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Abstract:  Concept languages (as used in BACK, KL-ONE, KRYPTON,

LOOM) are employed as knowledge representation formalisms in Artificial

Intelligence. Their main purpose is to represent the generic concepts and the

taxonomical hierarchies of the domain to be modeled. This paper addresses the

combination of the fast taxonomical reasoning algorithms (e.g. subsumption, the

classifier etc.) that come with these languages and reasoning in first order

predicate logic. The interface between these two different modes of reasoning is

accomplished by a new rule of inference, called constrained resolution .

Correctness, completeness as well as the decidability of the constraints (in a

restricted constraint language) are shown.

Keywords: concept description languages, KL-ONE, constrained resolution,

taxonomical reasoning, knowledge representation languages.
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1 Introduction

All knowledge representation (KR) languages in Artificial Intelligence (AI) have one

deficiency in common: None of them is adequate to represent every kind of knowledge, but

instead the systems that support a particular representation formalism usually specialize on

some mode of reasoning, while leaving others out.

This is in particular the case for those knowledge representation languages that are built

on some extension of first order logic on the one hand, and the class of concept languages of

the KL-ONE family on the other hand. The systems that support either of these two classes of

formalisms have highly tuned and specialized inference mechanisms that pertain to the task at

hand, but are utterly inefficient (or outright impossible) when it comes to reasoning in a mode

that is more typical for the other class. Hence one would like a combination of the KR-

formalisms for a more satisfactory representation of the knowledge domain.

What is required are hybrid KR-formalisms that support an adequate representation of

different kinds of knowledge chunks. One step in this direction has been made in the field of

automated deduction, where sorted logics have been proposed, i.e., an extension of standard

predicate logic (PL1) with so-called sort hierarchies (Frisch, 1989; Walther, 1987; Schmidt-

Schauß, 1989; Beierle et al., 1990; Weidenbach & Ohlbach, 1990; Cohn, 1987). Sort

hierarchies are set description languages with a relatively weak expressiveness1, but they

turned out to provide a powerful extension of predicate logic that can still be based on the

Resolution Principle (Robinson, 1965). It has been shown that sort hierarchies – or their

operationalization via sort resolution –␣allow a substantial pruning of the search space by

replacing certain deduction sequences with a deterministic computation of  the subset

relationships (Frisch, 1986; Walther, 1988). The essential idea is this: based on work carried

out in the logic community in the 1930's and 40's (Herbrand, 1930; Oberschelp, 1962;

Schmidt, 1938, 1951) the universe of discourse (the domain for the interpretation) is

partitioned into several classes (the sorts) in the case of many sorted logics, which again may

have subsorts in the case of order sorted logics. Instead of a unary predicate that expresses

this information, sort symbols are attached to variables, constants etc. For example the fact

that all natural numbers are either even or odd can be expressed as:

∀x . NAT(x)   implies EVEN(x)  or  ODD(x)

or in a sorted logic as

∀x:NAT  . EVEN(x)   or ODD(x).

Since there is a general translation (called relativization) between these variants of logic and

since also the expressive power is not principally enhanced but remains that of a first order

language, interest in the logic community faded by the mid sixties.

1 Sorts are interpreted as sets, sort hierarchies specify the subset relationship.
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This work was rediscovered however by workers in the field of automated reasoning

(Walther 1987), when it became apparent that although the expressive power does not

increase in principle, there is still an enormous difference in practice, when it comes to

actually building an inference engine for the respective logics.

The same general observation holds for current concept description languages in AI

and their relationship to predicate logic: while they do not enhance the expressiveness of PL1

in principle, they definitely advance the state of the art, when it comes to actually reason – i.e.

draw conclusions – in their respective formalisms.

Concept description formalisms of the KL-ONE family (Brachman & Schmolze, 1985;

Brachman & Levesque, 1985; Vilain, 1985; MacGregor & Bates, 1987; Nebel, 1990) are

more expressive than mere sort hierarchies. They provide terminologies of concepts or sets

whose underlying taxonomical hierarchies determine subset relationships quite similar to sort

hierarchies. But in contrast to sort hierarchies concept languages allow far more complex

constructs for set descriptions themselves. We shall show one possible combination of this

terminological reasoning with that of standard predicate logic, based on the idea to enhance

PL1 with concept descriptions, which are then taken as constraints for the variables occurring

in the formulae – just as in the above mentioned approaches to sorted logics. However, there

are two main differences: The first is that these constraints have a more complex structure:

sets are not just denoted by sort symbols as in sorted logics, but they are denoted by complex

concept description terms. The second difference is that instead of simple sort hierarchies we

now have more complicated taxonomies, which do not necessarily possess generic models

(least Herbrand models) as in the case of ordinary sort hierarchies  (Frisch, 1989).

This paper addresses the combination of the fast taxonomical reasoning algorithms (e.g.

subsumption, the classifier etc.) that come with these languages and reasoning in first order

predicate logic. The interface between these two different modes of reasoning is accomplished

by a constrained-based modification of the Resolution Principle. This can be seen as a

generalization of M. Stickel’s theory resolution principle (Stickel, 1985) on the one hand and

of the ideas of constrained logic programming (Höhfeld & Smolka, 1988; Jaffar & Lassez,

1987) on the other hand, and is worked out in (Bürckert, 1990).

2 Constrained Resolution

The resolution principle elaborates the idea that we can infer the resolvent  formula B ∨ C ,

from the parent formulae A ∨ B  and ¬A ∨ C . Here the formulae have to be clauses, i.e.,

universally quantified disjunctions of literals. The A ’s of the two parent  formulae are

complementary literals, and in order to obtain the resolvent we have to unify  corresponding

arguments of those literals and apply the unifying substitution to the resolvent, for example:
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␣ P(s1 ,…,sn) ∨ B

␣¬P(t1,…,tn) ∨ C

————————␣␣if there is some σ with σsi = σti (1 ≤ i ≤ n)2

␣ ␣ ␣σ(B ∨ C)

An analysis of Robinson’s soundness and completeness proof for resolution (Robinson,

1965), provides an argument that the computation of a unifying substitution can be replaced

by a unifiability test, provided we add a constraint  consisting of the conjunction of the term

equations s i = t i (1 ≤ i ≤ n) to the resolvent (instead of instantiating it with the substitution)3.

A slight modification of this approach transformes the clauses into homogeneous form,

where the argument terms of the literals are replaced by new variables. Then constraints are

attached to the clauses, that specify the equality of these new variables with the substituted

terms. For example

P(b, x) ∨ Q(a, f(x, b), g(z))
is replaced by

P(x1, x2) ∨ Q(x3, x4 , x5)  ||  x1=b, x2=x, x3=a, x4=f(x, b), x5=g(z).

Now a resolution step takes two clauses with such equational constraints  and generates a

resolvent with a new unified equational constraint.

