terms is consequence of, is entailed by or is implied by an ontology.
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OWL 2 functional syntax DL Semantics Sym-
syntax bol

owl:Thing � ∆I AL
owl:Nothing ⊥ ∅ AL
ObjectIntersectionOf(C D) C �D CI ∩DI AL
ObjectUnionOf(C D) C �D CI ∪DI U
ObjectComplementOf(C) ¬C ∆I \ CI C
ObjectAllValuesFrom(P C) ∀P.C {a ∈ ∆I | ∀b. (a, b) ∈ P I → b ∈ CI} AL
ObjectSomeValuesFrom(P C) ∃P.C {a ∈ ∆I | ∃b. (a, b) ∈ P I ∧ b ∈ CI} E
ObjectMinCardinality(n P C) � n P.C {a ∈ ∆I | |{b ∈ CI | (a, b) ∈ P I}| � n} Q
ObjectMaxCardinality(n P C) � n P.C {a ∈ ∆I | |{b ∈ CI | (a, b) ∈ P I}| � n} Q
ObjectExactCardinality(n P C) = n P.C {a ∈ ∆I | |{b ∈ CI | (a, b) ∈ P I}| = n} Q
ObjectOneOf(a) {a} {aI} O

Table 2.1: Some OWL 2 concept constructors [Baa+07b; MPSP09]

The relation |= between ontologies and consequences is called consequence relation.
This relation is monotonic for DLs, i.e. for every ontology O, we have that if O� ⊆ O
and O� |= c, then O |= c.

Example 3. If a knowledge engineer feels she is not able to define the concept “dig-
ital SLR” in all detail, she can require that a digital SLR is a SLR with the GCI
DSLR � SLR. If she is able to define it completely, she could state the equivalence
DSLR ≡ SLR � ∃projectsOn.Sensor . Given two individual names Canon550D and
CMOS550D , we can say that Canon 550D is a digital SLR by the concept asser-
tion DSLR(Canon550D) and projects on a CMOS 550D sensor by the role assertion
projectsOn(Canon550D ,CMOS550D). Let O be an ontology consisting of two ax-
ioms O = {DSLR(Canon550D),DSLR � SLR} from which, e.g., the consequence
c1 : SLR(Canon550D) and the consequence c2 : DSLR(Canon550D) follow. While c2
is contained explicitly in O (and trivially also follows from O), c1 only follows from O.

There are several possibilities for extending ALC in order to obtain a more expres-
sive Description Logic. Syntax and semantics of some concept constructors and some
axiom constructors, including those for ALC, are given in Table 2.1 and in Table 2.2,
where C,D are concept descriptions, P,Q,R are role descriptions, a, b, c are individual
names and n is a natural number. The tables provide the OWL 2 functional syntax for
readers who are familiar with OWL 2 already. In this thesis, the DL syntax is used.

The letter S stands for the DL ALC extended by transitive roles. The Descrip-
tion Logic SROIQ(D) is the formal basis of the W3C OWL2 standard [HKS06;
MPSP09]. Based on S, it additionally supports complex role inclusions (R), nominals
(O), inverse roles (I) and qualified number restrictions (Q). Additionally, the logic
can be parameterized by one or more concrete domains (D) which correspond to data
types in OWL and permit reference to concrete data objects such as strings and in-
tegers. For example, “persons over 18” can be described with the concept description
Person�hasAge. �18, where the unary predicate �18 is defined on the set of positive
integers.
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OWL 2 functional syntax DL syntax Semantics Symbol
SubClassOf(C D) C � D CI ⊆ DI

EquivalentClasses(C D) C ≡ D CI = DI

ClassAssertion(C a) C(a) aI ∈ CI

ObjectPropertyAssertion(P a b) P (a, b) (aI , bI) ∈ P I

InverseObjectProperties(P R) P ≡ R− P I = {(a, b) | (b, a) ∈ RI} I
SubObjectPropertyOf(P R) P � R P I ⊆ RI H
SubObjectPropertyOf(

ObjectPropertyChain(P Q) R) P ◦Q � R
{(a, c) | ∃b. (a, b) ∈ P I

∧ (b, c) ∈ QI} ⊆ RI R

Table 2.2: Some OWL 2 axiom constructors [Baa+07b; MPSP09]

However, there is no reason for a higher expressivity than required by the applica-
tion, and often smaller means better reasoning performance. One part of the OWL 2
standard is the OWL 2EL profile [MPSP09] based on the lightweight Description Logic
EL++ [BBL05]. The concept constructors supported by the Description Logic EL are
intersection, existential quantification (but not value restriction) and top concept �.
Additionally, the Description Logic EL++ supports the bottom concept ⊥, nominals,
concrete domains and role inclusion axioms.

The OWL standard calls a concept a class, a role a property and an individual an
object. In the following, we will often use the OWL terminology in order to clearly
distinguish DL roles from user roles.

A detailed introduction, also to further members of the Description Logics family
and extensions can, e.g., be found in the Description Logic Handbook [Baa+07b].

Explanation and Debugging

In this thesis, explanation and debugging techniques turn out to be the basis to com-
pute and to repair a consequence’s label. Similar to writing large software systems,
building large-scale ontologies is error-prone. An ontology might imply unexpected or
even undesired consequences. A real-world example of an unintended consequence is
the subsumption relationship “amputation of finger is an amputation of arm” which
follows from the Snomed ct ontology [Sun08]. However, finding a reason, i.e. a set
of responsible axioms, by just looking at the 400,000 axioms manually is not realistic.
Humans are usually not good in seeing implications from large sets of axioms.

An explanation for a consequence following from an ontology is a minimal set of
axioms from the ontology from which the consequence still follows. Formally, it is
defined as follows.

Definition 7 (MinA). Let O be an ontology and c a consequence such that O |= c.
A subset S ⊆ O is a minimal axiom set (MinA) (also explanation) for O |= c if S |= c
and S� �|= c for every S� ⊂ S.

The dual notion of a MinA is that of a diagnosis, which is a minimal set of axioms
which need to be removed so that a consequence does not follow anymore. Formally,
it is defined as follows.
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Definition 8 (Diagnosis). Let O be an ontology and c a consequence such that O |= c.
A subset S ⊆ O is a diagnosis for O |= c if O \S �|= c and O \S� |= c for every S� ⊂ S.

Each MinA (diagnosis) is minimal with respect to set inclusion, i.e. no axiom can be
dropped without losing (regaining) the consequence. However, there might be several
MinAs (diagnoses) and so a given MinA (diagnosis) is not necessarily minimal with
respect to set cardinality.

Example 4. For two of the consequences following from the ontology in Exam-
ple 1, the MinAs and diagnoses are the following. The first considered consequence
c1 : ServiceWithComingPriceIncrease(ecoCalculatorV1 ) follows from each of the Mi-
nAs {a1, a2, a4}, {a1, a2, a5}, {a1, a3, a4}, {a1, a3, a5}. Similarly, the second considered
consequence c2 : LowProfitService(ecoCalculatorV1 ) follows from each of the MinAs
{a1, a2}, {a1, a3}. The consequence c1 does not follow anymore when removing any of
the diagnoses {a1}, {a2, a3}, {a4, a5} from the ontology. Similarly, the consequence c2
does not follow anymore when removing any of the diagnoses {a1}, {a2, a3}.

Technically, there are two approaches for computing MinAs. The glass-box ap-
proach takes a specific reasoner (or reasoning technique) for an ontology language (e.g.,
a tableau-based reasoner for OWL2 [Sir+07]) and modifies it such that it can compute
MinAs [SC03; Mey+06; Kal+05; Kal+07; BP08; BP10b]. Glass-box approaches might
have high optimization potential, but the problem is that they have to be developed
for every ontology language and reasoning technique anew and that optimizations of
the original reasoning technique do not always apply to the modified reasoners. In con-
trast, the black-box approach can re-use existing highly-optimized reasoners without
modifications, and it can be applied to arbitrary ontology languages: one just needs
to plug in a reasoner for this language [Kal+05; Kal+07; BS08; BPS07; Sun08].

The task of computing all MinAs, also called axiom pinpointing, has been widely
studied in recent years, and there exist implementations for a black-box approach
[Kal+05; Kal+07; Sun08] based on Reiter’s Hitting Set Tree (HST) algorithm [Rei87].
When we extend the HST-based algorithm for axiom pinpointing in Section 4.2.4, we
will introduce its details more comprehensively.

2.2 Lattices and Formal Concept Analysis

The theory of ordered sets and lattices provides a tool to discuss and analyze hierarchies
which often appear in our real world. In this thesis, lattices are used to capture a
criterion with its values and the order of the values. Elements of this lattice, called
labeling lattice, define visible sub-ontologies. One criterion is the required user role
so that an axiom is visible. In this case the set is a set of user roles and the order is
the user role hierarchy. This section will introduce order-theoretic preliminaries and
define a lattice as partial order and as algebraic structure. Since both definitions are
equivalent, one may freely refer to aspects of either definition fitting best to one’s
purpose.

We will then introduce a formalism to describe objects of a domain with their
attributes. As it will turn out later, the access control matrix of an information sys-
tem can be interpreted as such a context. With methods from FCA, a context can
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be analyzed by identifying concepts and their hierarchical order, and by identifying
implications between attributes. Those implications can be explored and either con-
firmed or refuted during an interactive dialog with a domain expert. In this thesis, we
use methods from FCA in order to explore constraints from an RBAC matrix.

Lattices

We first define some order-theoretic preliminaries needed for the definition of a lattice.

Definition 9 (Partial order). Let P be a set. A binary relation � on P is a partial
order, if for all elements x, y, z ∈ P the following conditions hold:

1. x � x (reflexivity),

2. x � y and y � x implies x = y (antisymmetry),

3. x � y and y � z implies x � z (transitivity).

A set P together with a partial order relation � is a partially ordered set. For distinct
elements a, b of a partially ordered set P , if a � b or b � a then a and b are comparable,
otherwise they are incomparable. If any two elements are comparable, the order relation
is called a total order, also linear order.

Definition 10 (Join, meet). Let P be an ordered set and let S ⊆ P . An element
x ∈ P is an upper bound of S iff for all s ∈ S : s � x holds. Dually, an element x ∈ P
is a lower bound of S iff for all s ∈ S : x � s holds. There might be a least (greatest)
element in the set of all upper bounds (lower bounds). An element x ∈ P is the least
upper bound (also known as join or supremum) of S if

1. x is an upper bound of S, and

2. x � y for all upper bounds y of S.

The greatest lower bound (also known as meet or infimum) is defined dually. Both, join
and meet are unique when they exist. When it exists, we write

�
S for the supremum

of S, or a1 ⊕ . . .⊕ an with S = {a1, . . . , an}. Dually, we write
�

S for the infimum of
S, or a1 ⊗ . . .⊗ an.

Note that in literature, join is often denoted by ∧ and meet is often denoted by
∨ [DP02]. We use the notation above, in order not to mix them up with Boolean
operators.

With the given preliminary definitions, two equivalent definitions are available for a
lattice. We will first define a lattice as a partially ordered set, and then as an algebraic
structure.

Definition 11 (Lattice as partially ordered set). A lattice (L,�) is a set L together
with a partial order � on the elements of L such that a finite subset S ⊆ L always has
a join

�
S and a meet

�
S.
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Figure 2.3: A lattice

If
�

S and
�

S exist for every S ⊆ L then (L,�) is a complete lattice.
Apart from this order-theoretic definition there is a definition as algebraic structure,

since the two definitions of a lattice are equivalent, one may freely refer to aspects of
either definition fitting best to one’s purpose. We are emphasizing this here since
literature on access control with lattices often uses only one of the two definitions.

Definition 12 (Lattice as algebraic structure). An algebraic structure (L,⊕,⊗) con-
sisting of a set L and two binary operations ⊕,⊗ on L is a lattice if the following
axioms hold for all a, b, c ∈ L.

Commutative laws: a⊕ b = b⊕ a,
a⊗ b = b⊗ a

Associative laws: a⊕ (b⊕ c) = (a⊕ b)⊕ c,
a⊗ (b⊗ c) = (a⊗ b)⊗ c

Absorption laws: a⊕ (a⊗ b) = a
a⊗ (a⊕ b) = a

The two absorption laws together imply the idempotent laws a⊕a = a and a⊗a =
a, because a⊕ a = a⊕ (a⊗ (a⊕ a)) = a and a⊗ a = a⊗ (a⊕ (a⊗ a)) = a.

Both definitions can be reduced to each other since the ordering � can be recovered
from the algebraic structure (L,⊕,⊗) because a � b holds iff a = a ⊗ b iff b = a ⊕ b
for all elements a, b ∈ L.

A bounded lattice has a greatest (or maximum) and least (or minimum) element,
denoted � and ⊥ by convention, also called top and bottom. A bounded lattice is an
algebraic structure of the form (L,⊕,⊗,⊥,�) such that (L,⊕,⊗) is a lattice, ⊥ is the
identity element for the join operation ⊕, and � is the identity element for the meet
operation ⊗. A finite lattice is automatically bounded with � =

�
L and ⊥ =

�
L.

A complete lattice is automatically bounded with � =
�

∅ and ⊥ =
�

∅.
Let a, b, c ∈ L, a is called join prime iff a � b⊕ c =⇒ a � b or a � c.

Example 5. Figure 2.3 depicts a finite lattice (L,�) with 6 elements. Every finite
lattice is bounded, in this case by the greatest element �1 and least element �0. The
order � is represented by edges from bottom to top, for instance �5 � �4 and �5 � �1.
Some joins are �2⊕ �3 = �2, �2⊕ �4 = �1, some meets are �2⊗ �3 = �3, �2⊗ �4 = �3. Join
prime elements in L are �0, �2, �3, �5. Since �4 � �3⊕ �5 but neither �4 � �5 nor �4 � �3,
�4 is not join prime. From a similar argument it follows that �1 is not join prime.
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Figure 2.4: A context for 6 digital cameras and its concept lattice

A more detailed introduction to lattices and orders can, e.g., be found in [DP02].

Formal Concept Analysis

Hierarchies often appear in our world, for example in a company’s organizational chart,
in a family tree, in classes and subclasses of products in a catalog, etc. The theory
of ordered sets and lattices provides a tool to discuss and analyze them. FCA is a
mathematical theory which derives formal concepts from a given cross-table (i.e., a
formal context) and investigates the hierarchical order amongst them.

Definition 13 (Formal context). A formal context K is a triple (G,M, I) with G4 the
set of objects, M5 the set of attributes and I ⊆ G×M . Tuples (g,m) of the relation
I are read as “g has attribute m.”

We say context when we mean a formal context in the following. A finite context
can be specified by a cross-table with one column per attribute and one row per object.
A cross at row g and column m means (g,m) ∈ I. A missing cross means (g,m) �∈ I.

Example 6. The left part of Figure 2.4 provides a cross-table that specifies a context
(G,M, I) with 6 digital cameras and 3 attributes. For example, camera cam2 has only
the attribute digital zoom.

In traditional philosophy, a concept is understood as an entity consisting of two
parts: the extension and the intension. The extension consists of all objects belonging
to the concept and the intension is the collection of all attributes shared by the objects.
Inspired by that, but with a slightly different naming in order to distinguish philosophy
from the formal mathematical theory, a formal concept is determined by its extent and
its intent. Formally, it is defined as follows.

Definition 14 (Formal concept). Let K = (G,M, I) be a context. A formal concept of
a context consists of an ordered pair (A,B), where A is a subset of G and called extent

4
The letter was chosen from German: Gegenstände.

5
The letter was chosen from German: Merkmale.

28 Chapter 2 Preliminaries



and B is subset of M and called intent. Objects in A are precisely those who share
attributes in B. The set of all formal concepts of the context (G,M, I) is B(G,M, I).6

Example 7. Let (G,M, I) be the context in Figure 2.4. A simple procedure to find a
formal concept is the following: take an object (say cam3) and let B be the set of its
attributes (B = {optical zoom, digital zoom}). Let A be the set of objects which have
all attributes in B (A = {cam3, cam5}). The obtained pair (A,B) is a formal concept
(({cam3, cam5}, {optical zoom, digital zoom})).

Definition 15 (Hierarchical order). Let (G,M, I) be a context and (A1, B1), (A2, B2)
formal concepts of that context. The formal concept (A1, B1) is “less general” than the
formal concept (A2, B2), written as (A1, B1) � (A2, B2), iff the extent A1 is contained
in the extent A2. Equivalently, (A1, B1) � (A2, B2) iff the intent B1 contains the
intent B2. That is,

(A1, B1) � (A2, B2) ⇐⇒ A1 ⊆ A2 ⇐⇒ B1 ⊇ B2.

The relation � is the hierarchical order of formal concepts.

The order � on the set of formal concepts defines a complete lattice, called the
concept lattice (B(G,M, I),�).

Example 8. Let (G,M, I) be the context in Figure 2.4. Let �3 be the formal con-
cept �3 = ({cam3, cam5}, {digital zoom,optical zoom}) and let �0 be the formal con-
cept �0 = ({cam5}, {optical zoom,digital zoom,underwater}). The hierarchical order
contains �0 � �3. The right part of Figure 2.4 depicts7 the concept lattice for the
context, consisting of all formal concepts and their hierarchical order. Gray boxes
label the attributes, white boxes label the objects. Each node represents a formal
concept consisting of all objects labeled below the node and all attributes labeled
above the node. For example, the rightmost node represents the formal concept
�2 = ({cam1, cam3, cam5}, {optical zoom}) and the lowest node represents the formal
concept �0 = ({cam5}, {optical zoom,digital zoom,underwater}).

Given a context, another common method to analyze it is to find implications
between attributes. They are constraints which hold in the context and are of the
form “every object that has attributes l1, . . . , li also has attributes r1, . . . , rj .”

Definition 16 (Implications between attributes). Let K = (G,M, I) be a context. An
implication between the attributes in M is a pair of sets L,R ⊆ M , usually written as
L → R. An implication L → R holds in K if every object in K that has all attributes
in L also has all attributes in R. The set of all implications in K is Imp(K).

Example 9. Based on an example in [Bur96], the context (G,M, I) in Figure 2.5
describes the natural numbers 1 to 9 with the following attributes: even (divisible by
2 without rest), odd (not divisible by 2 without rest), prime (only divisible by 1 and

6
The letter was chosen from German: Begriffe.

7
We used the Concept Explorer tool available at http://conexp.sourceforge.net/ to generate

and depict the concept lattice.
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by itself, excluding 1), square (= a2 for a natural number a) and cubic (= a3 for a
natural number a). One of the formal concepts is ({2, 3, 5, 7}, {prime}).

The minimal set of implications between the attributes of the given context,8 but
not necessarily all natural numbers (!) are

• {odd, cubic} → {square}

• {square, cubic} → {odd}

• {prime, cubic} → {even, odd, square}

• {prime, square} → {even, odd, cubic}

• {even, odd} → {prime, square, cubic}.

So far we considered a context to contain all objects and attributes of interest. For
example, we considered natural numbers 1 to 9, but not all natural numbers. How-
ever, also the concept lattice of a very large or even infinite context with a fixed set
of attributes is determined by the implications between the attributes. For example,
the concept lattice for a context with the objects being the infinite set of natural num-
bers can be determined. Ganter’s interactive attribute exploration algorithm [Gan84]
is a useful method to discuss implications between attributes with a domain expert
in a computer supported dialog. In each step, the expert is asked whether a given
implication holds. She confirms or provides a counterexample if it does not hold. The
counterexample is added as a new object to the context. The context is changing dur-
ing the dialog, but still the algorithm ensures that the expert does not have to answer
redundant questions.

Example 10. The reader might have noticed already that two of the implications
from Example 9 are true for the objects of the context (G,M, I) in Figure 2.5, but
not for the set of all natural numbers. With regard to the chosen set of attributes,
the numbers from 1 to 9 are not typical of all natural numbers. The implication
{odd, cubic} → {square} does not hold, and one counterexample is 27 being cubic and
odd, but not square. The implication {square, cubic} → {odd} does not hold and one
counterexample is 64 being square and cubic, but not odd. The context extended with
those two counterexamples is given in the left part of Figure 2.6. Only three of the
five implications remain for the new context. They say that numbers being at the
same time prime and cubic (respectively prime and square) are automatically even
and odd. Humans know that a number cannot be odd and even by their definition,
so there cannot be a number being prime and cubic or prime and square. The third
implication says that an even and odd number is prime, square and cubic. Again,
humans know that such a number does not exist by definition of even and odd. This
is all consistent with the definition of the attributes, without the computer knowing
their definition. The set of objects G = {1, 2, 3, 4, 5, 6, 7, 8, 9, 27, 64} is a typical set
of objects with regard to the set of attributes M for natural numbers. The concept
lattice of the resulting context is provided in the right part of Figure 2.6.
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Figure 2.6: A context for natural numbers and its concept lattice

A more detailed introduction to FCA can, e.g., be found in [GW99].
Similarly to our examples where we discussed digital cameras (respectively natural

numbers) and their attributes, we will discuss users and their allowed permissions.

2.3 Access Control

Organizations have a need to monitor their business activities and control access to
their information systems. Access control is an essential operation in standard infor-
mation systems to prevent unintended use of information in a system. It includes four
tasks: identification, authentication, authorization, and accountability audit. Identifi-
cation assigns an information system subject to a real user, for example by requesting
a login name. Authentication makes sure that this assignment is correct, for example
by requesting a password. Authorization determines what a subject can do in a sys-
tem. Accountability audit identifies what a subject did. We focus on the authorization
task only, when we refer to access control. In this thesis, we investigate access control
methods in two aspects: (1) we apply it in order to protect explicit knowledge and (2)
we investigate methods to represent and complete RBAC policies.

The expressiveness for declaring access rights can vary substantially, from an ex-
plicit representation and simple lookup, to a sophisticated knowledge representation
from which access decisions logically follow. An access control matrix, first introduced
by Lampson [Lam71], is a basic abstract formal computer security model. For any type
of access control system it can model the static access permissions, ignoring further
definitions of a policy like rules and dynamic behavior in time.

Definition 17 (Access control matrix). Let S be a set of subjects, O a set of objects,
A a set of actions and let | · | denote set cardinality. A matrix M with |O| columns

8
This is the Duquenne-Guigues-base of the implications valid in the context. Details can be found,

e.g., in [GW99].
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and |S| rows where every element M [s, o] for s ∈ S, o ∈ O is a set of actions, is called
access control matrix.

We say that a subject s ∈ S is allowed to perform action a ∈ A on object o ∈ O iff
a ∈ M [s, o]. An example for an access control matrix has been given in the case study
in Section 1.2 already.

In practical systems, an access control matrix is often a sparse matrix, i.e. most
matrix elements are empty. For this reason, more efficient data structures which
furthermore facilitate building distributed systems are used in practical systems. For
a given object, i.e. one matrix column, a list containing the permissions of all subjects
on that object is called access control list. For a given subject, i.e. one matrix row,
a representation of the set of permissions on all objects is called capability. This is
not necessarily a list, but could be a more abstract representation. Examples, e.g.
including a key from a public key infrastructure, are discussed in [And08].

The access control matrix is a basic model for different access control techniques.
They can be categorized in

• discretionary access control (DAC),

• lattice-based access control (LBAC), also called mandatory access control (MAC),

• and role-based access control (RBAC).

In DAC systems, the permissions to access an object are defined and modified by
its owner. In LBAC, the system determines the access to objects utilizing a lattice for
assigning permissions to subjects. It thus removes the ability of the users to control
access to their resources. RBAC systems can simulate DAC and LBAC, and they
remove the explicit use of subjects and replace them with roles, which form a logical
group of a number of subjects. In fact, permissions are assigned to roles and the
subjects are assigned members of a number of roles. Thus changes of single subjects
do not necessarily have consequences in the actual access control policies. The following
sections go into more details of LBAC and RBAC.

Lattice-Based Access Control

Definitions in this section are introduced only as a preliminary step for RBAC, to
facilitate understanding. Apart from that, they are not of elementary importance for
this thesis.

MAC, called LBAC here following the terminology in [Den76; San93], is a technique
determined by the information system. This is contrary to DAC which is determined
by the owner of an object, such that each object of the access matrix has an assigned
owner and she can change the respective column of the access matrix in order to change
the object’s permissions. LBAC was originally developed for military purposes, but is
in general applicable to any situation where the flow of information has to be controlled
[Den76; San93]. Each object receives a security classification and each subject receives
a security clearance. A flow of information requires a flow of one security class to
another. An information flow policy defines between which of the security classes an
information flow is allowed, defined formally by Denning [Den76] as follows.

32 Chapter 2 Preliminaries



Definition 18 (Information flow policy). An information flow policy is a triple (SC,→
,⊕) where SC is a set of security classes, → ⊆ SC × SC is a binary can-flow relation
on SC, and ⊕ : SC × SC → SC is a binary join operator on SC.

An information flow A → B means information can flow from A to B. As pointed
out by Denning in [Den76], an information flow policy can form a finite lattice:

Definition 19 (Information flow lattice). An information flow policy (SC,→,⊕) forms
a finite lattice (SC,→) iff

• (SC,→) is a partially ordered set

• SC is finite

• SC has a lower bound L such that L → A for all A ∈ SC

• ⊕ is a least upper bound operator on SC.

Based on an information flow lattice, specific LBAC models are available for dif-
ferent requirements. Some examples are discussed in [San93], including the Chinese
Wall lattice, the Bell-LaPadula model and the Biba model. The Chinese Wall lattice
prevents information flow resulting in conflicts of interest. For example, in a con-
sulting company information from one customer must not be used for a competing
customer. The Bell-LaPadula model ensures confidentiality in information flows. The
Biba model ensures integrity for information flows and is, e.g., used in the Microsoft
Windows Vista operating system in order to ensure that the Web browser and all
downloaded software runs with low integrity level. System files have a high integrity
level and cannot be changed by an installer of downloaded software without explicit
user confirmation.

The intuition of Biba is to allow information flow only from high integrity to low
integrity. Usually, high integrity is placed toward the top of the lattice and low integrity
is placed toward the bottom, so that the permitted flow is from top to bottom, directly
opposite to Denning’s information flow lattice. However, the relation can be inverted
to map one lattice to the other. Formally, the Biba model is defined [San93] as follows.

Definition 20 (Biba access control model). Let (L,�) be a lattice of integrity labels,
S the set of subjects, O the set of objects, A = {r, w} a fixed set of actions to read and
write, M an access control matrix, lab : S ∪O → L a static assignment of an integrity
label to each subject and object. Given an object o ∈ O, a subject s ∈ S is allowed to

• read iff r ∈ M [s, o] and lab(s) � lab(o) (simple integrity),

• write iff w ∈ M [s, o] and lab(s) � lab(o) (integrity confinement).

Role-Based Access Control

RBAC [SFK00] is a standardized model to indirectly assign permissions to users by
user roles. The permissions of users are the union of all permissions of their assigned
roles. In enterprise context the user roles often represent job descriptions of employees.
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RBAC can be considered a superset of LBAC and of DAC, since RBAC introduces
more flexibility while it can still simulate LBAC and DAC as shown in [OSM00; And08].

Sandhu et al. [San93] define four reference models for role-based access control.
Among those, RBAC0 defines a basic RBAC system and RBAC1 augments RBAC0

with role hierarchies. Since role hierarchies are almost inevitably included whenever
roles are discussed in the literature and are also commonly implemented in systems
that support roles [San93], we always mean RBAC1 when referring to RBAC. The
definition below is a simplification, leaving out the notion of sessions.

Definition 21 (RBAC). The RBAC model has the following components:

• U,R, P the set of users, roles, permissions respectively

• PA ⊆ R× P a many-to-many assignment relation of roles to permissions

• UA ⊆ U ×R a many-to-many assignment relation of users to roles

• RH ⊆ R×R a partial order on R called user role hierarchy also written as �R

• implicit permissions: r1 �R r2 (role r1 inherits permissions from role r2) and
(r2, p) ∈ PA =⇒ (r1, p) ∈ PA

A concrete instance of the RBAC model, with concrete users, roles, permissions, etc.
is called an RBAC policy.

The original definition has role hierarchy �R so the more powerful roles are the
greater elements instead of the lower elements in our definition, but that is just a
convention and our variant fits better to our framework. RBAC has been proposed
[SFK00] and accepted as NIST standard9, and is today widely used in practical sys-
tems.

The user role hierarchy of RBAC adds further implicit permissions to the initial set
of explicit permissions. There is a relation between the access control matrix and the
RBAC model, discussed in detail in [SHV01]. For this thesis, we introduce the RBAC
matrix as a static representation of an RBAC policy, which is useful for example to
efficiently access explicit and implicit permissions. Intuitively, in the matrix each user
role is a subject, permissions from RBAC are defined as a set of tuples of action and
object, and actions allowed for roles on objects are the same in the RBAC policy and
the RBAC matrix. Formally, it is defined as follows.

