
A Scheme for Integrating Concrete Domains into

Concept Languages

Franz Baader Philipp Hanschke

German Research Center for AI (DFKI)

Postfach 2080

W-6750 Kaiserslautern, Germany

e-mail: baader@dfki.uni-kl.de, hanschke@dfki.uni-kl.de

phone: (+49 631)205-3457, (+49 631)205-3460

Abstract

A drawback which concept languages based on kl-one have is that all the termino-

logical knowledge has to be de�ned on an abstract logical level. In many applications,

one would like to be able to refer to concrete domains and predicates on these domains

when de�ning concepts. Examples for such concrete domains are the integers, the real

numbers, or also non-arithmetic domains, and predicates could be equality, inequality, or

more complex predicates.

In the present paper we shall propose a scheme for integrating such concrete domains

into concept languages rather than describing a particular extension by some speci�c con-

crete domain. We shall de�ne a terminological and an assertional language, and consider

the important inference problems such as subsumption, instantiation, and consistency.

The formal semantics as well as the reasoning algorithms are given on the scheme level.

In contrast to existing kl-one based systems, these algorithms will be not only sound

but also complete. They generate subtasks which have to be solved by a special purpose

reasoner of the concrete domain.

Contents

1 Introduction 3

2 Concrete Domains 5

3 The Concept Language 8

3.1 Syntax and Semantics : 8

3.2 Terminological Reasoning : 9

4 The Assertional Language 11

4.1 Syntax and Semantics : 11

4.2 Assertional Reasoning : 13

5 The Basic Reasoning Algorithm 13

6 Soundness and Completeness 16

7 Expressing Interval Relations: An Example 22

8 An Undecidability Result 24

9 Conclusion 27

2

1 Introduction

Concept languages based on kl-one

[

Brachman and Schmolze, 1985

]

are used to represent the

taxonomical and conceptual knowledge of a particular problem domain on an abstract logical

level. To describe this kind of knowledge, one starts with atomic concepts and roles, and de�nes

new concepts using the operations provided by the language. Concepts can be considered as

unary predicates which are interpreted as sets of individuals, and roles as binary predicates

which are interpreted as binary relations between individuals. Examples for atomic concepts

may be Human and Female, and for roles child. If the logical connective conjunction is present

as language construct, one may describe the concept Woman as \humans who are female", and

represent it by the expression Human u Female. Many languages provide quanti�cation over

role �llers which allows for example to describe the concept Mother by the expression Woman

u 9child:Human.

kl-one was �rst developed for the purpose of natural language processing

[

Brachman et al.,

1979

]

, and some of the existing systems are still mostly used in this context (see e.g., sb-one

[

Kobsa, 1989

]

). However, its success in this area has also led to applications in other �elds (see

e.g., meson

[

Edelmann and Owsnicki, 1986

]

which is used for computer con�guration tasks,

classic

[

Borgida et al., 1989

]

which is e.g. used in the area of cad/cam, or K-Rep

[

Mays et

al., 1987; Mays et al., 1988

]

which is used in a �nancial marketing domain).

A drawback which pure kl-one languages have is that all the terminological knowledge

has to be de�ned on the abstract logical level. In many applications, one would like to be

able to refer to concrete domains and predicates on these domains when de�ning concepts. An

example for such a concrete domain could be the set of nonnegative integers. In the above

example, one might think that being human and female is not enough to make a woman.

As an additional property one could require that she should be old enough, e.g., at least 21.

Thus one would like to introduce a new role age, and de�ne Woman by an expression of the

form Human u Female u �

21

(age). Here �

21

stands for the unary predicate fn;n � 21g of all

nonnegative integers greater or equal 21. Stating such properties directly with reference to

a given concrete domain seems to be easier and more natural than encoding them somehow

into abstract concept expressions.

1

Though this drawback already appears in natural language

processing, it becomes even more important if one has other applications in mind. For example,

in a technical application the adequate representation of geometrical concepts requires to relate

points in a coordinate system. For that purpose one would e.g. like to have access to real

arithmetic. Similar motivations have already led to extensions of kl-one in the above mentioned

systems meson, classic, and K-Rep. The meson system provides \a separate hierarchy for

describing non-concepts (e.g., integer ranges and strings)" (

[

Patel-Schneider et al., 1990

]

, p. 8)

which are given as user-de�ned or machine-de�ned predicates. Similar features are provided

by the \test" construct in classic. In K-Rep \the roles of concepts may in turn be other

(complex) concepts, as well as numbers, strings and ... arbitrary Lisp objects" (

[

Mays et al.,

1988

]

, p. 62). Schmiedel's Temporal Terminological Logic

[

Schmiedel, 1990

]

can also be seen in

this light. In this case the concrete domain is given by an extension of Allen's interval calculus

[

Allen, 1983

]

.

1

See e.g.

[

Brachman and Schmolze, 1985

]

, Section 9.2, where so-called Structural Descriptions are used to

encode the concrete predicate \less than one hour". From a computational point of view, Structural Descriptions

are as bad as Role Value Maps which cause undecidability of subsumption

[

Schmidt-Schau�, 1989

]

.

3

For similar reasons, Logic Programming has been extended to Constraint Logic Programming

(CLP) (see e.g.,

[

Ja�ar et al., 1990; Colmerauer, 1990; Dincbas et al., 1988

]

). The constraints

in CLP languages \state properties directly in the domain of discourse as opposed to having

these properties encoded into Prolog terms" (

[

Lassez, 1987

]

, p. 2).

Before describing our approach for extending a concept language by concrete domains we

shall state some of the properties which such an extension should satisfy:

� The extension should still have a formal declarative semantics which is as close as possible

to the usual semantics employed for concept languages.

� It should be possible to combine existing inference algorithms for concept languages with

well-known reasoning algorithms in the concrete domain in order to get the appropriate

algorithms for the extension.

� One should provide a scheme for extending concept languages by various concrete domains

rather than constructing a single ad hoc extension for a speci�c concrete domain. The

formal semantics as well as the combination of the algorithms should already be treated

on this scheme level.

In order to satisfy these properties it is important to choose an appropriate interface between

the concept language and the concrete domain. The interface which we shall use in the present

paper was inspired by a construct which is e.g. present in the classic system, namely coreference

constraints (also called agreements) between chains of single-valued roles (also called features).

2

With such a coreference constraint one can for example express the concept of all women whose

father and husband are of the same age by the expression Woman u (father age)#(husband age).

But one cannot express that the husband is even older than the father. This becomes possible

if we take the set of nonnegative integers as concrete domain. Then we can simply write

Womanu �(husband age; father age) where � stands for the binary predicate f(n;m);n � mg on

nonnegative integers. More general, our extension will allow to state that feature chains satisfy

a (nonnecessarily binary) predicate which is provided by the concrete domain in question.