Noticing that unifiability of equations is the same as the satisfiability of the existential

closure of these equations in the (ground) term algebra, we obtain a more general view:

clauses might have some arbitrary, not necessarily equational constraint for their variables. A

resolvent of two clauses generates a new constraint that is unsatisfiable whenever one of the

parents’ constraints is unsatisfiable. Here the derived new constraint is a conjunction of the

old ones after an identification of the corresponding variables. Let Γ and Γ ´ denote

constraints that are separated from their corresponding clause by  ||␣, then we denote

constrained resolution as:

␣␣  P(x1,…,xn) ∨  C␣␣  ||␣␣Γ

␣¬P(y1,…,yn) ∨ C’␣␣||␣ Γ´

——————————————␣␣if  Γ ∧ Γ´ [yi  = xi (1≤i≤n)] is satisfiable

␣ C ∨ C’␣ || ␣Γ ∧ Γ´[yi  = x i (1≤i≤n)]

The satisfiability of the constraint is defined with respect to a distinct constraint theory.

As in the classical case, the overall task is now to prove the unsatisfiability of a given set

of constrained clauses, where we have to take into account that the constraints are interpreted

with respect to the given constraint theory. This constraint theory could be any set of models

– either given by a set of axioms or in any other way. In the classical case for instance, the

2 This inference rule has to be read as follows: From the formulae above the line infer the formulae below the
line provided the condition can be satisfied.
3 Huet (Huet, 1972) in fact used this trick in order to have a resolution rule for higher order logics. He already
used the name “constrained resolution” for this rule.
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constraint theory might be thought of as a singleton set containing just the ground term

algebra, i.e., the Herbrand universe.

Let us introduce these notions of constraint theories and constrained clauses more

formally. A constraint theory consists of a set of constraint symbols  (or constraints)

and a set of constraint models, in which these constraint symbols are interpreted (cf. also

Höhfeld & Smolka, 1988; Smolka, 1989). Given an infinite set V of variables we assume that

every constraint Γ comes with a finite set of variables Var(Γ) = {x1 ,…,xn} . In this case the

constraint is often denoted by Γ(x1,…,xn). Each model A consists of a nonempty set DA, the

domain, and for each constraint symbol Γ it contains a set ΓA  of A -solutions, i.e., of

assignments σ: V → DA. Up to now a constraint theory is nothing but a set of first order

structures over a (possibly infinite) signature of predicate symbols, namely the constraint

symbols. The set of n-tuples, given by the A-solution values of the variables of an n-ary

constraint, is just the denotation of the corresponding predicate symbol in the first order

structure A. However, for the constrained resolution rule we need in addition that the set of

constraints has to be closed under conjunction, under renaming4 and under identification of

variables. That is, for every two constraints there must be a conjunct constraint, whose

solution sets are the intersections of its constituents. Also for each constraint and each

variable substitution, which renames or identifies variables, there must be a variant or an

instance constraint, whose solutions are obtained by renaming the former solutions

accordingly or by selecting just those solutions that assign the same value to identified

variables. To be more precise: we assume that for every two constraints Γ1 and Γ2  there exists

their conjunct constraint Γ1  ∧ Γ2 such that (Γ1 ∧ Γ2)A  = Γ1
A ∩  Γ2

A for every constraint

model A; and we assume that for every constraint Γ and for every (renaming or identifying)

variable substitution ϕ: V → V there exists the (variant or instance) constraint ϕΓ such that

(ϕΓ)A = {σ*  | σ∈ ΓA with  σx = σy if ϕx = ϕy} for every constraint model A, where σ* is

defined by σ∗ϕx := σx for each variable  ϕx ∈ ϕ(V), and σ∗z := σz for all other variables z.

We now want to extend constraint theories with further predicate symbols. Thus given a

constraint theory and a set P of predicate symbols –␣disjoint from the set of constraint

symbols – we augment the constraint models by any possible denotation for these new

symbols: An R-structure  is given by a constraint model, where in addition each n-ary

predicate symbol P␣ ∈ P denotes an n-ary relation PA on DA.

For technical reasons we do not allow arbitrary formulae over these predicate symbols

as there might be problems transforming them into constrained clauses, depending on the

constraint theory (Bürckert, 1990). Thus we restrict ourselves to formulae that are already in

(constrained) clause form, i.e., to sets of constrained clauses.

An atom  is a predicate symbol followed by a list of variables: P(x1,…,xn). A literal is

an atom or its negation: ¬P(x1,…,xn). A constrained clause is a pair consisting of a set C

4 As in the classical case clauses have always to be variable disjoint, which requires a renaming of the generated
resolvents – and hence also of their constraints – before they can be added to the clause set.
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of literals (called the kernel or the matrix of the clause) and a constraint Γ. Constrained

clauses are written  C␣||␣Γ.

The semantics of constrained clauses are defined as follows.

Let A  be an R-structure, let α be an A-assignment, let P be a predicate symbol, and let

C be a set of literals, i.e., the kernel of a constrained clause. Then

➤ (A, α)   7§ P(x1,…,xn) iff (αx1,…,αxn) ∈ PA

➤ (A, α)   7§ ¬P(x1,…,xn) iff (αx1,…,αxn) ∉ PA

➤ (A, α)   7§ C iff (A, α)   7§ L for some literal L in the set C

Let C␣||␣Γ be a constrained clause. Then

➤ A 7§ C␣||␣Γ  iff (A, α)  7§ C for each A-solution α of Γ.

Note that the constrained clause is also satisfied by the R-structure, if the constraint has no

A-solution. In particular, a constrained clause, whose constraint does not have an A-solution

in any R-structure A, is a tautology with respect to the constraint theory.

We call a set of constrained clauses R-satisfiable  iff there is an R-structure A such

that each of the clauses is satisfied by the structure; otherwise the clause set is called

R-unsatisfiable.

Not every constraint needs to have solutions, but in order to specify the derivation rules

for proving the unsatisfiability of a constrained clause set our main interest lies in constraints

that have solutions – at least in one constraint model. A constraint Γ is called satisfiable or

solvable iff there is at least one model A, where the A-solution set of the constraint is not

empty. We have the following constrained resolution rule for a pair of variable disjoint

constrained clauses:

␣  {␣P(x11,…,x1n),…, ␣P(xk1,…,xkn)} ∪  C␣ ␣||␣␣Γ

 {¬P(y11,…,y1n),…,¬P(ym1,…,ymn)} ∪  C’␣␣||␣␣Γ’

␣ ␣——————————————————————————  if ϕ(Γ ∧ Γ´)  is satisfiable

␣ ␣ ␣ C ∪  C’␣␣||␣␣ϕ( Γ ∧ Γ´)

where C and C’ are the remaining parts of the two clauses and the new constraint ϕ(Γ ∧ Γ´)

is a conjunction instantiated by a variable substitution ϕ that identifies corresponding

variables of the complementary literals:  ϕx1i = … = ϕxki = ϕy1i = … = ϕymi (1␣≤ i ≤ n). The

derived clause is called a resolvent  of the two parent clauses, its variables have to be

renamed, in order to keep the clauses’ variables disjoint. This whole operation on clause sets

is called a resolution step . A derivation is a (possibly infinite) sequence of resolution

steps.

On closer inspection we notice that the unsatisfiability of a constrained clause set cannot

be proved by just deriving the empty clause, as in the classical resolution calculus. The reason
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is that such an empty clause might still have some constraints, which are only satisfied by

some of the constraint models, but not by all of them. For classical resolution the derivation of

the empty clause could be seen as a derivation of false from the starting clause set, but in the

constraint resolution framework this provides just a derivation of false within those models

that satisfy the constraints of the empty clause. The solution is to construct for each constraint

model a suitable empty clause whose restriction is satisfied by that model (Bürckert, 1990).