Definition 22 (RBAC matrix). Let M be an access control matrix with S,O,A the
set of subjects, objects, actions respectively. Let furthermore PA be the permission
assignment relation and R, P be the set of roles and permissions respectively of an
RBAC policy. The matrix M is an RBAC matrix for the RBAC policy if S = R, P ⊆
A×O and (a, o) ∈ P, (r, (a, o)) ∈ PA ⇐⇒ a ∈ M [r, o] holds.

An RBAC matrix only exists for RBAC policies of certain structure. The definition
requires the set of permissions P of the RBAC policy to be a set of ordered pairs of

9
The current standard can be accessed at the NIST Web page http://csrc.nist.gov/rbac/
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action and object. RBAC policies where P is of different structure have no RBAC
matrix.

Multiple RBAC policies might have the same RBAC matrix, for this reason the
policy cannot be uniquely reconstructed from an RBAC matrix. The matrix is only
a static representation of all explicit and implicit permissions, but it does not contain
the original user role hierarchy.

Objects of an RBAC matrix do not need to be individual entities but could also
be abstract groups. For example, in the RBAC matrix given in Table 1.1, the objects
are not single documents but types of documents.

A more detailed introduction into access control can, e.g., be found in [And01;
And08; Bis09].

2.4 Inference Control

Information systems challenge the security administrator with a trade-off between
availability and confidentiality. That means on the one hand the system should pro-
vide useful information to a given user according to her permissions, but on the other
hand it must be guaranteed that certain information remains hidden. In this the-
sis, we apply access control methods to protect explicit knowledge. Orthogonally, we
investigate inference control methods to protect also implicit knowledge. In a tradi-
tional information system, where all the available information is stored explicitly, it is
possible to simply label information items with the roles that users must have to be
allowed to receive this particular information. In knowledge representation systems,
this approach does not work anymore since new knowledge can be inferred. Deciding
which knowledge can be given to a user without revealing secrets leads to the inference
problem [Den82; FJ02; Bis09]: avoiding a situation where a user can infer knowledge
that she should not have access to using knowledge she is allowed to access. Inference
Control targets to solve the inference problem by changing a system or its behavior.
The basic principle is to define a set of secrets, and deliver only answers to a user’s
query that do not uncover any secret. The two basic mechanisms for inference control
[Bis09] are dynamic monitoring and distortion and static verification and modification.

Dynamic monitoring and distortion

Dynamic monitoring and distortion is performed while the system is running. It re-
quires a log, which is maintaining the user’s assumed a priori knowledge and previous
answers. It further requires a censor, which decides whether an answer to a query
would uncover any secret. If this is the case, the answer is distorted either by refusal
or lying. A refusal is a notification that an answer cannot be given. A lie is an answer
different from the ordinary answer which would be given. The distortion is done in
a way so that the user is not able to detect a lie or exploit a refusal in order to gain
knowledge she should not gain.

For ontologies, variations of this approach without a log are [BSH07] with the
possibility to hide subsets of TBox and ABox, and [CS09] for query rewriting with the
TBox assumed to be completely public.
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For scenarios where system response time to a query is important and consequences
are pre-computed, dynamic monitoring might not be feasible and instead as much as
possible should be prepared before the system is started.

Static verification and modification

Static verification and modification is performed before the system is started. It in-
spects the original system instance to determine whether there is a permitted query
sequence under which some harmful inference could occur. If so, a modification guar-
antees to remove such possibilities by replacing the original instance by an alternative
instance, which is inference-proof. For a system with LBAC, the informal notion of
the inference-proof property from [Bis09] is:

If the label assignments permit access to entities or their relationships, then
they also permit access to all inferable entities and relationships.

For example, restricting access to an ontology could be implemented by considering
the axioms as objects to be protected in the sense of a LBAC model. Then an inference-
proof label assignment can be formally defined as follows.

Definition 23 (Inference-proof label assignment). Let a consequence c follow from
a set of axioms {a1, . . . , an}. Let an LBAC model be given with (L,�) a labeling
lattice, each axiom ai is labeled with �i and let a user labeled with �u be allowed
to read an axiom ai iff �u � �i. An assignment of label �c to c is inference-proof if
{a1, . . . , an} |= c =⇒ �c � �1 ⊗ . . .⊗ �n holds.

The above definition is dual to the original definition in [Bis09] where a user la-
beled with �u is allowed to read an axiom ai iff �u � �i, and so the implication is
{a1, . . . , an} |= c =⇒ �c � �1 ⊕ . . . ⊕ �n, which is dual to the one above. Note that
an inference-proof label assignment to a consequence ensures that a user can see the
consequence if she can see a set of axioms from which it follows, but not the inverse.
It does not say that, if she can see the consequence, then she can see a set of axioms
from which it follows.

If a system instance is not inference-proof, an alternative instance could, e.g., be
obtained by removing ontology axioms or by changing the label assignment. The
creation of an alternative instance can be seen as a reduction of inference control to
access control, since the inference problem is solved before the system is started and
only access control needs to be performed at runtime.

A more detailed introduction into inference control can, e.g., be found in [Bis09].
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3 Representing and Completing
Role-Based Access Control
Policies

In this chapter we show how to represent RBAC policies as DL ontology and how to
complete RBAC policies in the sense of adding new knowledge that has neither been
implicit nor explicit before.

The first section discusses why and how it makes sense to represent an RBAC policy
as ontology. We discuss related work on a DL representation for an extended RBAC
model and show how flaws of this representation can be fixed. The RBAC extension
introduces object classes and an object class hierarchy. However, in this approach it is
clear that no new knowledge is obtained that was not already contained in the RBAC
policy. Basically, in addition to RBAC policy and RBAC matrix, it just adds a third
representation based on Description Logics.

In the second section we introduce a systematic and non-redundant method for
interviewing the security engineer in order to extend a given RBAC policy with new
knowledge that has not been known before, neither implicit nor explicit. We start from
an RBAC matrix, write it as formal context, interpret and transform it appropriately
so that a known method from FCA called attribute exploration can be applied. A
new DL representation is introduced to capture knowledge from the RBAC matrix
and the newly obtained knowledge. Such knowledge comprises the role hierarchy or
more specific constraints as for example “nobody is allowed to write and approve the
same document.” The fact, that a role hierarchy or another constraint is true for the
given RBAC matrix does not mean it is true in general, which can only be decided by
interviewing the security engineer. Obtaining the user role hierarchy in the form of a
lattice, prepares the ground for Chapter 4, since it might be used as the basis for the
labeling lattice.

37



In the third section we improve the method from the second section in the sense that
the security engineer has to answer fewer questions. Implications which are already
known a priori, e.g. from a known user role hierarchy or a known object class hierarchy,
are exploited and not ignored as it is the case in the second section.

Parts of this chapter have been published in [DK09; KHD08; KH08], and a US
patent has been filed under [DK10].

3.1 Representing an RBAC Policy with Object Class Hierarchy
in DL

It seems natural to represent an RBAC policy by an ontology, since an RBAC policy
specifies explicit permissions from which implicit permissions follow. DLs were intro-
duced to specify explicit knowledge, from which implicit knowledge follows and can be
made explicit by a reasoner.

In this section we discuss approaches from literature to represent RBAC policies
by means of a DL ontology. We specifically focus on an extension of RBAC, called
RBAC with object class hierarchy (RBAC-CH). The additional hierarchy of object
classes makes it not only possible to inherit permissions along the user role hierarchy
but also along a hierarchy of object classes. For example, permissions for marketing
documents could be enforced for all kinds of special marketing documents, e.g. for
flyers, brochures and success story documents.

Based on our discussion, we introduce a representation of RBAC-CH as ontology,
which eliminates flaws in a proposal from related work. For a given RBAC-CH policy,
the RBAC-CH matrix contains the complete set of all explicit and implicit permissions.
We show how the RBAC-CH matrix can be easily computed for a given RBAC-CH
ontology by just querying a reasoner. The resulting matrix helps for example the secu-
rity engineer to verify the effect of user role and object class hierarchy. A comparison
of the RBAC-CH matrix computed with the flawed proposal to the matrix computed
with our proposal shows that the wrong results are corrected.

Figure 3.1 illustrates the workflow for representing an RBAC-CH policy including
explicit permissions, user role hierarchy and object class hierarchy and computing the
RBAC-CH matrix.

The result of this section is the insight that it makes sense to use DLs to represent
an RBAC policy since common tasks related to RBAC policies can be reduced to DL
reasoning tasks. However, it is clear that no new knowledge is obtained that was not
already contained in the RBAC policy. Basically, in addition to RBAC policy and
RBAC matrix, it just adds a third representation based on Description Logics.

3.1.1 Existing Approaches

Literature provides a wide range of proposals to represent an RBAC policy with DLs
[Zha+05; Hei+06; CCT07; CS07b; CS07a; KHP07; BM08; Fin+08]. This is useful since
common tasks related to RBAC policies can be reduced to DL reasoning tasks. This
includes
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Figure 3.1: Workflow for representing an RBAC-CH policy in DL and computing the
RBAC-CH matrix

• computing implicit from explicit knowledge about permissions,

• querying an access control decision,

• and checking a policy for consistency.

Modeling the knowledge of an RBAC policy in Description Logic allows us to
employ existing highly-optimized reasoners to carry out those tasks.

As pointed out in the introduction to RBAC in Section 2.3, the RBAC model is in
principle not restricted to control access on individual objects only, but also on groups
of objects. Only [CS07b] takes classes of objects and a hierarchy among those classes
into account. However, the proposed DL representation has several flaws, which are
discussed in [KHD08; KH08] and are summarized here as follows.

• Inverted object class hierarchy: The object classes are represented by DL con-
cepts. The object class hierarchy is represented by the subsumption hierarchy
but in the opposite direction as would be expected with respect to DL semantics.
The example in [CS07b] contains the GCI File � ExeFile which would mean
that every file is an executable file, which is obviously not the case.

• Existential quantification used inappropriately: For example, in order to say “all
system administrators can execute all files” the proposed representation intro-
duces the GCI SysAdmin � ∃canExecute.F ile, but this means “all system
administrators can execute at least one file.”

• Concept assertions not used: RBAC assigns individual users to roles and further-
more the extension classifies individual objects with object classes. DL axioms,
specifically concept assertions, already offer a standard way to classify individ-
uals from the ABox with concepts of the TBox. Instead, the object properties
assign and classify are introduced. Furthermore, since object properties allow
only pairs of individuals but not pairs of an individual and a concept, nominals
are used to represent each object class and each user role twice: as individual
and as concept.
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Nevertheless, the work is relevant since it introduces the idea of object classes and
an object class hierarchy. The discussed flaws motivated us to propose an improved
DL representation. In the next section we give a formal definition of RBAC extended
by object classes and an object class hierarchy. Based on that, we propose an improved
DL representation in Section 3.1.3. The running example in [CS07b] is not correct,
which might be due to the inappropriate DL representation. We compare these results
with the results obtained from our representation in Section 3.1.4.

3.1.2 Extending RBAC by an Object Class Hierarchy

In this section we will give a formal definition for the extension of RBAC to RBAC-CH,
presented in [CS07b].

As introduced in Section 2.3, RBAC assigns permissions not directly to users but to
user roles. User permissions are indirectly determined by their assignment to user roles.
RBAC-CH adds a further indirection since permissions are not defined on objects but
on object classes. Permissions on objects are indirectly determined by their assignment
to object classes. The formal definition of RBAC-CH is as follows.

Definition 24 (RBAC-CH). The RBAC-CH model has the following components:

• U,R,A,O, C the set of users, roles, actions, objects, object classes respectively

• PA ⊆ R × A × C a many-to-many-to-many assignment relation for permissions
of roles to perform actions on object classes

• UA ⊆ U ×R a many-to-many assignment relation of users to roles

• OA ⊆ O × C a many-to-many assignment relation of objects to object classes

• RH ⊆ R×R a partial order on R called user role hierarchy also written as �R

• CH ⊆ C × C a partial order on C called object class hierarchy also written as �C

• implicit permissions: r1 �R r2 (r1 inherits permissions from r2) and c1 �C c2
(c1 is a specialization of c2) and (r2, a, c2) ∈ PA =⇒ (r1, a, c1) ∈ PA

A concrete instance of the RBAC-CH model, with concrete users, roles, actions, ob-
jects, object classes, etc. is called an RBAC-CH policy.

For a comparison to RBAC, see Definition 21. Figures 3.2 and 3.3 illustrate the
difference between RBAC and RBAC-CH, where circles represent sets and arrows
represent relations between sets the arrows are pointing to. It can be seen that not
only the user role hierarchy, but also the object class hierarchy adds further implicit
permissions to the initial set of explicit permissions.

In Section 2.3, the RBAC matrix has been introduced as a static representation
of an RBAC policy containing all explicit and implicit permissions. Similarly, the
RBAC-CH matrix can be introduced as a static representation of an RBAC-CH policy.
Formally, it is defined as follows.
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Figure 3.2: RBAC (source [SFK00]) Figure 3.3: RBAC with Object Class
Hierarchy

Definition 25 (RBAC-CH matrix). Let M be an access control matrix with S,O,A
the set of subjects, objects, actions respectively. Let furthermore PA be the permission
assignment relation and R, C, A� be the set of roles, object classes, actions respectively
of an RBAC-CH policy. The matrix M is an RBAC-CH matrix for the RBAC-CH
policy if S = R, O = C, A = A� and (r, a, c) ∈ PA ⇐⇒ a ∈ M [r, c] holds.

In Section 2.3 we discussed that multiple RBAC policies can have the same RBAC
matrix, and the policy cannot be reconstructed from the matrix. This is true also for
RBAC-CH policy and RBAC-CH matrix.

Any RBAC-CH matrix is also an RBAC matrix. This is true because for every
RBAC-CH policy there is some RBAC policy with the same set of explicit and im-
plicit permissions. The implicit permissions resulting from the object class hierarchy
in RBAC-CH can always be modeled explicit in RBAC. One could compute all im-
plicit permissions of an RBAC-CH policy following from the object class hierarchy and
express them explicitly in an RBAC policy. In this sense, RBAC-CH does not offer
higher expressivity than RBAC and RBAC is more general than RBAC-CH.

3.1.3 An Improved DL Representation of RBAC-CH

The flaws in the DL representation of RBAC-CH provided by [CS07b] have been
discussed in Section 3.1.1. They motivated us to provide an improved representation
which is presented in this section.

A crucial modeling issue is which DL constructors are needed in order to decide
which DL is used. Besides inverse properties and subproperty relationships, we need
complex role inclusion axioms, i.e. axioms P1 ◦ P2 � P . Under certain restrictions,
this particular feature has been introduced in the OWL 2 standard [MPSP09], which
is based on the DL SROIQ(D) [HKS06].

Each user role and object class is represented by a concept: UserWithRole is the
superconcept of all user roles, Object is the superconcept of all object classes. Objects
are instances of Object and its subconcepts and users are instances of UserWithRole
and its subconcepts. Thus technically the classification of an object with an object class
and the assertion of a role to a user are represented by concept assertions. The user role
hierarchy �R and the object class hierarchy �C are represented by the subsumption
relation � between the respective concepts.

The definition of allowed actions for user roles on object classes has an important
requirement: we want to express that for a given allowed action, every individual of a
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user role is in relation to every individual of an object class. An example is “all system
administrators may read all files.” Obviously it is essential to express such statements
in any RBAC representation, but statements like these are not generally supported
by SROIQ(D). However, in [RKH08] Rudolph et al. propose the concept product to
express such statements, which can be simulated in the DL SROIQ(D). The concept
product putting all individuals of concept C in relation to all individuals of concept
D by object property P is written as C ×D � P . The following steps are performed
to simulate the concept product in SROIQ(D) according to [RKH08].

• delete the axiom C ×D � P

• add complex role inclusion P1◦P2 � P , where P1, P2 are fresh property names

• introduce fresh nominal {a} and add axioms C � ∃P1.{a} and D � ∃P2−.{a}

Definition 24 of RBAC-CH introduces the ternary permission assignment relation PA.
Since the concept product is a binary relation, we split the ternary permission as-
signment relation into multiple binary relations, one for each allowed action. This
is reasonable since the set of actions is usually small. Each allowed action is repre-
sented by an object property and the respective concept products are defined to be
subproperties. In the following we give an example.

Example 11. The concept product can be applied in order to express the permission
assignment “all system administrators may read all files” with the concept product
SysAdmin× File � mayRead:

mayRead1 ◦mayRead−2 � mayRead

SysAdmin � ∃mayRead1.{a}
File � ∃mayRead2.{a}

The introduced axioms define permissions of user roles on object classes, user role
hierarchy, object class hierarchy and the assignment of users to user roles and objects
to object classes. Permissions of users to objects are implicit consequences of those
axioms.

The RBAC-CH matrix, containing all explicit and implicit permissions, can be
queried from a reasoner as we show in the following section.

3.1.4 Computing the RBAC-CH Matrix for an RBAC-CH Policy

From the DL representation of an RBAC-CH policy described in the last section, the
RBAC-CH matrix can be constructed by querying a reasoner for implicit and explicit
knowledge about the RBAC-CH policy. In this section, we do this for an example
scenario from [CS07b]. A comparison of our computed RBAC-CH matrix with the one
from [CS07b] unveils that the latter is not correct, probably due to the inappropriate
DL representation.

The considered set of user roles consists of Remote Client (RemCli), Local Client
(LocCli), Manager (Mag), Operating System Developer (OSDev) and System Admin-
istrator (SysAdmin). The considered set of object classes consists of System File
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Figure 3.4: Subsumption hierarchy of user role concepts and object class concepts
(arrows point from subsumee to subsumer)

ElcJ LocFile ConFile SysFile ExeSysFile ProFile ExeFile File

SysAdmin r,w,x

Mag r,w

OSDev

LocCli r

RemCli r,w x

Table 3.1: Explicit permissions of user roles on object classes

(SysFile), Electronic Journal (ElcJ), Executable File (ExeFile), Local File (LocFile),
Configuration File (ConFile), Program File (ProFile) and Executable System File (Ex-
eSysFile). The object class hierarchy and user role hierarchy is represented as sub-
sumption hierarchy, given in Figure 3.4.

Explicit permissions of user roles on object classes are represented by the concept
product as described in the last section. Table 3.1 specifies the explicit permissions,
where x represents action canExecute, r represents action canRead and w repre-
sents action canWrite. The reading direction to construct the concept products is
UserWithRole×Object � action.

Implicit permissions can be queried from a reasoner. Since the concept product is
currently not supported in tools, we cannot read out implicit concept products made
explicit by the reasoner directly. However, this can easily be solved technically by
introducing a “representative individual” for each user role concept and object class
concept and read out the allowed actions represented by object properties. From the
definition of the concept product it follows that the respective action is allowed for all
individuals of the user role concept or object class concept respectively.

The implicit permissions of the given RBAC-CH policy are given by the RBAC-CH
matrix in Table 3.2. For a comparison, the incorrect implicit permissions from [CS07b]
are given in braces. For example, an obvious error is that the user role SysAdmin has
the permission to execute every File, but not every SysF ile, ConFile, LocF ile and
ElcJ which are subconcepts of File.
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ElcJ LocFile ConFile SysFile ExeSysFile ProFile ExeFile File

SysAdmin r,w,x (r) r,w,x (r,w) r,w,x (r,w) r,w,x (r,w) r,w,x r,w,x r,w,x r,w,x

Mag r r,w r,w x x x

OSDev r r,w (r,w) (r,w) x (r,w,x) x (r,w,x) x (r,w,x)

LocCli r r,w x x x

RemCli r,w x x x

Table 3.2: RBAC-CH matrix (conflicts with [CS07b] given in parentheses)

In summary, our improved DL representation for RBAC-CH eliminates the flaws of
related work discussed in Section 3.1.1. However, it still leaves room for improvement.
For example, the subsumption hierarchy of user roles is not intuitive. It makes no
sense in general that a system administrator is a special manager. This is only true
with respect to her permissions. The new representation discussed in Section 3.2 is
more sophisticated and eliminates also that problem.

3.2 Policy Completion Starting From an RBAC Matrix

The previous section showed that DLs can be used to represent an RBAC policy.
However, it is clear that no new knowledge is obtained that was not already contained
in the RBAC policy. Basically, in addition to RBAC policy and RBAC matrix, it
just adds a third representation based on Description Logics. In this section we take
the RBAC matrix representation as given. We decided for this representation, since
it can be obtained from any RBAC implementation, also from old legacy systems,
by reading out its static behavior. As introduced in Section 2.3, the objects in an
RBAC matrix do not need to be individual entities but could also be abstract groups
of entities. This is always the case with RBAC-CH matrices. In Section 3.1.2 we
discussed, that RBAC is more general than RBAC-CH in the sense that one could
compute all implicit permissions of an RBAC-CH policy following from the object
class hierarchy and express them explicitly in an RBAC policy. In this section, we
focus on RBAC matrices with objects being abstract groups of individual entities, but
do not restrict to RBAC-CH.

We show how to obtain new knowledge that has neither been explicit nor im-
plicit before. For instance, we will see in our example scenario that no user is ever
allowed to write and approve the same document, which makes sense for a review
process but was known before neither explicit nor implicit. We show how to obtain
the new knowledge in a systematic, non-redundant way based on the attribute explo-
ration algorithm known from FCA. Completing DL ontologies using FCA has been
done, e.g., in [Baa+07a] but is not directly applicable here. Two contributions of this
section allow to use attribute exploration for our purposes: (1) since the algorithm
only works on two-dimensional contexts and the RBAC matrix can be interpreted as
three-dimensional context, appropriate transformations are required; (2) since the al-
gorithm further works on objects and not on classes, but the RBAC matrix specifies
actions allowed for classes of users on classes of objects, appropriate interpretations
of the matrix are required for allowed actions of users on objects. We introduce the
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Figure 3.5: Workflow for representing and completing an RBAC policy

prohibitive, permissive, and strict interpretation of crosses in the RBAC matrix and
explain that no new knowledge can be obtained for the strict interpretation while it is
possible and makes sense for the other two interpretations.

Figure 3.5 illustrates the complete workflow from the RBAC matrix to an extended
RBAC policy in DL representation. The resulting extended RBAC policy can be sent
to an access control system in order to be enforced.

The structure is as follows: In Section 3.2.1, all relevant notions are formally
defined, and the running example we will use is introduced. Moreover, in this section
the three possible interpretations of an RBAC matrix are discussed. In Section 3.2.2,
we show how the knowledge explicitly contained in an RBAC matrix can be expressed
by means of DL GCIs. The resulting DL representation is more sophisticated than
the one from Section 3.1.3 and can be extended with the newly obtained knowledge
from the following two sections. In Section 3.2.3, we thoroughly discuss how attribute
exploration can be used in order to obtain additional knowledge, and how it can be
represented with DL GCIs. The newly obtained knowledge is added as additional
constraints to the DL representation of the RBAC policy. In Section 3.2.3, we apply
our approach to a real-life example.

3.2.1 The RBAC Matrix as Formal Context

In this section, all relevant notions which will be used in this section are formally
defined, and our working example is introduced.

Vocabulary: As already mentioned, our starting point is a three-dimensional
matrix, where the three dimensions are the roles, document types and actions. As
defined in Section 2.3, permissions are tuples of action and object, i.e. document
types here. As noted in the Preliminaries Chapter in Section 2.1, we avoid mixing
up user roles and DL roles by using the OWL terminology “property” for a DL role.
In our ongoing formalization, both roles and document types will be represented as
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concept names of a (appropriately chosen) DL, and each action will be represented as
a property between roles and document types. That is, we consider a DL vocabulary
which consists of a set R of role names, a set D of document type names, and of a set
A of allowed action names. The vocabulary of these names will be denoted V.

We will use a working example with specific roles, document types and actions. As
already introduced in our scenario in Section 1.2, we consider the actions mayApprove,
mayWrite and mayRead, which are abbreviated by MA, MW and MR, respectively. The
document types are user manual, marketing document, customer contract document,
terms of use document, installation guide, external technical interface document, design
document and rating entry, abbreviated by UM, MD, CCD, ToUD, IG, ETID, DD, RE.
The roles are marketplace visitor, customer, development engineer, service vendor, legal
department employee, service provider, marketing employee, technical editor and customer
service employee, abbreviated by MV, CU, DE, SV, LDE, SP, ME, TE and CSE.

Formal Contexts: The three-dimensional matrix already introduced in Table 1.1
with roles, document types and actions is formalized as a triadic formal context
KR,D,A := (R,D,A, I).

Our aim is to conduct an attribute exploration in order to explore dependencies
between different roles, different document types, or different actions. As attribute
exploration is applied to dyadic contexts, we have do derive such contexts from the
given triadic context. This can be done in several ways.

1. First, we can consider “slices” of the triadic context. For our goal, it is most
useful to consider the “slice” for each A ∈ A. That is, for a given A ∈ A, we
consider KA

R,D := (R,D, IA), where (R,D) ∈ IA :⇔ (R,D,A) ∈ I.

2. Next, we can consider the dyadic contexts as a formal context with objects and
attributes, where the set of attributes is one of the sets R, D, A, and the set of
objects is the cross-product of the remaining two sets. E.g. we can consider the
context KR×A,D := (R×A,D, IR×A,D) with ((R,A),D) ∈ IR×A,D ⇔ (R,D,A) ∈ I.
This is a straight-forward transformation. To simplify notations, we will denote
the incidence relation again by I, thus writing (R×D,A, I). We can construct six
dyadic contexts this way, namely KR×D,A, KA×R,D, KD×A,R and the respective
named variants with identical cross table KD×R,A, KR×A,D, KA×D,R.

3. For a given context K := (G,M, I), when attribute exploration is conducted,
sometimes it is sensible to add an additional attribute ⊥ to M , which satisfies
¬∃g ∈ G : (g,⊥) ∈ I. We use K⊥ := (G,M ∪ {⊥}, I) to denote this context
(again, we simply ‘reuse’ the symbol ‘I’ for the incidence relation). In our ex-
ample no agent will be allowed to write and approve the same document, thus
mayApprove ∧ mayWrite → ⊥.

As each of the formal contexts only deals with names for roles, document types, and
actions, but not with instances of these names (in some DL interpretations, see below),
all these formal contexts are called T -contexts.

Interpretations: The DL-interpretations for RBAC matrices are straightfor-
wardly defined: For our setting, a DL-interpretation for V is a pair (∆I , · I) with
a non-empty domain ∆I and an interpretation function · I which satisfies:
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Interpretation Cross No cross
strict allowed for all individuals prohibited for all individuals
permissive allowed for all individuals allowed for some individuals
prohibitive allowed for some individuals prohibited for all individuals

Table 3.3: Variants how to interpret a cross in the context

• RI ⊆ ∆I for each R ∈ R. Moreover, we set RI :=
�

R∈R RI .
The elements r ∈ RI are called agents.

• DI ⊆ ∆I for each D ∈ D. Moreover, we set DI :=
�

D∈D DI .
The elements d ∈ DI are called documents.

• AI ⊆ RI × DI for each A ∈ A

• RI ∩ DI = ∅ (nothing is both agent and document)

• RI ∪ DI = ∆I (everything is either agent or document)

Note that the first two conditions are standard conditions for DL interpretations,
whereas the last 3 conditions are additional constraints.

Permissive, Prohibitive and Strict Interpretations: For some applications,
it might not be realistic to assume that an agent’s permissions are completely defined
by her assigned user roles. Instead she might have additional individual permissions
and prohibitions. As each formal object and attribute of (R,D,A, I) stands in fact
for a whole class of agents respectively documents, it is not a priori clear what the
semantics of the incidence relation I with respect to an interpretation (∆I , · I) is. So
we have to clarify the meaning of I.

First we might assume that a relationship (R,D,A) ∈ I means that each agent
r ∈ RI can perform action AI on each document d ∈ DI . So a cross in the cross-table
of the context (R,D, IA) grants actions allowed on documents by agents, and we can
read from the context which permissions are at least granted to agents.

Vice versa, we might assume that a missing relationship (R,D,A) /∈ I means that
no agent r ∈ RI can do action AI on any document d ∈ DI . So a missing cross in the
cross-table of the context (R,D, IA) prohibits that actions are granted to agents, and
we can read from the context which actions are at most granted to agents.

And finally, we could of course assume that both conditions hold. That is, we can
read from the context which permissions are precisely granted to agents.

These three understandings lead to the notion of permissive, prohibitive and strict
interpretations (with respect to the formal context) summarized in Table 3.3. They
are formally defined as follows:

• An interpretation (∆I , · I) is called permissive (with respect to KR,D,A), and we
write (∆I , · I) |=+ (R,D,A, I), iff for all role names R ∈ R, all document type
names D ∈ D, all allowed action names A ∈ A we have:

(R,D,A) ∈ I =⇒ ∀r ∈ RI ∀d ∈ DI : (r, d) ∈ AI
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In other words, if (R,D,A) ∈ I, we have RI ×DI ⊆ AI .

• An interpretation (∆I , · I) is called prohibitive (with respect to KR,D,A), and we
write (∆I , · I) |=− (R,D,A, I), iff for all role names R ∈ R, all document type
names D ∈ D, all allowed action names A ∈ A we have:

(R,D,A) /∈ I =⇒ ∀r ∈ RI ∀d ∈ DI : (r, d) /∈ AI

In other words, if (R,D,A) /∈ I, we have (RI ×DI) ∩ AI = ∅.