The next section will contain a formal de�nition of what we mean by the notion \concrete

domain". In this section we shall also de�ne important properties of such domains, and give

examples of concrete domains. Section 3 describes our scheme for extending a concept language

by an arbitrary concrete domain. As a starting point for this extension we use the language

ALC of

[

Schmidt-Schau� and Smolka, 1991

]

. The reason for choosing this language was that it is

large enough to exhibit most of the problems connected with such an extension. Taking a larger

language (e.g., including number restrictions) would only mean more work without bringing

new insights. Section 4 describes how an assertional component for such an extended concept

language can be de�ned. For both the terminological and the assertional part of our formalism

we shall introduce the important inference problems. Section 5 describes an algorithm which can

be used to decide all of these problems. As we shall see in Section 6 this algorithm is not only

sound but also complete.

3

As an example, an instance of the language scheme is used in Section

7 to express Allen's interval relations

[

Allen, 1983

]

. In

[

Baader, 1991

]

an extension of ALC in a

2

Agreements on feature chains are just the restriction of Role Value Maps to single-valued (i.e., functional)

roles; but unlike Role Value Maps they usually do not cause undecidability of subsumption

[

Hollunder and Nutt,

1990

]

.

3

All the above mentioned systems employ sound but incomplete algorithms.

4

di�erent direction is presented. It provides role-forming operators including a transitive closure

operator. It is shown that the extended language still has a decidable satis�ability problem for

concept terms. Section 8 shows that this problem becomes undecidable if concept terms may

contain both a transitive closure operator for features and predicates of a concrete domain.

2 Concrete Domains

The following de�nition formalizes the notion \concrete domain" which has until now only been

used in an intuitive sense.

De�nition 2.1 A concrete domain D consists of a set dom(D), the domain of D, and a set

pred(D), the predicate names of D. Each predicate name P is associated with an arity n, and

an n-ary predicate P

D

� dom(D)

n

.

We shall now give some examples of concrete domains.

� In the examples of the introduction we have considered the concrete domain N which has

the set of nonnegative integers as its domain. We have also used the binary predicate

name �, and one of the unary predicate names �

n

.

� The concrete domainR is de�ned as follows. The domain ofR is the set of all real numbers,

and the predicates of R are given by formulae which are built by �rst order means (i.e., by

using logical connectives and quanti�ers) from equalities and inequalities between integer

polynomials in several indeterminates.

4

For example, x + z

2

= y is an equality between

the polynomials p(x; z) = x + z

2

and q(y) = y; and x > y is an inequality between very

simple polynomials. From these equalities and inequalities one can e.g. build the formulae

9z(x+ z

2

= y) and 9z(x+ z

2

= y)_ (x > y). The �rst formula yields a predicate name of

arity 2 (since it has two free variables), and it is easy to see that the associated predicate

is f(r; s); r and s are real numbers and r � sg. Consequently, the predicate associated to

the second formula is f(r; s); r and s are real numbersg = dom(R)� dom(R):

� The concrete domain Z is de�ned as R with the only di�erence that dom(Z) is the set of

all integers instead of all real numbers.

� Our next example leaves the realm of numbers and arithmetic. Assume that DB is an

arbitrary relational database equipped with an appropriate query language. Then DB can

be seen as a concrete domain where dom(DB) is the set of atomic values in the database.

The predicates of DB are the relations which can be de�ned over DB with the help of the

query language.

� One can also consider Allen's interval calculus

[

Allen, 1983

]

as concrete domain AL. Here

dom(AL) consists of intervals, and the predicates are built from Allen's basic interval

relations with the help of logical connectives.

4

For the sake of simplicity we assume here that the formula itself is the predicate name. In applications, the

user will probably take his own intuitive names for these predicates.

5

As mentioned in the introduction, we want to combine inference algorithms for the given

concept language with reasoning algorithms for the concrete domain in order to get inference

algorithms for the extended concept language. This is only possible if the concrete domain

satis�es some additional properties.

For technical reasons we shall have to push negation into concept terms (see Lemma 3.3

below). To make this possible we have to require that the set of predicate names of the concrete

domain is closed under negation, i.e., if P is an n-ary predicate name in pred(D) then there has

to exist a predicate name Q in pred(D) such that Q

D

= dom(D)

n

n P

D

. We will usually refer

to this predicate name by P . In addition, we need a unary predicate name which denotes the

predicate dom(D). The domain N from above does not satisfy these properties. We should

have to add the predicate names <, <

n

. The domains R, Z and AL satisfy the properties.

Whether a domain of the form DB satis�es these properties depends on the query language.

The property which will be formulated now clari�es what kind of reasoning mechanisms are

required in the concrete domain. Let P

1

, ..., P

k

be k (not necessarily di�erent) predicate names

in pred(D) of arities n

1

, ..., n

k

. We consider the conjunction

k

^

i=1

P

i

(x

(i)

):

Here x

(i)

stands for an n

i

-tuple (x

(i)

1

; :::; x

(i)

n

i

) of variables. It is important to note that neither all

variables in one tuple nor those in di�erent tuples are assumed to be distinct. Such a conjunction

is said to be satis�able i� there exists an assignment of elements of dom(D) to the variables

such that the conjunction becomes true in D.

For example, let P

1

(x; y) be the predicate 9z(x+ z

2

= y) in pred(R), and let P

2

(x; y) be the

predicate x > y in pred(R). Obviously, neither the conjunction P

1

(x; y) ^ P

2

(x; y) nor P

2

(x; x)

is satis�able.

De�nition 2.2 A concrete domain D is called admissible i� (i) the set of its predicate names

is closed under negation and contains a name for dom(D), and (ii) the satis�ability problem for

�nite conjunctions of the above mentioned form is decidable.

The concrete domainR is admissible. This is a consequence of Tarski's decidability result for

real arithmetic

[

Tarski, 1951; Collins, 1975

]

. However, for the linear case (where the polynomials

in the equalities and inequalities have to be linear) there exist more e�cient methods (see e.g.

[

Weispfenning, 1988; Loos and Weispfenning, 1990

]

). The concrete domain Z is not admissible

since Hilbert's Tenth Problem|one of the most prominent undecidable problems

[

Matijacevi�c,

1970; Davis, 1973

]

|is a special case of its satis�ability problem.

Sometimes the adequate modeling of a problem domain could be facilitated if reference to

more than one concrete domain would be possible in a terminology. Therefore, we show how

two disjoint admissible concrete domains D

1

and D

2

can be combined to a new concrete domain

D

1

�D

2

. It turns out (Lemma 2.4) that this combination is also admissible.

De�nition 2.3 Assume that D

1

and D

2

are admissible concrete domains with predicate names

P

1;1

; . . . ; P

1;n

1

(resp. P

2;1

; . . . ; P

2;n

1

) such that dom(D

1

) and dom(D

2

) are disjoint. Then D

1

�D

2

can be constructed as follows:

� The domain dom(D

1

�D

2

) is the union of dom(D

1

) and dom(D

2

).