We call a set of (satisfiable) constraints valid  iff for each constraint model A at least one of

the constraints in the set has A-solutions. With this notion we now define: A refutation is a

derivation, such that the set of constraints of all derived empty clauses is valid. However, this

is not an operational definition: we need terminating refutations, so we have to restrict the

constraint theories to those where only a finite number of such constrained empty clauses is

needed. A constraint theory is compact iff every valid set of constraints contains a finite

subset, which is again valid. For compact theories every infinite refutation contains a finite

subsequence of resolution steps that is a refutation.

The following completeness result for constrained resolution can be proved by a

suitable generalization of the standard completeness proof for classical resolution (Bürckert,

1990):

Theorem:  (Soundness and completeness of constrained resolution)

Let R  be a (compact) constraint theory. A set C  of constrained clauses is

R-unsatisfiable iff there exists a (finite) refutation of C.

Any theory over a given first order language – given as a set of first order structures

over this language – can be seen as a constraint theory, where the open first order formulae

play the role of constraints. Such a constraint is satisfiable iff its existential closure is

satisfiable by some of the models of the theory. The theory is a compact constraint theory iff it

has an axiomatization by a set of first order formulae (this is an easy consequence of the

compactness theorem of predicate logic and the above definition of validity of constraints).

Obviously a finite set of constraints is valid iff the existential closure of the disjunction of its

elements is a theorem of the theory, i.e. it is satisfied by each model of the theory.

Many concept languages are known to provide a special class of theories with first order

axiomatizations, such that it is decidable if a concept description denotes a nonempty set in at

least one of the models of that theory. It turns out that this test is essentially the basis of the

satisfiability test we need in our constrained resolution steps. We shall see that the validity of

a set of concept constraints is also decidable, for a reasonable class of concept languages, to

be defined below.

3 Concept Languages

Concept languages were introduced by (Brachman & Schmolze, 1985) for the formalization

and structuring of semantic networks (Quillian, 1968). In particular, they are used to
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represent the taxonomical and conceptual knowledge of a particular problem domain. To

describe this kind of knowledge, one starts with given atomic concepts and roles, and defines

new concepts and roles5 using the operations provided for by the concept language. Concepts

can then be considered as unary predicates which are interpreted as sets of individuals and

roles as binary predicates which are interpreted as binary relations over individuals.

Examples for atomic concepts may be person and female, examples for roles may be

child and friend. If logical connectives like conjunction, disjunction, and negation are present

as language constructs, one can describe the concept of a man as those “persons who are not

female” and represent it by the expression (person ® ¬ female), where ® is the conjunction

and ¬ is the negation operator provided by the concept language. Conjunction, disjunction,

and negation are interpreted as set intersection, union, and complement. Most languages

provide quantification over roles that allows for instance to describe the concepts of

“individuals having a female child” and “individuals for which all children are female” by the

expressions ∃child. female and ∀child. female, respectively. Number restrictions on roles denote

sets of individuals having at least or at most a certain number of fillers for a role. For

instance, (≥ 3 friend) ® (≤ 2 child) can be read as “all individuals having at least three friends

and at most two children.”

Concept languages, e.g., FL and FL¯ (Levesque & Brachman, 1987), TF and NTF

(Nebel, 1990), or the AL-languages considered in (Schmidt-Schauß & Smolka, 1988;

Hollunder & Nutt, 1990), differ in what kind of constructs are allowed for the definition of

concepts and roles. Their common feature – besides the use of concepts and roles – is that the

meaning of the constructs is defined by a model-theoretic semantics.

In this section we show how to conceive a concept language as a constraint theory. For

this purpose we restrict our attention to the concept language ALC (Schmidt-Schauß &

Smolka, 1988). This language offers language constructs for conjunction, disjunction, and

negation of concepts as well as role quantification. It would also be possible to use an

extension of ALC, e.g. ALC amalgamated with number restrictions, but this would burden

the presentation without any new insight.

We assume a language with two disjoint alphabets of symbols, concept symbols  and

role symbols. We have two special concept symbols T (top symbol) and ⊥  (bottom

symbol). The set of concept descriptions of ALC is inductively defined:

➤ every concept symbol is a concept description (atomic description).

Now let C and D be concept descriptions already defined and let R be a role symbol. Then

➤ C ® D  (conjunction), C Ω D (disjunction) and ¬C (negation) are concept

descriptions, and

5In this paper we do not consider the definition of complex roles. See (Baader, 1990; Hollunder & Nutt, 1990)
for a discussion of role-forming constructs such as the transitive closure or intersection of roles.
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➤ ∀R.C  (value restriction) and ∃ R . C  (exists restriction) are concept

descriptions.

An interpretation  I of a concept description consists of a nonempty set TI (the

domain of I ), and a function •I (the interpretation function of I ). The interpretation

function maps every concept symbol A to a subset A I of TI and every role symbol R to a

subset RI of TI ≈ TI. The interpretation function - which gives an interpretation for concept

and role symbols - will be extended to arbitrary concept descriptions as follows. Let C  and D

be concept descriptions and let R  be a role symbol. Assume that CI and DI is already defined.

Then

➤ (C ® D)I := CI ∩ D I

➤ (C Ω D)I := CI ∪ DI

➤ (¬C)I := TI \ CI

➤ (∀R.C)I := {a ∈ TI | ∀b: (a, b) ∈ RI ⇒ b ∈ CA}

➤ (∃R.C)I := {a ∈ TI | ∃b: (a, b) ∈ RI ∧ b ∈ CA} .

In KL-ONE-based knowledge representation systems such as KL-ONE (Brachman &

Schmolze, 1985), BACK (Nebel, 1990), KRYPTON (Brachman et al., 1985), LOOM

(MacGregor & Bates, 1987), concept languages are used to describe a terminology, i.e., the

taxonomical knowledge. Starting with concepts such as person and female one can describe

“persons that are not female” by the expression (person ® ¬female). If we want to use this

expression in other concept descriptions it is appropriate to define the terminological

axiom

man  =  person ® ¬female

where man is a concept. If child is a role, we can describe “not female persons with only

female children” by the expression (man ® ∀child.female). Terminological axioms allow to

define abbreviations for concept descriptions, and hence help to keep concept descriptions

simple. However, for reason of simplicity of presentation we do not consider terminological

axioms. Thus we assume that every concept in a concept description is completely undefined

and not an abbreviation for another concept description.

A concept description C is called satisfiable  iff there exists an interpretation I such

that CI is nonempty, and is called universally satisfiable  iff there exists an interpretation I

such that CI =  TI. We say D is subsumed byC if DI⊆ CI for every interpretation I, and C  is

equivalent to D if CI = DI for every interpretation I.

For our view of concept languages as constraint theories, we are only interested in

satisfiability and universal satisfiability of concept descriptions. KL-ONE-based knowledge

representation systems offer in addition to a concept language an assertional component for

the introduction of objects, which are instances of concept descriptions and roles. In this case

there are notions as consistency of the knowledge base, instantiation, realization and
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retrieval. Definitions of these and relationships between them can be found in (Nebel, 1990;

Hollunder, 1990).