• An interpretation (∆I , · I) is called strict (with respect to KR,D,A), iff it is both
permissive and prohibitive.

We say that we use the permissive approach (prohibitive approach, strict approach), if
we assume that each interpretation is permissive (prohibitive, strict).

Instantiations of Contexts: As already said in the introduction, it will turn out
that for running attribute exploration on the context, it is reasonable not to consider
the T -context, but contexts where on the side of the objects, roles are replaced by
“real” users respectively document types are replaced by “real” documents. Essentially,
instantiations of a context contain at least all rows of the given context, and there
might be more rows, but these additional rows must be extensions of rows in the given
context. These contexts are now introduced.

Let one of the contexts KA
R,D := (R,D, IA) (A ∈ A) be given. An instantiation of

KA
R,D is a context (R,D, JA), where R is a set of agents such that

• ∀R ∈ R ∃r ∈ R ∀D ∈ D : (R,D) ∈ IA ⇔ (r,D) ∈ JA

• ∀r ∈ R ∃R ∈ R ∀D ∈ D : (R,D) ∈ IA ⇒ (r,D) ∈ JA

Such a context will be denoted KA
R,D. We define similarly the instantiations KR×A,D of

KR×A,D, and KA×R,D of KA×R,D (where again the role names are replaced by agents),
as well as the instantiations KA

D,R of KA
D,R (A ∈ A), KD×A,R of KD×A,R, and KA×D,R

of KA×D,R (where now the document type names are replaced by documents). In-
stantiations of the contexts where the actions are the attributes, i.e. instantiations
KD×R,A of KD×R,A (respectively KR×D,A of KR×D,A) are defined similarly (where on
the side of the objects, both document type names and role names are replaced by
“real” documents and “real” agents, respectively).

An example for an instantiation of KmayWrite
R,D is given in Table 3.4.

3.2.2 Expressing the Formal Context by GCIs

In this section, we scrutinize how the information of the context KR,D,A can be ex-
pressed by means of DLs. Note, that we add no new knowledge here, but just represent
the context as an ontology.

For the permissive approach, we have to capture the condition RI × DI ⊆ AI .
The left expression is a concept product. It cannot be expressed in SHOIN (D),
which is the underlying DL of OWL DL [Bec+04]. In OWL 2, there does not exist
a native language construct for the concept product either, but [RKH08] provides a
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agent11 × × × × × ×
agent12 × ×

Table 3.4: The context KmayWrite
R,D and one possible instantiation.

workaround to express it in OWL 2. An alternative is the non-standard constructor
∀C.R which is the set of entities which stand in relation R to all instances of C. It
can be expressed by means of negation of relations, as ∀C.R is equivalent to ∀¬R.¬C.
See [LS00] for a thorough discussion of the constructor. Adding it to ALC still yields a
decidable DL, but as this constructor is non-standard, it is not supported by common
DL reasoners. However, this does not restrict practical applicability due to the duality
principle discussed in the next section, which allows easier constructors. Using the
constructor ∀C.R, the condition RI ×DI ⊆ AI can be expressed with the GCIs

R � ∀D.A (i.e. R � ∀¬A.¬D) and D � ∀R.A−1 (i.e. D � ∀¬A−1.¬R)

For the prohibitive approach, the condition (RI ×DI)∩AI = ∅ has to be captured.
This can be expressed by the two GCIs

R � ∀A.¬D and D � ∀A−1.¬R

Note that this condition is precisely the condition for the permissive approach, when
we replace each action A by its complement ¬A. This duality principle will be discussed
in the next section.

If we knew that KR,D,A is correct, and if we know which type of approach (permis-
sive, prohibitive, strict) we use, then we can describe the information of KR,D,A by DL
GCIs. We first set Rall :=

�
R∈R R and Dall :=

�
D∈D D. Now we define the following

ontology:

O0 := {Rall � ∀A.Dall ,Dall � ∀A−1.Rall | A ∈ A} ∪ {Rall � ¬Dall} ∪ {Rall � Dall ≡ �}
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Obviously, a general DL-interpretation (∆I , · I) is a DL-interpretation of V iff it
satisfies O0. According to the chosen approach, we can now capture the information
of KR,D,A as follows:

O+ := O0 ∪ {R � ∀¬A.¬D , D � ∀¬A−1.¬R | (R,D,A) ∈ I}
O− := O0 ∪ {R � ∀A.¬D , D � ∀A−1.¬R | (R,D,A) �∈ I}
O± := O+ ∪O−

Again, a DL-interpretation is obviously a permissive (prohibitive, strict) interpretation
of KR,D,A, if it satisfies O+ (O−, O±).

3.2.3 Attribute Exploration for RBAC Matrices

In this section, we discuss how attribute exploration can be utilized in order to obtain
new knowledge, neither explicit nor implicit in the RBAC matrix before. It is crucial
which approach (permissive, prohibitive, strict) we use, thus we first elaborate the
differences between these approaches with respect to attribute exploration. In the
second and third part of this section, we go into the details of an attribute exploration
for instantiations of contexts in the permissive approach.

General discussion

We first compare the permissive and the prohibitive approach. In the permissive ap-
proach, the crosses in a cross-table carry information, whereas missing crosses are
not informative. In the prohibitive approach, the situation is converse: Missing
crosses carry information, and crosses are not informative. Missing crosses in a re-
lation correspond to crosses in the complement of the relation. Thus if we replace
in the prohibitive approach the relations mayRead,mayWrite and mayApprove by their
complements mayReadc = mustNotOpen, mayWritec = mustNotWrite, mayApprovec =
mustNotApprove, we have a situation similar to the permissive approach. That is, we
have the following duality principle: Any account to the permissive approach can be
turned into an account to the prohibitive approach (and vice versa) by replacing each
action by its complement.1 For this reason, we do not target the prohibitive approach
in this section.

We assume that the set of role names, document type names, and action names
is fixed. Conducting an attribute exploration on one of the T -contexts seems for this
reason to some extent pointless, as we can only confirm implications which hold but
cannot add new objects with counterexamples for implications which do not hold. So
we can use attribute exploration in order to check that the information in KR,D,A is
correct while we cannot change KR,D,A, but this idea does not tap the full potential of
attribute exploration. We assume in the following that the matrix KR,D,A is correct,
but notice that this check for correctness would have avoided the inconsistency between
user role hierarchy and RBAC matrix discussed in Section 3.1).

1
But keep in mind that switching between the permissive and prohibitive approach requires chang-

ing the underlying DL-language, including the need for non-standard constructors in the permissive

approach.
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Figure 3.6: Concept lattice for context KmayRead
R,D (left) and an extension (right)

Anyhow, we emphasized that in the formal context, the formal objects (the ele-
ments of R) and attributes (the elements of D) stand in turn for complete classes (of
agents and documents). Assume we stick to the permissive approach. Assume more-
over that we consider a permissive interpretation (∆I , · I) with respect to KR,D,A.
Then for a given action A ∈ A, agent r ∈ RI for a role R ∈ R, and document d ∈ DI

for a document type D ∈ D, we might have that r can do A on d (i.e., (r, d) ∈ AI),
though we do not have (R,D,A) ∈ I. That is, it is sensible to run an attribute explo-
ration on the instantiations of the T -contexts. As we will see in the next section, with
attribute exploration we can in fact infer constraints for the dependencies between
roles, document types and actions which are not captured by KR,D,A.

In the strict approach, the situation is different. If we consider a strict interpre-
tation (∆I , · I) with respect to KR,D,A, then for a given action A ∈ A, agent r ∈ RI

and document d ∈ DI , we have (r, d) ∈ AI ⇔ (R,D,A) ∈ I. That is, based on the
given assumption that the sets of roles, document types and actions are fixed, all pos-
sible constraints for the dependencies between these entities are already captured by
KR,D,A. This observation has two consequences: First, no DL representation of the
strict approach can extend the information of KR,D,A, i.e., a DL formalization of KR,D,A
is somewhat pointless. Second, the instantiations of T -context are nothing but the T -
context themselves (instantiations might duplicate some rows, but this is of course of
no interest), thus conducting attribute exploration in the strict approach is pointless
as well. The concept lattice of the context KmayRead

R,D is given in Figure 3.6 (left). Since
any instantiation of KmayRead

R,D equals KmayRead
R,D modulo renaming objects, any instan-

tiation has the same concept lattice. Extending KmayRead
R,D with a new document type

requirements document (RQD) which may be read by DE,ME,TE,SV,LDE,CSE,CU yields
the concept lattice in Figure 3.6 (right).
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To summarize: As the permissive and prohibitive approach are mutually dual, and
as addressing the strict approach with DLs or attribute exploration is pointless, it is
sufficient that we here address only the permissive approach in the following.

Attribute Exploration for Instantiations of T -contexts

In the last part we argued why we will run attribute exploration on instantiations of
T -contexts. Before doing so, we first have to discuss how implications in T -contexts
and their instantiations are read, and then we will scrutinize some peculiarities for
applying attribute exploration in our setting. In fact, due to the fact that the objects
and attributes of KR,D,A stand for whole classes, the existing approaches for conducting
attribute explorations on triadic contexts (e.g., [GO04]) cannot be applied to our
framework.

Reading Implications We consider the two contexts of Table 3.4. In both con-
texts, terms of use document → customer contract document holds. For the T -context
KmayWrite

R,D , the objects are classes, thus this implication is read as follows:

T -reading: For each role we have that whenever every agent of that role
may write all terms of use documents, then every agent of that role may
write all customer contract documents as well.

For the instantiation KmayWrite
R,D of KmayWrite

R,D , the objects are now instances instead of
classes, thus we have a different reading of the implication. It is:

I-reading: For every agent we have that whenever she may write all terms
of use documents, then the she may write all customer contract documents
as well.

Implications like this cannot be read from any T -context, thus running attribute ex-
ploration on instantiations can indeed be used to obtain new knowledge.

Please note that none of the above readings conforms to the concept inclusion terms
of use document � customer contract document. This is due to in both implications
we quantify over all terms of use documents and all customer contract documents.
For the latter reading, we now show how it is correctly translated into a GCI. The
implication means that for any permissive interpretation (∆I , · I) , we have that ∀r ∈
RI : (∀d ∈ ToUDI : (r, d) ∈ MWI → ∀d ∈ CCDI : (r, d) ∈ MWI) holds. This condition
is now transformed into a GCI as follows:

∀r ∈ RI :
�
∀d ∈ ToUDI : (r, d) ∈ MWI → ∀d ∈ CCDI : (r, d) ∈ MWI�

⇐⇒ ∀r ∈ RI :
�
r ∈ (∀ToUD.MW)I → r ∈ (∀CCD.MW)I

�

⇐⇒ (∆I , · I) |= ∀ToUD.MW � ∀CCD.MW

(we have to emphasize that the direction “→” of the last equivalence is only valid if we
assume that dom(MWI) ⊆ RI holds, but we assume that our interpretation satisfies
O0, which expresses this additional condition).
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In general, any implication of the form D1 ∧ . . . ∧ Dn−1 → Dn in an instantiation
of one of the contexts KA

R,D can be translated into the following GCI:

∀D1.A � . . . � ∀Dn−1.A � ∀Dn.A

Similarly, any implication of the form R1 ∧ . . . ∧ Rn−1 → Rn in an instantiation of one
of the contexts KA

D,R can be translated into the following GCI:

∀R1.A− � . . . � ∀Rn−1.A− � ∀Rn.A−

If we consider an instantiation of a context where the attributes of the context are
neither document type names nor role names, but instead action names, the situation
is different, as now the attributes do not stand for classes of instances, but for properties
between instances. In Section 3.2.4, we consider a context KD×R,A. In this context,
mayWrite → mayRead holds. The reading of this implication is

Whenever some agent has the permission to write some document, then
this agent may read this document as well.

So we see that in this case, the implication can be translated to a simple inclusion
axiom between properties, namely mayWrite � mayRead.

Conducting Attribute Exploration on Instantiations

We consider the instantiation of a T -context, where we want to run attribute explo-
ration on. Obviously, for any T -context K, there exists a smallest instantiation Kmin,
which is isomorphic to K, and a largest instantiation Kmax. The basic idea is that we
start the attribute exploration with Kmin, and for implications which do not hold, we
add (as usual) counterexamples to the context, until we finally reach a context Kae.
Anyhow, in this process, we cannot add counterexamples in an arbitrary manner, as
the context Kae we obtain must still be an instantiation. The question is how this
additional constraint can be captured by attribute exploration. First of all, we triv-
ially have the following subset relations between the implications which hold in the
contexts:

Imp(Kmax) ⊆ Imp(Kae) ⊆ Imp(Kmin)

So if we run an attribute exploration on Imp(Kmin), we could use Imp(Kmax) as a
set of additional background implications [Stu96]. Anyhow, a closer observation yields
that Imp(Kmax) only contains all implications of the form ∅ → m, where m is an
attribute of Kmin which applies to all objects. This can easily be seen as follows: Let
Kmin := (Gmin,M, Imin), let Kmax := (Gmax,M, Imax), let M1 := {m ∈ M | ∀g ∈
Gmin : (g,m) ∈ Imin} and M2 := M −M1 be the complement of M1. First of all, we
obviously have for each m1 ∈ M1 that ∅ → m1 holds in Kmin, thus in Kmax as well.
Now let m2 ∈ M2. Then there exists an object g ∈ Gmax with (g,m) ∈ Imax ⇔ m �= m2

for all m ∈ M . That is, there cannot exist any (nontrivial) implication in Imp(Kmax)
with m2 in its conclusion.
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Choice of Instantiation Contexts for Attribute Exploration

Theoretically, we could conduct an attribute exploration on the minimal instantiation
of KR×A,D. Anyhow, we observe that any instantiation of KR×A,D is the subposition
of instantiations of the contexts KA

R,D, A ∈ A. Generally, for any contexts K1, . . . ,Kn

with identical attribute sets, an implication holds in each context K1, . . . ,Kn if and
only if it holds in the subposition of these contexts. Thus if the security engineer runs
an attribute exploration on the minimal instantiation of all contexts KA

R,D, A ∈ A, there
is no need to run an attribute exploration on the minimal instantiation of KR×A,D.

The discussion above applies to the context KD×A,R as well. To summarize: For
a complete investigation of KR,D,A, it is sufficient that the security engineer runs an
attribute exploration on the minimal instantiations of the following contexts:

• KA
R,D for each action A ∈ A to infer document implications

• KA
D,R for each action A ∈ A to infer role implications

• KD×R,A to infer action implications

For the context KD×R,A, one could add the additional attribute ⊥ in order to obtain
constraints which express the disjointness of some actions.

3.2.4 Evaluation of the Approach for a Real-Life-Example

In this section, we apply our approach to the example RBAC matrix introduced in
Table 1.1. We do not conduct a complete attribute exploration: Instead we consider
only the contexts KD×R,A and KmayRead

D,R .

Attribute exploration forKD×R,A

In this section, we conduct the attribute exploration on the minimal instantiation
Kmin of KD×R,A. For this exploration, as discussed in Section 3.2.1, we added an
additional attribute ⊥ to the set of attributes. An excerpt of Kmin, together with its
concept lattice, is provided in Figure 3.7. We observe that Imp(Kmin) does not contain
implications of the form ∅ → m, where m is an attribute of Kmin which applies to all
objects, for this reason there are no GCIs we can already add to our ontology prior to
attribute exploration.

The security engineer starts the attribute exploration on KD×R,A, thus on Kmin,
which has the following implications:

1. MW → MR

2. MA → MR

3. ⊥ → MR ∧ MW ∧ MA

4. MR ∧ MW ∧ MA → ⊥.
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Figure 3.7: The instantiation context KD×R,A and its concept lattice

The first implication is read: Whenever some agent can write some document,
then this agent can read this document as well. It can easily be verified that this
implication should indeed hold in any interpretation KR,D,A, so we add the property
inclusion mayWrite � mayRead to our DL ontology. This is the first example of a
statement which can be expressed with a DL statement, but not with matrix KR,D,A
alone.

The next implication can be handled analogously, and for this reason we add the
inclusion mayApprove � mayRead to the ontology.

The third implication trivially holds due to the definition of ⊥.
The last implication can, due to the first two implications, be simplified to MW ∧

MA → ⊥. Due to the definition of ⊥, this is read: No agent can both write and
approve some document. Again, the engineer decides that this implication is valid.
Thus she adds the disjoint property axiom MW � MA � ⊥ to the ontology.

If it is later verified that the complete RBAC policy is consistent, which can be
done with a DL reasoner, then each document which can be written or can be approved
has to be readable and furthermore no document can be written and approved by the
same agent. These are constraints which have not been contained in the matrix but
were derived by our methodology.

Attribute Exploration forKmayRead
D,R

For a second example, attribute exploration is performed on the minimal instantiation
context Kmin of KmayRead

D,R . The context Kmin looks like the left third of the cross
table in Table 1.1 despite that it is transposed and document types are replaced by
documents (columns are roles, rows are documents). We do not conduct a complete
attribute exploration on Kmin, but only provide an example for a valid and an invalid
implication.

Let us first note that in KmayRead
D,R , the attributes SV, LDE and CSE apply to all

objects. So, according to the discussion the implications ∅ → SV, ∅ → LDE and
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∅ → CSE hold in all instantiations of KmayRead
D,R , thus we can add the GCIs � �

∀SV.mayRead−, � � ∀LDE.mayRead− and � � ∀CSE.mayRead− to our ontology, before
conducting attribute exploration.

An example for an implication of Kmin is TE → ME. During the attribute explo-
ration, the security engineer has to decide whether this implication holds in all desired
interpretations of KmayRead

D,R . In fact, there might be a contract document in preparation
by a technical editor which is not allowed to be read by a marketing employee. Thus the
security engineer adds a counterexample to the context (CCD_in_prep,TE,MR) ∈ I
and (CCD_in_prep,ME,MR) /∈ I.

Another example for an implication of Kmin is MV → CU. In fact, the security
engineer realizes that this implication must hold: Any document which can be read
by a marketplace visitor can be read by a customer as well. So she adds the GCI
∀MV.mayRead− � ∀CU.mayRead− to the ontology. This is again an example which
cannot be derived from KR,D,A alone.

3.3 Reusing Role and Object Class Hierarchy at Policy Com-
pletion

In Section 3.1 we defined RBAC-CH as an extension of RBAC. While the role hierarchy
of an RBAC policy and for RBAC-CH in addition to that also the object class hierarchy
can be seen as a set of implications, they have been ignored in Section 3.2. In this
section, we take them into account and show that the systematic and non-redundant
procedure to complete an RBAC policy from Section 3.2.3 can be made shorter in the
sense that the security engineer has to answer fewer questions.

During attribute exploration, it would be cumbersome for the security engineer if
she had to confirm implications that are already known a priori. An alternative is
taking a set of background implications into account at attribute exploration [Stu96].
In Section 3.2.3, we already discussed, that we could use Imp(Kmax) as a set of back-
ground implications during attribute exploration. We discussed that this is possible
but of not much help, since Imp(Kmax) only contains all implications of the form
∅ → m, where m is an attribute of Kmin which applies to all objects. The sets of
background implications discussed in this section are more helpful.

Figure 3.8 extends the workflow from Figure 3.5 so that object class hierarchy and
role hierarchy are taken into account at attribute exploration.

Let BD, BR, BA be disjoint sets of background implications between document
types, user roles and actions, respectively. For example, from the role hierarchy
(R,�R) and object class hierarchy (C,�C) defined in Section 3.1.2, we can obtain
BR := {r1 → r2 | r2 �R r1}, and BD := {d1 → d2 | d2 �C d1}.

Before attribute exploration is started, every background implication can be trans-
lated into a GCI and added to the ontology as discussed above. A preparation step
prior to attribute exploration is the computation of the complete RBAC matrix as
described in Section 3.1, which contains all explicit and implicit permissions of a given
RBAC policy in the presence of role hierarchy and object class hierarchy. As already
introduced in Section 3.2, this matrix is formalized as triadic formal context KR,D,A and
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Figure 3.8: Workflow for representing and completing an RBAC policy with the sup-
port by known implications

attribute exploration is performed on minimal instantiations of that context. Similarly
to the list from Section 3.2.3 for a complete investigation of KR,D,A, it is sufficient that
the security engineer runs an attribute exploration on the minimal instantiations of the
following contexts, and additionally takes the respective set of background implications
into account:

• KA
R,D and background implications BD for each action A ∈ A to infer document

implications

• KA
D,R and background implications BR for each action A ∈ A to infer role impli-

cations

• KD×R,A and background implications BA to infer action implications

We will now extend the attribute explorations for the real-life example from Sec-
tion 3.2.4 by background implications and discuss the differences.

We start with attribute exploration on the minimal instantiation Kmin of KmayRead
D,R

with the background implication set BR = {MV → CU ∧ DE ∧ SV ∧ LDE ∧ SP ∧
ME ∧ TE ∧ CSE}. The set contains one implication saying that whenever a docu-
ment can be read by a marketplace visitor, then a user with any other known user
role (from the fixed set of user roles) can read it as well. Thus, we can add the GCI
∀MV.mayRead− � ∀CU.mayRead− � . . .�∀CSE.mayRead− to our ontology, before con-
ducting attribute exploration. During attribute exploration, the implication MV → CU
of Kmin, discussed above still holds. Yet, the security engineer does not need to de-
cide whether this implication holds, since it can already be confirmed from the set of
background implications.

In a second example, we conduct attribute exploration on the minimal instantiation
Kmin of KD×R,A with the background implication set BA = {MA → MR,MW ∧MA →
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⊥}. Again each of the two background implications can be represented by the re-
spective GCI and added to our ontology, prior to attribute exploration. At attribute
exploration, the security engineer only has to decide about two of the above listed four
implications, namely

1. MW → MR

2. ⊥ → MR ∧ MW ∧ MA.

The two remaining implications discussed above, still hold in this context (since it is
the same context) but can already be answered from the set of background implications
so again the security engineer does not need to answer unnecessary questions.

Similarly, attribute exploration can be performed on the minimal instantiation
Kmin of KmayRead

R,D with a background implication set BD.

3.4 Conclusions of the Chapter

RBAC is a standardized and well established access control model, abstracting from
individual users by user roles. We have shown how to represent RBAC policies as DL
ontology and how to complete RBAC policies in the sense of adding new knowledge
that has been neither explicit nor implicit before.

The main argument to use a knowledge representation formalism to represent an
RBAC policy is that a policy specifies explicit permissions from which implicit per-
missions follow. We discussed approaches from literature to represent RBAC policies
by means of a DL ontology and focused specifically on an extension of RBAC, called
RBAC-CH, adding a hierarchy of object classes to RBAC. We introduced a represen-
tation of RBAC-CH that has several advantages over the proposal in related work.
Furthermore, we have shown that the RBAC matrix can be computed from an RBAC
policy by just plugging in a reasoner and querying for all implicit permissions. The
resulting matrix helps, e.g., the security engineer to verify the effect of user role and
object class hierarchy. However, we pointed out that a DL representation does not add
any new knowledge that was not already contained in the RBAC policy. Basically, in
addition to RBAC policy and RBAC matrix, it just adds a third representation based
on Description Logics.

We have shown how to complete RBAC policies in the sense of adding new knowl-
edge that has not yet been represented in a computer, but was known to an expert, e.g.
the security engineer, before. Our methodology is based on a known method from FCA,
called attribute exploration. An RBAC matrix can be written as three-dimensional
formal context, but needs to be interpreted and transformed appropriately, so that
attribute exploration for two-dimensional contexts can be applied. In one of the dis-
cussed interpretations, the strict interpretation, the set of permissions an individual
can have is strictly defined by the RBAC matrix. No additional constraints need to
be checked. Under a permissive (respectively prohibitive) interpretation, individuals
have additional (respectively fewer) permissions than given for their user roles. This
means the RBAC matrix is no complete definition of permissions for an individual. In
that case we might nevertheless have general rules and constraints which have to be
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fulfilled in any case on the level of individual users. For example, nobody might be
allowed to write and approve the same document for a proper review process. Rules
like this on the level of individual users and individual documents can be identified by
our systematic and non-redundant method based on attribute exploration. We have
shown that known implications from a user role hierarchy or object class hierarchy can
be exploited in order to pose fewer questions to the security engineer. We introduced
a new DL representation to capture knowledge from the RBAC matrix as well as the
newly obtained knowledge.

Revisiting the research questions from Section 1.4, these results answer the ques-
tions 7, 8 and 9.

Our results on the representation and completion of RBAC policies laid the ground
for the next chapters on access restrictions to an ontology’s axioms, since some of the re-
sults allow to reuse a given RBAC policy to prepare a labeling lattice which is required
in our framework for access restrictions to an ontology’s axioms and consequences.
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4 Access Restrictions to Explicit
and Implicit Knowledge

The framework developed in this chapter can deal with scenarios where selected sub-
ontologies of a large ontology are offered as views to users, based on criteria like the
user’s access right, the trust level required by the application, or the level of detail
requested by the user.

Instead of materializing a large number of different sub-ontologies, we propose to
keep just one ontology, but equip each axiom with an annotation in the form of a label
from an appropriate labeling lattice. The access right, required trust level, etc. is then
also represented by a label (called user label) from this lattice, and the corresponding
sub-ontology is determined by comparing this label with the axiom labels.

For large-scale ontologies, certain consequences (like the concept hierarchy) are
often pre-computed. Instead of precomputing these consequences for every possible
sub-ontology, our approach computes just one label for each consequence such that
a comparison of the user label with the consequence label determines whether the
consequence follows from the corresponding sub-ontology or not.

From a security administrator’s perspective it might be necessary to change a
consequence label to meet a certain specification. This can only be done by repairing
the labeling of the explicit axioms.

Parts of the chapter have been published in [BKP09a; BKP09b; KP10a; KP10b].

4.1 Access Restrictions to Explicit Knowledge

In this section we equip each axiom with a label representing an access restriction. The
user access right, her required trust level, etc. is then also represented by a label (called
user label) from this lattice, and her visible sub-ontology is determined by comparing
this label with the axiom labels.
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Assume that you have a large ontology O, but you want to offer different users
different views on this ontology, i.e., each user can see only a subset of the actual
ontology, which is selected by an appropriate criterion. This criterion could be the
user role that this user has, the level of trust in the axioms of the ontology that
the user requires, the degree of certainty that the user requires, the level of details
that is deemed to be appropriate for this user, etc. With user roles, each axiom label
defines the user roles able to see the axiom and each user label defines the sub-ontology
containing the axioms visible to this user. In the presence of trust restrictions, the
user label specifies the trust level required for the ontology axiom. This supports
scenarios with axioms from different sources, like company-internal with high trust
level and public Web with low trust level. In the presence of uncertainty, e.g. in
possibilistic reasoning, each axiom has an associated certainty degree in the interval
[0, 1]. The user label then specifies the certainty degree required for the axioms and
the consequences. Similarly, granularity restrictions (i.e., on how much details the
ontology should provide for the user) can be expressed by a total order.

In principle, you could explicitly create a sub-ontology for each (type of) user, but
then you might end up with exponentially many different ontologies, where each is
a subset of O. Instead, we propose to keep just the large ontology O, but label the
axioms in O such that a comparison of the axiom label with the user label determines
whether the axiom belongs to the sub-ontology for this user or not. To be more precise,
we use a labeling lattice (L,�), i.e., a set of labels L together with a partial order �
on these labels such that a finite set of labels always has a join (supremum, least upper
bound) and a meet (infimum, greatest lower bound) w.r.t. �.1. All axioms a ∈ O are
now assumed to have a label lab(a) ∈ L, and the user also receives a label � ∈ L (which
can be read as access right, required level of trust, etc.). The sub-ontology that a user
with label � can see is then defined to be2

O�� := {a ∈ O | lab(a) � �}.

Example 12. We continue Example 1. A development engineer has user label �3, so
she can see O��3 := {a1, a2, a3, a4}.

The Oracle Corporation provides a database technology called Virtual Private
Database where labels are assigned to individual tuples. Access to a tuple is only
allowed if the user’s label dominates the tuple’s label [Bis09]. Similarly our concept
could be named Virtual Private Ontology.

4.2 Access Restrictions to Implicit Knowledge

Intuitively, for a given user all those consequences should visible, which can be inferred
from her visible axioms. This can be assured by appropriate consequence labels. The
consequence labels are determined by the labels of axioms that entail the consequence.

1
We introduced a small lattice already in Figure 1.3.

2
To define this sub-ontology, an arbitrary partial order would be sufficient. However, the existence

of suprema and infima will be important for the computation of a boundary of a consequence (see

below).
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We determine under which restrictions on the user and axiom labels such consequence
labels (called boundaries) always exist, and describe different black-box approaches
for computing boundaries. Black-box means that, rather than requiring modifications
of existing reasoning procedures, these approaches can use such procedures directly as
sub-procedures, which allows us to employ existing highly-optimized reasoners.