6

� The predicates of D

1

�D

2

are

Q

1;1

; . . . ; Q

1;n

1

;

d

Q

1;1

; . . . ;

d

Q

1;n

1

;

Q

2;1

; . . . ; Q

2;n

2

;

d

Q

2;1

; . . . ;

d

Q

2;n

2

;

where the predicates are de�ned by

{ (x

1

; . . . ; x

n

) 2 Q

�;j

i� (x

1

; . . . ; x

n

) 2 P

�;j

, and

{ (x

1

; . . . ; x

n

) 2

d

Q

�;j

i� (x

1

; . . . ; x

n

) 2 P

�;j

or there is an i such that x

i

2

dom(D

�(�)

)

5

.

The reason why

d

Q

�;j

has to be de�ned this way is that in D

1

� D

2

the complement has to

be considered with respect to dom(D

1

� D

2

) = dom(D

1

) [dom(D

1

) and not just with respect

to dom(D

�

).

Lemma 2.4 If D

1

and D

2

are admissible concrete domains, then D

1

�D

2

is also an admissible

concrete domain.

Proof. We use the same naming conventions as in the previous de�nition. Obviously, D

1

�D

2

is a concrete domain. According to De�nition 2.2 for � = 1; 2 there has to be a name Top

D

�

for the entire domain of D

�

. Let P

1;1

be a name for the empty predicate ; = Top

D

1

. Then,

using the de�nition of the predicates in D

1

�D

2

, we derive that

d

Q

1;1

is a name for the domain

of D

1

� D

2

. It is also easy to verify Q

�;j

=

d

Q

�;j

and

d

Q

�;j

= Q

�;j

. It remains to be shown that

there is a satis�ability test for D

1

�D

2

.

1. Assume that a conjunction

� =

k

^

i=1

P

i

(x

(i)

)

is given, where the P

i

are predicates of D

1

�D

2

.

2. Replace in � all occurrence Q

�;j

(x

1

; . . . ; x

n

) by P

�;j

and all occurrences

d

Q

�;j

(x

1

; . . . ; x

n

)

by P

�;j

_ Top

D

�(�)

(x

1

) _ . . . _ Top

D

�(�)

(x

n

).

3. Denote the disjunctive normal form of the resulting formula by �

0

.

4. Let M be a monom in �

0

.

(a) If a variable x occurs as an argument of predicates from both domains then M is not

satis�able, because dom(D

1

) and dom(D

2

) are disjoint.

(b) Otherwise, M can be split into conjunctions M

1

andM

2

such that, for � = 1; 2,M

�

is

a conjunction in D

�

and no variable occurs in both conjunctions. Finally, we observe

that M is satis�able i� the satis�ability tests of the respective admissible concrete

domains succeed for M

1

and M

2

respectively.

This construction shows that it will not be a restriction that in the next section we shall

integrate only one concrete domain into the concept language.

5

Here and in the following we assume �(1) = 2 and �(2) = 1.

7

3 The Concept Language

We shall now present our scheme for integrating an arbitrary concrete domain D into the concept

language ALC. The result of this integration will be called ALC(D).

3.1 Syntax and Semantics

In addition to the usual language constructs of ALC, the language ALC(D) allows features (i.e.,

functional roles) in value restrictions, and predicate names of D applied to feature chains. For

a set F of feature names, a feature chain is just a nonempty word over F.

De�nition 3.1 (concept terms and terminologies of ALC(D))

Let C, R, and F be disjoint sets of concept, role, and feature names. The set of concept terms

of ALC(D) is inductively de�ned. As a starting point of the induction, any element of C is

a concept term (atomic terms). Now let C and D be concept terms, let R be a role name or

feature name, P 2 pred(D) be an n-ary predicate name, and u

1

, ..., u

n

be feature chains. Then

the following expressions are also concept terms:

1. C tD (disjunction), C uD (conjunction), and :C (negation),

2. 9R:C (exists-in restriction) and 8R:C (value restriction),

3. P (u

1

; :::; u

n

) (predicate restriction).

Let A be a concept name and let D be a concept term. Then A = D is a terminological axiom.

A terminology (T-box) is a �nite set T of terminological axioms with the additional restrictions

that (i) no concept name appears more than once as a left hand side of a de�nition, and (ii) T

contains no cyclic de�nitions.

6

Please note that the exists-in and the value restrictions are not only de�ned for roles but

also for features. For a feature chain u = f

1

f

2

:::f

s

we shall sometimes use the notations 9u:C

and 8u:C as abbreviations for 9f

1

:9f

2

::::9f

s

:C and 8f

1

:8f

2

::::8f

s

:C.

A T-box contains two di�erent kinds of concept names. De�ned concepts occur on the left

hand side of a terminological axiom. The other concepts are called primitive concepts. The

following is an example of a T-box in ALC(N). Let Human, Female, Mother, Woman be concept

names, let child be a role name, and let age be a feature name. The T-box|which proposes yet

another de�nition of the concept woman|consists of the following axioms:

Mother = Human u Female u 9child:Human

Woman = Human u Female u (Mother t �

21

(age))

Here Mother and Woman are de�ned concepts, and Human and Female are primitive concepts.

The reason for choosing child as role and age as feature was that an individual can have more

than one child, but (s)he has only one age. The next de�nition gives a model-theoretic semantics

for the languages introduced in De�nition 3.1.

6

See

[

Nebel, 1989; Baader, 1990

]

for a treatment of cyclic de�nitions in concept languages.

8

De�nition 3.2 (interpretations and models)

An interpretation I for ALC(D) consists of a set dom(I), the abstract domain of the inter-

pretation, and an interpretation function. The abstract domain and the given concrete domain

have to be disjoint, i.e., dom(D) \ dom(I) = ;. The interpretation function associates with

each concept name A a subset A

I

of dom(I), with each role name R a binary relation R

I

on

dom(I), i.e., a subset of dom(I)� dom(I), and with each feature name f a partial function f

I

from dom(I) into dom(I) [dom(D).

For such a partial function f

I

the expression f

I

(x) = y is sometimes written as (x; y) 2 f

I

.

If u = f

1

:::f

n

is a feature chain, then u

I

denotes the composition f

I

1

� ::: � f

I

n

of the partial

functions f

I

1

; :::; f

I

n

.

7

The interpretation function|which gives an interpretation for atomic terms|can be extended

to arbitrary concept terms as follows: Let C and D be concept terms, let R be a role name

or feature name, P 2 pred(D) be an n-ary predicate name, and u

1

, ..., u

n

be feature chains.

Assume that C

I

and D

I

are already de�ned. Then

1. (C tD)

I

= C

I

[D

I

, (C uD)

I

= C

I

\D

I

, and (:C)

I

= dom(I) n C

I

,

2. (8R:C)

I

= fx 2 dom(I); for all y such that (x; y) 2 R

I

we have y 2 C

I

g and

(9R:C)

I

= fx 2 dom(I); there exists y such that (x; y) 2 R

I

and y 2 C

I

g,

3. P (u

1

; :::; u

n

)

I

= fx 2 dom(I); there exist r

1

; :::; r

n

2 dom(D) such that

u

I

1

(x) = r

1

; :::; u

I

n

(x) = r

n

and (r

1

; :::; r

n

) 2 P

D

g.