We shall now describe how to view a concept language as a constraint theory using

concept descriptions to define socalled concept constraints. Let V  be an infinite set of

variables. An atomic concept constraint is of the form x:C where x is a variable and C is

a concept description. A concept constraint Γ(x1,…,xn) is a finite set {x1:C1,…, xn:Cn}  of

atomic concept constraints.

A solution of a concept constraint Γ = {x1 :C1,…, xn:Cn}  in an interpretation I is an

I-assignment α: V → TI such that αx i ∈ C i
I (1 ≤ i ≤ n). A concept constraint Γ is satisfiable

iff there exists an interpretation I and a solution of Γ in I.

Let Γ be a concept constraint. Without loss of generality we can assume that the

variables occurring in the atomic concept constraints of Γ are pairwise disjoint. To see this,

suppose that Γ = {x1:C1,…, xn:Cn}  and x i = x j for some  i ≠ j . Then we create a new concept

constraint Γ´␣ := Γ  \ {xi:Ci, xj:Cj}  ∪ {xi:(Ci ® Cj)} . Obviously, Γ is satisfiable if and only if Γ´

is satisfiable. This process is iterated until we obtain a concept constraint such that variables

occurring in the atomic concept constraints are pairwise disjoint.

Now consider the constrained resolution rule: In order to make the application of the

resolution step effective, we need an algorithm that decides whether the conjunction of the

constraints of the parent clauses is satisfiable. In the following proposition we relate the

satisfiability of concept descriptions to the satisfiability of concept constraints.

Proposition 3.1:

A concept constraint Γ = {x1:C1,…, xn:Cn} with pairwise different variables is

satisfiable if and only if every concept description Ci␣is satisfiable.

Proof:  (⇒)  If Γ = {x1:C1,…, xn:Cn}  is satisfiable, then there exists an interpretation I such

that every C i
I is nonempty. Hence every Ci is satisfiable.

(⇐)  Let Γ= {x1:C1,…, xn:Cn}  be a concept constraint such that x i  ≠ x j for i ≠ j . Suppose that

every Ci is satisfiable. Then there exists for every Ci an interpretation Ii such that C i
Ii is

nonempty. Without loss of generality we can assume that TIi ∩ TIj = Ø for i ≠ j. Now, let

TI␣:= ∪1≤i≤n  TIi, AI := ∪1≤i≤n  A Ii for every concept symbol A, and let RI := ∪1≤i≤n  R Ii for

every role symbol R. Then I is an interpretation and it is easy to see that Γ has a solution in I.

Hence Γ is satisfiable.  ❏

The problem of checking the satisfiability of concept descriptions is considered in

(Schmidt-Schauß & Smolka, 1988; Hollunder & Nutt, 1990), where it is shown that checking

the satisfiability of concept descriptions of the ALC-language is a decidable, PSPACE-

complete problem.



12

In order to decide whether we have reached a refutation we need an algorithm that

decides the validity of a finite set of concept constraints (cf. the completeness theorem of

constrained resolution). We show that this can be reduced to decide the universal satisfiability

of concept descriptions.

Proposition 3.2:

A set {Γ1 ,…,Γn} of concept constraints with pairwise disjoint variables is valid iff

for each sequence (x1:C1,…,xn:Cn) with x i:Ci ∈ Γi (1 ≤ i ≤ n) and each

interpretation I some Ci
  has a solution in I.

Proof: (⇐)  We show that {Γ1,…,Γn}  is valid: Let I be any interpretation. Assume that none

of the concept constraints is satisfiable in I. Then each Γi must contain an atomic constraint

xi:Ci without a solution in I. This contradicts the precondition.

(⇒)  Assume by contradiction that there is a sequence (x1:C1,…,xn:Cn) with xi:Ci ∈ Γi (1 ␣≤ i

≤ n)  and an interpretation I  such that C i
I = Ø for each i (1 ≤␣i ≤ n). We show that

{Γ1,…,Γn}  cannot be valid. Assume by contradiction that some Γi0 has a solution in I. Then

by Proposition 3.1 all its concept descriptions are satisfiable in I, and hence especially (C i0
)I ≠

Ø, which yields a contradiction. ❏

Now, let C1,…,Cn be concept descriptions and let I be any interpretation. Then

obviously (¬C1 ® … ® ¬Cn)I = T I iff Ci
I = Ø for each i (1 ≤␣i ≤ n). Together with

Proposition 3.2 this implies the following theorem:

Theorem 3.3:

A set {Γ1 ,…,Γn} of concept constraints with pairwise disjoint variables is not valid

iff there is a sequence (x1:C1,…,xn:Cn) with x i:Ci ∈ Γi (1 ≤ i ≤ n) such that the

concept ¬C1 ® … ® ¬Cn is universally satisfiable.

The above result shows that we can decide validity of a finite set {Γ1,…,Γn}  of concept

descriptions as follows: We have to test if the concept description ¬C1 ® … ® ¬Cn   is

universally satisfiable for all possible choices (x1:C1,…,xn:Cn) collecting single atomic

constraints xi:Ci from each of the concept constraints Γi. The set of concept descriptions is

valid, iff none of these tests returns the answer Yes . In the following we will show how we

can decide this universal satisfiability (section 4.2). A slight modification of this algorithm

provides an algorithm for the satisfiability test for concept descriptions (section 4.3).

4 Proving Universal Satisfiability and Satisfiability of Concept

Descriptions

Schmidt-Schauß and Smolka (1988) give an algorithm which checks  the satisfiability of

concept descriptions and we shall demonstrate by an example how this algorithm works.
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Given a concept description C this algorithm essentially tries to construct an interpretation

which interprets C as a nonempty set. If this process fails, i.e., if a contradiction occurs, the

concept description is not satisfiable; otherwise the algorithm generates such an

interpretation.

Let us demonstrate this by an example: In order to show that the concept description

C␣=␣∃R.A ® ∀R.B  is valid, we want to construct a finite interpretation I such that C I is a

nonempty set, i.e., there exists an element  in TI which is an element of CI. The algorithm

generates such an element a  and imposes the constraint a ∈ CI on it. Obviously, this yields

that a ∈ (∃R .A)I and a  ∈ (∀R.B)I. From a  ∈ (∃R.A)I we can deduce that there has to exist

an element b  such that (a, b) ∈ RI and b ∈ AI. Thus the algorithm introduces a new element

b and constrains it as mentioned. Since a ∈ ( ∀R.B)I and (a, b) ∈  RI, we also get the

constraint b ∈ BI. We have now satisfied all the constraints in the example without getting a

contradiction. This shows that CI is satisfiable. We have generated an interpretation I which

interprets C as a nonempty set: TI = {a, b}, AI = BI = {b}, and RI = {(a, b)}. Termination of

the algorithm is ensured by the fact that the newly introduced constraints are always smaller

than the constraints which enforced their introduction. Note that a constraint  a  ∈ (C  ® D)I

forces to generate two new constraints a ∈ C I and a  ∈ D I. On the other hand, if we have a

constraint  a ∈ (C  Ω D)I, then we have to choose either a  ∈ CI or a ∈ DI.