Of course, the user of an ontology should not only be able to see her axioms, but
also the consequences of these axioms. Thus, a user with label � should be able to
see all the consequences of O��. For large ontologies, certain relevant consequences
are often pre-computed. The goal of the pre-computation is that certain user queries
can be answered by a simple look-up in the pre-computed consequences, and thus do
not require expensive reasoning during the deployment phase of the ontology. For
example, in the version of the large medical ontology Snomed ct that is distributed
to hospitals, all the subsumption relationships between the concept names occurring
in the ontology are pre-computed. For a labeled ontology as introduced above, it is
not enough to pre-compute the relevant consequences of O. In fact, if the relevant
consequence c follows from O, then we also need to know for which user labels � it
still follows from O��. Otherwise, if a user with label � asks whether c holds, the
system could not simply look this up in the pre-computed consequences, but would
need to compute the answer on-the-fly by reasoning over the sub-ontology O��. Our
solution to this problem is to compute a so-called boundary for the consequence c, i.e.,
an element µc of L such that c follows from O�� iff � � µc.

As introduced in Section 2.1, there are basically two approaches for computing a
boundary. The glass-box approach takes a specific reasoner (or reasoning technique)
for an ontology language and modifies it such that it can compute a boundary. Exam-
ples for the application of the glass-box approach to specific instances of the problem
of computing a boundary are tableau-based approaches for reasoning in possibilistic
Description Logics [QP08; Les+08] (where the lattice is the interval [0, 1] with the
usual order), glass-box approaches to axiom pinpointing in Description Logics [SC03;
Mey+06; Kal+05; BP10b; BP08] (where the lattice consists of (equivalence classes of)
monotone Boolean formulae with implication as order [BP08]) and RDFS reasoning
over labeled triples with modified inference rules for access control and provenance
tracking [JF06; Flo+09]. The problem with glass-box approaches is that they have
to be developed for every ontology language and reasoning technique anew and that
optimizations of the original reasoning technique do not always apply to the modified
reasoners. In contrast, the black-box approach can re-use existing optimized reasoners
without modifications, and it can be applied to arbitrary ontology languages: one just
needs to plug in a reasoner for this language.

The database community has been investigating a similar problem, by annotating
every tuple of the database relations with an element from a commutative semiring
(K,+, ·, 0, 1) in order to represent ordered criteria, as for example data provenance
(also called lineage or pedigree), trust scores, access control levels and certainty levels.
For example, the data provenance instance of the problem aims at being able to tell
which database tuples contributed to a given query result tuple. Since a selected
relational algebra is extended in order to deal with the annotations, the approach
presented in [Tan10; GKT07] can be considered a glass-box approach. As introduced
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in Section 2.2, a lattice can be defined as algebraic structure (L,⊕,⊗) and a bounded
lattice is an algebraic structure (L,⊕,⊗,�,⊥) such that (L,⊕,⊗) is a lattice and �
(⊥) is the identity element for the meet (join) operation. Both algebraic structures
have non-overlapping properties: in a commutative semiring · distributes over + and
in a lattice absorption laws and idempotent laws hold (see Section 2.2). So the special
case of a bounded, distributive lattice is a commutative, idempotent semiring under
join and meet. It has been shown in [Tan10; GKT07] that five other provenance
models from database literature are subsumed by their theory based on commutative
semirings.

In this section, we introduce three different black-box approaches for computing a
boundary. The first approach uses an axiom pinpointing algorithm as black-box rea-
soner, whereas the second one modifies the Hitting-Set-Tree-based black-box approach
to axiom pinpointing [Kal+07; Sun08]. The third uses binary search and can only
be applied if the labeling lattice is a linear order. It can be seen as a generalization
of the black-box approach to reasoning in possibilistic Description Logics described
in [QPJ07]. Our experimental results in Section 6.2.2 show that our algorithms per-
form well in practice.

4.2.1 Applicable Ontology Languages

To stay as general as possible, we do not fix a specific ontology language. We just
assume that ontologies are finite sets of axioms such that every subset of an ontology
is again an ontology. If O� is a subset of the ontology O, then O� is called a sub-
ontology of O. An ontology language specifies which sets of axioms are admitted as
ontologies. Consider, for instance, a Description Logic L (e.g., the DL SHOIN (D)
underlying OWL DL). Then, an ontology is a finite set of general concept inclusion
axioms (GCIs) of the form C � D, with C,D L-concept descriptions and assertion
axioms of the form C(a), with C an L-concept description and a an individual name.
Examples of consequences are subsumption relations A � B for concept names A,B.
For a fixed ontology language, a monotone consequence relation |= is a binary relation
between ontologies O of this language and consequences c such that, for every ontology
O, we have that O� ⊆ O and O� |= c imply O |= c.

4.2.2 Sub-Ontologies and Labels

We consider a lattice (L,�) and respectively denote by
�

�∈S � and
�

�∈S � the join
(least upper bound) and meet (greatest lower bound) of the finite set S ⊆ L. A labeled
ontology with labeling lattice (L,�) is an ontology O together with a labeling function
lab that assigns a label lab(a) ∈ L to every element a of O.3 We denote with Llab the
set of all labels occurring in the labeled ontology O, i.e., Llab := {lab(a) | a ∈ O}.
Every element of the labeling lattice � ∈ L defines a sub-ontology O�� that contains
the axioms of O that are labeled with elements greater than or equal to �:

O�� := {a ∈ O | lab(a) � �}.
3
An example of a labeled ontology is given in Example 1.
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Conversely, every sub-ontology S ⊆ O defines an element λS ∈ L, called the label of
S: λS :=

�
a∈S lab(a). The following lemma states some simple relationships between

these two notions.

Lemma 1. For all � ∈ L, S ⊆ O, it holds that � � λO��
, S ⊆ O�λS

and O�� = O�λO��
.

Proof. For the first statement, notice that, by definition, � � lab(a) for all a ∈ O��.
Hence, � � �

a∈O��
lab(a) = λO��

. Regarding the second claim, if a ∈ S, then
λS =

�
s∈S lab(s) � lab(a), which implies that a ∈ O�λS

. Now, consider the last
claim. First, as � � λO��

, it holds trivially that O�λO��
⊆ O��. From the second claim

it also follows that O�� ⊆ O�λO��
.

4.2.3 Restrictions to User Labels

Notice that, if a consequence c follows from O�� for some � ∈ L, it must also follow
from O��� for every �� � �, since then O�� ⊆ O��� . A maximal element of L that still
entails the consequence will be called a margin for this consequence.

Definition 26 (Margin). Let c be a consequence that follows from the ontology O.
The label µ ∈ L is called a (O, c)-margin if O�µ |= c, and for every � with µ < � we
have O�� �|= c.

If O and c are clear from the context, we usually ignore the prefix (O, c) and call
µ simply a margin. The following lemma shows three basic properties of the set of
margins that will be useful throughout this section.

Lemma 2. Let c be a consequence that follows from the ontology O. We have:

1. If µ is a margin, then µ = λO�µ
;

2. if O�� |= c, then there is a margin µ such that � � µ;

3. there are at most 2|O| margins for c.

Proof. To show 1, let µ ∈ L. Lemma 1 yields µ � λO�µ
and O�µ = O�λO�µ

, and
thus O�λO�µ

|= c. If µ < λO�µ
, then this λO�µ

contradicts our assumption that µ is a
margin; hence µ = λO�µ

. Point 3 is a trivial consequence of 1: since every margin has
to be of the form λS for some S ⊆ O, there are at most as many margins as there are
subsets of O.

For the remaining point, let � ∈ L be such that O�� |= c. Let m := λO��
. From

Lemma 1, it follows that � � m and O�m = O��, and hence O�m |= c. If m is a margin,
then the result holds; suppose to the contrary that m is not a margin. Then, there must
exist an �1,m < �1, such that O��1 |= c. As m = λO�m

, there must exist an axiom a ∈
O such that m � lab(a), but �1 �� lab(a). In fact, if m � lab(a) =⇒ �1 � lab(a) would
hold for all a ∈ O, then m = λO��

= λO�m
=

�
lab(a)�m

lab(a) � �1, contradicting
our choice of �1. The existence of such an axiom a implies that O��1 ⊂ O�m. Let
m1 := λO��1

; then m < �1 � m1. If m1 is not a margin, then we can repeat the same
process to obtain a new m2 with m < m1 < m2 and O�m ⊃ O�m1 ⊃ O�m2 , and so
on. As O is finite, there exists a finite k where this process stops, and hence mk is a
margin.
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If we know that µ is a margin for the consequence c, then we know whether c
follows from O�� for all � ∈ L that are comparable with µ: if � � µ, then c follows
from O��, and if � > µ, then c does not follow from O��. However, the fact that µ
is a margin gives us no information regarding elements that are incomparable with µ.
In order to obtain a full picture of when the consequence c follows from O�� for an
arbitrary element of l, we can try to strengthen the notion of margin to that of an
element ν of L that accurately divides the lattice into those elements whose associated
sub-ontology entails c and those for which this is not the case, i.e., ν should satisfy
the following: for every � ∈ L, O�� |= c iff � � ν. Unfortunately, such an element need
not always exist, as demonstrated by the following example.

Example 13. Consider the distributive lattice (S4,�4) having the four elements S4 =
{0, �1, �2, 1}, where 0 and 1 are the least and greatest elements, respectively, and �1, �2
are incomparable w.r.t. �4. Let O be the set formed by the axioms a1 and a2, which
are labeled by �1 and �2, respectively, and let c be a consequence such that, for every
S ⊆ O, we have S |= c iff |S| � 1. It is easy to see that there is no element ν ∈ S4

that satisfies the condition described above. Indeed, if we choose ν = 0 or ν = �1, then
�2 violates the condition, as �2 �� ν, but O��2 = {a2} |= c. Accordingly, if we choose
ν = �2, then �1 violates the condition. Finally, if ν = 1 is chosen, then 1 itself violates
the condition: 1 � ν, but O�1 = ∅ �|= c.

It is nonetheless possible to find an element that satisfies a restricted version of
the condition, where we do not impose that the property must hold for every element
of the labeling lattice, but only for those elements that are join prime relative to the
labels of the axioms in the ontology.

Definition 27 (Join prime). Let (L,�) be a lattice. Given a finite set K ⊆ L, let
K⊗ := {

�
�∈M � | M ⊆ K} denote the closure of K under the meet operator. An

element � ∈ L is called join prime relative to K if, for every K � ⊆ K⊗, � � �
k∈K� k

implies that there is an k0 ∈ K � such that � � k0.

In Example 13, all lattice elements with the exception of 1 are join prime relative
to {�1, �2}. In Example 1 all the elements of the labeling lattice except �1 and �4 are
join prime relative to the set of labels.

Definition 28 (Boundary). Let O be an ontology and c a consequence. An element
ν ∈ L is called a (O, c)-boundary if for every element � ∈ L that is join prime relative
to Llab it holds that � � ν iff O�� |= c.

As with margins, if O and c are clear from the context, we will simply call such
a ν a boundary. When it is clear that the computed boundary and no assigned label
is meant, we also often call it consequence label. In Example 13, the element 1 is a
boundary. Indeed, every join prime element � relative to {�1, �2} (i.e., every element
of L except for 1) is such that � < 1 and O�� |= c. From a practical point of view, our
definition of a boundary has the following implication: we must enforce that user labels
are always join prime relative to the set Llab of all labels occurring in the ontology.
The set of all user labels is denoted as U . In Example 1 all the elements of the labeling
lattice except �1 and �4 are join prime relative to Llab and for this reason �0, �2, �3, �5
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are valid user labels and represent user roles as illustrated. Given a user label �u, we
will say that the user sees a consequence c if �u � ν for some boundary ν.

4.2.4 Computing a Consequence’s Label

In this section, we describe three black-box approaches for computing a boundary. The
first two approaches are based on Lemma 3 below, and the third one, a modification
of binary search, can be used if the labeling lattice is a linear order.

Lemma 3. Let µ1, . . . , µn be all (O, c)-margins. Then
�

n

i=1 µi is a boundary.

Proof. Let � ∈ L be join prime relative to Llab. We need to show that � � �
n

i=1 µi iff
O�� |= c. Assume first that O�� |= c. Then, from 2 of Lemma 2, it follows that there
is a margin µj such that � � µj , and thus � � �

n

i=1 µi.
Conversely, let � � �

n

i=1 µi. From 1 of Lemma 2, it follows that for every i, 1 �
i � n, µi ∈ (Llab)⊗. As � is join prime relative to Llab, it then holds that there is a j
such that � � µj and hence, by the definition of a margin and the monotonicity of the
consequence relation, O�� |= c.

By Lemma 2, a consequence always has finitely many margins, and thus Lemma 3
shows that a boundary always exists. Note, however, that a consequence may have
boundaries different from the one of Lemma 3. To identify the particular boundary of
Lemma 3, we will call it the margin-based boundary.

To address consequence labels in a convenient way, we define the function lbl.

Definition 29 (Consequence Labeling Function). Let O be a labeled ontology, (L,�)
a labeling lattice, lab : O → L a labeling function. The consequence labeling function
lbl : {c | O |= c} → L assigns labels to consequences and is defined as lbl(c) =
margin-based boundary of c.

Using Full Axiom Pinpointing

From Lemma 3 we know that the set of all margins yields sufficient information for
computing a boundary. The question is now how to compute this set. In this subsec-
tion, we show that all margins (and thus the margin-based boundary) can be computed
through axiom pinpointing. Axiom-pinpointing and the notion of MinA and diagnosis
have been introduced in Section 2.1. The following lemma shows that every margin
can be obtained from some MinA.

Lemma 4. For every margin µ for c there is a MinA S such that µ = λS.

Proof. If µ is a margin, then O�µ |= c by definition. Thus, there exists a MinA
S ⊆ O�µ. Since µ � lab(a) for every a ∈ O�µ, this in particular holds also for every
axiom in S, and hence µ � λS . Additionally, as S ⊆ O�λS

, we have O�λS
|= c. This

implies µ = λS since otherwise µ < λS , and then µ would not be a margin.

Notice that this lemma does not imply that the label of any MinA S corresponds to
a margin. However, as the consequence follows from every MinA, point 2 of Lemma 2
shows that λS � µ for some margin µ. The following theorem is an immediate conse-
quence of this fact together with Lemma 3 and Lemma 4.
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Lemma 5. If S1, . . . , Sn are all MinAs for O and c, then
�

n

i=1(
�

a∈Si
lab(a)) is the

margin-based boundary for c.

This lemma, together with the Definition 23 on page 36, trivially implies that for
a given consequence, assigning its margin-based boundary as label �c is an inference-
proof label assignment, because for any MinA {a1, . . . , an} where lab(ai) = �i it holds
that �c � �1 ⊗ . . .⊗ �n.

A dual result, which relates the boundary with the set of diagnoses, also exists.
The proof follows easily from the definitions given in this section.

Lemma 6. If S1, . . . , Sn are all diagnoses for O and c, then
�

n

i=1(
�

a∈Si
lab(a)) is a

boundary for c.

Example 14. We continue Example 1 where each axiom ai is labeled with lab(ai) =
�i. We are interested in the access restriction to the inferred instance relation c :
ServiceWithComingPriceIncrease(ecoCalculatorV1 ), which has four MinAs, namely
{a1, a2, a4}, {a1, a2, a5}, {a1, a3, a4}, {a1, a3, a5}, and 3 diagnoses {a1}, {a2, a3}, {a4, a5}.
Using Lemma 5, we can compute the boundary as (�1⊗ �2⊗ �4)⊕ (�1⊗ �2⊗ �5)⊕ (�1⊗
�3 ⊗ �4)⊕ (�1 ⊗ �3 ⊗ �5) = �3 ⊕ �0 ⊕ �3 ⊕ �0 = �3. Using Lemma 6, we can compute the
boundary as �1 ⊗ (�2 ⊕ �3)⊗ (�4 ⊕ �5) = �1 ⊗ �2 ⊗ �4 = �3. So c is visible to users with
labels �0 or �3.

Thus, to compute a boundary, it is sufficient to compute all MinAs. Several meth-
ods exist for computing the set of all MinAs, either directly [SC03; Kal+07; BS08] or
through a so-called pinpointing formula [BPS07; BP08; BP10b], which is a monotone
Boolean formula encoding all the MinAs. The main advantage of using the pinpointing-
based approach for computing a boundary is that one can simply use existing imple-
mentations for computing all MinAs, such as the ones offered by the ontology editor
Protégé 44 and the CEL system.5

Label-Optimized Axiom Pinpointing

From Lemma 4 we know that every margin is of the form λS for some MinA S. In the
previous subsection we have used this fact to compute a boundary by first obtaining
the MinAs and then computing their labels. This process can be optimized if we
directly compute the labels of the MinAs, without necessarily computing the actual
MinAs. Additionally, not all the labels of MinAs are necessary, but only the maximal
ones. We present here a black-box algorithm that uses the labels of the axioms to find
the boundary in an optimized way. Our algorithm is a variant of the Hitting-Set-Tree-
based [Rei87] method (HST approach) for axiom pinpointing [Kal+07; Sun08]. First,
we briefly describe the HST approach for computing all MinAs, which will serve as a
starting point for our modified version.

The HST-based method for axiom pinpointing computes one MinA at a time while
building a tree that expresses the distinct possibilities to be explored in the search of
further MinAs. It first computes an arbitrary MinA S0 for O, which is used to label

4
http://protege.stanford.edu/

5
http://code.google.com/p/cel/

68 Chapter 4 Access Restrictions to Explicit and Implicit Knowledge



the root of the tree. Then, for every axiom a in S0, a successor node is created. If
O \ {a} does not entail the consequence, then this node is a dead end. Otherwise,
O \ {a} still entails the consequence. In this case, a MinA S1 for O \ {a} is computed
and used to label the node. The MinA S1 for O \{a} obtained this way is also a MinA
of O, and it is guaranteed to be distinct from S0 since a /∈ S1. Then, for each axiom
s in S1, a new successor is created, and treated in the same way as the successors of
the root node, i.e., it is checked whether O \ {a, s} still has the consequence, etc. This
process obviously terminates since O is a finite set of axioms, and the end result is a
tree, where each node that is not a dead end is labeled with a MinA, and every existing
MinA appears as the label of at least one node of the tree (see [Kal+07; Sun08]).

An important ingredient of the HST algorithm is a procedure that computes a
single MinA from an ontology. Such a procedure can, e.g., be obtained by going
through the axioms of the ontology in an arbitrary order, and removing redundant
axioms, i.e., ones such that the ontology obtained by removing this axiom from the
current sub-ontology still entails the consequence. This procedure would also be an
option to manually identify a MinA with a reasoner at hand which decides whether a
consequence follows from a given set of axioms. See [BPS07] for a description of this
and of a more sophisticated logarithmic procedure.

Although not stated explicitly in the axiom pinpointing literature, it is clear that
the same HST algorithm can be used for computing all diagnoses. The only variant
necessary is to have a subroutine capable of computing one such diagnosis, which can
be obtained by dualizing the algorithm computing one MinA.

As said before, in our modified HST algorithm, we are now not interested in actually
computing a MinA, but only its label. This allows us to remove all axioms having a
“redundant” label rather than a single axiom. Algorithm 4.1 describes a black-box
method for computing λS for some MinA S that is based on this idea. In fact, the
algorithm computes a minimal label set (MinLab) of a MinA S, a notion that will also
be useful when describing our variant of the HST algorithm.

Definition 30 (Minimal label set). Let S be a MinA for c. A set K ⊆ {lab(a) | a ∈ S}
is called a minimal label set of S if distinct elements of K are incomparable and
λS =

�
�∈K �.

Algorithm 4.1 removes all the labels that do not contribute to a minimal label
set. If O is an ontology and � ∈ L, then the expression O − � appearing at Line 7
denotes the sub-ontology O − � := {a ∈ O | lab(a) �= �}. If, after removing all the
axioms labeled with k, the consequence still follows, then there is a MinA none of
whose axioms is labeled with k. In particular, this MinA has a minimal label set not
containing k; thus all the axioms labeled with k can be removed in our search for a
minimal label set. If the axioms labeled with k cannot be removed, then all MinAs of
the current sub-ontology need an axiom labeled with k, and hence k is stored in the
set ML. This set is used to avoid useless consequence tests: if a label is greater than
or equal to

�
�∈ML

�, then the presence or absence of axioms with this label will not
influence the final result, which will be given by the infimum of ML; hence, there is no
need to apply the (possibly complex) decision procedure for the consequence relation.
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Algorithm 4.1 Compute a minimal label set of one MinA
Procedure min-lab(O, c)
Input: O: ontology; c: consequence
Output: ML ⊆ L: minimal label set for a MinA
1: if O �|= c then

2: return no MinA
3: S := O
4: ML := ∅
5: for every k ∈ Llab do

6: if
�

l∈ML
l �� k then

7: if S − k |= c then

8: S := S − k
9: else

10: ML := (ML \ {l | k < l}) ∪ {k}
11: return ML

Theorem 1. Let O and c be such that O |= c. There is a MinA S0 for c such that
Algorithm 4.1 outputs a minimal label set of S0.

Proof. As O |= c, the algorithm will enter the for loop. This loop keeps the following
two invariants: (i) S |= c and (ii) for every � ∈ ML, S − � �|= c. The invariant (i)
is ensured by the condition in Line 7 that must be satisfied before S is modified.
Otherwise, that is, if S − � �|= c, then � is added to ML (Line 10) which, together with
the fact that S is always modified to a smaller set (Line 8), ensures (ii). Hence, when
the loop finishes, the sets S and ML satisfy both invariants. As S |= c, there is a MinA
S0 ⊆ S for c. For each � ∈ ML, there must be an axiom a ∈ S0 such that lab(a) = �,
otherwise, S0 ⊆ S − � and hence S − � |= c, which contradicts invariant (ii); thus,
ML ⊆ {lab(a) | a ∈ S0} and in particular λS0 � �

�∈ML
�.

It remains to show that the inequality in the other direction holds as well. Consider
now k ∈ {lab(a) | a ∈ S} and let Mk

L
be the value of ML when the for loop was

entered with value k. We have that
�

�∈ML
� � �

�∈Mk

L

�. If
�

�∈ML
� �� k, then also�

�∈Mk

L

� �� k, and thus it fulfills the test in Line 6, and continues to Line 7. If that
test is satisfied, then all the axioms with label k are removed from S, contradicting
the assumption that k = lab(a) for some a ∈ S. Otherwise, k is added to ML,
which contradicts the assumption that

�
�∈ML

� �� k. Thus, for every axiom a in S,�
�∈ML

� � lab(a); hence
�

�∈ML
� � λS � λS0 .

Once the label of a MinA has been found, we can compute new MinA labels by
a successive deletion of axioms from the ontology using the HST approach. Suppose
that we have computed a minimal label set M0, and that � ∈ M0. If we remove all
the axioms in the ontology labeled with �, and compute a new minimal label set M1

of a MinA of this sub-ontology, then M1 does not contain �, and thus M0 �= M1. By
iterating this procedure, we could compute all minimal label sets, and hence the labels
of all MinAs. However, since our goal is to compute the supremum of these labels, the
algorithm can be optimized by avoiding the computation of MinAs whose labels will
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have no impact on the final result. Based on this we can actually do better than just
removing the axioms with label �: instead, all axioms with labels � � can be removed.
For an element � ∈ L and an ontology O, O ��� denotes the sub-ontology obtained from
O by removing all axioms whose labels are � �. Now, assume that we have computed
the minimal label set M0, and that M1 �= M0 is the minimal label set of the MinA
S1. For all � ∈ M0, if S1 is not contained in O ���, then S1 contains an axiom with
label � �. Consequently,

�
m∈M1

m = λS1 � �
m∈M0

m, and thus M1 need not be
computed. Algorithm 4.2 describes our method for computing the boundary using a
variant of the HST algorithm that is based on this idea.

Algorithm 4.2 Compute a boundary by a HST algorithm
Procedure HST-boundary(O, c)
Input: O: ontology; c: consequence
Output: boundary ν for c

1: Global : C,H := ∅; ν
2: M := min-lab(O, c)
3: C := {M}
4: ν :=

�
�∈M �

5: for each label � ∈ M do

6: expand-HST(O ���, c, {�})
7: return ν

Procedure expand-HST(O, c,H)
Input: O: ontology; c: consequence; H: list of lattice elements
Side effects: modifications to C, H and ν

1: if there exists some H � ∈ H such that {h ∈ H � | h �� ν} ⊆ H or

H � contains a prefix-path P with {h ∈ P | h �� ν} = H then

2: return (early path termination ⊗)
3: if there exists some M ∈ C such that for all � ∈ M, h ∈ H, � �� h and � �� ν then

4: M� := M (MinLab reuse)
5: else

6: M� := min-lab(O ��ν , c)
7: if O ��ν |= c then

8: C := C ∪ {M�}
9: ν :=

�
{ν,

�
�∈M� �}

10: for each label � ∈ M�
do

11: expand-HST(O ���, c,H ∪ {�})
12: else

13: H := H ∪ {H} (normal termination ⊙)

In the procedure HST-boundary, three global variables are declared: C and H,
initialized with ∅, and ν. The variable C stores all the minimal label sets computed
so far, while each element of H is a set of labels such that, when all the axioms with
a label less than or equal to any label from the set are removed from the ontology, the
consequence does not follow anymore; the variable ν stores the supremum of the labels
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of all the elements in C and ultimately corresponds to the boundary that the method
computes. The algorithm starts by computing a first minimal label set M, which is
used to label the root of a tree. For each element of M, a branch is created by calling
the procedure expand-HST.

The procedure expand-HST implements the ideas of HST construction for pinpoint-
ing [Kal+07; Sun08] with additional optimizations that help reduce the search space
as well as the number of calls to min-lab. First notice that each M ∈ C is a minimal
label set, and hence the infimum of its elements corresponds to the label of some MinA
for c. Thus, ν is the supremum of the labels of a set of MinAs for c. If this is not yet
the boundary, then there must exist another MinA S whose label is not less than or
equal to ν. This in particular means that no element of S may have a label less than
or equal to ν, as the label of S is the infimum of the labels of the axioms in it. When
searching for this new MinA we can then exclude all axioms having a label � ν, as
done in Line 6 of expand-HST. Every time we expand a node, we extend the set H,
which stores the labels that have been removed on the path in the tree to reach the
current node. If we reach normal termination, it means that the consequence does not
follow anymore from the reduced ontology. Thus, any H stored in H is such that, if
all the axioms having a label less than or equal to an element in H are removed from
O, then c does not follow anymore. Lines 1 to 4 of expand-HST are used to reduce
the number of calls to the subroutine min-lab and the total search space. We describe
them now in more detail.

The first optimization, early path termination, prunes the tree once we know that
no new information can be obtained from further expansion. There are two conditions
that trigger this optimization. The first one tries to decide whether O ��ν |= c without
executing the decision procedure. As said before, we know that for each H � ∈ H,
if all labels less than or equal to any in H � are removed, then the consequence does
not follow. Hence, if the current list of removal labels H contains a set H � ∈ H

we know that enough labels have been removed to make sure that the consequence
does not follow. It is actually enough to test whether {h ∈ H � | h �� ν} ⊆ H since
the consequence test we need to perform is whether O ��ν |= c. The second condition
for early path termination asks for a prefix-path P of H � such that P = H. If we
consider H � as a list of elements, then a prefix-path is obtained by removing a final
portion of this list. The idea is that, if at some point we have noticed that we have
removed the same axioms as in a previous portion of the search, we know that all
possibilities that arise from that search have already been tested before, and hence it
is unnecessary to repeat the work. Hence we can prune the tree here. As an example,
consider a subtree reachable from the root by going along the edges �1, �2 which has
been expanded completely. Then all Hitting Sets of its leaf nodes share the common
prefix-path P = {�1, �2}. Now suppose the tree is expanded by expand-HST(O, c,H)
with H = {�2, �1}. The expansion stops with early termination since P = H.

The second optimization avoids a call to min-lab by reusing a previously computed
minimal label set. Notice that our only requirement on min-lab is that it produces
a minimal label set. Hence, any minimal label set for the ontology obtained after
removing all labels less than or equal to any h ∈ H or to ν would work. The MinLab
reuse optimization checks whether there is such a previously computed minimal label
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Figure 4.1: An expansion of the HST method

set. If this is the case, it uses this set instead of computing a new one by calling
min-lab. If we would leave out the prefix-path condition for early termination, still
the MinLab reuse condition holds. That means leaving out the prefix-path condition
leads to no more min-lab calls but leads to copying in the tree without obtaining new
information.

Before showing that the algorithm is correct, we illustrate how it works by a small
example.

Example 15. We continue Example 14 with the already introduced consequence
c : ServiceWithComingPriceIncrease(ecoCalculatorV1 ). Figure 4.1 shows a possi-
ble run of the HST-boundary algorithm. The algorithm first calls the routine min-
lab(O, c). Consider that the for loop of min-lab is executed using the labels in the
order �1, �2, �4, �3, �5 since Line 5 requires no specific order. Thus, we try first to re-
move a1 labeled with �1. We see that O− �1 �|= c; hence a1 is not removed from O, and
ML is updated to ML = {�1}. We then see that O − �2 |= c, and thus a2 is removed
from O. Again, O − �4 |= c, so a4 is removed from O. At this point, O = {a1, a3, a5}.
We test then whether O − �3 |= c and receive a negative answer; thus, �3 is added to
ML; additionally, since �3 < �1, the latter is removed from ML. Finally, O − �5 �|= c,
and so we obtain ML = {�3, �5} as an output of min-lab.