An interpretation I is a model of the T-box T i� it satis�es A

I

= D

I

for all terminological

axioms A = D in T .

The philosophy underlying this de�nition is that we assume that the concrete domain D is

su�ciently structured by the predicates in pred(D). That means that we do not want to de�ne

new classes of elements of dom(D) or new relations between elements of dom(D) with the help

of our concept language. Consequently, concept terms are always interpreted as subsets of the

abstract domain, i.e., an individual of the concrete domain cannot be element of a concept.

For this reason, the complement is de�ned with respect to dom(I) and not with respect to

dom(I) [dom(D); roles are only de�ned on dom(I) � dom(I); and the features may have

values in dom(D) [dom(I), but an element of dom(D) cannot have a feature value.

3.2 Terminological Reasoning

An important service terminological representation systems provide is computing the subsump-

tion hierarchy, i.e., computing the subconcept-superconcept relationships between the concepts

of a T-box. This inferential service is usually called classi�cation. The model-theoretic seman-

tics introduced above allows the following formal de�nition of subsumption. Let T be a T-box

and let A, B be concept names. Then B subsumes A with respect to T (symbolically A v

T

B)

i� A

I

� B

I

holds for all models I of T .

In our example, it is very easy to see that Woman subsumes Mother. However, in general

it is not at all trivial to determine such relationships. Until recently, sound and complete

subsumption algorithms were only known for rather trivial concept languages (see

[

Levesque

and Brachman, 1987

]

). Consequently, all the existing kl-one systems use only sound, but

7

The composition should be read from left to right, i.e., f

I

1

� :::�f

I

n

means apply �rst f

I

1

, then f

I

2

, and so on.

9

incomplete algorithms. If such an algorithm gives a positive answer, a subsumption relationship

really exists; but if its answer is negative, then we do not know anything. A subsumption

relationship may or may not exist. In

[

Schmidt-Schau� and Smolka, 1991

]

a sound and complete

subsumption algorithm for ALC is described. The underlying method of constraint propagation

was used in

[

Hollunder et al., 1990

]

to derive algorithms for various other concept languages.

This method can|with appropriate modi�cations|also be applied to the languages of the

form ALC(D). As a subtask, such an algorithm for ALC(D) will have to decide satis�ability

of conjunctions of the form

V

k

i=1

P

i

(x

(i)

) in the concrete domain. Thus we shall have to require

that D is admissible.

In the literature (e.g.,

[

Levesque and Brachman, 1987; Schmidt-Schau� and Smolka, 1991;

Hollunder et al., 1990

]

), subsumption is often de�ned without reference to a T-box as a relation-

ship between concept terms. For two concept terms C, D we say that D subsumes C (written

C v D) i� C

I

� D

I

holds for all interpretations I. Two concept terms C, D are said to be

equivalent i� C subsumes D and vice versa. Equivalent terms denote the same set in every

interpretation.

It is su�cient to �nd an algorithm which decides subsumption between concept terms since

subsumption w.r.t. a T-box can be reduced to this problem; one simply has to unfold the T-

box. Unfolding of a T-box means substituting de�ned concepts which occur on the right hand

side of a de�nition by their de�ning terms. This process has to be iterated until there remain

only primitive concepts on the right hand sides of the de�nitions. Obviously, this procedure

terminates since the terminology is acyclic; and it does not change the meaning of the T-box.

In the example, the unfolded de�nition for Woman is Woman = Human u Female u ((Human u

Female u 9child:Human) t �

21

(age)).

Let T be a T-box, and assume that A = C and B = D are terminological axioms in the

unfolded T-box corresponding to T . Then we have A v

T

B i� C v D.

8

The subsumption problem for concept terms can now further be reduced to another inter-

esting problem: the satis�ability problem for concept terms. Let C be a concept term. Then

C is said to be satis�able

9

i� there exists an interpretation I such that C

I

6= ;. Thus, an

unsatis�able concept term denotes the empty set in every interpretation, which means that it

is worthless.

Obviously, we have C v D i� C u :D is unsatis�able. This shows that an algorithm for

checking satis�ability of concept terms also yields a subsumption algorithm. The algorithms

described in

[

Schmidt-Schau� and Smolka, 1991

]

and

[

Hollunder et al., 1990

]

are satis�ability

algorithms. However, in the present paper we shall not directly give such an algorithm for

ALC(D). Instead we shall reduce the satis�ability problem for concept terms to a problem

which will be introduced in the next section: the consistency problem for A-boxes. In Section

5 we shall describe a sound and complete algorithm which decides this problem.

For this algorithm it will be convenient to have all the concept terms in negation normal

form. A concept term is in negation normal form i� negation signs occur only immediately

in front of concept names. If the set of predicate names of the concrete domain D is closed

under negation and contains a name for dom(D), then any concept term of ALC(D) can be

transformed into an equivalent term in negation normal form by using the transformations

8

One should however note that the size of the concept terms C, D may be exponential in the size of the

original T-box (see

[

Nebel, 1990

]

).

9

Sometimes also called \coherent" or \consistent" in the literature.

10

described in the following lemma.

Lemma 3.3 Let D be a concrete domain such that pred(D) is closed under negation and con-

tains a name for dom(D). Assume that this name is Top

D

, and let Top be an abbreviation for

the concept term A t :A where A is an arbitrary concept name. Let C, D be concept terms

of ALC(D), R be a role name, f be a feature name, P be an n-ary predicate in pred(D), and

u

1

, ..., u

n

be feature chains. Then the following transformations preserve equivalence of concept

terms:

1. :(C tD) =) ((:C) u (:D)), :(C uD) =) ((:C) t (:D)), :(:C) =) C

:(8R:C) =) (9R::C), and :(9R:C) =) (8R::C).

2. :(8f:C) =) ((9f::C) t Top

D

(f)) and :(9f:C) =) ((8f::C) t Top

D

(f)).

3. :P (u

1

; :::; u

n

) =) (P (u

1

; :::; u

n

) t (8u

1

:Top) t ::: t (8u

n

:Top)).

The �rst set of transformations is straightforward. The reason why the other transformations

are more complex is that features may have values in dom(I) or dom(D). For example, an

individual a of dom(I) is in (8f:C)

I

i� f

I

(a) is unde�ned or f

I

(a) = b for an individual b in

C

I

. Since concepts are always interpreted as subsets of dom(I) this means in particular that

b 62 dom(D). If we negate these conditions we get that f

I

(a) has to be de�ned and that its

value must lie in (:C)

I

or in dom(D).