Now let us consider an algorithm which checks the universal satisfiability of concept

descriptions. Suppose C = ∃R .A  ® ∀R.B is universally satisfiable. We try to construct an

interpretation I such that CI = TI. Since TI is a nonempty set, there has to exist an element in

TI, and hence in C I. Thus the algorithm generates such an element a  and imposes the

constraint a ∈ CI on it. Furthermore, as argued above, the algorithm creates the constraints

(a, b) ∈ RI, b␣∈ AI, b ∈ BI where b is a newly introduced element. Since b  is an element of

TI, we have to impose the additional constraint b ∈ C I on b . Again, because b ∈ CI, there

exists an element c␣ ∈ TI which satisfies the constraints (b, c) ∈ RI, c ∈ A I, c ∈ B I, c ∈ CI.

Obviously, the algorithm that tries to construct an interpretation I with CI = TI would run

forever creating more and more new elements. However, if we set c = b , then we have TI =

{a, b} , AI =  BI = {b}, RI = {(a, b) , (b, b)}, and hence CI = TI. Thus, the main problem in

extending the satisfiability algorithm to a universal satisfiability algorithm is to find an

appropriate criterion for termination. This will be done with the help of so-called concept

trees, which are introduced in the next subsection.

This section is organized as follows: In subsection 4.1 we state some basic definitions.

The main result, an algorithm for deciding the universal satisfiability of concept descriptions,

is presented in subsection 4.2. In subsection 4.3 we slightly modify this algorithm to obtain an

algorithm for checking the satisfiability of concept descriptions.
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4 .1 Basic Definitions

To keep our algorithms simple, we single out a special class of concept descriptions as normal

forms. We say a concept description C is equivalent  to D iff CI = DI for every interpretation

I. A concept description C  is called simple  iff C is a concept symbol, or a complemented

concept symbol, or if C  is of the form ∀R.D or ∃R .D. A conjunctive  concept description

has the form C 1 ® ... ® C n  where each Ci is a simple concept description. A

subconjunction  for C1 ® ... ® Cn has the form C i1
  ® ... ® C im

. By grouping together

exists and value restrictions we can write conjunctive concept descriptions in the form 

A 1 ® … ® Am® ∃R1.E1 ® … ® ∃R l.E l ® ∀S1.D1 ® … ® ∀Sk .Dk. 

This concept description contains a clash iff there exist A i and A j such that A i = ¬A j, and

contains an exists-restriction iff l > 0 . A disjunctive  concept description has the form

C1␣ Ω … Ω Cn where each Ci is a conjunctive concept description. A disjunctive concept

description which is equivalent to a concept description C is called a disjunctive normal

form for C .

Every concept description can be transformed into a disjunctive normal form. This

transformation can be performed as follows: First, we compute the negation normal form

of a concept description, that is, we bring the negation signs immediately in front of concept

symbols by rewriting the concept description via de Morgan’s laws and with rules ¬∀R.C ␣ ⇒

∃R .¬C  and ¬∃R.C   ⇒ ∀R .¬C . Then we transform this concept description into a disjunctive

normal form by applying the associativity, commutativity, idempotency and distributivity

laws of conjunction and disjunction.

We now define concept trees, which are used to impose a control structure on the

algorithm. A directed graph G = (N, E) consists of a (not necessarily finite) set of nodes N

and a set of edges E ⊆ Ν ≈ Ν. A path  in a directed graph is a sequence N
1
,... , N

k
 of nodes

such that (N i, N i+1) is an edge for each i, 1 ≤ i < k . Notice that paths contain at least two

different nodes. We say that this path is a path from N
1␣ to N

k 
, N

1
 is a predecessor  of N

k
and N

k
 is a successor  of N

1
. For a path consisting of two nodes N, M we say N  is a direct

predecessor  of M and M is a direct successor  of N . A node without successors is a leaf .

A tree is a directed graph such that

➤ there is one node, called the root, that has no predecessor

➤ each node other than the root has exactly one predecessor.

A concept tree is a tree such that every node is equipped with components, namely

➤ type

➤ extended

➤ concept-description

➤ value.

The values for the component type  range over the symbols “®”, “Ω” and “∃R” where R

is a role symbol, for the component extended they range over the symbols “yes” and “no”,
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and for value they range over the symbols “solved”, “clash”, “cycle” and “null”. The values

for the component concept-description are concept descriptions. Given a node N  in a concept

tree we will access the contents of the corresponding component with N .component. Figure

4.1 shows a concept tree.

A concept tree T  is called extended if for every node N  in T  N .extended = “yes”.

extended = yes

value = solved
A®

A ® ¬ A

Ωextended = yes

value = null
∀ R.¬ AA ∃ S.BΩ R.A∃ ® ®

extended = yes

value = null
® ∀ R.¬ A ∃ S.BR.A∃ ® ®

extended = no

value = null
∃ S.B®∀ R.¬ A

®extended = yes

value = clash
A ® ¬ A ® ∀ R.¬ A ∃ S.BR.A∃ ® ®

extended = yes

value = null Ω )(A ® ¬ A ® A Ω ∀ R.¬ A ∃ S.BR.A∃ ® ®

extended = yes

value = null
∃R R.A∃ ® ∀ R.¬ A S∃

extended = yes

value = clash
®

Figure 4.1: A concept tree.

4 .2 An Algorithm for Deciding the Universal Satisfiability of Concept

Descriptions

We will now present an algorithm that decides whether a given concept description is

universally satisfiable. The algorithm proceeds as follows: First, a concept tree consisting of a

single node is created. Then, in successive propagation steps new nodes are added until we

obtain an extended concept tree. We will see that the given concept description is universally

satisfiable if and only if the extended concept tree satisfies a certain condition, which can be

checked easily.
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The algorithm uses several functions. The function Universal-Satisfiability takes a concept

description as input, creates a concept tree, and returns this tree as argument to the function

Extend-concept-tree. This function expands the concept tree by iterated calls of the functions

Expand-or-node, Expand-and-node, and Expand-∃R-node until an expanded concept tree is

obtained.

The function Universal-Satisfiability  takes a concept description C as input and creates

a concept tree T. This concept tree consists of the node root with

➤ root.type = “Ω”

➤ root.extended = “no”

➤ root.value = “null” and

root.concept-description contains a disjunctive normal form for C . Then the function Extend-

concept-tree is called with T as argument.

The function Extend-concept-tree  takes a concept tree as argument and returns an

extended concept tree. It uses the functions Extend-or-node, Extend-and-node, and

Extend-∃R-node as subfunctions. Here is the formulation of the function Extend-concept-tree

in a Pascal-like notation.

Algorithm Expand-concept-tree (T )

if T  is extended

then return T

elsif  T  contains a node N  such that  N.type = “Ω ” and  N.extended = “no”

then Expand-or-node(T,N )

elsif T  contains a node N  such that  N.type = “® ” and  N.extended = “no”

then Expand-and-node(T,N )

else let N  be a node in T  such that N.type = “∃R ” and  N.extended = “no”

Expand-∃R-node(T,N )

end Expand-concept-tree.