The minimal label set {�3, �5}, is used as the root node n0, setting the value of
ν = �3⊗�5 = �0. We then create the first branch on the left by removing all the axioms
with a label � �3, which is only a3, and computing a new minimal label set. Assume,
for the sake of the example, that min-lab returns the minimal label set {�2, �4}, and ν
is accordingly changed to �3. When we expand the tree from this node, by removing
all the axioms below �2 (left branch) or �4 (right branch), the instance relation c does
not follow any more, and hence we have a normal termination, adding the sets {�3, �2}
and {�3, �4} to H. We then create the second branch from the root, by removing the
elements below �5. We see that the previously computed minimal label set of node n1

works also as a minimal label set in this case, and hence it can be reused (MinLab
reuse), represented as an underlined set. The algorithm continues now by calling
expand-HST(O ���2 , c, {�5, �2}). At this point, we detect that there is H � = {�3, �2}
satisfying the first condition of early path termination (recall that ν = �3), and hence
the expansion of that branch at that point. Analogously, we obtain an early path
termination on the second expansion branch of the node n4. The algorithm then
outputs ν = �3, which can be easily verified to be a boundary.
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Theorem 2. Let O and c be such that O |= c. Then Algorithm 4.2 computes the
margin-based boundary of c.

Proof. Let η be the margin-based boundary which, by Lemma 3, must exist. Notice
first that the procedure expand-HST keeps as invariant that ν � η as whenever ν
is modified, it is only to join it with the infimum of a minimal label set (Line 9),
which by definition is the label of a MinA and, by Lemma 5, is � η. Thus, when
the algorithm terminates, we have that ν � η. Assume now that ν �= η. Then,
there must exist a MinA S such that λS �� ν; in particular, this implies that none
of the axioms in S has a label � ν and thus S ⊆ O ��ν . Let M0 be the minimal
label set obtained in Line 2 of HST-boundary. There must then be a h0 ∈ M0 such
that S ⊆ O ��h0 ; otherwise, λS � �

�∈M0
� � ν. There will then be a call to the

process expand-HST with parameters O ��h0 , c, and {h0}. Suppose first that early path
termination is not triggered. A minimal label set M1 is then obtained, either by
MinLab reuse (Line 4) or by a call to min-lab (Line 6). As before, there is a h1 ∈ M1

with S ⊆ (O ��h0) ��h1 . Additionally, since O ��h0 does not contain any axiom labeled
with h0, we know h0 /∈ M1. While iterating this algorithm, we can find a sequence of
minimal label sets M0,M1, . . . ,Mn and labels h0, h1, . . . , hn such that (i) hi ∈ Mi,
(ii) S ⊆ O ��hi

, and (iii) hi /∈ Mj for all i, j, 1 � i < j � n. In particular, this means
that the Mis are all different, and since there are only finitely many minimal label
sets, this process must terminate. Let Mn be the last set found this way. Then, when
expand-HST is called with R := (((O ��h0) ��h1)...) ��hn

, c and H = {h1, . . . , hn}, no new
minimal label set is found. Suppose first that this is due to a normal termination.
Then, R ��ν �|= c. But that contradicts the fact that S is a MinA for c since S ⊆ R ��ν .
Hence, it must have finished by early termination.

There are two possible causes for early termination. Suppose first that there is a
H � ∈ H such that {h ∈ H � | h �� ν} ⊆ H. Then it is also the case that, for every
h ∈ H �, S ⊆ O ��h: if h ∈ H, then R ⊆ O ��h; otherwise, h � ν and hence O ��ν ⊆ O ��h.
Let R� := {a ∈ O | there is no h ∈ H � with lab(a) � h}. As H � ∈ H, it was added
after a normal termination; thus, c does not follow from R�

��ν
. As S ⊆ R ��ν , we obtain

once again a contradiction.

The second cause for early path termination is the existence of a prefix-path P
with {h ∈ P | h �� ν} = H. This means that in a previously explored path we had
concluded that R ��ν |= c, and a new minimal label set Mn+1 was found. As in the
beginning of this proof, we can then compute sets Mn+1, . . . ,Mm and hn+1, . . . , hm
(n < m) such that S ⊆ O ��hi

for all i, 1 � i � m and the Mis are all different.
Hence this process terminates. As before, the cause of termination cannot be normal
termination, nor the first condition for early path termination. Thus, there must exist
a new H �� ∈ H that fulfills the second condition for early termination. As H is a finite
set, and each of its elements is itself a finite list, this process also terminates. When
that final point is reached, there are no further causes of termination that do not lead
to a contradiction, which means that our original assumption that ν �= η cannot be
true. Hence, ν is the margin-based boundary of c.
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Binary Search for Linear Ordering

In this subsection, we assume that the labeling lattice (L,�) is a linear order, i.e., for
any two elements �1, �2 of L we have �1 � �2 or �2 � �1.

Lemma 7. Let O and c be such that O |= c. Then the unique boundary of c is the
maximal element µ of Llab with O�µ |= c.

Proof. Let µ be the maximal element of Llab with O�µ |= c. Such a maximal element
exists since Llab is finite. Obviously, � � µ implies O�� ⊇ O�µ, and thus O�µ |= c
yields O�� |= c. Conversely, assume that O�� |= c. Then the fact that µ is maximal
with this property together with the fact that � is a linear order implies � � µ. Thus,
µ is a boundary.

Algorithm 4.3 Compute a boundary by binary search.
Input: O: ontology; c: consequence
Output: ν: (O, c)-boundary
1: if O �|= c then

2: return no boundary
3: � := 0lab;h := 1lab

4: while l < h do

5: set m, � < m � h such that δ(�,m)− δ(m,h) � 1.
6: if O�m |= c then

7: � := m
8: else

9: h := pred(m)
10: return ν := �

A direct way for computing the boundary in this restricted setting thus consists of
testing, for every element in � ∈ Llab, in order (either increasing or decreasing) whether
O�� |= c until the desired maximal element is found. This process requires in the worst
case n := |Llab| iterations. This can be improved using binary search, which requires
a logarithmic number of steps measured in n. Algorithm 4.3 describes the binary
search algorithm. In the description of the algorithm, the following abbreviations have
been used: 0lab and 1lab represent the minimal and the maximal elements of Llab,
respectively; for �1 � �2 ∈ Llab, δ(�1, �2) := |{�� ∈ Llab | �1 < �� � �2}| is the distance
function in Llab and for a given � ∈ Llab, pred(�) is the maximal element �� ∈ Llab such
that �� < �.

The variables � and h are used to keep track of the relevant search space. At every
iteration of the while loop, the boundary is between � and h. At the beginning these
values are set to the minimum and maximum of Llab and are later modified as follows:
we first find the middle element m of the search space; i.e., an element whose distance
to � differs by at most one from the distance to h. We then test whether O�m |= c.
If that is the case, we know that the boundary must be larger or equal to m, and
hence the lower bound � is updated to the value of m. Otherwise, we know that the
boundary is strictly smaller than m as m itself cannot be one; hence, the higher bound
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h is updated to the maximal element of Llab that is smaller than m : pred(m). This
process terminates when the search space has been reduced to a single point, which
must be the boundary.

An empirical evaluation of our algorithms from this section is provided in Sec-
tion 6.2.1.

4.3 Repairing Access Restrictions to a Consequence

The last sections have shown that annotations are useful for representing access re-
strictions to the explicit axioms of an ontology. Intuitively, these access restrictions
should have an effect also on the ontology’s implicit consequences. Methods have been
presented for assigning a label, representing its access level, to each consequence from
a given ontology. However, a security administrator might not be satisfied with the
access level obtained through these methods. In this case, one is interested in finding
which axioms would need to get their access restrictions modified in order to receive the
desired label for the consequence. In this section we look at this problem and present
algorithms based on ontology repair for solving it with a variety of optimizations.

As introduced in the last sections, criteria for offering access to only a subset of
an ontology can be: access rights, granularity, certainty, relevancy, trust, etc., without
loss of generality we focus on access rights while the results remain applicable to all the
other lattice-based applications. The criterion is formalized as labeling lattice (L,�)
with L the set of criteria levels and � the order among those levels. An example might
be a set of user roles and a permission inheritance relation among those user roles. As
discussed in Section 4.2.3, a subset U ⊆ L is allowed as user label. A labeled ontology is
an ontology O where each contained axiom has a label from the set L. For a user labeled
with � ∈ L, we denote as O�� the sub-ontology O�� := {a ∈ O | lab(a) � �} visible
for her. The sub-ontologies O��, O=�, O �=�, O ���, and O ��� are defined analogously. This
notion is extended to sets of labels in the natural way, e.g. O=K := {a ∈ O | lab(a) = �
for some � ∈ K}. When dealing with labeled ontologies, the reasoning problem of
interest consists on the computation of a boundary for a consequence c. Intuitively,
the boundary divides the user labels � of U according to whether O�� entails c or not.

Labeling an ontology’s axioms to represent access restrictions falls into traditional
access control. Computing a label for each consequence makes it possible to enforce
access control also on implicit consequences which can be made explicit by a reasoner.
However, the consequence label is determined by the axiom labeling. Determining it in
the other direction, so that a given consequence label defines an axiom labeling, can be
seen similar to the problem of reducing inference control to access control in databases
[FJ02; BEL08]. Inference control assumes a set of defined secrets and checks at runtime
on every response to a user’s query whether this response together with the user’s a
priori knowledge and already delivered answers implies any secret. In contrast to
that, access control is enforced by following a policy which regulates access on explicit
data. For ontologies, we extended access control to implicit knowledge by computing a
boundary for a consequence as described above. A security administrator can change
the boundary only by changing the labels of axioms that entail the consequence. Now
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given that she defines a consequence as a secret, she might be interested in support to
find the smallest set of those axioms that must be secret in order to meet the goal.

Just as ontology development and maintenance is an error prone activity, so is the
adequate labeling of axioms according to their access requirements. Indeed, several
seemingly harmless axioms might possibly be combined to deduce knowledge that is
considered private. For example, the architecture in Figure 1.7 contains a component
to lift document access restrictions to axiom labels. If the document permissions have
been set wrongly then reading all documents and especially all document ontologies
could make it possible to infer consequences that are not intended to be available. On
the other hand, an over-restrictive labeling of axioms may cause public knowledge to
be inaccessible to some users.

If the knowledge engineer finds that the boundary for a given consequence differs
from the desired one, then she would like to automatically receive suggestions on how
to modify the labeling function and correct this error. In this section we present some
methods in this direction. We assume that the knowledge engineer knows the exact
boundary �g that the consequence c should receive, and propose a set S of axioms
of minimal cardinality such that if all the axioms in S are relabeled to �g, then the
boundary of c will be �g. We call S a smallest change set.

We show that the main ideas from axiom-pinpointing [SC03; Mey+06; Kal+05;
BP10b; BP10a] can be exploited in the computation of a change set and present a Hit-
ting Set Tree-based black-box approach that yields the desired set. The methods take
advantage of our search of a set with minimum cardinality, as well as the axiom label-
ing to reduce the search space and hence also the execution time. Our experimental
results in Section 6.2.2 show that our algorithms perform well in practice.

4.3.1 Modifying a Consequence’s Label

Once the boundary for a consequence c has been computed, it is possible that the
knowledge engineer or the security administrator considers this solution erroneous. For
instance, the boundary may express that a given user u is able to deduce c, although
this was not intended. Alternatively, the boundary may imply that c is a confidential
consequence, only visible to a few, high-clearance users, while in reality c should be
publicly available.

Example 16. We continue Example 1. The labeled ontology entails the consequence
c : ServiceWithComingPriceIncrease(ecoCalculatorV1 ), the computed boundary of
c is �3 (see Example 14) which implies that only for �0 and �3, c is visible. That
means the consequence c can only be seen by the development engineers and customer
service employees (see Figure 1.3). It could be, however, that c is not expected to
be accessible to customer service employees and development engineers, but rather
to customer service employees and customers. In that case, we wish to modify the
boundary of c to �5.

The problem we face is how to change the labeling function, so that the computed
boundary corresponds to the desired label in the lattice. This problem can be formal-
ized and approached in several different ways. In our approach, we fix a goal label
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Figure 4.2: Hide consequence from some user roles (left), allow additional user roles
to see consequence (right), and both at the same time (middle)

�g and try to modify the labeling of as few axioms as possible, so that the boundary
equals �g.

Definition 31. Let O be an ontology, c a consequence, lab a labeling function, S ⊆ O
and �g ∈ L the goal label. The modified assignment labS,�g is given by

labS,�g(a) =

�
�g, if a ∈ S,

lab(a), otherwise.

A sub-ontology S ⊆ O is called a change set (CS) for �g if the boundary for O,c under
the labeling function labS,�g equals �g. It is a minimal CS (MinCS) if for every S� ⊂ S
we have that labS�,�g does not equal �g.

Obviously, the original ontology O is always a change set for any goal label if O |= c.
However, we are interested in performing minimal changes to the labeling function.
Hence, we search for a change set of minimum cardinality. A change set of minimum
cardinality, or smallest CS for short, is obviously also a MinCS. However, the reverse
is not necessarily true. A MinCS is minimal with respect to set inclusion but is not
necessarily a smallest CS since there might be several MinCS of different cardinality.
This is similar to the minimality of MinA (see Definition 7), where a MinA is also not
necessarily a MinA of minimum cardinality. It follows from [BPS07] that the problem
of finding a smallest CS is NP-complete.

Let �g denote the goal label and �c the computed boundary for c. If �g �= �c, we
have three cases which are illustrated in Figure 4.2: either (1) �g < �c (left), (2) �c < �g
(right), or (3) �g and �c are incomparable (middle). In our example with �c = �3, the
three cases are given by �g being �0, �4, and �5, respectively. The sets Lc and Lg contain
the user labels before and after the label changes respectively. Consider the first case,
where �g < �c. Then, from Lemma 6 it follows that any diagnosis S is a change set for
�g: since �g < �c, then for every diagnosis S�, �g <

�
a∈S� lab(a). But then, under the

new labeling labS,�g we get that
�

a∈S labS,�g(a) = �g. And hence, when the greatest
lower bound of all

�
a∈S� labS,�g(a) is computed, we obtain �g as a boundary. Using

an analogous argument and Lemma 5, it is possible to show that if �c < �g, then
every MinA is a change set for �g. The third case can be solved using a combination
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of the previous two: if �g and �c are incomparable, we can first set as a partial goal
��g := �g ⊗ �c. Thus, we can first solve the first case, to set the boundary to ��g, and
then, using the second approach, modify this new boundary once more to �g. Rather
than actually performing this task as a two-step computation, we can simply compute
a MinA and a diagnosis. The union of these two sets yields a CS. Unfortunately, the
CS computed this way is not necessarily a MinCS, even if a smallest diagnosis or a
smallest MinA is used, as shown in the following example.

Example 17. Let O,c and lab be as in Example 1 with the already introduced con-
sequence c : ServiceWithComingPriceIncrease(ecoCalculatorV1 ). We then know that
�c := �3 is a boundary for O,c. Suppose now that c shall remain visible for those
who see it already and additionally made available to customers, i.e. the goal label is
�g := �4. Since �c < �g, we know that any MinA is a change set. Since all MinAs for
O,c have exactly three elements, any change set produced this way will have cardinal-
ity three. However, {a2} is of cardinality one, is a subset of some of the MinAs and is
still a CS. More precisely it is a MinCS.

To understand why the minimality of MinAs is not sufficient for obtaining a MinCS,
we can look back to Lemma 5. This lemma says that in order to find a boundary, we
need to compute the join of all λS , with S a MinA, and λS the meet of the labels
of all axioms in S. But then, for any axiom a ∈ S such that �g � lab(a), modifying
this label to �g will have no influence in the result of λS . In Example 17, there is a
MinA {a1, a2, a4}, where two axioms, namely a1 and a4 have a label greater or equal
to �g = �4. Thus, the only axiom that needs to be relabeled is in fact a2, which yields
the MinCS {a2} shown in the example. Basically, we consider every axiom a ∈ O such
that �g � lab(a) as fixed in the sense that it is superfluous for any change set. For this
reason, we will deal with a generalization of MinAs and diagnoses, that we call IAS
and RAS, respectively.

Definition 32 (IAS,RAS). A minimal inserted axiom set (IAS) for �g is a subset
I ⊆ O ���g such that O��g ∪ I |= c and for every I � ⊂ I : O��g ∪ I � �|= c.

A minimal removed axiom set (RAS) for �g is a subset R ⊆ O ���g such that O ���g \
R �|= c and for every R� ⊂ R : O ���g \R� |= c.

Since there might be several IAS (RAS), computing all of them would allow to find
a smallest one. The following theorem justifies the use of IAS and RAS when searching
for a smallest change set.

Theorem 3. Let �c be a boundary for O,c, �g the goal label, and mR,mI and mU the
cardinalities of a smallest RAS, a smallest IAS and a smallest union of an IAS and a
RAS for �g, respectively. Then, for every IAS I and RAS R for �g it holds:

• if �g < �c then R is a MinCS, if additionally |R| = mR then R is a smallest CS,

• if �c < �g then I is a MinCS, if additionally |I| = mI then I is a smallest CS,

• if �c and �g are incomparable then I ∪R is a MinCS, if additionally |R∪I| = mU

then I ∪R is a smallest CS.
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The cardinality of a smallest union of an IAS and a RAS cannot be computed from
the cardinalities of a smallest RAS and a smallest IAS. The reason is that combining
the smallest IAS and RAS does not necessarily yield a smallest CS. The following
example illustrates this.

Example 18. Assume {a1, a2}, {a2, a3} are the smallest RAS and {a1, a4} is the
smallest IAS, then {a1, a2, a4} is the smallest CS and has cardinality 3. However,
combining a smallest IAS and a smallest RAS might yield a MinCS (but not a smallest
CS) of cardinality 4.

4.3.2 Computing a Smallest Change Set

In this section, we show how a smallest CS can be computed. We first present the
most obvious approach that is based in the computation of all MinAs and diagnoses.
Afterward, we show how this idea can be improved by considering fixed portions of
the ontology, as described before. We further improve this approach by showing that
it usually suffices to compute only partial MinCS by putting a cardinality limit, thus
reducing the search space and execution time of our method.

Using Full Axiom Pinpointing

Although we have shown in Example 17 that MinAs and diagnoses do not yield MinCS
or even smallest CS directly, both of these change sets can still be deduced from the
set of all MinAs and diagnoses, as shown by the following lemma.

Lemma 8. Let I (R) be an IAS (RAS) for �g, then there is a MinA (diagnosis) S
such that I = S \O��g (R = S \O��g).

Lemma 8 shows that we can compute the set of all IAS by first computing all
MinAs and then removing the set of fixed elements O��g from it. Thus, the most
naïve approach for computing a change set of minimum cardinality is to first find all
MinAs, then compute the set of all IAS by removing all elements in O��g , and finally
search for the IAS having the least elements. The same procedure applies respectively
to RAS.

As explained in sections above, the task of computing all MinAs, also called axiom
pinpointing, has been widely studied in recent years, and there exist black-box im-
plementations based on the HST algorithm [Kal+07; Sun08]. The HST algorithm has
been explained in Section 4.2.4 already in detail. The HST algorithm makes repeated
calls to an auxiliary procedure that computes a single MinA. Further MinAs are found
by building a tree, where nodes are labeled with MinAs. If the MinA labeling a node
has n axioms (S := {a1, . . . , an}), then this node will have n children: the i-th child is
labeled with a MinA obtained after removing ai from the ontology. This ensures that
each node is labeled with a MinA distinct from those of its predecessors. Although
not stated explicitly in the axiom pinpointing literature, it is clear that the same HST
algorithm can be used for computing all diagnoses. The only variant necessary is to
have a subroutine capable of computing one such diagnosis, which can be obtained by
dualizing the algorithm computing one MinA (see Algorithm 4.5 for an example on
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how this dualization works). In our experiments, we used this approach as a basis to
measure the improvement achieved by the optimizations that will be introduced next.

Using Fixed Axioms and Cardinality Limit

Naïvely a smallest CS can be found by computing all MinCS and selecting a small-
est. As explained above, the task of computing all MinCS is related to computing all
diagnoses and all MinAs, which has been widely studied in recent years, and there
exist black-box implementations based on the HST algorithm. Our approach to com-
pute a smallest CS follows similar ideas. The HST algorithm makes repeated calls to
an auxiliary procedure that computes a single MinCS. Further MinCS are found by
building a tree, where nodes are labeled with MinCS and edges with axioms. If the
MinCS labeling a node has n axioms (S := {a1, . . . , an}), then this node will have n
children: the edge to the i-th child labeled with ai, the child labeled with a MinCS
that is allowed to contain neither ai nor any ancestor’s edge label. This ensures that
each node is labeled with a MinCS distinct from those of its predecessors.

For the auxiliary procedure to compute a single MinCS, we will use two sub proce-
dures extracting RAS and IAS, respectively. In Algorithm 4.4 we present a variation
of the logarithmic MinA extraction procedure presented in [BS08] that is able to com-
pute an IAS or stop once this has reached a size n and return a partial IAS. We
also show the RAS variant in Algorithm 4.5. Given a goal label �g, if we want to
compute a IAS or a partial IAS of size exactly n for a consequence c, then we would
make a call to extract-partial-IAS(O��g , O ���g , c, n). Similarly, a call to extract-partial-
RAS(O ���g , O ���g , c, n) yields a RAS of size � n or a partial RAS of size exactly n. The
cardinality limit will be used to avoid unnecessary computations when looking for a
smallest CS.

Given the procedures to extract RAS and IAS, Algorithm 4.6 extracts a MinCS. In
order to label a node, we compute a MinCS with extract-partial-MinCS(O, lab, c, �g, H, n),
where H is the set of all labels attached to edges on the way from the node to the root
of the tree. Note that axioms in H are removed from the search space to extract the
IAS and RAS. Furthermore, axioms in the IAS are considered as fixed for the RAS
computation. The returned set is a MinCS of size � n or a partial MinCS of size n.

Example 19. Returning to our running example, suppose now that we want to hide
c from development engineers and make it available to customers, i.e. modify the label
of consequence c to �g = �5. Algorithm 4.6 starts by making a call to extract-partial-
IAS(O��5 , O ���5 , c,∞).6 A possible output for this call is I = {a3}. We can then call
extract-partial-RAS(O ���5 \ I,O ���5 \ I, c,∞), which may output e.g. the set R = {a1}.
Thus, globally the algorithm returns {a3, a1}, which can be easily verified to be a
MinCS for �5.

One of the advantages of the HST algorithm is that the labels of any node are always
ensured not to contain the label of any of its predecessor nodes. In particular this
means that even if we compute a partial MinCS, the algorithm will still correctly find
all MinCS that do not contain any of the partial MinCS found during the execution.

6
For this example, we ignore the cardinality limit, as we want to find only one MinCS.
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Algorithm 4.4 Compute a (partial) IAS
Procedure extract-partial-IAS(Ofix, Otest, c, n)
Input: Ofix: fixed axioms; Otest: axioms; c: consequence; n: limit
Output: first n elements of a minimal S ⊆ Otest such that Ofix ∪ S |= c

1: Global l := 0, n
2: return extract-partial-IAS-r(Ofix, Otest, c)

Subprocedure extract-partial-IAS-r(Ofix, Otest, c)

1: if n = l then

2: return ∅
3: if |Otest| = 1 then

4: l := l + 1
5: return Otest
6: S1, S2 := halve(Otest) (partition Otest so that ||S1|− |S2|| � 1)
7: if Ofix ∪ S1 |= c then

8: return extract-partial-IAS-r(Ofix, S1, c)
9: if Ofix ∪ S2 |= c then

10: return extract-partial-IAS-r(Ofix, S2, c)
11: S�

1 := extract-partial-IAS-r(Ofix ∪ S2, S1, c)
12: S�

2 := extract-partial-IAS-r(Ofix ∪ S�
1, S2, c)

13: return S�
1 ∪ S�

2

Algorithm 4.5 Compute a (partial) RAS
Procedure extract-partial-RAS(Ononfix, Otest, c, n)
Input: Ononfix: axioms; Otest ⊆ Ononfix: axioms; c: consequence; n: limit
Output: first n elements of a minimal S ⊆ Otest such that Ononfix \ S �|= c

1: Global l := 0, Ononfix, n
2: return extract-partial-RAS-r(∅, Otest, c)

Subprocedure extract-partial-RAS-r(Ohold, Otest, c)

1: if n = l then

2: return ∅
3: if |Otest| = 1 then

4: l := l + 1
5: return Otest
6: S1, S2 := halve(Otest) (partition Otest so that ||S1|− |S2|| � 1)
7: if Ononfix \ (Ohold ∪ S1) �|= c then

8: return extract-partial-RAS-r(Ohold, S1, c)
9: if Ononfix \ (Ohold ∪ S2) �|= c then

10: return extract-partial-RAS-r(Ohold, S2, c)
11: S�

1 := extract-partial-RAS-r(Ohold ∪ S2, S1, c)
12: S�

2 := extract-partial-RAS-r(Ohold ∪ S�
1, S2, c)

13: return S�
1 ∪ S�

2
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Algorithm 4.6 Compute a (partial) MinCS
Procedure extract-partial-MinCS(O, lab, c, �g, H, n)

1: return extract-partial-MinCS(O, lab, c, �g,
�g �< lbl(c) ∧O��g �|= c,
�g �> lbl(c) ∧O ���g |= c, H, n)

Procedure extract-partial-MinCS(O, lab, c, �g, isI , isR, H, n)
Input: O, lab: labeled ontology; c: consequence; �g: goal label; isI : decision to
compute IAS; isR: decision to compute RAS; H: HST edge labels; n: limit
Output: first n elements of a MinCS S ⊆ O

1: if isI ∧O��g ∪ (O ���g \H) �|= c or isR ∧H |= c then

2: return ∅ (HST normal termination)
3: if isI then

4: I := extract-partial-IAS(O��g , O ���g \H, c, n)
5: if isR and O ���g \ I |= c then

6: R := extract-partial-RAS(O ���g \ I,O ���g \ (I ∪H), c, n− |I|)
7: return I ∪R

Since we are interested in finding the MinCS of minimum cardinality, we can set the
limit n to the size of the smallest CS found so far. This limit is initially fixed to the
size of the ontology. If extract-partial-MinCS outputs a set with fewer elements, we
are sure that this is indeed a full MinCS, and our new smallest known CS. The HST
algorithm will not find all MinCS in this way, but we can be sure that one MinCS with
the minimum cardinality will be found. The idea of limiting cardinality for finding a
smallest MinCS can be taken a step further by not expanding each node for all the
axioms in it, but rather only on the first n − 1, where n is the size of the smallest
CS found so far. This further reduces the search space by decreasing the branching
factor of the search tree. Notice that the highest advantage of this second optimization
appears when the HST is constructed in a depth-first fashion. In that case, a smaller
MinCS found further below in the tree will reduce the branching factor of all its
predecessors. So the cardinality limit reduces the search space in two dimensions: (1)
the computation of a single MinCS is limited to n axioms and (2) only n − 1 axioms
are expanded from each node. Algorithm 4.7 is the resulting HST algorithm. The
following theorem shows that it is correct.

Theorem 4. Let O be an ontology, c a consequence with O |= c, and �g a goal label.
If m is the minimum cardinality of all CS for �g, the Algorithm 4.7 outputs a CS S
such that |S| = m.

Proof. The described algorithm outputs a CS since the globally stored and finally
returned S is only modified when the output of extract-partial-MinCS has size strictly
smaller than the limit n, and hence only when this is indeed a CS itself. Suppose now
that the output S is such that m < |S|, and let S0 be a MinCS such that |S0| = m,
which exists by assumption. Then, every set obtained by calls to extract-partial-MinCS
has size strictly greater than m, since otherwise, S and n would be updated. Consider
now an arbitrary set S� found during the execution through a call to extract-partial-
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Algorithm 4.7 Compute a smallest CS by a HST algorithm
Procedure HST-extract-smallest-CS(O, lab, (L,�), c, �g)
Input: O,lab: labeled ontology; (L,�): lattice; c: consequence; �g: goal boundary
Output: a smallest CS S

1: Global C,H, S := O,n := |O|, c,
isI := �g �< lbl(c) ∧O��g �|= c;
isR := �g �> lbl(c) ∧O ���g |= c

2: expand-HST-CS(∅)
3: return S

Procedure expand-HST-CS(H)
Input: H: list of edge labels
Side effects: modifications to C and H

1: if there exists some H � ∈ H such that H � ⊆ H or

H � contains a prefix-path P with P = H then

2: return (early termination ⊗)
3: else if there exists some Q� ∈ C such that H ∩Q� = ∅ then

4: Q := Q� (MinCS reuse)
5: else

6: Q := extract-partial-MinCS(O, lab, c, �g, isI , isR, H, n)
7: if ∅ = Q then

8: H := H ∪ {H} (normal termination ⊙)
9: return

10: if |Q| < |S| then

11: n := |Q|
12: S := Q
13: C := C ∪ {Q}
14: for the first (n− 1) axioms a ∈ Q do

15: expand-HST-CS(H ∪ {a})

MinCS, and let S�
n := {a1, . . . , an} be the first n elements of S�. Since S� is a (partial)

MinCS, it must be the case that S0 �⊆ S�
n since every returned MinCS is minimal in the

sense that no axiom might be removed to obtain another MinCS. Then, there must be
an i, 1 � i � n such that ai /∈ S0. But then, S0 will still be a MinCS after axiom {ai}
has been removed. Since this argument is true for all nodes, it is in particular true
for all leaf nodes, but then they should not be leaf nodes, since a new MinCS, namely
S0 can still be found by expanding the HST, which contradicts the fact that S is the
output of the algorithm.