4 The Assertional Language

The terminological formalism introduced in the previous section allows to describe knowledge

about classes of objects (the concepts) and relationships between these classes (e.g., subsumption

relationships which are consequences of the descriptions). Many applications, however, require

that one can also say something about objects in the world. For this reason, most kl-one

systems provide additional assertional capabilities. This assertional part of the system uses the

concept terms for making statements about parts of a given world. The expressiveness of this

component varies between the rather weak formalism employed in the original kl-one system

[

Brachman and Schmolze, 1985

]

to full �rst order predicate logic as used in krypton

[

Brachman

et al., 1985

]

. We shall now show how to integrate a concrete domain into an assertional language

which is similar to the ones used in kandor

[

Patel-Schneider, 1984

]

, meson

[

Edelmann and

Owsnicki, 1986

]

, classic

[

Borgida et al., 1989

]

, or back

[

Nebel and von Luck, 1988

]

.

4.1 Syntax and Semantics

Let D be an arbitrary concrete domain. We have seen in Section 3 that we have to deal with

two di�erent kinds of objects: the individuals of the concrete domain and the individuals in the

abstract domain (see De�nition 3.2). The names for objects of the concrete domain will come

from a set OC of object names, and the names for objects of the abstract domain from a set

OA.

De�nition 4.1 (assertional axioms and A-boxes for ALC(D))

Let OC and OA be two disjoint sets of object names. The set of all assertional axioms is de�ned

as follows. Let C be a concept term of ALC(D), R be a role name, f be a feature name, P be

11

an n-ary predicate name of D, and let a, b be elements of OA and y, y

1

, ..., y

n

be elements of

OC. Then the following are assertional axioms:

a : C; (a; b) : R; (a; b) : f; (a; y) : f; (y

1

; :::; y

n

) : P:

An A-box is a �nite set of such assertional axioms.

The assertional language can for example be used to express the facts that the woman Lolita,

the daughter of Humbert, is married to Vladimir, a man older than Humbert, by the asser-

tional axioms LOLITA : Woman, (LOLITA; HUMBERT) : father, (LOLITA; VLADIMIR) : husband,

(HUMBERT; A1) : age, (VLADIMIR; A2) : age, (A2; A1) : >. Here LOLITA, HUMBERT, and

VLADIMIR are elements of OA, and A1 and A2 are elements of OC.

It may seem to be a drawback of the above de�ned assertional language that it disallows the

use of speci�c elements of dom(D) in the assertions. For example, we are not allowed to write

the axiom (LOLITA; 12) : age. However, if we have a predicate name for the singleton set f12g,

say =

12

, then we can express the same fact by the two axioms (LOLITA; A3) : age and =

12

(A3).

In A-boxes of ALC(R) one can use algebraic numbers such as

p

2 because the corresponding

singleton set f

p

2g corresponds to a predicate name in R, namely (x

2

= 2) ^ x � 0.

De�nition 4.2 (interpretations and models)

An interpretation for the assertional language is simply an interpretation for ALC(D) which, in

addition, assigns an object a

I

2 dom(I) to each object name a 2 OA, and an object x

I

2 dom(D)

to each object name x 2 OC. Such an interpretation satis�es an assertional axiom

a : C i� a

I

2 C

I

; (a; b) : R i� (a

I

; b

I

) 2 R

I

; (a; b) : f i� f

I

(a

I

) = b

I

;

(a; y) : f i� f

I

(a

I

) = y

I

; (y

1

; :::; y

n

) : P i� (y

I

1

; :::; y

I

n

) 2 P

D

:

An interpretation is a model of an A-box A i� it satis�es all the assertional axioms of A, and

it is a model of an A-box A together with a T-box T i� it is a model of T and a model of A.

The de�nition shows that we do not require unique names for the objects.

10

For example,

assume that we have the abstract names VLADIMIR and LOLITA'S FATHER in our A-box. As

our knowledge about the world increases, we may learn that Vladimir is in fact Lolita's fa-

ther. Similarly, if we introduce concrete names A1, A2 for the ages of two persons PERSON1,

PERSON2 into the A-box, we do not want to assume automatically that these two numbers are

di�erent.

Considering an A-box without a corresponding T-box means that all the concepts names

occurring in concept terms are assumed to be primitive. For example, if we consider the above

A-box concerning Lolita and her family alone, then the concept name Woman in the axiom

LOLITA : Woman is treated as a primitive concept. However, if we consider it together with

the T-box de�ned in the previous section, then Woman stands for the concept term Human u

Female u ((Human u Female u 9child:Human) t �

21

(age)).

10

Many kl-one based systems have a unique name assumption for their A-box individuals; but for example

kl-two

[

Vilain, 1985

]

does not assume unique names. For our algorithm, it would be easy to handle a unique

name assumption for the abstract objects. If we want to treat a unique name assumption for the concrete objects

we have to require that the concrete domain contains a predicate name for equality.

12

4.2 Assertional Reasoning

In the following, A will always denote an A-box, T a T-box, C, D concept terms, a; b 2 OA

names of abstract objects, and x; y 2 OC names of concrete objects.

An obvious requirement on the represented knowledge is that it should not be contradic-

tory. Otherwise, it would be useless to deduce other facts from this knowledge since logically,

everything follows from an inconsistent set of assumptions. However, for a given A-box (or

an A-box together with a T-box) it is not necessary to have a model. For example, an A-box

containing the axioms a : C and a : :C, or the axioms (a; b) : f , (a; y) : f for a feature name f

is contradictory, and thus cannot have a model.

We say that an A-box (an A-box together with a T-box) is consistent i� it has a model.

Otherwise, it is called inconsistent.

For the above mentioned reason it is important to have an algorithm which decides consis-

tency of a given A-box. In addition, it will turn out that such an algorithm can also be used

to solve all the other important inference problems, namely subsumption between concepts,

satis�ability of concepts, consistency of an A-box together with a T-box, and the so-called

instantiation problem.

This last problem is de�ned as follows. The abstract object a is an instance of C with respect

to A (with respect to A together with T) i� a

I

2 C

I

for all models of A (for all models of A

together with T).

As an example, we consider the T-box de�ning the concepts Mother and Woman of Section

3, and an A-box containing the axioms (LOLITA; A3) : age, =

12

(A3) and LOLITA : Woman.

Then LOLITA is an instance of Mother with respect to the A-box together with the T-box.

Consistency of|as well as instantiation with respect to|an A-box together with a T-box

can easily be reduced to the corresponding problems for A-boxes alone. In fact, one must

simply unfold the corresponding T-box, and then replace all de�ned concept names occurring

in concept terms of the A-box by their de�nitions in the unfolded T-box.

In addition, the instantiation problem can be reduced to the consistency problem as follows:

a is an instance of C with respect to A i� the A-box A [fa : :Cg is inconsistent.

Finally, the satis�ability problem for concept terms (and thus also the subsumption problem)

can also be reduced to the consistency problem for A-boxes. In fact, C is satis�able i� the A-box

fa : Cg is consistent.