 The function Expand-or-node  takes a concept tree T and a node N occurring in T  as

arguments and returns a concept tree T’. Suppose C1 Ω C2 Ω … Ω Cn is a disjunctive normal

form of N .concept-description. We modify T  (and obtain T ’) such that N .extended = “yes”

and the (newly created) nodes N i , 1 ≤ i ≤ n ,  with

➤ N i.type = “®”

➤ N i.extended = “no”

➤ N i.concept-description = Ci

➤  N i.value = “null”

are successors of N.
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The function Expand-and-node  takes a concept tree T and a node N occurring in T as

arguments and returns a concept tree T’. We modify T (and obtain T’) such that N.extended

= “yes” and N .value is

➤ “solved” if N .concept-description doesn't contain an exists-restriction

➤ “clash” if N .concept-description contains a clash

➤ “cycle” if there is a predecessor N’ of N  such that N’.type = “®” and

N’.concept-description is equal to N .concept-description modulo associativity,

commutativity, and idempotency

➤ “null” otherwise.

Furthermore, if N .value = “null”, we create successors for N  in the following way. Suppose

N .concept-description = A1 ® … ® An ® ∃R1.C1 ® … ® ∃R l.Cl ® ∀S1.D1 ® … ® ∀Sk .Dk.

Then for every i , 1 ≤ i ≤ l, the (newly created) node N i with

➤ N i.type = “∃Ri”

➤ N i.extended = “no”

➤ N i.concept-description = A1 ® … ® An ® ∃R i.Ci ®∀S1.D1 ® … ® ∀Sk .Dk

➤ N i.value = “null”

is a successor of N.

The function Expand- ∃R-node  takes a concept tree T and a node N occurring in T  as

arguments and returns a concept tree T’. Suppose N .concept-description = A1 ® … ® A n ®
∃R.C  ®∀S1.D1 ® … ® ∀Sk .Dk. We modify T (and obtain T’) such that N.extended = “yes”

and the (newly created) node N’ with

➤ N’.type = “Ω”

➤ N’.extended = “no”

➤ N’.concept-description = root.concept-description ® C ® ‰R  = Sj
 , 1 ≤ j ≤ k   Dj

➤ N’.value = “null”

is a successor of N.

Let C be a finite concept description. Obviously, C contains finitely many subterms.

Hence {  ‰ 1 ≤ i ≤ n  C i  | Ci␣is a subterm of  C} contains finitely many elements modulo

associativity, commutativity, and idempotency.

Proposition 4.1: (Termination)

Let C be a concept description. Then Universal-Satisfiability(C) terminates.

Proof: Assume that the algorithm Universal-Satisfiability does not terminate. Then an infinite

concept tree is generated since each call of Extend-or-node, Extend-and-node, or Extend-∃R-

node adds new nodes to the concept tree. Since every node has finitely many successors we

conclude with König’s Lemma that there exists an infinite path in this tree. This infinite path
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contains infinitely many nodes  N 1, N2, … with N i.type = “®” and N i.concept-description is

not equal to N j.concept-description modulo idempotency and commutativity for i < j; or

otherwise we would have then N j.value = “cycle” and thus Nj would be a leaf. On the other

hand, it is easy to show that any concept description of a node N  with N.type = “®” is of the

form C 1 ® … ® C n  where the C i are subterms of root.concept-description. Since

root.concept-description is finite there exist only finitely many concept descriptions modulo

associativity, commutativity, and idempotency that are conjunctions of subterms of

root.concept-description as mentioned before. Thus, there cannot exist an infinite path which

implies that the algorithm terminates.  ❏

An instance is obtained from a concept tree by keeping for a node N  with N.type =

“®” or N .type = “∃R” all direct successors, and by keeping for a node N  with N.type = “Ω”

only one of its direct successors. Figure 4.2 shows the instances for the concept tree given in

Figure 4.1.

Ω

®

®

Ω

®

∃R ∃S

Ω

®

i) ii) iii) Ω

®

∃R ∃S

Ω

Figure 4.2: The three instances of the concept tree given in Figure 4.1.

An instance T is successful iff for every leaf N in T N.value = “solved” or N.value =

“cycle”.

Proposition 4.2:  (Completeness)

Let C be a concept description and let T be the extended concept tree computed by

Universal-Satisfiability(C). If C is universally satisfiable, then there exists a successful

instance of T.

Proof: Let C be a concept description and let I  be an interpretation such that CI = TI.

Furthermore, let T be the extended concept tree computed by Universal-Satisfiability(C) . Then

root.concept-description = C. We use I  to construct a  successful instance of T. That means,

for every node N  with N.type = “Ω” we have to choose exactly one direct successor.

Suppose a ∈ TI. The root is a node of type “Ω” and we have an element a ␣ ∈ C I. If C1

Ω … Ω Cn␣is a disjunctive normal form for C, then there exist direct successors N1, ..., Nn of

root such that N i.type = “®” and N i.concept-description = Ci  for i, 1 ≤ i ≤ n . Since  a ∈ (C1 Ω
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… Ω Cn)I  there exists an i such that  a ∈ Ci
I. We choose the node N i as direct successor for

the root in our instance. Since a ∈ Ci
I, there is no clash in Ci and hence N i.value ≠ “clash”. If

N i.value = “solved” or N i.value = “cycle”, then N i doesn’t have any successor and we are

done. Otherwise, if N i.value = “null”, consider the concept description Ci, which has the form

A 1 ® … ® Am ® ∃R1.E1 ® … ® ∃R l.E l ® ∀S1 .D1 ® … ® ∀Sk .Dk. Since a ∈ C i
I we have

a␣∈∃R i.E i
I for i, 1 ≤ i ≤ l. There exists bi ∈ TI such that (a, b i) ∈ R i

I and b i ∈Ei
I (1 ≤ i ≤ l.)

Furthermore bi ∈ D j, if Ri  = Sj  (1 ≤ j ≤ k) since a ∈ (∀Sj .D j)I. Since bi ∈ TI, we also have bi

∈ CI. Hence bi ∈ (C  ® Ei ® ‰Ri = Sj
 Dj)I. By construction of the concept tree the node N i has

exactly l  direct successors M1, ..., Ml. Every Mi has exactly one direct successor Mi’ with

➤ Mi’.concept-description = C  ® Ei ® ‰Ri  = Sj   
Dj

➤ Mi’.type =  “Ω”.

and for each i we have an element bi ∈ (C  ® Ei ® ‰Ri  = Sj
 Dj)I. We can now proceed with

these nodes of type “Ω” as described above for root. Since the extended concept tree T

computed by Universal-Satisfiability(C)  is finite, this construction process terminates. Note that

the constructed instance does not contain a node N  with N.value = “clash” and hence we have

a successful instance.

Thus we have shown that, given a universally satisfiable concept description C, the

expanded concept tree contains a successful instance.  ❏

Let S be a successful instance of the extended concept tree computed by

Universal-Satisfiability(C). Then S  yields a canonical interpretation I, which is defined as

follows.

(1)  The elements of the domain TI are the nodes N1, ..., Nn in S  such that N i.type = “®” and

N i.value ≠ “cycle”.