Example 20. Returning to our running example, suppose that we want to hide c
from development engineers, i.e. set the label of c to �g = �0. Algorithm 4.6 first calls
extract-partial-RAS(O ���0 , O ���0 , c, 5). A possible output of this call is R = {a2, a3}.
The tree now branches through a2 and a3. In the first case it calls extract-partial-
RAS(O ���0 , O ���0 \ {a2}, c, 2), which could yield R = {a4, a5}. This might be a par-
tial MinCS since its size equals the cardinality limit. The next call extract-partial-
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Figure 4.3: Hitting Set Trees to compute all MinAs (left) and a smallest change set
for �g = �5 (right)

RAS(O ���0 , O ���0 \ {a2, a4}, c, 2) yields a smallest R = {a1}, and the HST terminates.
Notice that if {a1} had been the first MinCS found, the process would have immedi-
ately terminated.

Efficient implementations of the original version of the HST algorithm rely on sev-
eral optimizations. Two standard optimizations described in the literature are node-
reuse and early path termination (see, e.g. [Kal+07; Sun08; BKP09b]). Node-reuse
keeps a history of all nodes computed so far in order to avoid useless (and usually
expensive) calls to the auxiliary procedure that computes a new node. Early path ter-
mination, on the other hand, prunes the Hitting Set Tree by avoiding expanding nodes
when no new information can be derived from further expansion. In order to avoid un-
necessary confusion, we have described the modified HST algorithm without including
these optimizations. However, it should be clear that both, node-reuse and early path
termination, can be included in the algorithm without destroying its correctness. The
implementation used for our experiments contain these two optimizations.

Example 21. We continue Example 1 with the already introduced consequence c :
ServiceWithComingPriceIncrease(ecoCalculatorV1 ). For goal label �g = �5, Figure 4.3
shows the expansion of the HST trees computing all MinAs and all diagnoses (left),
in comparison with the one obtained for computing a smallest change set with both
optimizations, fixed axioms and cardinality limit (right). Obviously, the number of
nodes, the node cardinality and the number of tree expansions is lower.

Parts of this sections result were published in [KP10a] and continued in [KP10b].
In difference to the presentation here, [KP10a] had not one HST Algorithm to find a
smallest CS but two HST Algorithms to find a smallest IAS and a smallest RAS sepa-
rately. The variant presented here is guaranteed to find the smallest CS, as given in the
proof above. In contrast to that, combining the smallest IAS and RAS does not nec-
essarily yield a smallest CS, as the following example shows. Assume {a1, a2}, {a2, a3}
are the smallest RAS and {a1, a4} is the smallest IAS, then {a1, a2, a4} is the smallest
CS, but choosing a smallest IAS and a smallest RAS might yield a MinCS (but not
a smallest CS) of cardinality 4. In [KP10a] we also investigated the performance gain
by taking not only advantage of fixing a subset of the axioms and limiting cardinality
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but also by taking the labels of the remaining axioms into account. Since this yielded
no significant performance gain, presentation is omitted here.

An empirical evaluation of our algorithms from this section is provided in Sec-
tion 6.2.2.

4.4 Conclusions of the Chapter

We have considered a scenario where ontology axioms are labeled and user labels
determine views on the ontology, i.e., sub-ontologies that are obtained by comparing
the user label with the axiom labels. The labeled axioms entail consequences, but
their label is not explicitly given. However, intuitively a consequence should be as
access restricted as the axioms from which it follows. We introduced an approach
formalizing this intuition and showed how to compute a label for a given consequence,
called boundary. Our approach can be used for large-scale ontologies since, on the one
hand, it allows to pre-compute consequences without having to do this separately for
all possible views. Once we have computed a boundary for the consequence, checking
whether this consequence follows from a sub-ontology is reduced to a simple label
comparison. On the other hand, the fact that we employ a black-box approach for
computing the boundary allows us to use existing highly-optimized reasoners, rather
than having to implement a new reasoner from scratch.

Our general framework allows using any restriction criterion that can be represented
using a lattice, such as user roles, levels of trust, granularity, or degrees of certainty.
With user roles, each axiom label defines the user roles able to see the axiom and
each user label defines the sub-ontology containing the axioms visible to this user. In
the presence of trust restrictions, the user label specifies the trust level required for
the ontology axiom. This supports scenarios with axioms from different sources, like
company-internal with high trust level and public Web with low trust level. In the
presence of uncertainty, e.g. in possibilistic reasoning, each axiom has an associated
certainty degree in the interval [0, 1]. The user label then specifies the certainty degree
required for the axioms and the consequences. Similarly, granularity restrictions (i.e.,
on how much details the ontology should provide for the user) can be expressed by a
total order.

Our framework is independent of a specific reasoner. To stay as general as possible,
we do not fix a specific ontology language. We just assume that ontologies are finite
sets of axioms such that every subset of an ontology is again an ontology and we require
the consequence relation to be monotonic. The elements of the labeling lattice which
are used as user label have to be join-prime.

The security administrator might not be satisfied with the access restriction level
computed for a consequence from the access restriction levels of the axioms that entail
the consequence. In this case, the computed boundary is different from the intended
label and a repair of the consequence’s boundary is required. This is only indirectly
possible by changing some axiom labels. Based on ontology repair techniques we de-
veloped algorithms to compute a change set of minimal cardinality, which contains
axioms to be relabeled in order to yield a desired boundary for a given consequence.
The base problem, finding a smallest MinA and diagnosis without computing all of
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them might be interesting beyond our application domain. Our algorithms take ad-
vantage of (1) fixing a subset of the axioms which are known not to be part of the
search space and (2) limiting cardinality of MinCS to be computed in the Hitting Set
Tree to the size of the smallest known change set. All our algorithms are black-box
based, which means that they can be used with any off-the-shelf reasoner, without the
need for modifications.

Revisiting the research questions from Section 1.4, these results answer the ques-
tions 1, 2 and 3.
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5 User Support to Assign Access
Restrictions to Ontology
Axioms

Instead of labeling axioms one by one, which might be unfeasible for large ontologies,
labels could be assigned to groups of axioms and consequences that share defined
commonalities. Also if security administrators are unfamiliar with the task of assigning
access restrictions to ontology axioms and consequences, it might make sense to reduce
this task to a better known task.

A simple approach for axioms only is to transfer a document’s access restrictions
to the document ontology, i.e. all contained axioms. The case where one axiom is
contained in multiple document ontologies needs to be handled appropriately. The
intuition is that such an axiom is as visible as the most publicly readable document
allows.

A more sophisticated approach for consequences, which includes axioms, is a query-
based assignment of access restrictions. All responses to that query in the form of a set
of consequences shall receive a defined label. Many queries with different goal labels
can be combined, which results in a set of consequences with different goal labels.
Enforcing those labels is an extension of label repair for a single consequence from
Section 4.3 since again every consequence label can only be changed by changing axiom
labels. In the case of multiple goals, there might arise conflicts requiring an appropriate
resolution strategy. Furthermore, we compare axiom labeling and consequence label
repair to a completely different alternative of restricting access to an ontology, namely
query rewriting. While both strategies keep knowledge secret which is intended to be
secret, we observe different availability of knowledge which could be made available
without telling secrets.

Parts of this chapter have been published in [KS08; KS10].
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5.1 Document-Based Access Restrictions

This section describes a simple approach of applying access restrictions from documents
to ontology axioms. This is especially helpful for security administrators familiar with
access restrictions to documents in a file system but not (yet) with access restrictions
to ontology axioms.

The architecture of a access restricted semantic document store in Figure 1.7 con-
tains a document ontology for each document. A basic intuition could be to assign an
access label to all axioms contained in a document ontology, which corresponds to the
document access restrictions.

All document ontologies might be integrated into one large ontology in order to
make all joint implicit knowledge explicit with a reasoner and for answering queries
on the complete knowledge, both with respect to the user’s permissions. In this case
the ontology axioms preserve the intended level of visibility. It could happen that one
and the same axiom comes from multiple document ontologies. In this case the axiom
requires a defined joint label representing the least restrictive of all documents’ access
restrictions.

Given are an RBAC matrix and a set of documents and corresponding document
ontologies. An appropriate labeling lattice can be computed from the RBAC matrix
with methods from Section 3.2. An important requirement for the labeling lattice is, as
discussed in Section 4.2.3, that all user labels are join prime. It is important also here
because the join of multiple labels has to be computed when an axiom is contained in
several document ontologies. In case the obtained lattice does not fulfill this, it has
to be changed, for example by adding new lattice elements, while preserving the order
among the user labels. For example, a labeling lattice for the strict interpretation of
the RBAC matrix in Table 1.1 is depicted in Figure 1.3.

The problem is to find a label assignment for the axioms in the document ontologies
that reflects the access restrictions to the respective documents.

A solution with the intuition described above could be the following. Each user
role with read permission has a corresponding user label in the labeling lattice. The
supremum of those lattice elements yields the axiom label. If the axiom appears
in multiple document ontologies, the supremum of those lattice elements for all the
documents yields the axiom label. In the following we give an example.

Example 22. We extend the example scenario from Section 1.2. In addition to the
document types given in the RBAC matrix in Table 1.1, we introduce a requirements
document (RQD) readable by DE, ME, TE, SV, LDE, CSE, CU. We discussed this
extension of the matrix in Section 3.2 already, and explained that for the strict in-
terpretation of this extended RBAC matrix the right part of Figure 3.6 depicts the
concept lattice. This lattice is a valid labeling lattice, since all elements representing
user roles are join prime. We leave the set of axioms of the scenario unchanged, but
assume they do not have a label assigned yet.

For this extended scenario, the Table 5.1 provides the result of a document-based
access restriction assignment for each ontology axiom. For each row, the first column
contains the axiom, which needs a label assigned. The second column lists the docu-
ment types in whose corresponding document ontologies the axiom is contained. For
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Axiom Document types User roles Axiom label

a1 {UM,RQD,DD,CCD} {DE,ME,TE, SV, LDE,CSE,CU, SP} �1
a2 {IG,DD} {DE,ME,TE, SV, LDE,CSE, SP} �2
a3 {DD} {DE,ME,TE, SV, LDE,CSE} �3
a4 {RQD} {DE,ME,TE, SV, LDE,CSE,CU} �4
a5 {CCD} {SV, LDE,CSE,CU} �5

Table 5.1: Axioms and their containment in document ontologies

example, the fact that the service called “ecoCalculatorV 1” is an EUecoService and
a HighperformanceService has been stated in the documents of type user manual,
requirements document, design document and customer contract document. The axiom
a1 represents this fact formally and is contained in the corresponding document on-
tologies. The third column lists the user roles that are allowed to read at least one of
the document types. The fourth column contains the supremum of the lattice elements
representing those user roles. This is the label assigned to the axiom. For example,
axiom a1 receives the label �1.

The described procedure assigns a label to an axiom with respect to document
permissions and with respect to the set of documents for which the axiom formally
represents knowledge.

Beyond that, the procedure can in fact unveil wrong permissions in the RBAC
matrix if it turns out that some inferable knowledge is more public than intended, i.e.
the boundary of a consequence is higher than intended. This might easily happen, if
the RBAC matrix has been designed in order to protect the explicit information in the
documents and the explicit knowledge in the document ontologies without considering
logical consequences that follow. Methods from Section 4.3 to repair a consequence
label might be useful in that case.

5.2 Query-Based Access Restrictions

A query can be used to retrieve explicit and implicit knowledge, i.e. a set of conse-
quences from a given ontology. In this section we use a query to address a subset of
consequences that shall receive a defined access restriction. For the security adminis-
trator, a query-based assignment of access restrictions might be more convenient than
assigning axiom labels one by one to individual axioms. Such a query could, e.g.,
address knowledge about a concept and all subconcepts in order to restrict knowledge
along the subsumption hierarchy or restrict knowledge along a selected object prop-
erty as it has been proposed, e.g., in [IO05; QA03]. This is comparable to information
systems restricting access to files in a directory and all subdirectories. Conflict reso-
lution mechanism might be necessary then since, e.g., a concept might have multiple
superconcepts.

In Chapter 4 we introduced an approach to enforce access restrictions by labeled
ontologies, which we call label filtering in the following. We additionally discuss an
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alternative approach to enforce access restrictions called query rewriting. The label
filtering approach assumes an a priori labeling of axioms in the ontology to consistently
derive labels for implicit consequences. Axioms and consequences are delivered to
a user based on a comparison of user label and axiom label. The query rewriting
approach proposed in [CS09] is based on the idea of rewriting user queries based on
the role a user has in such a way that the result to the rewritten query only returns
knowledge the user is allowed to see.

Our assessment of label filtering vs. query rewriting concludes that while both
approaches prevent uncovering secret knowledge, label filtering is more complete in
the sense that it does not suppress knowledge the user is allowed to see while this
happens frequently in query rewriting. Furthermore, label filtering is independent of
the ontology language. However, label filtering requires an a priori labeling of axioms
and it is not clear from previous work how to create an access labeling from query-
based access restrictions. Based on algorithms from Section 4.3 to repair a single
consequence label we present algorithms to repair a set of consequence labels with
multiple optimizations. As discussed in Section 4.3, changing a consequence label is
only possible by changing labels of a set of axioms and identifying this set of axioms
is in general as hard as finding an explanation and a diagnosis for a consequence.

The main results from this section are (1) a comparison of label filtering vs. query
rewriting, (2) algorithms to repair a given axiom labeling in an optimal way so that
a query-based access restriction is enforced to explicit and implicit knowledge, (3)
conflict resolution strategies for cases where query-based access restrictions contain
conflicts. In the empirical evaluation in Section 6.2.3 we report experiments on real-
world data showing that a significant number of results are retained using the label
filtering method.

5.2.1 Access Restrictions as Queries

The set of all concept and role names occurring in the axioms of an ontology O is
called the signature sig(O) of the ontology. A query to an ontology is a conjunction
Q = A1, . . . , An of OWL axioms over sig(O), but not necessarily from O, containing
variables. For a concrete definition of the form of axioms see [SP07]. The set of
variables occurring in Q is denoted as var(Q). Let ind(O) be the set of individuals in
O, then the result of a query is the set of all mappings µ : var(Q) → ind(O) assigning
individuals from O to variables in Q. An answer µ(Q) to a query Q is an instantiation
of all variables in the query, so that O |= µ(Q) [SP07]. Note that there might be several
possible µ for one query.

Assume we have two user roles: customers and employees and we want both to
be able to query some of the axioms of the ontology given in Example 1. Employees
shall have full access but customers shall not see if any product gets an increased price
soon. This restriction could be defined by enumerating all query responses except the
price increase as permissions and assigning them to the respective user role. There are
two problems with this approach. First of all, the price increase can still be inferred if
the axioms of O can be queried. Further, enumerating all query responses, however, is
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not feasible in practice and asks for more efficient ways of specifying these restrictions,
e.g. by means of a query.

A way is to define permissions intentionally in terms of queries over the signature of
the ontology. More specifically, we can describe facts that should not be accessible by
a defined user role in terms of a query. In the case of the example above, for customers
we could formulate the restriction

ServiceWithComingPriceIncrease(x )

stating that for no instantiation of the variable x it should be possible to infer that it
is an instance of ServiceWithComingPriceIncrease.

5.2.2 Query Rewriting vs. Label Filtering

There are different ways for implementing access control for ontological knowledge.
While query rewriting extends a user’s query to include all access restrictions, label
filtering only allows a subset of the ontology to be used to answer the unchanged query.

Access Control by Query Rewriting

One option for enforcing access restrictions is by means of query rewriting. This
approach has been proposed in [CS09] as a suitable way for enforcing access restrictions
in the context of SPARQL queries, while the TBox is assumed to be completely public.
Similar approaches are also allowing to hide TBox parts [GH08; BSH07] or to define
not the restrictions but the permissions by a query [Cal+08]. The idea in [CS09] is to
automatically add filter conditions to the query that suppress such answers the user is
not supposed to see. Given a Query Q and a set of access restrictions {AR1, · · · , ARn}
that apply to the current user, the query can be rewritten to a new query that is defined
as

Q ∧ ¬AR1 ∧ · · · ∧ ¬ARn

where the junction of two queries Q1 ∧ Q2 is the junction of all contained query
axioms

�
q∈Q1

q ∧
�

q∈Q2
q [SP07]. This way of rewriting the query based on the access

restrictions of the individual users effectively prevents the system from giving away
restricted knowledge. In particular, using query rewriting, the effective answer to a
query is

{µ(Q)|O |= µ(Q ∧ ¬AR1 ∧ · · · ∧ ¬ARn)}

It however presents a problem: it hides more knowledge than necessary. In par-
ticular, in the example above where we want to hide from customers that some prod-
uct is increased in price, the query rewriting approach hides too much knowledge.
If a customer for instance asks the system for all high performance services, thus
Q = HighperformanceService(x ), this query will be rewritten to an extended query
HighperformanceService(x ) ∧ ¬ServiceWithComingPriceIncrease(x ). This query will
only return high performance services which will not be increased in price. These do
not exist by definition, so the response is empty. This is unfortunate, because the
knowledge that ecoCalculatorV1 is a high performance service was not supposed to be
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hidden. It has to be hidden in this approach, because it does not allow to hide parts
of the TBox. Similarly querying for instances of the remaining four concept names in
sig(O) are filtered, resulting in five queries without an answer.

Access Control by Label Filtering

The framework to control access to an ontology’s axioms has been introduced in Chap-
ter 4. In contrast to the query rewriting approach, the TBox is not assumed to be
completely public with the label filtering approach.

Applied to our scenario, with the user roles customer (user label �C) and employee
(user label �E), let the labeling lattice be (L,�) with L := {�C , �E} and �:= {(�E , �C)}.
Let the labeling function lab assign label �C to axioms a1, a2, a3 and label �E to ax-
ioms a4, a5. Employees can see O��E

= {a1, a2, a3, a4, a5}, i.e. the complete ontology.
Customers can see O��C

= {a1, a2, a3}. The boundary of the consequence c1 is �E ,
as can be easily verified, which means that employees can see it but customers can-
not. Consequence c2 has boundary �C , i.e. employees and customers can see it. Apart
from c1, c2, the instance relationships to the three remaining concepts in sig(O) have
the boundary �C . A customer querying for instances of the five concept names in
the ontology will receive no answer for Q = ServiceWithComingPriceIncrease(x ) but
will receive an answer for the four remaining queries. So label filtering provides 4/5
answers, while query rewriting provides 0/5 answers.

Discussion

As we have seen, query rewriting and label filtering are approaches of ensuring that
no classified knowledge is given to users that do not have the permission to see it.
Both approaches do neither require tracking the history of queries nor prohibiting
query askers of the same user role to share knowledge. We have seen that query
rewriting is suboptimal with respect to availability in the sense of preserving maximal
access to non-restricted knowledge. Label filtering provides a higher availability and is
more general since it is independent of the concrete ontology language which makes the
approach preferable in many situations. However, it requires an a priori axiom labeling,
and it is not clear how to enforce query-based access restrictions. The Chapter 4
on labeled ontologies focused on computing a consequence’s label based on axiom
labels (see Section 4.2) and on repairing the axiom labeling in order to determine
one consequence’s label (see Section 4.3). However, access restrictions in the form of
queries might require changing labels of multiple consequences simultaneously. Such
a mechanism will be presented in the next section. Our main quality criterion for
the algorithms is availability. In the empirical evaluation in Section 6.2.3 we measure
how many knowledge is additionally accessible with label filtering compared to query
rewriting.

5.2.3 Repairing Access Restrictions to Multiple Consequences

In the last section we have only shown that there is an axiom labeling to enforce access
restrictions for a selected example. Now we will elaborate how to compute it in general.
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We are starting from an arbitrary label assignment, and change it in a minimal way
so that a given access restriction is enforced.

Example 23. We continue Example 1. The boundaries of the consequences c1 and c2
can be computed with the methods provided in Section 4.2. The computed boundary of
the consequence c1 is �3, since = (�1⊗�2⊗�4)⊕(�1⊗�2⊗�5)⊕(�1⊗�3⊗�4)⊕(�1⊗�3⊗�5).
The computed boundary of the consequence c2 is �2, since = (�1 ⊗ �2)⊕ (�1 ⊕ �3). For
users �0 and �3, consequences c1 and c2 are visible. For user �2, only c2 is visible.

We now define a notion for changing an axiom label assignment. We use the notion
of function lbl from Definition 29, in order to refer to the computed boundary lbl(c)
for a given consequence c.

Definition 33 (MCS). Let O be an ontology, c a consequence following from O, (L,�)
a lattice, lab a labeling function, G a set of goals of the form (c, �g) with goal label
�g for consequence c, M a set of assignments (a, �) of label � to axiom a, where each
axiom a appears only once. The modified assignment labM is defined to be

labM (a) =

�
�, if (a, �) ∈ M,

lab(a), otherwise.

The respective consequence labeling function lblM based on labM is given by Defini-
tion 29. The set M is called minimal multiple change set (MCS) iff for any c, (c, �g) ∈
G : lblM (c) = �g and for every M � ⊂ M there is at least one goal (c, �g) ∈ G with
lblM �(c) �= �g.

Whether we can find a labM fulfilling a given goal set is independent of the label
assignment lab we start from. For default deny-all behavior, we start with all axioms
assigned to the bottom lattice element. For default allow-all behavior, we start with
all axioms assigned to the top lattice element. We will now introduce the computation
of a smallest change set for one goal and building on that introduce the computation
of a smallest MCS.

Computing a Smallest Change Set For One Goal Label

If G is the singleton set of only one tuple (c, �), computing a MCS boils down to
computing a MinCS which has been introduced in Section 4.3. For every MinCS S ⊆ O
there is a MCS M := {(a, �g) | a ∈ S} and lblM (c) = �g holds. The computation
of a MinCS exploited main ideas from axiom-pinpointing [Kal+07; BP10b] and we
presented a black-box approach that yields the desired set. Intuitively, a consequence
c needs to be made more public if �g > lbl(c) or less public if �g < lbl(c). From the
perspective of the target users who see O��g , the former is achieved by including an
axiom set IAS to their ontology and the latter by removing an axiom set RAS from
other user’s ontologies. The formal definition of an IAS (RAS) has been given in
Definition 32 in Section 4.3.

A MinCS is an IAS, a RAS, or union of both. As elaborated in Section 4.3,
computing all IAS and RAS is tightly related to computing all explanations (also called
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MinA) and diagnoses. The computation by a HST algorithm [Rei87] is repeated here
only briefly. The HST algorithm makes repeated calls to an auxiliary procedure that
computes one MinCS. A tree is built, where each node is labeled with a MinCS and each
edge with an axiom. If the MinCS labeling a node has n axioms (S := {a1, . . . , an}),
then this node is expanded with n children: the edge to the i-th child labeled with
ai, the child labeled with a MinCS that is not allowed to contain neither ai nor any
ancestor’s edge label. This ensures that each node is labeled with a MinCS distinct
from those of its predecessors.

HST optimizations such as early termination and node reuse avoid redundant
computations and are included in current implementations. Another optimization
is putting a cardinality limit, applicable when not all, but only the CS of minimal
cardinality |S| is of interest. Then nodes might contain partial solutions, called partial
MinCS, in the sense that some axioms are not contained, but still a smallest CS is
proven to be found (see Section 4.3).

Example 24. We continue Example 23. Assume we want to make c1 as private as
possible, i.e. G = {(c1, �0)}. All RAS are {a1}, {a2, a3}, {a4, a5}, so the smallest MCS
is M1 = {(a1, �0)} and we get lblM1(c1) = �0. As second example assume we want to
make c2 as public as possible, i.e. G = {(c2, �1)}. All IAS are {a2}, {a3}, so a smallest
MCS is M2 = {(a3, �1)} and we get lblM2(c2) = �1.

Computing a Smallest MCS

A MCS for several goals is a set of several MinCS: one MinCS for each goal. However,
it is no solution to compute single MinCS and combine them since this might not yield
a smallest MCS or they might even conflict as the following example shows.

Example 25. We combine both goals of Example 24 simultaneously, i.e. we want to
make c1 as private as possible and c2 as public as possible, G = {(c1, �0), (c2, �1)}. Just
concatenating the above mentioned MCS to M = M1 ∪M2 = {(a1, �0), (a3, �1)} is no
MCS since lblM (c2) = �0 �= �1. However, M = {(a4, �0), (a5, �0), (a2, �1)} is a MCS.

For this reason we call any combination of MinCS a candidate MCS (cMCS). To
compute the smallest MCS, we introduce Algorithm 5.2 which is similar to the HST-
based Algorithm 4.7 for computing the smallest CS in Section 4.3.2. The only difference
is that each call to the auxiliary procedure computes a (partial) cMCS instead of a
(partial) MinCS which is assigned to a node in the search tree, and edges are not
labeled with an axiom but with a tuple (a, �) which is not allowed in the child node’s
(partial) cMCS.

A (partial) cMCS is computed by a call extract-partial-cMCS(K,n) to the auxiliary
procedure in Algorithm 5.1, where K is the set of prohibited label changes, i.e. all
tuples at edges to ancestors in the HST, and n is the size of the currently known
smallest MCS. The procedure includes 2 optimizations: MinCS reuse and cardinality
limit. As any cMCS is a combination of MinCS, one MinCS might be contained in
several cMCS. Instead of computing it anew for every cMCS, the first optimization
reuses it. Putting a cardinality limit is a second optimization which computes a cMCS
or stops once this has reached a size n and returns a potentially partial cMCS. As

96 Chapter 5 User Support to Assign Access Restrictions to Ontology Axioms



Algorithm 5.1 Compute a (partial) cMCS, with optimizations MinCS reuse (disable
by removing Lines 10, 11) and cardinality limit (disable by replacing in Line 7 “n−|M |”
by “∞”)
Procedure init-cMCS-extraction(O, lab, (L,�), G)
Input: O, lab: labeled ontology; (L,�): lattice; G: goal set
1: Global: O, lab, G� := {(c, �g, isI , isR, CS) | (c, �g) ∈ G,

isI := �g �< lbl(c) ∧O��g �|= c, (decision to compute IAS)
isR := �g �> lbl(c) ∧O ���g |= c, (decision to compute RAS)
CS := ∅} (reuse set for MinCS)

Procedure extract-partial-cMCS(K,n)
Input: K: prohibited label changes; n: cardinality limit
Output: first n elements of a cMCS
1: M := ∅
2: for each goal (c, �g, isI , isR, CS) ∈ G�

do

3: H := {a | (a, �g) ∈ K} (set of axioms not allowed to be labeled with �g)
4: if ∃S� ∈ CS : ∅ = S� ∩H then

5: S := S� (MinCS reuse)
6: else

7: S :=extract-partial-MinCS(O, lab, c, �g, isI , isR, H, n− |M |) (Algorithm 4.6)
8: if ∅ = S then

9: return ∅ (HST normal termination for one goal fires for complete goal
set)

10: if |S| �= n− |M | then

11: CS := CS ∪ {S} (remember only non-partial MinCS)
12: M := M ∪ {(a, �g) | a ∈ S}
13: return M

will be discussed in the empirical evaluation of computing MinCS in Section 6.2.2, the
cardinality limit optimization significantly reduces the time to find the smallest CS.
In a partial cMCS, the last contained MinCS is always partial. Reuse is not done for
partial MinCS.

Turning to Algorithm 5.2, whenever a cMCS M is found with |M | < n, it is smaller
than our currently known smallest MCS and we can be sure that it is not partial. The
question remains if it is a MCS or only a cMCS, which is checked in Line 6: neither is an
axiom allowed to have multiple labels assigned (syntactic conflict) nor might a MinCS
for one goal influence any other goal which is the case if any computed boundary does
not equal the goal label (semantic conflict). Only after passing both checks, we update
our globally known smallest known MCS Mmin in Line 7. Loosening the constraints of
a goal set, the semantic conflicts can be resolved in Line 10 or syntactic conflicts can
be resolved in Line 12 which is explained in the next section.