5 The Basic Reasoning Algorithm

In this section we shall describe a sound and complete algorithm which decides the consistency

of an A-box for ALC(D), provided that the concrete domain D is admissible. Such an algorithm

for ALC without concrete domain and features can be found in

[

Hollunder, 1990

]

. Since all the

inference problems introduced above can be reduced to the consistency problem (see Section

3.2 and 4.2), we thus have

Theorem 5.1 Let D be an admissible concrete domain. Then there exists a sound and complete

algorithm which is able to decide the following problems for ALC(D): the subsumption problem

w.r.t. a T-box, the subsumption problem and the satis�ability problem for concept terms, the in-

stantiation problem w.r.t. an A-box (w.r.t. an A-box together with a T-box), and the consistency

problem for an A-box (an A-box together with a T-box).

13

Let A

0

be an arbitrary A-box for ALC(D). Without loss of generality we assume that all the

concept terms occurring in this A-box are in negation normal form. In principle, the algorithm

will start with the given A-box, and transform it with the help of certain rules until one of

the following two situations occurs: (i) the obtained A-box is \obviously contradictory", or (ii)

the obtained A-box is \complete", i.e., one can apply no more rules. In the second case, the

complete A-box describes a model of the original A-box.

Because of the presence of disjunction in our language, a given A-box must sometimes be

transformed into two di�erent new A-boxes. For that reason, we shall work with sets M of

A-boxes rather than with a single A-box. If we want to test A

0

for consistency, we start with

the singleton set M

0

:= fA

0

g.

Before we can formulate the transformation rules we need a technical de�nition. Let A be

an A-box, f be a feature name, a, b, c be names of abstract objects, and x, y be names of

concrete objects. If A contains the axioms (a; b) : f and (a; c) : f (resp. (a; x) : f and (a; y) : f)

then we call such a pair of axioms a fork in A. Since f is interpreted as a partial function, such

a fork means that b and c (resp. x and y) have to be interpreted as the same object. A fork

(a; b) : f , (a; c) : f (resp. (a; x) : f , (a; y) : f) can be deleted by replacing all occurrences of c in

A by b (resp. all occurrences of y in A by x).

De�nition 5.2 (transformation rules)

Let M be a �nite set of A-boxes, and let A be an element ofM. The following rules will replace

A by an A-box A

0

or by two A-boxes A

0

and A

00

. In the formulation of the rules, the letters a, b

(possibly with indices) stand for names of abstract objects, and x, y (possibly with indices) stand

for names of concrete objects. The letters C, D denote concept terms, the letter R denotes a

feature or a role name, the letter P denotes an n-ary predicate name of D, and the letters u

1

,

..., u

n

denote feature chains.

1. The conjunction rule. Assume that a : (C u D) is in A and a : C or a : D is not in A.

The A-box A

0

is obtained from A by adding the two axioms a : C, a : D to A.

2. The disjunction rule. Assume that a : (C tD) is in A and neither a : C nor a : D is in

A. The A-box A

0

is obtained from A by adding a : C to A, and the A-box A

00

is obtained

from A by adding the axiom a : D to A.

3. The exists-in restriction rule. Assume that a : 9R:C is in A and that there is no object

name c in OA such that the axioms (a; c) : R and c : C are in A. Let b 2 OA be a

\new" abstract object name (i.e., a name not occurring in A). First, we add the two

axioms (a; b) : R, b : C to A. If R is a feature name, we may have created a fork by this

replacement. If this is the case, we delete this fork as described above. The resulting A-box

is the A-box A

0

.

4. The value restriction rule. Assume that a : 8R:C and (a; b) : R are in A and that b : C is

not in A. The A-box A

0

is obtained from A by adding the axiom b : C.

5. The predicate restriction rule. Assume that a : P (u

1

; :::; u

n

) is in A and that the following

does not hold:

For the feature chains u

i

= f

i1

:::f

in

i

, i = 1; :::; n, there are object names b

i1

; :::;

b

in

i

�1

2 OA and x

i

2 OC such that the A-box A contains axioms (a; b

i1

) : f

i1

,

(b

i1

; b

i2

) : f

i2

, ..., (b

in

i

�1

; x

i

) : f

in

i

, and (x

1

; :::; x

n

) : P .

14

For each of the feature chains u

i

= f

i1

:::f

in

i

we choose new object names b

i1

; :::; b

in

i

�1

2

OA and x

i

2 OC, and augment the A-box by the axioms (a; b

i1

) : f

i1

, (b

i1

; b

i2

) : f

i2

, ...,

(b

in

i

�1

; x

i

) : f

in

i

. If we have created new forks, we delete them as described above. Finally

we add (x

1

; :::; x

n

) : P to obtain the A-box A

0

.

We will see in Lemma 6.3 that there cannot be an in�nite chain of sets M

1

, M

2

, M

3

,...

where each M

i+1

is obtained from M

i

by application of one of the above de�ned rules. Thus

if we start with a set M

1

= fA

1

g and apply rules as long as possible we �nally end up with a

complete set M

r

, i.e., a set to which no rules are applicable. We shall now formalize what it

means that an A-box in this set is \obviously contradictory".

De�nition 5.3 (clash rules)

We use the same name conventions as in De�nition 5.2. We say that an A-box A contains a

clash i� one of the following situations occurs in A:

1. A contains axioms (a; x) : f and (a; b) : f for a feature name f . This is an obvious

contradiction because we should have to identify a concrete object with an abstract object.

2. A contains axioms (a; x) : f and a : 8f:C. This is an obvious contradiction because a

concrete object cannot be an element of a concept.

3. A contains axioms a : A and a : :A for a concept name A. This is an obvious contradiction

because an object cannot be both in a set and in its complement.

4. A contains axioms (x

(1)

1

; . . . ; x

(1)

n

1

) : P

1

; . . . ; (x

(k)

1

; . . . ; x

(k)

n

k

) : P

k

, and the corresponding

conjunction

V

k

i=1

P

i

(x

(i)

) is not satis�able in D. We are able to detect this contradiction

because we have assumed that D is admissible.

Let A

0

be the A-box which is to be tested for consistency. In a preprocessing step we

transform A

0

into an A-box A

1

by eliminating all forks. By applying the rules of De�nition 5.2

to M

1

:= fA

1

g as long as possible, we can compute a complete set of A-boxes M

r

. Now A

0

is

consistent i� there exists an A-box in M

r

which does not contain a clash (see Section 6 for a

proof). This characterization yields a decision criterion for consistency of A-boxes because the

set M

r

is obtained in �nitely many steps, and for a given A-box in M

r

one can decide whether

it contains a clash.