(2)  Interpretation of role symbols: Let N  be an element of TI. Then N.type = “®” and

N .value = “solved” or N .value = “null”. If N.value = “solved”, then N is a leaf in S , and for

any role R, N does not have an R-successor in I. If N.value = “null”, then there exist direct

successors M1, ..., Mn of N  with M i.type = “∃Ri” for i, 1 ≤ i ≤ n . Every Mi has exactly one

direct successor Mi’ with Mi’.type = “Ω”, and every M i’ has exactly one direct successor Mi”

with Mi”.type = “®”. If Mi”.value = “solved” or M i”.value = “null”, then we set (N, Mi”) ∈

Ri
I. Note that Mi” ∈ TI. Otherwise Mi”.value = “cycle” and there exists a predecessor P of

M i” such that P.type = “®”, P.value ≠ “cycle”, and P .concept-description is equal to

Mi”.concept-description modulo associativity, commutativity, and idempotency. In this case

we set (N, P) ∈ R i
I. Note that P ∈ TI.

(3)  Interpretation of concept symbols: Suppose N ∈ TI. Then N.concept-description is of the

form A1 ® … ® Am® ∃R1.E1 ® … ® ∃R l.E l ® ∀S1.D1 ® … ® ∀Sk .Dk. If A i (1 ≤ i ≤ m) is a

non-negated concept symbol, then we set N ∈ A i
I. Note that N .value ≠ “clash”, and hence

there does not exist an A j␣with A j = ¬A i. Thus N ∈ (A1 ® … ® Am)I.

Before we can show that this canonical interpretation satisfies TI = CI, we need one

more definition and an observation concerning concept descriptions of nodes with type “®”.
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The depth τ of a concept description in negation normal form is defined as follows.

➤ τ(C) = τ(¬C) = 0 if C is a concept symbol

➤ τ(∀R.C) = τ(∃R.C) = 1 + τ(C)

➤ τ(C ® D) = τ(C Ω D) = max {τ(C), τ(D)}.

Let C be a concept description and let T be the extended concept tree computed by

Universal-Satisfiability(C). If N  is a node in T with N .type = “Ω”, then N .concept-description has

the form C ® Crest. Let C1 Ω … Ω Cn be a disjunctive normal form of C  ® Crest. There exist

direct successors N1, ..., N n of N with N i.type = “®” and N i.concept-description = C i.

Obviously, C subsumes C ® Crest, and C ® Crest subsumes each Ci. Thus, if Ni is a node in T

with N i.type = “®”, then root.concept-description (which is C) subsumes Ni.concept-

description.

Proposition 4.3: (Soundness)

Let C be a concept description and let T be the extended concept tree computed by

Universal-Satisfiability(C). If there exists a successful instance of T, then C is

universally satisfiable.

Proof:  Let C be a concept description, let T  be the extended concept tree computed by

Universal-Satisfiability(C), and let S be a successful instance of T. Note that root.concept-

description = C. We will show that the canonical interpretation I induced by S  interprets C as

TI. First we prove the following claim.

Claim: Let I be the canonical interpretation induced by S  and let N  ∈  TI. If D  is a

subconjunction of N.concept-description, then N  ∈ DI.

Proof:  (by induction on the depth τ(D) .) Let N ∈ TI. Then N  is a node in S with N .type

= “®” and N.value ≠ “cycle”. We know that N.concept-description is of the form A1 ® … ®
A m ® ∃R1.E1 ® … ® ∃R l.E l ® ∀S1 .D1 ® … ® ∀Sk .Dk. Now let  D be a subconjunction of

N .concept-description.

τ(D) = 0. Then D  is of the form Ai1
 ® … ® A in

. By definition of the interpretation of

concept symbols we have N ∈ (A1 ® … ® Am)I, which implies N  ∈ (Ai1
 ® … ® A in

)I.

τ(D) > 0. Let D = D1 ® … ® Dn. We have to show for all i, 1 ≤ i ≤ n , that N ∈ D i I. If τ(D i)

< τ(D) we know by the induction hypothesis N  ∈ Di I. Now suppose τ(D i) = τ(D). Then Di is

of the form ∀R.E or ∃R.E, where τ(E) =τ(D) - 1.

(1)  Suppose Di = ∀R.E. We have to show that for any M ∈ TI, (N, M) ∈ RI implies M ∈ E I.

Consider the node N . If (N, M) ∈ RI, then there exists a direct successor N’ of N with N’.type

= “∃R”. The node N’ has a direct successor N” with N” .type = “Ω”. Furthermore, N”.concept-

description = C ®␣ E ®␣ ‰R = Sj
 Dj. Suppose E1  Ω … Ω En is a disjunctive normal form of E .

It is easy to see that, if C1 Ω … Ω Cm is a disjunctive normal form of N”.concept-description,

then every C i contains an Ej as subconjunction for some j , 1 ≤ j ≤ n . Since N”.type = “Ω”, N”

has exactly one direct successor P with P.type = “®” and P.concept-description = Ci␣for some

i, 1 ≤ i ≤ m. If P.value ≠ “cycle”, P  is equal to M . Otherwise P .value = “cycle”, and M is a



21

predecessor of N” with M .type = “®” and M .concept-description is equal to C i modulo

idempotency and commutativity. As mentioned before Ej  is a subconjunction of Ci. Since

τ(Ej) ≤ τ(E) < τ(∀R.E)  we conclude by induction that M ∈ Ej
I and  hence M ∈ EI. Thus we

have shown that N  ∈ (∀R.E)I.

(2)  Suppose Di = ∃R.E. We have to show that there exists an M ∈ TI with (N, M) ∈ R I and

M ∈ EI. Consider the node N. Since ∃R.E is a subconjunction of N .concept-description there

exists a direct successor N’ of N with N’.type = “∃R”. Furthermore, N’ has a direct successor

N” with N”.type = “Ω” and N”.concept-description = C ®␣ E ®␣ ‰R = Sj
 Dj . Suppose E1  Ω …

Ω En is a disjunctive normal form of E . As shown in (1) we know that, for every direct

successor M of N”, there exists j, 1 ≤ j ≤ n , such that Ej is a subconjunction of M.concept-

description. Note that M .type = “®”. If M.value ≠ “cycle”, then M ∈ TI and by definition of I

we have  (N, M) ∈ R I. Since τ(Ej) < τ(∀R.E) we conclude by induction that M ∈ Ej
I and

hence M ∈ EI. Otherwise, if M .value = “cycle”, then there exists a predecessor M’ of M with

M ’.type = “® ” and M ’.concept-description is equal to M .concept-description modulo

idempotency and commutativity. By definition of I we know that M’ ∈ TI and (N, M’ ) ∈ R I.

As before we conclude by induction that M’∈ Ej
I and hence M ’ ∈ EI. Thus we have shown

that N ∈ (∃R.E)I.  ❏

Let I be the canonical interpretation induced by S and let N  ∈ TI. We have shown that, if D

is a subconjunction of N.concept-description, then N  ∈  DI. Every concept description is a

subconjunction of itself and hence N  ∈ (N.concept-description)I. Since N .type = “®”, we

know that C  subsumes N .concept-description (as mentioned above). Hence for every N ∈ TI

we have N ∈ CI. Thus TI = CI .  ❏

Let C be a concept description. We have shown that the call Universal-Satisfiability(C)

terminates and returns an expanded concept tree T␣(Proposition 4.1). If C is universal

satisfiable, then T contains a successful instance (Proposition 4.2), and if T contains a

successful instance, then C is universally satisfiable (Proposition 4.3). Thus we have proven

the main result of this paper: (?)