We now show correctness of both optimizations, MinCS reuse and cardinality limit.
Reuse of MinCS is correct, since the only non-constant parameter to extract a MinCS
in Line 7 is the set of prohibited axioms H and Line 4 ensures H and the reused MinCS
are disjoint.
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Algorithm 5.2 Compute a smallest MCS by a HST algorithm
Procedure HST-extract-smallest-MCS(O, lab, (L,�), G,K)
Input: O, lab: labeled ont.; (L,�): lattice; G: goal set; K: prohibited label changes
Output: MCS of minimum cardinality
1: Global Mmin := ∅, n := ∞, G
2: init-cMCS-extraction(O, lab, (L,�), G)
3: expand-HST-MCS(K)
4: return Mmin

Procedure expand-HST-MCS(K)
Input: K: prohibited label changes
Side effects: modifications to Mmin and n

1: M := extract-partial-cMCS(K,n)
2: if M = ∅ then

3: return (HST normal termination)
4: if |M | < n then

5: if (a, �1), (a, �2) ∈ M =⇒ �1 = �2 then

6: if ∀(c, �g) ∈ G : lblM (c) = �g then

7: Mmin := M
8: n := |Mmin|
9: else

10: . . . (semantic conflict resolution)
11: else

12: . . . (syntactic conflict resolution)
13: for the first (n− 1) label changes (a, �) ∈ M do

14: expand-HST-MCS(K ∪ {(a, �)})

Theorem 5 (Cardinality Limit Optimization). Let O,lab be a labeled ontology and G
a goal set. If m is the minimum cardinality of all MCS for G, the HST Algorithm 5.2
outputs a MCS M such that |M | = m.

Proof. The described algorithm outputs the empty set or a MCS since the globally
stored and finally returned Mmin is only modified when the output of extract-partial-
cMCS has size strictly smaller than the limit n, has neither any syntactic nor any
semantic conflict and hence only when this is indeed a MCS itself. Suppose now
that the output MCS Mmin is such that m < |Mmin|, and let M0 be a MCS such
that |M0| = m, which exists by assumption. Then, every MCS, i.e. every cMCS free
of syntactic and semantic conflicts, obtained by calls to extract-partial-cMCS has size
strictly greater than m, since otherwise, Mmin and n would be updated. Consider
now an arbitrary MCS M � found during the execution through a call to extract-partial-
cMCS, and let M �

n := {(a1, �1), . . . , (an, �n)} be the first n assignments of M �. Since
M � is a (partial) MCS, it must be the case that M0 �⊆ M �

n since every returned MCS is
minimal in the sense that no label change might be removed to obtain another MCS.
Then, there must be an i, 1 � i � n such that (ai, �i) �∈ M0. But then, M0 will
still be a MCS (and a cMCS anyway) after label change {(ai, �i)} has been removed.
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Since this argument is true for all nodes, it is in particular true for all leaf nodes,
but then they should not be leaf nodes, since a new cMCS, namely M0 can still be
found by expanding the HST, which contradicts the fact that Mmin is the output of
the algorithm.

5.2.4 Conflict Resolution

We already elaborated on syntactic and semantic conflicts which might prevent a cMCS
from being a MCS. It might be the case that for a goal set, no MCS can be found.

Example 26. We continue Example 23. Assume G = {(c1, �4), (c2, �3)}. For the
goal (c1, �4) all IAS are {a2}, {a3}. For the goal (c2, �3) all RAS are {a1}, {a2}. The
cMCS M1 = {(a2, �4), (a2, �3)} is obviously no MCS due to a syntactic conflict. But
also the remaining cMCS M2 = {(a2, �4), (a1, �3)},M3 = {(a3, �4), (a1, �3)},M4 =
{(a3, �4), (a2, �3)} are no MCS due to semantic conflicts, since lblM2(c1) = lblM3(c1) =
�3 �= �4 and lblM4(c2) = �4 �= �3.

For these cases we introduce a generalization of a MCS called relaxed MCS (RMCS)
where the goal set is only partially satisfied according to a defined strategy. For the
special case of no conflict, the RMCS equals the MCS. We identified 4 strategies to
resolve conflicts, where we focus on syntactic conflict resolution only:

1. Overrestrictive: accept lower labels for a minimal number of consequences than
specified by the goal label. Formally, ∀(c, �g) ∈ G : lblM (c) �= �g =⇒ lblM (c) <
�g and cardinality |{(c, �g) ∈ G | lblM (c) �= �g}| is minimal. Applied to the above
example, {(a2, �3)} is a RMCS.

2. Overpermissive: accept higher labels for a minimal number of consequences than
specified by the goal label. Formally, ∀(c, �g) ∈ G : lblM (c) �= �g =⇒ lblM (c) >
�g and cardinality |{(c, �g) ∈ G | lblM (c) �= �g}| is minimal. Applied to the above
example, {(a2, �4)} is a RMCS.

3. Override strategy: The goal G set is split up into fragments Gi so that G =
G1∪ . . .∪Gn for which individual MCS Mi can be computed. The changed label
assignment ((labM1) . . .)Mn

is obtained by sequentially applying each MCS Mi,
where the order can be chosen based on some prioritization. This implies that
labels changed by one MCS might be changed again by any subsequent MCS.
Applied to the above example, splitting up G into G1 and G2, G1 = {(c1, �4)}
yields MCS M5 = {(a2, �4)}, subsequently G2 = {(c2, �3)} yields MCS M6 =
{(a2, �3)}.

Strategy 3 although easy to implement has an unacceptable drawback, conflicting
our RMCS definition: even if there is a MCS for the union of all goal subsets, a
sequentially applied MCS for one goal subset might override a previous for another
goal subset since they are computed independently of each other. For this reason we
focus on strategies 1 and 2 for resolution of syntactic conflicts.

Algorithm 5.3 describes the resolution of syntactic conflicts. It is an adapted version
of Algorithm 5.2, where additionally the global variable r stores the minimal number
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Algorithm 5.3 Compute a smallest RMCS by a HST algorithm, overpermissive strat-
egy (for overrestrictive strategy, substitute in Line 3 “⊕” for “⊗”, in Line 4 “�” for
“�”, and in Line 5 “>” for “<”)
The following changes refer to the original Algorithm 5.2. In Procedure HST-extract-
smallest-MCS, add global variables N := ∅, r := ∞, and add before Line 4:
1: if ∅ = Mmin then

2: return N

In Procedure expand-HST-MCS, replace Line 12 for syntactic conflict resolution with:
1: N � := M
2: for each a : (a, �1), (a, �2) ∈ N � ∧ �1 �= �2 do

3: N � := N � \ {(a, �1), (a, �2)} ∪ {(a, �1 ⊕ �2)}
4: if ∀(c, �g) ∈ G : lblN �(c) � �g then (fulfills overpermissive strategy)
5: r� := |{(c, �g) ∈ G | lblN �(c) > �g}|
6: if r� < r then

7: N := N �

8: r := r�

of overpermissive (overrestrictive) consequence labels and N stores the RMCS with
minimal r. Again this Algorithm relies on the cMCS extraction Algorithm 5.1 and the
optimization of reusing MinCS can be applied. The cardinality limit optimization is
of no use here since if no MCS is found, then no cardinality limit is set and the HST
is fully expanded.

There are goal sets yielding semantic conflicts but no syntactic conflicts in cMCS.
These are not solvable by syntactic conflict resolution. For these cases not only IAS
and RAS, but complete explanations and diagnoses need to be taken into account, as
the following example shows.

Example 27. We continue Example 23. Assume G = {(c1, �2), (c2, �5)}. For the
goal (c1, �2) all IAS are {a4}, {a5}. For the goal (c2, �5) all IAS are {a2}, {a3}, all
RAS are {a1}, {a2, a3}. Obviously no combination of MinCS for both goals yields a
syntactic conflict. Nevertheless there is no MCS since every combination of MinCS
has a semantic conflict. After semantic conflict resolution, an overpermissive RMCS is
NOP = {(a4, �2), (a2, �2 ⊕ �5 = �1), (a3, �5}, yielding lblNOP

(c1) = �1, lblNOP
(c2) = �1.

An overrestrictive RMCS is NOR = {(a4, �2), (a2, �2 ⊗ �5 = �0), (a3, �5)}, yielding
lblNOR

(c1) = �5, lblNOR
(c2) = �5.

An empirical evaluation of our algorithms from this section is provided in Sec-
tion 6.2.3.

5.3 Conclusions of the Chapter

The goal of this thesis is not only to provide a theoretically solid, but also a usable
framework. Since security administrators might (yet) be unfamiliar with the task of
assigning access restrictions to ontology axioms, we proposed two techniques.
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The first proposal is to apply access restrictions that have been given to a document
also to the respective document ontology and all contained axioms. In this case it might
happen that the same axiom is contained in several document ontologies where the
intuition would be that a user is allowed to read the axiom if she is allowed to read at
least one of those documents.

The second proposal is to formulate an access restriction with a query. All re-
sponses to that query shall receive the respective restriction. We compared two basic
approaches to enforce those query-based access restrictions: query rewriting vs. label
filtering. Compared to query rewriting, label filtering allows higher knowledge avail-
ability in the sense that more answers are delivered to a user, while not uncovering
any secret. Furthermore, it is independent of a concrete ontology language. However,
it relies on a given axiom labeling. Starting from an arbitrary axiom labeling, e.g.
a random labeling, the problem solved by our algorithms is to find a smallest MCS
defining a new axiom labeling which enforces the query-based access restrictions. The
query-based access restrictions are used to generate a so-called goal set, which con-
sists of tuples with consequence and goal label. The access restrictions are enforced
by the axiom labeling if the computed boundary for each consequence is equal to its
goal label. This is a generalization of repairing one consequence’s boundary, where
changes on the axiom labeling for one consequence must not interfere with another
consequence. We show that a changed label assignment does not always exist since
a goal set might contain conflicts and we provide two conflict resolution strategies to
relax the goal set, so that a relaxed changed label assignment can be computed.

Revisiting the research questions from Section 1.4, these results answer the ques-
tions 4, 5 and 6.
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There are many examples of old,

incorrect theories that stubbornly

persisted, sustained only by the

prestige of foolish but well-connected

scientists. [. . . ] Many of these

theories have been killed off only

when some decisive experiment

exposed their incorrectness. [. . . ]

Thus the yeoman work in any

science, and especially physics, is

done by the experimentalist, who

must keep the theoreticians honest.

Michio Kaku

6 Empirical Evaluation
On large real-world ontologies, we empirically evaluated implementations of the algo-
rithms to

• compute a consequence’s boundary from Section 4.2,

• repair a consequence’s boundary from Section 4.3, and

• repair a set of consequence boundaries from Section 5.2.

We also empirically evaluated the availability gain of knowledge which can be delivered
without telling secrets as discussed in Section 5.2 for query rewriting vs. label filtering.
Since an empirical evaluation of results from Chapter 3 would not make sense, it is
not contained here, but the results have been evaluated within the chapter already.
All empirical results are presented collectively in this chapter, since large portions of
the same test data and the test environment have been used throughout all tests.
The following sections describe the test data and the test environment first and then
present the empirical results which show that our algorithms perform well in practical
scenarios.

6.1 Test Data and Test Environment

We performed our tests on a PC with 2GB RAM and Intel Core Duo CPU 3.16GHz.
We implemented all approaches in Java 1.6 and for convenient OWL file format parsing
and reasoner interaction we used the OWL API for OWL 2 [BVL03] in trunk revision
1150 from 21.5.2009.1

Labeling Lattices

Although we focus on comparing the efficiency of the presented algorithms, and not
on practical applications of these algorithms, we have tried to use inputs that are

1
Subversion Repository https://owlapi.svn.sourceforge.net/svnroot/owlapi/owl1_1/trunk
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closely related to ones encountered in applications. The two labeling lattices (Ld,�d)
and (Ll,�l) are similar to ones encountered in real-world applications. The labeling
lattice (Ld,�d) was already introduced in Figure 1.3. Lattices of this structure (where
the elements correspond to hierarchically organized user roles) can be obtained from a
real-world access control matrix with the methodology presented in Section 3.2. The
labeling lattice (Ll,�l) is a linear order with 6 elements Ll = Ld = {�0, . . . , �5} with
�l := {(�n, �n+1) | �n, �n+1 ∈ Ll ∧ 0 � n � 5}, which could represent an order of trust
values as in [Sch08] or dates from a revision history.

Ontologies, Label Assignment and Reasoners

We used the two ontologies OSnomed and OFunct with different expressivities and types
of consequences for our experiments.

The Systematized Nomenclature of Medicine, Clinical Terms (Snomed ct) is a
comprehensive medical and clinical ontology which is built using the DL EL++. Our
version of OSnomed is the January/2005 release of the DL version, which contains
379,691 concept names, 62 object property names, and 379,704 axioms. Since more
than five million subsumptions are consequences of OSnomed, testing all of them was
not feasible and we used the same sample subset as described in [BS08], i.e., we sampled
0.5% of all concepts in each top-level category of OSnomed. For each sampled concept A,
all subsumptions A � B following from OSnomed with A as subsumee were considered.
Overall, this yielded 27,477 subsumptions. Following the ideas of [BS08], we pre-
computed the reachability-based module for each sampled concept A with the reasoner
CEL 1.0 [BLS06] and stored these modules. This module is guaranteed to contain all
axioms of any MinA and any diagnosis, thus also any IAS and RAS, for a subsumption
A � B with A the considered subsumee. This module for A was then used as the start
ontology when considering subsumptions with subsumee A, rather than searching the
complete ontology.

The OWL ontology OFunct has been designed for functional descriptions of me-
chanical engineering solutions and was presented in [GKL09; Gaa10]. It has 115 concept
names, 47 object property names, 16 data property names, 545 individual names, 3,176
axioms, and the DL expressivity used in the ontology is SHOIN (D). Its 716 conse-
quences are 12 subsumption and 704 instance relationships (concept assertions). To
obtain labeled ontologies, axioms in both labeled ontologies received a random label
assignment of elements from Ll = Ld. As black-box subsumption and instance rea-
soner we used the reasoner Pellet 2.0 [Sir+07], since it can deal with the expressivity of
both ontologies. For the expressive DL SHOIN (D) it uses a tableau-based algorithm
and for EL++ it uses an optimized classifier for the OWL 2EL profile that is based on
the algorithm described in [BBL05].

Test Setting for Access Restrictions to Implicit Knowledge

We tested access restrictions to implicit knowledge from Section 4.2 in the following
setting. The boundary computation with full axiom pinpointing (FP) uses log-extract-
MinA() (Algorithm 2 from [BS08], which is identical to Algorithm 8 from [Sun08]) and
the HST based HST-extract-all-MinAs() procedure (Algorithm 9 from [Sun08]). The set
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of extracted MinAs is then used to calculate the label of the consequence. We break
after 10 found MinAs in order to limit the runtime, so there might be non-final label
results. The boundary computation with label-optimized axiom pinpointing (LP) with
min-lab() and HST-boundary() are implementations of Algorithm 4.1 and Algorithm 4.2
of Section 4.2.4. The boundary computation with binary search for linear ordering (BS
in the following) implements Algorithm 4.3 of Section 4.2.4. We tested 8 combinations
resulting from the 2 ontologies OSnomed and OFunct, 1 lattice (Ld,�d), 2 approaches
FP and LP and the same 2 ontologies, 1 lattice (Ll,�l), and 2 approaches LP and BS.

Test Setting for Repairing Access Restrictions to Implicit Knowledge

We tested repairing access restrictions to implicit knowledge from Section 4.3 in the
following setting. We took the computed boundary �c of each consequence c of the
ontologies from the first experiment and then computed the MinCS to reach goal
boundary �g which is constantly �3 in all experiments. Consequences were not con-
sidered if �c = �g. Thus, from the 716 consequences in OFunct, we have 415 remain-
ing with labeling lattice (Ld,�d) and 474 remaining with (Ll,�l). From the 27,477
consequences in OSnomed we have 23,695 remaining with labeling lattice (Ld,�d) and
25,897 with (Ll,�l). The MinCS computation with FP uses the procedures log-extract-
MinA() and the HST based HST-extract-all-MinAs(), implemented by the algorithms
mentioned above. The MinCS computation with extract-partial-MinCS() and the small-
est CS computation with HST-extract-smallest-CS() including optimizations for fixed
axioms and cardinality limit are implementations of Algorithm 4.6 and Algorithm 4.7
of Section 4.3.2. The required IAS and RAS extraction with extract-partial-IAS(),
extract-partial-RAS() are implementations of Algorithms 4.4 and 4.5 also from Sec-
tion 4.3.2. We break after 10 found MinAs (or respectively MinCS or partial MinCS)
in order to limit the runtime, so there might be no computed MinCS at all or a non-
smallest MinCS returned. We tested 12 combinations resulting from the 2 ontologies
OSnomed and OFunct, 2 labeling lattices (Ld,�d) and (Ll,�l) and 3 variants (FP, fixed
axioms, and fixed axioms in combination with cardinality limit). Running the fixed
axioms optimization without cardinality limit can be done easily by skipping Line 11
in Algorithm 4.7.

Test Setting for Query-Based Access Restrictions

We tested query-based access restrictions to implicit knowledge from Section 5.2 in
the following setting. The labeling lattice is (Ld,�d) from which we use the top lattice
element �1 for public knowledge, �2 for intermediate knowledge and �3 for top secret
knowledge. The set of test ontologies is extended with ontologies containing a large
ABox, including OGeom,2 OMGED,3 OProcess.4 They are selected ontologies from the
TONES Ontology Repository5 with a high number of individuals. At time of their

2
http://i2geo.net/ontologies/dev/ontology.owl

3
http://mged.sourceforge.net/ontologies/MGEDOntology.owl

4
http://sweet.jpl.nasa.gov/ontology/process.owl

5
http://owl.cs.manchester.ac.uk/repository/
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download on 25.3.2010, they had the characteristics given in Table 6.1. The ontology
OFunct, which has been introduced above already, is also included.

In a first test setting we evaluated the availability of knowledge in the presence
of access control by query rewriting vs. access control by label filtering. Initially
each ontology axiom is labeled �1 (public). This reflects a default allow-all behavior
of a security policy. Then for each concept C in the ontology, we apply an access
restriction defined by a query AR = C(x) and add every query result ci = µ(AR) with
goal label �3 (top secret) to the goal set. A smallest MCS is computed for this goal set.
The computed MCS is used to create a newly labeled ontology, on which we perform
the following queries. We count for every C-instance the instance relationships to
concepts other than C which are available for public users (�1). With query rewriting
their count is 0, due to the principle of query rewriting explained in Section 5.2.2.
With label filtering their count might be greater than 0 and is considered to be the
availability gain of label filtering vs. query rewriting. For cMCS extraction defined
by Algorithm 5.1, we tested both optimizations MinCS reuse and cardinality limit
separately and in their combination. In this setting every cMCS is automatically a
MCS since there are no conflicting goals. Although not included in Algorithm 5.2 for
transparency reasons, the mentioned usual HST optimizations early termination and
node reuse are included in our implementation.

In a second test setting we evaluated conflict resolution strategies in cases where
multiple goals conflict each other, so that no MCS can be computed without relax-
ing one of the goals. We test the overrestrictive conflict resolution approach vs. the
overpermissive conflict resolution approach of Algorithm 5.3 with the same extended
set of ontologies used for the first test setting. From the two optimizations available
for the auxiliary procedure to extract a cMCS in Algorithm 5.1, only MinCS reuse
but not cardinality limit is applied. The latter is useless in the presence of conflicting
goals for reasons explained in Section 5.2.4. First all axioms are labeled with inter-
mediate security level, i.e. �2. A goal set is created for each concept C containing the
same consequences described above, but now one arbitrarily chosen half of this set has
goal label �1 and the other half has goal label �3. This has the effect that some of
the resulting goal sets are contradictory. We test Algorithm 5.3 to compute a RMCS
with overpermissive vs. overrestrictive conflict resolution strategy for the same goal set
and we count the number of overpermissive (respectively overrestrictive) consequence
labels.

For both settings, the test data characteristics are given in Table 6.1. The number
of goal sets and of goals per goal set are the same for both experiments, since they
contain the same concept assertions, but with different goal labels. In order to limit
runtime, we compute in maximum 10 cMCS before the HST Algorithm 5.2 (respec-
tively HST Algorithm 5.3) returns, so there might be a smaller MCS we do not find
(respectively we might find no RMCS although there is one, or there might be a RMCS
we do not find which has fewer overpermissive respectively overrestrictive consequence
labels).
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Ontology DL expressivity �logical
axioms

�concepts �individuals �goal sets �goals per
goal set

OFunct ALCOIN (D) 3189 115 545 102 12.2
OGeom ALCHOIN (D) 8803 589 2010 571 14.1
OProcess ALCHOF(D) 2578 1537 150 40 20.9
OMGED ALEOF(D) 1387 234 681 125 28.8

Table 6.1: Test sets consisting of ontologies and goal sets

6.2 Experimental Results

Our experiments show that our algorithms perform well with practical large-scale
ontologies. In the following we describe our empirical results of each of the following
tasks with labeled ontologies:

• computing a boundary to discover access restrictions to a given consequence,

• for a single consequence, repair the boundary by changing axiom labels, and

• for a set of consequences, repair the boundaries by changing axiom labels.

6.2.1 Access Restrictions to Implicit Knowledge

The results for boundary computation by FP vs. LP, using lattice (Ld,�d) and the
two ontologies OSnomed and OFunct are given in Table 6.2. The table consists of an
upper part and a lower part. The upper part contains a set of consequences that is
“easy,” because each consequence has fewer than 10 MinAs. This contains 21,001 sub-
sumptions from OSnomed and 307 consequences from OFunct. The lower part contains
a set of consequences that is “hard,” because each consequence has at least 10 MinAs.
This contains 6,476 subsumptions from OSnomed and 409 consequences from OFunct.

While LP computed the boundary for each consequence following from the easy
and the hard set, FP computed the boundary for each consequence following from
the easy but not for each following from the hard set. As described above, we break
after 10 found MinAs. A label computed for a consequence following from the hard
set, called non-final label, might be lower than the boundary since there might be
further MinAs providing a higher label. For a practical system, a lower label puts an
unnecessary strong access restriction to a consequence, resulting in an overrestrictive
policy.

For the easy set of OSnomed, the overall labeling time for all 21,001 subsumptions
with FP was 50.25 minutes. For LP it was 1.50 minutes, which means that LP is
about 34 times faster than FP. For the hard set of OSnomed, the non-final labels of FP
were identical to the boundaries of LP in 6,376 of the 6,476 cases (98%), i.e., in most
cases the missing MinAs would not have changed the already computed label. FP took
2.5 hours without final results, whereas LP took 0.6% (factor 155) of that time and
returned final results after 58 seconds. We started a test series limiting runs of FP
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max 2.00 1.00 7.00 4.00 3.00 22.00 1,295.00

stddev 0.34 0.13 0.90 0.54 0.48 1.56 87.29

O
S
no

m
ed

h
a
r
d

F
P

avg 432.11 42.25 126.54 10.20 16.38 0.30 1,378.66

max 42,963.00 5,003.00 4,623.00 16.00 37.80 14.00 148,119.00

stddev 1,125.06 121.15 186.33 0.49 5.00 0.54 3,493.02

L
P

avg 0.04 0.00 3.12 1.06 2.05 0.32 8.88

max 3.00 2.00 6.00 3.00 3.00 46.00 86.00

stddev 0.21 0.04 0.50 0.25 0.44 1.04 4.26

O
F
un

ct
h
a
r
d

F
P

avg 30.01 16.00 26.44 10.04 4.41 0.56 8,214.91

max 760.00 511.00 411.00 11.00 6.50 3.00 25,148.00

stddev 85.33 47.79 40.61 0.20 1.08 0.55 3,428.97

L
P

avg 0.09 0.01 2.76 1.38 1.32 0.77 200.55

max 3.00 2.00 7.00 4.00 2.00 16.00 596.00

stddev 0.33 0.12 0.91 0.64 0.43 1.40 61.11

Table 6.2: Boundary computation by FP vs. LP, using lattice (Ld,�d) and two on-
tologies with an easy and a hard set of consequences

to <30MinAs, which did not terminate after 90 hours, with 1,572 labels successfully
computed and 30 subsumptions skipped since they had �30MinAs. Interestingly, in
both the easy and the hard set, LP can rarely take advantage of the optimizations
early termination and reuse, which might be due to the simple structure of the lattice.

Similar results have been observed for the easy and the hard set of OFunct. Again,
the computation of FP was restricted to <10 MinAs. This time, only 363 out of 409
(88%) non-final labels of FP were equal to the boundaries of LP. Although the ontology
is quite small, LP again performs much better than FP. The reason could be that in
this ontology, consequences frequently have a large set of MinAs.

For a system designer, a question to decide could be to use either (a) our approach of
keeping one large ontology with labeled axioms and precompute all consequences6 and
their labels or (b) the naïve approach of managing separate ontologies and computing

6
When we say “all consequences” we always mean “all consequences the user is interested in.” These

might be, e.g., all concept assertions of named individuals to named concepts and all subsumptions

between two named concepts. This restriction is necessary since already from simple axioms, infinitely
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all consequences of each separate ontology independently. We can make the following
rough estimate while we assume that the lattice is nonlinear but the details of its
structure would not have any influence. Based on our test results with OSnomed,
an estimate for the time needed to compute a label for all the more than 5 million
subsumptions in OSnomed with LP would be 2.47 · 5·106

27477 ≈ 449 minutes. Assuming
20 minutes to compute all consequences with the current CEL reasoner [Sun08], our
approach to compute and label all consequences would be as expensive as computing
all consequences 20+449

20 ≈ 23 times. Two remarks have to be made here.

1. Taking the fast computation time of 20 minutes, achieved by CEL is to some
extent unfair, since the slower (see [Sun08] for a comparison) Pellet is used in
our experiments for reasons explained above. However, at the time of these
experiments, Pellet fails to classify the complete OSnomed because of memory
exhaustion. For this reason we process only the reachability-based modules with
Pellet and not the complete OSnomed, as described above. Presumably, the real-
istic ratio is actually below 23.

2. The preparation step computing the reachability-based modules as described
above took < 0.21 seconds [BS08] and can be neglected here.

Our approach is as expensive as computing 23 views if we assume that computing all
consequences for each of the views requires 20 minutes. For incomparable user labels,
e.g. representing user roles which do not inherit permissions from each other while one
user can have several roles, already the considerably low number of 5 incomparable
user labels implies 25 = 32 views and our approach is faster. For fewer user labels, the
naïve approach is faster. Based on our test results with OFunct, a similar estimate can
be made. Computing all consequences requires 5 seconds and labeling all consequences
with LP requires 146 seconds. In this case our approach is as expensive as computing
all consequences 30 times. Again with 5 or more user labels, our approach is faster.

Apart from this numerical estimate, there are further reasons contra the several
ontologies approach and pro our labeling approach. Maintaining one ontology is very
error-prone, and maintaining several simultaneously is even more. If an axiom is
changed, it should be changed in all of them. Hence, even if labeling all consequences
takes longer, this is paid-off by the certainty that the changes have been propagated
to all ontologies, i.e. less changes are necessary by the ontology engineer and less tests
must be done to check the ontology. There is also a reduction on space used, but since
space is inexpensive nowadays one may want to ignore this.

In statistics, a histogram is often used to roughly assess the probability distribution.
The range of values on the x-axis is divided into non-overlapping intervals and the y-
axis provides the number of observations. The histogram in Figure 6.1 shows, for
all 4 combinations of the 2 ontologies and the 2 computation methods, the number
of MinAs (respectively MinLabs) required to compute a boundary or non-final label.
From this histogram and also from Table 6.2, one can see that LP requires at most

many nonequivalent consequences may follow, e.g. from M � ∃l.M it follows that M � ∃l.M,M �
∃l.(∃l.M), etc.
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Figure 6.1: Histogram of required �MinAs (�MinLabs) to compute a boundary (re-
spectively non-final label)

three MinLabs for OSnomed, at most four for OFunct, and usually just one MinLab
whereas FP usually requires more MinAs.

The histograms in Figure 6.2 compare the distribution of time needed with FP vs.
LP to compute a boundary of a consequence from the union of the above described
easy and hard set. The required time is given on the logarithmic x-axis, where the
number below each interval defines the maximum contained value. As can be seen,
FP takes more time than LP in general. Note that moving to the left on the x-axis
means a relatively high performance improvement, due to the logarithmic scale. It can
be further seen that LP covers a few intervals while FP covers more. This indicates
that FP has a higher variability and the standard deviation values in Table 6.2 confirm
this.

Table 6.3 provides results for LP vs. BS with the total order (Ll,�l) as labeling
lattice. For OSnomed, LP takes 130.4 and BS takes 77.1 seconds to label all 27,477
subsumptions. For OFunct, LP takes 133.9 and BS takes 68.6 seconds to label all 716
consequences. Interestingly, labeling all consequences of OFunct or all consequences
of OSnomed takes roughly the same time, perhaps due to a trade-off between ontology
size and expressivity. Roughly, BS is twice as fast (factor 1.7 with OSnomed, 1.9 with
OFunct) compared to LP.