Thus the decision procedure can be de�ned in a pseudo programming language as follows:

Algorithm 5.4 (consistency test)

The following procedure takes an A-box A

0

as an argument and checks whether it is consistent

or not.

de�ne procedure check-consistency(A

0

)

A

1

:= eliminate-forks(A

0

)

r := 1

M

1

:= fA

1

g

while `a transformation rule is applicable to M

r

' do

r := r + 1

M

r

:= apply-a-transformation-rule(M

r�1

)

od

if `there is an A 2M

r

that does not contain a clash'

then return consistent

else return inconsistent

15

6 Soundness and Completeness

In this section we shall prove termination, soundness, and completeness of the consistency test

(Algorithm 5.4). Taking these facts together, we get that the algorithm is a decision procedure

for the consistency of an A-box A

0

.

Proposition 6.1 Assume that the algorithm as described in Section 5 is applied to A

0

. Then

1. the algorithm always computes a complete set of A-boxes M

r

in �nite time, and

2. the initial A-box is inconsistent i� all A-boxes A 2M

r

contain a clash.

Proof. The proposition is a consequence of the four lemmata (6.2, 6.3, 6.6, 6.7) stated and

proved below.

Assume that an A-box B

0

has been obtained from an A-box B by a single fork-elimination

step. The �rst part of the following lemma implies that a model I of B is also a model of B

0

.

Conversely, as a consequence of the second part, a model of B

0

can always be extended to a

model of B. Hence, fork elimination preserves (in)consistency.

Lemma 6.2 (fork elimination)

Assume that (a; b) : f together with (a; c) : f is a fork.

1. Then for any interpretation I of an A-box B = A[f(a; b) : f; (a; c) : fg we have b

I

= c

I

.

2. Conversely, if there is a model I of an A-box B

0

= A

0

[f(a; b) : fg and c is a new object

name then I extended by c

I

:= b

I

is a model of B = A [f(a; b) : f; (a; c) : fg. Here A

denotes an A-box such that A

0

can be obtained from A by replacing all occurrences of c by

b.

In addition, the elimination of �nitely many forks in a �nite A-box takes �nite time. Thus

we may without loss of generality assume that we start with a fork free A-box A

1

.

By the while loop of Algorithm 5.4 the semantic problem of consistency for the A-box A

1

is

reduced to a simple syntactic problem for a �nite set M

r

of A-boxes. This syntactic problem

is to check whether there is an A-Box in M

r

that does not contain a clash. In order to show

the correctness of the reduction, we �rst have to demonstrate that for all A-boxes A

1

the loop

terminates with a complete set M

r

of A-boxes in �nite time.

Assume that a computation using the algorithm is given and that in a single execution of the

loop body the A-box A

0

has (resp. the A-boxes A

0

and A

00

have) been derived by an application

of one of the transformation rules to an A-box A. Then A

0

is called a descendant (resp. A

0

and

A

00

are called descendants) of A.

Lemma 6.3 (termination)

The algorithm always computes a complete set of A-boxes M

r

in �nite time.

Proof. Assume that a possibly in�nite computation is given. In order to show termination

it su�ces to proof that there is no in�nite sequence of A-boxes A

1

;A

2

; ::: where A

i+1

is a

descendant of A

i

.

Assume to the contrary that there is such an in�nite sequence. We shall map each A

i

to an

element 	(A

i

) of a set Q which is equipped with a well-founded strict partial ordering�. Since

the ordering is well-founded, i.e., has no in�nitely decreasing chains, we get a contradiction as

soon as the following lemma has been established.

16

Lemma 6.4 If A

0

is a descendant of A, we have 	(A)� 	(A

0

).

The elements of the set Q will have a rather complex structure. They are �nite multisets of

4-tuples. Each component of the tuples is either a �nite multiset of nonnegative integers (for

the second, third, and fourth component) or a nonnegative integer (for the �rst component).

Multisets are like sets, but allow multiple occurrences of identical elements. For example,

f2; 2; 2g is a multiset which is distinct from the multiset f2g. A given ordering on a set T can

be extended to form an ordering on the �nite multisets over T . In this ordering, a �nite multiset

M is larger than a �nite multiset M

0

i� M

0

can be obtained from M by replacing one or more

elements inM by any �nite number of elements taken from T , each of which is smaller than one

of the replaced elements. For example, f2; 2; 2g is larger than f2g and f2; 2; 1; 1; 0g.

[

Dershowitz

and Manna, 1979

]

show that the induced ordering on �nite multisets over T is well-founded if

the original ordering on T is so.

The nonnegative integer components of our 4-tuples are compared with respect to the usual

ordering on integers, and the �nite multiset components by the multiset ordering induced by

this ordering. The whole tuples are ordered lexicographically from left to right, i.e., (c

1

; :::; c

4

)

is larger than (c

0

1

; :::; c

0

4

) i� there exists i; 1 � i � 4, such that c

1

= c

0

1

; :::; c

i�1

= c

0

i�1

, and c

i

is larger than c

0

i

. Since the orderings on the components are well-founded, the lexicographical

ordering on the tuples is also well-founded. Finite multisets of these tuples are now compared

with respect to the multiset ordering induced by this lexicographical ordering. This is the

well-founded ordering � on Q mentioned above.

Before we can de�ne the mapping 	 from A-boxes to elements of Q, we need three more

de�nitions. For two nonnegative integers n, m we denote by n

:

� m the asymmetrical di�erence

between n and m, i.e., n

:

� m := n �m if n � m, and n

:

� m := 0 if n < m. For a concept C

the size jCj is inductively de�ned as

1. jP (u

1

; . . . ; u

n

)j = 1 for all n-ary predicates of the concrete domain and feature chains

u

1

; . . . ; u

n

,

2. jQj = j:Qj = 1 for primitive concepts Q,

3. j8R:Cj = j9R:Cj = 1 + jCj for all value and exists-in restrictions, and

4. jC tDj = jC uDj = jCj+ jDj for disjunctions and conjunctions.

One di�culty in the termination proof is caused by possible cycles (e. g. (a; b) : R, (b; c) : S,

(c; a) : R) in the initial A-box. But fortunately, objects introduced during the computation

cannot be involved in a cycle. Therefore we distinguish old objects that occur already in A

1

from

new objects that are introduced during the computation by an exists-in or predicate restriction

rule. The de�nition of the mapping 	 will assure that the contribution of an old object is always

\greater" than the contribution of a new object. To achieve this we shall need the constant

M de�ned as the number of di�erent concept terms C that occur in A

1

in an axiom or as a

subterm. Please observe that this is also the number of di�erent concepts that may occur in

the computation, and that M is greater than maxfjCj; C occurs in A

1

g

11

.

We are now ready to de�ne the mapping 	. Let A be an A-box. Then 	(A) is the multiset

which contains for each object a occurring in A a 4-tuple

A

(a) de�ned as follows:

11

Here and in the following we assume that max ; is set to 0.

17

1. Let N be the number of di�erent feature names occurring in A

1

and for a set S let #S

denote the number of elements of S. The �rst component of

A

(a) is the nonnegative

integer

2M + 1 � #fa : C; a : C is in Ag

+ N � #f(a; b) : f ; (a; b) : f is in A and f is a featureg;

if a is old. Otherwise, it is maxfjCj; a : C is in Ag.