Theorem 4.4:

A concept description C is universally satisfiable if and only if the extended concept

tree computed by Universal-Satisfiability(C) contains a successful instance.

Note that it can be easily decided whether a concept tree does contain a successful

instance by using a depth-first search. For further remarks about the implementation of the

algorithm see subsection 4.4.

4 .3 Deciding the Satisfiability of Concept Descriptions

As mentioned before (Schmidt-Schauß & Smolka, 1988) have already described an algorithm

for deciding the satisfiability of concept descriptions. However, such an algorithm can also be

obtained within our formalism developed for deciding universal satisfiability. Since this
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requires only a slight modification of the function Universal-Satisfiability, we will include a

description of this algorithm. The idea underlying the modification is as follows. Suppose we

want to decide whether a concept description C 0 is universally satisfiable. The function

Universal-Satisfiability tries to construct an interpretation I such that TI = C0
I and TI ≠ Ø. To do

this the function generates an element which is in TI. In general, constraints imposed on this

element force the function to generate further elements which are in TI. Since we want to

construct an interpretation with TI = C0
I, the newly introduced elements also have to be in

C0
I.

A satisfiability algorithm has to do less work. Since we only want to find an

interpretation I such that C0
I is nonempty, it is sufficient to guarantee that there exists one

element which is in C0
I. Thus, there is no need to force the newly introduced elements to be

in C0
I.

This observation leads us to the following straightforward modification of the function

Extend-∃R-node used in Universal-Satisfiability. Let N be a node with N .type = “∃R” and

N .concept-description = A1  ® … ® A n ® ∃R.C  ®∀S1.D1 ® … ® ∀Sk .Dk. The function

Extend-∃R-node creates a new node N’ such that N’.concept-description = root.concept-

description ® C ® ‰R  = Sj
 ,1 ≤ j ≤ k  Dj. Recall that the initialization step of the algorithm was

done in a way such that root.concept-description = C0. Thus we just have to omit

root.concept-description in the definition of N’.concept-description, i.e., we modify Extend-

∃R-node such that N’ .concept-description = C ® ‰R  = Sj
 ,1 ≤ j ≤ k  Dj. We obtain the function

Satisfiability  from Universal-Satisfiability by taking this modified version of Extend-∃R-node.

Let C0 be a concept description and let T  be an extended concept tree computed by

Satisfiability(C0 ). Furthermore, let N , M  be nodes in T with N.type = M .type = “®”. It is easy

to see that τ(N.concept-description) > τ(M.concept-description) if N is a predecessor of M. As

a consequence, N .value ≠ “cycle” for every node N  in T . Furthermore, if τ(C0) = n, the

longest path in S contains at most  n nodes of type “®”, and hence at most 3 * n nodes. Since

obviously every node in S has finitely many direct successors we have the following result.

Proposition 4.5: (Termination)

Let C0 be a concept description. Then  Satisfiability(C0) terminates without creating a

node with value “cycle”.

In the following we will prove that a concept description C0 is satisfiable if and only if

there exists a successful instance in the extended concept tree computed by Satisfiability(C0).

As in Chapter 4.2 one can show the completeness (Proposition 4.6) and the soundness

(Proposition 4.7) of the algorithm.

Proposition 4.6: (Completeness)

Let C0 be a concept description and let T be the extended concept tree computed by

Satisfiability(C0). If C0 is satisfiable, then there exists a successful instance of T.
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Proof: Easy modification of the proof of Proposition 4.2.  ❏

Proposition 4.7: (Soundness)

Let C0 be a concept description and let T be the extended concept tree computed by

Satisfiability(C0). If there exists a successful instance of T, then C0 is satisfiable.

Proof:  Let C0 be a concept description and let S be a successful instance of the extended

concept tree computed by Satisfiability(C0 ). Consider the canonical interpretation I induced by

S and N ∈ TI. We will show that C0
I is a nonempty set. To that purpose we will use the

following claim:

Claim:  Let I be the canonical interpretation induced by S  and let N  ∈  TI. Then N  ∈

(N .concept-description)I. As mentioned above, if N  and M are elements of TI, then

τ(N .concept-description)  > τ(M.concept-description) if N is a predecessor of M. Thus one can

easily prove the claim by  induction on the depth τ(N .concept-description) .  The proof of

this claim is similar to the proof of the claim in Proposition 4.3. However it is easier for the

following reason. In the proof of Proposition 4.3 we had to formulate a stronger induction

hypothesis, since if N  is predecessor of M , then τ(N.concept-description) is not necessarily

greater than τ(M.concept-description).

Let C1 Ω … Ω Cn be a disjunctive normal form of C0. Then there exists a node in S such that

N .type = “®” and N .value ≠ “cycle”. Hence N ∈ TI. We conclude that N  ∈ Ci
I and N  ∈ C0

I.

Thus we have shown that C0 is satisfiable.  ❏

5 Conclusion

In the previous two sections we described algorithms for deciding satisfiability and universal

satisfiability. These algorithms were presented for theoretical purposes, i.e. for proving

soundness and completeness, rather than for an actual implementation. The algorithms as

presented above suffer from two main sources of unnecessary complexity: The first point is

that we construct a complete concept tree before testing for the existence of a successful

instance. As soon as a successful instance is found the remaining unsearched part of the tree

was constructed in vain. Thus an actual implementation should combine the generation of the

tree with searching for a successful instance. This can be realized by a simple depth first

strategy with backtracking to a previous “or”-node if a clash is encountered. Consequently,

only one path has to be stored instead of keeping the whole tree in memory. As a second

point, the size of a disjunctive normal form C1 Ω … Ω Cn for a concept description C may be

exponential in the size of C. In addition, if C i leads to a successful instance, the computation

of Ci+1, ..., Cn was superfluous. However, by choosing an appropriate data structure one can

enumerate the disjuncts Ci one after the other using polynomial space.
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A constrained resolution prover (CORE) has been implemented along these lines in the

WINO-project of the German national institute for artificial intelligence (DFKI) by our

research team. CORE will be the heart of a first prototype of a knowledge representation and

reasoning system (KRIS) to be developed in the WINO-project. Thereby, our future research

is concentrated on following problems:

➤ As mentioned in section 2, the input formulae have to be in clause form. Since this

is a strong restriction, we examine how to transform arbitrary constrained

formulae into constrained clauses in the case of our application with concept

constraints.

➤ In this paper we considered the concept language ALC as constraint theory.

However, other language constructs such as number restrictions, intersection of

roles etc., are used to describe taxonomical knowledge. Hence we will use such an

enriched concept language as constraint theory. There are already some results

how to devise algorithms for checking satisfiability and universal satisfiability in

these languages.

➤ Besides concept languages, so-called assertional languages are employed in KL-

ONE systems to represent knowledge about individuals. Thus, we are going to

amalgamate our constraint theory by allowing such assertions.
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