Above, we already discussed the decision of a system designer whether to use our
approach or the naïve approach for nonlinear lattices. Based on our test results a
similar estimate can be made for linear lattices. Labeling all consequences of OSnomed

would require 77.1
60 · 5·10627477 ≈ 234 minutes. Similar to the explanation above, our approach

is as expensive as computing all consequences 20+234
20 ≈ 13 times, i.e. with 13 or

more user labels our approach is faster. For OFunct, our approach is as expensive
as computing all consequences 68.8

5 ≈ 14 times, i.e. with 14 or more user labels our
approach is faster.

The histograms in Figure 6.3 compare the distribution of time needed to compute
a boundary with BS vs. LP. Again the required time is given on the logarithmic x-
axis. They show that the performance gain with BS over LP is higher with OFunct
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Figure 6.2: Histograms of time needed to compute a consequence’s boundary in
OSnomed (upper) and OFunct (lower) with the methods FP vs. LP

compared to OSnomed, as discussed already. They further show that there is no clear
winner with respect to variability, as it has been the case comparing FP vs. LP and
Table 6.3 confirms that observation.
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LP BS

�early

termi-

nation

�reuse �calls to

extract

MinLab

�MinLab �labels

per

MinLab

Lattice

oper.

time

Total

labeling

time

Iterations Total

labeling

time

O
S
no

m
ed avg 0.03 0.00 2.24 1.03 1.23 0.37 4.75 2.41 2.81

max 1.00 0.00 5.00 3.00 2.00 329.00 330.00 3.00 75.00

stddev 0.18 0.00 0.45 0.19 0.42 4.85 6.37 0.49 2.94

O
F
un

ct avg 0.09 0.00 2.50 1.27 1.24 0.82 186.98 2.55 95.80

max 1.00 0.00 5.00 3.00 2.00 62.00 1147.00 3.00 877.00

stddev 0.28 0.00 0.72 0.49 0.40 2.74 69.55 0.50 45.44

Table 6.3: Boundary computation by LP vs. BS on a sampled set of 27,477 sub-
sumptions in OSnomed/ all 716 consequences of OFunct with lattice (Ll,�l) (time in
ms)

Figure 6.3: Histograms of time needed to compute a consequence’s boundary in
OSnomed (upper) and OFunct (lower) with the methods BS vs. LP
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O
nt

. Lattice Variant Runtime limit Time Ratio of Ratio of
per goal in correct optimal

minutes solutions solutions

O
F
un

ct

(Ld,�d) FP � 10 MinA 44.05 96% 47%
fixed axioms � 10 MinCS 17.56 100% 90%
fixed axioms, card. lim. � 10 (partial) MinCS 8.65 100% 98%

(Ll,�l) FP � 10 MinA 54.46 98% 49%
fixed axioms � 10 MinCS 15.97 100% 96%
fixed axioms, card. lim. � 10 (partial) MinCS 8.61 100% 99%

O
S
no

m
ed

(Ld,�d) FP � 10 MinA 184.76 100% 75%
fixed axioms � 10 MinCS 15.87 100% 99%
fixed axioms, card. lim. � 10 (partial) MinCS 10.51 100% 100%

(Ll,�l) FP � 10 MinAs 185.35 100% 75%
fixed axioms � 10 MinCS 40.83 100% 95%
fixed axioms, card. lim. � 10 (partial) MinCS 28.14 100% 98%

Table 6.4: Results comparing variants to compute a smallest CS

6.2.2 Repairing Access Restrictions to Implicit Knowledge

Table 6.4 contains results for the 4 combinations of the 2 ontologies and the 2 labeling
lattices. For each of them we tested 3 variants, leading to 12 test series overall. As
described above, we limit the number of computed MinAs and MinCS to 10, so our
algorithms might not find any, or not a smallest change set before reaching the limit.
We measure the quality of the presented variants given this limitation at execution
time in the following sense. Table 6.4 lists the ratio of correct solutions where at least
1 correct MinCS was computed, and the ratio of optimal solutions where the limit was
not reached during the computation and thus yielded the smallest change set possi-
ble. Notice however, that the ratio of cases with the smallest change set successfully
computed might be higher, including those where the limitation was reached but the
smallest change set was already found.

Figure 6.4 depicts a time-quality diagram of all variants from Table 6.4, where
quality is the ratio of correct multiplied by the ratio of optimal solutions. Obviously, a
desirable variant is in the upper left corner yielding maximum quality in minimal time.
It can be seen that FP is clearly outperformed by our optimizations. The experiment
shows that fixed axioms and cardinality limit, especially in their combination, are
optimizations yielding significantly higher quality and lower runtime.

Instead of providing histograms of time needed to repair a consequence’s boundary,
we provide the cumulative distribution in Figure 6.5. The difference to the histograms
is that not discrete intervals, but instead the continuous spectrum of time needed is
depicted, and the number of consequences is cumulated over time until it reaches the
number of all considered consequences. For this reason, the maximum value on the
y-axis, from left to right and top to bottom, is: 415, 474, 23695 and 25897. The
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Figure 6.4: Time-quality diagram comparing variants to compute a smallest CS

reason for those numbers of consequences has been explained above. The x-axis is
again logarithmic, as it has been the case with the histograms above. It can be
seen that in general a single consequence from OSnomed is repaired much faster than
one from OFunct. Interestingly, even at the start of the logarithmic x-axis, some
consequences are repaired already. In our test result log, the reported time for several
consequences was even 0 ms. The reason is Java’s limitation with respect to measuring
fractions of milliseconds. It can be seen, as already known from Table 6.4, that for
the two diagrams of OSnomed and the upper right diagram of OFunct, most of the
consequences are repaired roughly one order of magnitude faster with both of our
optimizations enabled compared to the naïve FP approach.

6.2.3 Query-Based Access Restrictions

The experimental results for the first experiment on query-based access restrictions
are given in Table 6.5. It compares availability of access control by query rewriting
vs. access control by label filtering and it compares performance of the optimizations
cardinality limit vs. MinCS reuse. The given total number of MinCS includes reused
MinCS. The number of cMCS is equal to the number of MCS, since the goals con-
tain no conflicts with the first experiment. The number of gained assertions confirms
that our ideas improve availability of knowledge when using label filtering instead of
query rewriting. While the number of gained assertions is comparable between the
optimizations applied, their runtime differs significantly. MinCS reuse alone, and also
in combination with cardinality limit runs significantly faster compared to using car-
dinality limit optimization only. Testing OMGED with cardinality limit optimization
did not terminate after 4 days, so no results are provided.

The diagram in Figure 6.6 plots gained assertions over the number of goals con-
tained in a goal set. For all four ontologies, the number of gained assertions increases
frequently with an increasing goal set size. This is because no conflicts are contained
in the goal sets in this first experiment. The diagrams show test results with both
optimizations enabled, since we explained above that the number of gained assertions
does not depend on the optimizations.
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Figure 6.5: Cumulative distribution of time needed to repair a consequence’s boundary
in OFunct (upper) and OSnomed (lower) with the lattices (Ld,�d) (left) and (Ll,�l)
(right)

Figure 6.6: Gained assertions over goal set size

6.2 Experimental Results 115



Test set Optimi- Results (averages per goal set)
zation �MinCS �reused

MinCS
�cMCS

= �MCS
|MCS| Time in

minutes
�gained

assertions
OFunct card. limit 131.8 0.0 3.9 23.9 3.6 28.5

MinCS reuse 135.2 118.4 3.9 24.0 0.7 28.6
both 132.6 115.7 3.9 24.1 0.6 28.4

OGeom card. limit 146.9 0.0 2.6 9.2 24.0 43.4
MinCS reuse 148.9 132.9 2.5 9.3 4.2 43.3
both 147.3 131.1 2.6 9.3 4.2 43.3

OProcess card. limit 199.3 0.0 6.9 12.0 2.3 92.6
MinCS reuse 250.9 217.8 6.7 12.2 0.6 91.8
both 197.9 165.0 6.8 12.2 0.6 91.9

OMGED card. limit n/a n/a n/a n/a n/a n/a
MinCS reuse 286.4 253.4 2.9 15.1 115.9 53.9
both 265.1 232.4 3.0 15.1 114.3 54.1

Table 6.5: Comparison of gained assertions compared to query rewriting and perfor-
mance of optimizations

The diagrams in Figure 6.7 plot the required time to compute a smallest MCS over
the number of goals per goal set for all four ontologies. As expected, the required time
increases with the number of goals in a goal set. The diagrams and Table 6.5 show
that the optimization of putting a cardinality limit is significantly slower than reusing
MinCS while both optimizations combined are close to using the latter optimization
only.

The experimental results for the second experiment comparing conflict resolution
with overrestrictive strategy vs. overpermissive strategy are given in Table 6.6. Only
some of the goal sets constructed as described above are conflicting, and results are
only given for those. Only the given percentage of the goals of a goal set are enforced,
the remaining consequences have overpermissive (respectively overrestrictive) labels
making them more public (private) than intended by the goal set. The runtime limit
of 10 cMCS was hit in every case, making the HST algorithm stop with non-final
results. In our case it always computed at least one RMCS, but as explained above
there might be a RMCS with fewer overpermissive (overrestrictive) consequence labels
when relaxing this runtime limit. The number of RMCS equals the number of cMCS
in all our tests, so there is no conflict which cannot be solved by syntactic conflict
resolution in our test set, although these cases can be constructed as explained in
Section 5.2.4.

The number of overpermissive (respectively overrestrictive) consequences is plotted
against the number of goals in a goal set in the upper part of Figure 6.8. It shows that
the more conflicting goals are contained in a goal set, the more consequence labels do
not receive the originally intended label but an overrestrictive (overpermissive) label
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Figure 6.7: Required time to compute a smallest MCS over the number of goals per
goal set with ontologies OFunct (upper left), OGeom (upper right), OProcess (lower
left), OMGED (lower right)

assigned. The lower part of Figure 6.8 depicts the percentage of enforced goals plotted
against the number of goals in a goal set. In our tests set there does not seem to be a
relation between the two, so a larger set of conflicting goals does not necessarily mean
that a lower percentage of those goals are enforced.

´

6.3 Conclusions of the Chapter

We evaluated implementations of our algorithms empirically, showing that they per-
form well in practical scenarios with large-scale ontologies. Our experiments cover
the algorithms for computing a consequence’s boundary, repairing this boundary and
repairing the boundaries for several consequences simultaneously:

• Computing a consequence’s boundary is one of the reasoning tasks with labeled
ontologies. From the two black-box algorithms that can deal with arbitrary lat-
tices, the full axiom pinpointing approach is clearly outperformed by the label-
optimized axiom pinpointing approach, which is faster up to factor 155. For the
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Test �goal �goals Strat- Results (averages per conflicting goal set)
set sets

confl.
per

confl.
goal set

egy �cMCS �RMCS |RMCS| Time in
minutes

�OR/OP
cons.
labels

% of
enforced

goals
OFunct 19 50.3 OR 10.0 10.0 101.4 2.2 19.5 64%

OP 10.0 10.0 110.0 2.0 20.3 64%
OGeom 39 150.7 OR 10.0 10.0 139.4 45.4 63.3 71%

OP 10.0 10.0 140.4 37.0 52.1 80%
OProcess 23 31.0 OR 10.0 10.0 32.3 0.9 12.7 62%

OP 10.0 10.0 32.6 0.8 11.0 67%
OMGED 16 165.8 OR 10.0 10.0 140.4 814.6 75.6 59%

OP 10.0 10.0 141.6 780.8 51.9 73%

Table 6.6: Conflict resolution with overrestrictive (OR) strategy vs. overpermissive
(OP) strategy

special case where the labeling lattice is a total order, label-optimized axiom
pinpointing is again outperformed by the Binary Search approach by roughly
factor 2. We provided an estimate from a system designer’s point of view com-
paring our approach of labeled ontologies and consequences to a naïve approach
of reasoning over separate ontologies. It showed that our approach is faster when
more than four incomparable user labels are present in a nonlinear lattice or when
more than 12 user labels are present in a linear lattice.

• A second reasoning task is repairing a consequence’s boundary, which is only
possible by changing axiom labels. Our experiments show that our algorithms
and optimizations yield tangible improvements in both the execution time and
the quality of the proposed smallest CS defining a new axiom labeling. In order
to compute a smallest CS, the approach of computing all MinAs is outperformed
up to factor 12 by our optimized approach of computing IAS and RAS. Limiting
cardinality further reduces computation time up to factor 2. In combination we
observed a performance increase up to factor 18. But not only performance is
improved, at the same time both optimizations increase quality of the computed
smallest CS under limited resources at runtime.

• A third reasoning task is repairing several consequence boundaries simultane-
ously. A comparison of our label filtering approach to a query rewriting approach
revealed that label filtering allows making more knowledge available while still
keeping the defined secrets. For example, for an ontology with 150 individuals
and 1537 concepts, we gained on average 90 concept assertions per goal set. We
found that, the larger a conflict-free goal set, the more assertions are gained in
general, but the required time also increases. To reduce time, especially our op-
timization of MinCS reuse pays off and increases performance by almost factor 6
compared to the cardinality limit optimization. In the presence of conflicts in a
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Figure 6.8: Overpermissive (left) and overrestrictive (right) conflict resolution with
the number of overriden consequence labels (upper) and percentage of enforced goals
(lower) over the number of goals in a goal set

goal set, an overpermissive or overrestrictive conflict resolution still allows enforc-
ing 59%-80% of the goals contained in a goal set in our scenario. Interestingly,
this percentage did not generally decrease with larger goal sets.

In general, for all experiments we observed longer computation times for more
expressive ontologies. For this reason, in practical applications it might help to keep
the used expressivity as low as absolutely necessary.
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Vision without execution is

hallucination.

Thomas Edison

7 Conclusions
This thesis investigated several techniques to enable access restrictions to as well as
with Description Logic ontologies. Central objectives of this work have been the repre-
sentation and completion of RBAC policies and a framework for handling restrictions
for reading access to an ontology’s axioms and its consequences and how to handle
them in a practically feasible and intuitive way. In the following sections, major tech-
nical and empirical results of this thesis are discussed and some directions for future
work are given.

7.1 Discussion of Achieved Results

The major results achieved in the context of this thesis can be categorized into four
groups:

• a methodology to represent RBAC policies with Description Logics and to com-
plete RBAC policies systematically during a computer-supported dialog with the
security engineer;

• a framework, which is independent of a specific ontology language or reasoner,
for lattice-based access restrictions for reading access to explicit (and implicit)
knowledge represented in an ontology (and following from that ontology);

• user support to facilitate the work of a security engineer to assign axiom-level
access restrictions;

• an empirical evaluation, showing that concepts and algorithms developed in this
thesis perform well in practical scenarios with large-scale ontologies.

All research questions from Section 1.4 have been answered as detailed out in the
following. The following sections are a collection of the conclusions of the chapters.
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7.1.1 Representing and Completing RBAC Policies

RBAC is a standardized and well established access control model, abstracting from
individual users by user roles. We have shown how to represent RBAC policies as DL
ontology and how to complete RBAC policies in the sense of adding new knowledge
that has been neither explicit nor implicit before.

In Section 1.4 we posed the following research questions, which have been answered
with results of this thesis.

7. Are DLs an appropriate formal representation of the explicit permis-
sions defined by an RBAC policy and is it possible to infer the implicit
permissions from this representation?

8. Can a labeling lattice be obtained from an existing RBAC matrix and
what may need to be changed?

9. Can the systematic and non-redundant identification of constraints in
an RBAC matrix be reduced to a known problem and what extensions
may be necessary?

The main argument to use a knowledge representation formalism to represent an
RBAC policy is that a policy specifies explicit permissions from which implicit per-
missions follow. We discussed approaches from literature to represent RBAC policies
by means of a DL ontology and focused specifically on an extension of RBAC, called
RBAC-CH, adding a hierarchy of object classes to RBAC. We introduced a represen-
tation of RBAC-CH that has several advantages over the proposal in related work.
Furthermore, we have shown that the RBAC matrix can be computed from an RBAC
policy by just plugging in a reasoner and querying for all implicit permissions. The
resulting matrix helps, e.g., the security engineer to verify the effect of user role and
object class hierarchy. However, we pointed out that a DL representation does not add
any new knowledge that was not already contained in the RBAC policy. Basically, in
addition to RBAC policy and RBAC matrix, it just adds a third representation based
on Description Logics.

We have shown how to complete RBAC policies in the sense of adding new knowl-
edge that has not yet been represented in a computer, but was known to an expert, e.g.
the security engineer, before. Our methodology is based on a known method from FCA,
called attribute exploration. An RBAC matrix can be written as three-dimensional
formal context, but needs to be interpreted and transformed appropriately, so that
attribute exploration for two-dimensional contexts can be applied. In one of the dis-
cussed interpretations, the strict interpretation, the set of permissions an individual
can have is strictly defined by the RBAC matrix. No additional constraints need to
be checked. Under a permissive (respectively prohibitive) interpretation, individuals
have additional (respectively fewer) permissions than given for their user roles. This
means the RBAC matrix is no complete definition of permissions for an individual. In
that case we might nevertheless have general rules and constraints which have to be
fulfilled in any case on the level of individual users. For example, nobody might be
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allowed to write and approve the same document for a proper review process. Rules
like this on the level of individual users and individual documents can be identified by
our systematic and non-redundant method based on attribute exploration. We have
shown that known implications from a user role hierarchy or object class hierarchy can
be exploited in order to pose fewer questions to the security engineer. We introduced
a new DL representation to capture knowledge from the RBAC matrix as well as the
newly obtained knowledge.

Our results on the representation and completion of RBAC policies laid the ground
for the next chapters on access restrictions to an ontology’s axioms, since some of the re-
sults allow to reuse a given RBAC policy to prepare a labeling lattice which is required
in our framework for access restrictions to an ontology’s axioms and consequences.

7.1.2 Access Restrictions to Explicit and Implicit Knowledge

In Section 1.4 we posed the following research questions, which have been answered
with results of this thesis.

1. For an access control model which allows multiple visible sub-ontologies
from one large ontology with respect to a criterion expressed by ax-
iom labels, user labels and a hierarchy between those labels, how can
such a model be formalized and what constraints need to be taken
into account?

2. Given that all axioms of an ontology are labeled, what is the label of
a consequence which can be inferred and made explicit by a reasoner?

3. Can the repair of a consequence label be reduced to a known problem,
and what optimizations are possible?

We have considered a scenario where ontology axioms are labeled and user labels
determine views on the ontology, i.e. sub-ontologies that are obtained by comparing
the user label with the axiom labels. The labeled axioms entail consequences, but
their labels are not explicitly given. However, intuitively a consequence should have
the same access restriction as the axioms from which it follows. We introduced an
approach formalizing this intuition and showed how to compute a label for a given
consequence, called boundary. Our approach can be used for large-scale ontologies
since, on the one hand, it allows to pre-compute consequences without having to
do this separately for all possible views. Once we have computed a boundary for the
consequence, checking whether this consequence follows from a sub-ontology is reduced
to a simple label comparison. On the other hand, the fact that we employ a black-
box approach for computing the boundary allows us to use existing highly-optimized
reasoners, rather than having to implement a new reasoner from scratch.

Our general framework allows for using any restriction criterion that can be rep-
resented using a lattice, such as user roles, levels of trust, granularity, or degrees of
certainty. With user roles, each axiom label defines the user roles able to see the axiom
and each user label defines the sub-ontology containing the axioms visible to this user.
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In the presence of trust restrictions, the user label specifies the trust level required for
the ontology axiom. This supports scenarios with axioms from different sources, like
company-internal with high trust level and public Web with low trust level. In the
presence of uncertainty, e.g. in possibilistic reasoning, each axiom has an associated
certainty degree in the interval [0, 1]. The user label then specifies the certainty degree
required for the axioms and the consequences. Similarly, granularity restrictions (i.e.,
on how much details the ontology should provide for the user) can be expressed by a
total order.

Our framework is independent of a specific reasoner. To stay as general as possible,
we do not fix a specific ontology language. We just assume that ontologies are finite
sets of axioms such that every subset of an ontology is again an ontology and we require
the consequence relation to be monotonic. The elements of the labeling lattice which
are used as user label have to be join-prime.

The security administrator might not be satisfied with the access restriction level
computed for a consequence from the access restriction levels of the axioms that entail
the consequence. In this case, the computed boundary is different from the intended
label and a repair of the consequence’s boundary is required. This is only indirectly
possible by changing some axiom labels. Based on ontology repair techniques we
developed algorithms to compute a change set of minimal cardinality, which contains
axioms to be relabeled in order to yield a desired boundary for a given consequence.
The base problem, finding a smallest MinA and diagnosis without computing all of
them allows for applications beyond our domain. Our algorithms take advantage of
(1) fixing a subset of the axioms which are known not to be part of the search space
and (2) limiting cardinality of MinCS to be computed in the Hitting Set Tree to the
size of the smallest known change set. All our algorithms are black-box based, which
means that they can be used with any off-the-shelf reasoner, without the need for
modifications.

7.1.3 User Support to Assign Access Restrictions to Ontology Axioms

The goal of this thesis is not only to provide a theoretically solid, but also a usable
framework. Since security administrators might (yet) be unfamiliar with the task of
assigning access restrictions to ontology axioms, we proposed two techniques.

In Section 1.4 we posed the following research questions, which have been answered
with results of this thesis.

4. How can repair of a consequence label be extended to the repair of
multiple consequence labels in parallel?

5. How are conflicts handled that might appear when goal labels of mul-
tiple consequences interfere with each other?

6. Is it possible to increase usability by reusing document access re-
strictions for document ontologies or by assigning a label to a set of
consequences intentionally defined by a query?
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The first proposal is to apply access restrictions that have been given to a document
also to the respective document ontology and to all contained axioms. In this case it
might happen that the same axiom is contained in several document ontologies where
the intuition would be that a user is allowed to read the axiom if she is allowed to read
at least one of those documents.

The second proposal is to formulate an access restriction with a query. All re-
sponses to that query shall receive the respective restriction. We compared two basic
approaches to enforce those query-based access restrictions: query rewriting vs. label
filtering. Compared to query rewriting, label filtering allows higher knowledge avail-
ability in the sense that more answers are delivered to a user, while not uncovering
any secret. Furthermore, it is independent of a concrete ontology language. However,
it relies on a given axiom labeling. Starting from an arbitrary axiom labeling, e.g.
a random labeling, the problem solved by our algorithms is to find a smallest MCS
defining a new axiom labeling which enforces the query-based access restrictions. The
query-based access restrictions are used to generate a so-called goal set, which con-
sists of tuples with consequence and goal label. The access restrictions are enforced
by the axiom labeling if the computed boundary for each consequence is equal to its
goal label. This is a generalization of repairing one consequence’s boundary, where
changes on the axiom labeling for one consequence must not interfere with another
consequence. We show that a changed label assignment does not always exist since
a goal set might contain conflicts and we provide two conflict resolution strategies to
relax the goal set, so that a relaxed changed label assignment can be computed.

7.1.4 Empirical Evaluation

We evaluated implementations of our algorithms empirically, showing that they per-
form well in practical scenarios with large-scale ontologies. Our experiments cover
the algorithms for computing a consequence’s boundary, repairing this boundary and
repairing the boundaries for several consequences simultaneously:

• Computing a consequence’s boundary is one of the reasoning tasks with labeled
ontologies. From the two black-box algorithms that can deal with arbitrary lat-
tices, the full axiom pinpointing approach is clearly outperformed by the label-
optimized axiom pinpointing approach, which is faster up to factor 155. For the
special case where the labeling lattice is a total order, label-optimized axiom
pinpointing is again outperformed by the Binary Search approach by roughly
factor 2. We provided an estimate from a system designer’s point of view com-
paring our approach of labeled ontologies and consequences to a naïve approach
of reasoning over separate ontologies. It showed that our approach is faster when
more than four incomparable user labels are present in a nonlinear lattice or when
more than 12 user labels are present in a linear lattice.

• A second reasoning task is repairing a consequence’s boundary, which is only
possible by changing axiom labels. Our experiments show that our algorithms
and optimizations yield tangible improvements in both the execution time and
the quality of the proposed smallest CS defining a new axiom labeling. In order
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to compute a smallest CS, the approach of computing all MinAs is outperformed
up to factor 12 by our optimized approach of computing IAS and RAS. Limiting
cardinality further reduces computation time up to factor 2. In combination we
observed a performance increase up to factor 18. But not only performance is
improved, at the same time both optimizations increase quality of the computed
smallest CS under limited resources at runtime.

• A third reasoning task is repairing several consequence boundaries simultane-
ously. A comparison of our label filtering approach to a query rewriting approach
revealed that label filtering allows making more knowledge available while still
keeping the defined secrets. For example, for an ontology with 150 individuals
and 1537 concepts, we gained on average 90 concept assertions per goal set. We
found that, the larger a conflict-free goal set, the more assertions are gained in
general, but the required time also increases. To reduce time, especially our
optimization of MinCS reuse provides advantages by increasing performance by
almost factor 6 compared to the cardinality limit optimization. In the presence
of conflicts in a goal set, an overpermissive or overrestrictive conflict resolution
still allows enforcing 59%-80% of the goals contained in a goal set in our scenario.
Interestingly, this percentage did not generally decrease with larger goal sets.

In general, for all experiments we observed longer computation times for more
expressive ontologies. For this reason, in practical applications it might help to keep
the used expressivity as low as absolutely necessary.

7.2 Directions for Future Work

Our framework might be extended and improved by research in several directions, in
order of the respective chapters:

• For the representation and completion of RBAC policies, a follow up might be
to seek for a smaller DL fragment which meets the modeling requirements for
RBAC policies. This is particularly essential for the permissive approach, as the
DL modeling we used so far is based on some non-standard DL constructors.
Next, one could want to support positive and negative authorizations in one
policy, i.e. combine the permissive and prohibitive approach. Finally, recall that
our approach was based on the assumption that the sets of roles and document
types are fixed. At changes of the sets, the obtained RBAC matrix needs to be
considered as a new matrix and our procedure would have to be started from
scratch. In some applications this might be too strict. The three interpretations
would have to be adapted and even attribute exploration for the strict approach
might make sense when dropping this assumption.

• The results on restricting access to ontology axioms and consequences are limited
to reading access. The approach might be extended to other operations on axioms
such as writing, deleting or changing.
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• The influence of characteristics of practical labeling lattices could be investigated.
A first estimate showed that our approach of labeled ontologies and consequences
pays off compared to a naïve approach of reasoning over separate ontologies when
more than four incomparable user labels are present in a nonlinear lattice or
when more than 12 user labels are present in a linear lattice. However, further
conclusions might be interesting on the influence of more specific lattice and user
label characteristics.

• For labeled ontologies, one important reasoning task was to repair a conse-
quence’s boundary. As proposed, the computed smallest change set is minimal
with respect to the number of changed axiom label assignments. Alternative
criteria could be the number of changed consequence boundaries, the distance
of the new from the old label in the lattice, or the number of users receiving
changed permissions. Another direction might be to provide a more flexible goal
definition language. Currently, a goal is defined to be equal to a selected label.
A useful extension might be to define the goal to be greater than or equal, lower
than or equal, or in other relation to a given label.

• A generalization of repairing a consequence’s boundary was repairing a set of
consequence boundaries, defined by a goal set. While we discussed syntactic
conflict resolution for contradicting goal sets, one might also investigate the
resolution of semantic conflicts. Furthermore, one could make the selection of
the conflict resolution strategy more fine-grained in order to define for each single
goal of a goal set whether it may be lowered or raised in case of conflicts.

• The performance of label filtering vs. query rewriting might be compared. While
label filtering turned out to be superior to query rewriting with respect to the
availability of knowledge, the empirical evaluation unveiled that repairing a set of
boundaries is time consuming. On the one hand, this task can be performed of-
fline before the system is running and label filtering would allow quick response
times due to the computationally cheap label comparison. For this reason it
might be especially useful in applications where low response times are impor-
tant. On the other hand, in applications where the overall computation time
is important, query rewriting might be more suitable. This might contain ap-
plications with a low number of queries until the ontology changes where the
expensively computed labeling would be used for a short time only. This trade-
off might be compared to the trade-off whether or not to compute an index
structure for efficient access to a dataset. However, this hypothesis needs to be
verified.

• New results for problems and improved implementations of algorithms on which
this thesis is based could enable additional optimizations and could further in-
crease performance in practical scenarios. This might include decision proce-
dures, reasoning techniques, and pinpointing techniques. Examples might be
the following. Distributed reasoning might enable a higher performance in a
networked computing environment. Known explanations for some consequences
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might be exploited for “similar” consequences based on a criterion to be identi-
fied. Incremental reasoning might turn out to be interesting especially for linear
(parts of) labeling lattices.

Although the above open research directions have been opened up by results of this
thesis, we believe that the results presented in this thesis already will facilitate adoption
of and increase interest in Description Logic ontologies in enterprise environments and
any other environments that require putting access restrictions to ontology axioms as
well as the consequences following from that ontology axioms.
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