2. The second component of

A

(a) is the empty multiset, if a is old. Otherwise, it is the

multiset consisting of all positive integers jC uDj (resp. jC tDj), where a : C uD (resp.

a : C tD) occurs in A and the conjunction (resp. disjunction) rule is applicable to this

assertional axiom.

3. The third component of

A

(a) is the multiset consisting of all positive integers j9R:Cj

(resp. jP (u

1

; . . . ; u

n

)j), where a : 9R:C (resp. a : P (u

1

; . . . ; u

n

)) occurs in A and the exists-

in (resp. predicate) restriction rule is applicable to this assertional axiom.

4. The fourth component of

A

(a) is the multiset consisting of all positive integers j8R:Cj,

where a : 8R:C and (a; b) : R occur in A and the value restriction rule is applicable to this

pair of assertional axioms.

To prove Lemma 6.4 we have to consider the respective 4-tuples corresponding to names of

objects that occur in A or A

0

. To reduce the number of cases we introduce the notion of a�ected

objects and show that

A

(a) is always greater than or equal to

A

0

(a) for objects that are not

a�ected. Hence, in order to prove the lemma, only a�ected objects have to be considered.

Without loss of generality, we assume that in the fork elimination steps, due to the applica-

tion of transformation rules, the newly introduced objects are replaced by the elder ones. We

de�ne an object a to be a�ected by the transformation from A to A

0

, if

� the transformation rule has been applied to an axiom a : C in this derivation step, or

� an axiom (a; b) : R, (b; a) : R, or a : C is in A

0

but not in A.

Please observe that the de�nition of the third and the fourth component of the 4-tuple of

any object as well as the de�nition of the second component for new objects, have the following

structure in common: First a set of (pairs of) axioms is determined. Then this set is made

smaller due to the applicability of certain transformation rules. Finally, the remaining set is

mapped to a multiset of integers using the j � j-function. Assume that A is transformed to

A

0

by a transformation rule. By the de�nition of transformation rules, non-applicability of a

rule to a certain axiom (resp. pair of axioms) comes from the presence of other axioms. Since

transformation rules do not remove axioms, we observe that to every axiom (resp. pair of axioms)

in A to which a transformation rule is applicable in the context of A

0

, the same rule has already

been applicable in the context of A. Thus there is only one possibility how a derivation step

can increase one of the mentioned components for an object name a. A new axiom a : C or

(a; b) : R has been asserted.

Similarly, the �rst component of a 4-tuple of a new object a can only be changed, if a new

axiom a : C is asserted. But all this cannot happen for objects that have not been a�ected.

18

The fact that transformation rules do not remove axioms also implies that the �rst component

of an old object can only decrease or it remains unchanged in a derivation step.

Hence, we can conclude that in order to show that 	(A

0

) can be obtained from 	(A) by

replacing 4-tuples by smaller ones, we do not have to worry about 4-tuples of objects which are

not a�ected. The following lemma will be useful for the remaining case of a�ected objects.

Lemma 6.5 Assume that a is a new object in A.

1. If there is an outgoing edge

12

from a to b (i.e. an axiom (a; b) : R) then b is new.

2. There is exactly one object b and one feature or role R such that (b; a) : R is in A. In

other words, new objects have exactly one incoming edge.

3. If there is an axiom (b; a) : R, the �rst component of

A

(a) is smaller than the �rst com-

ponent of

A

(b), or both tuples are equal to (0; ;; ;; ;).

Proof. No transformation rule generates a new incoming edge for an object, beside the case

when the object is introduced. Hence, the �rst part of the lemma is obvious. Taking the same

argument and recalling that new objects are introduced along with exactly one incoming edge,

we immediately get part two. Now, consider the last claim of the lemma. If there is no axiom

a : C then

A

(a) is equal to the minimal element (0; ;; ;; ;) and we are done. Otherwise, take

an axiom a : C in A such that jCj is maximal. This axiom must have been introduced applying

the value restriction (resp. the exists-in restriction rule) to an axiom b : 8R:C together with

(b; a) : R (resp. b : 9R:C). In both cases we are done because j8R:Cj = j9R:Cj > jCj.

Please recall that we have to show that 	(A

0

) can be obtained from 	(A) by replacing some

(but at least one) 4-tuple by �nitely many smaller ones. We have already seen that the 4-tuples

related to not a�ected objects do not cause any trouble, because they do not increase. Now

consider the a�ected objects.

(1) Assume that the conjunction rule has been applied to a : C uD. The object a is the only

object that is a�ected in this derivation step. If a is old, the �rst component decreases because

at least one of the axioms a : C and a : D is new in A

0

. If a is new, the �rst component of the

tuple does not change because of jC uDj > jCj and jC uDj > jDj. In the second component,

jC uDj is removed and possibly replaced by jCj or/and jDj. Hence, it decreases. Starting with

	(A) we obtain 	(A

0

) by replacing

A

(a) by the strictly smaller tuple

A

0

(a), and by possibly

several other replacements from greater by smaller 4-tuples related to objects not a�ected.

(2) The disjunction rule can be handled in a similar way.

(3) Assume that the value restriction rule has been applied to a : 8R:C; (a; b) : R. Then a

and b are the a�ected objects. First assume that a and b are equal. Because of part three of

Lemma 6.5, this is only possible if a is old. But then the �rst component already decreases

because a new axiom a : C has been asserted. Now assume that a and b are di�erent. We �rst

consider a.

� If a is old, its associated 4-tuple decreases. In fact, the �rst component cannot increase, as

mentioned in the argumentation attached to the a�ected objects. The second component

is always ;. Because a and b are distinct, no new axiom a : D has been asserted, and the

third component cannot increase. Finally, the fourth component must decrease, because

the value restriction rule is no longer applicable to a : 8R:C; (a; b) : R.

12

Roles and feature axioms in A can be visualized by a directed graph where nodes are objects and edges are

labeled by features or roles.

19

� If a is new, its associated 4-tuple also decreases. No new axiom a : D has been asserted,

and hence the �rst and second component remain unchanged. For the third and fourth

component the same arguments as in the case of an old a can be used.

We shall now show that

A

0

(b) is smaller than

A

(b) or smaller than

A

(a). The latter

su�ces, because

A

(a) is removed from 	(A).

� If b is old, its �rst component already decreases because of the assertion of b : C.

� If b is new, we make a case distinction on a.

{ If a is old, the �rst component of

A

0

(b) is smaller than the �rst component of

A

(a),

because the constant M used in the de�nition of the �rst component for old objects

is large enough.

{ If a is new, the �rst component of

A

(a) is equal to the �rst component of

A

0

(a),

which in turn is greater than

A

0

(b) by part three of Lemma 6.5.

(4) Assume that the application of the exists-in restriction rule to a : 9R:C yields the new

axiom b : C. Then a and b are the a�ected objects. First assume that a and b are equal. Because

of part three of Lemma 6.5, this is only possible if a is old. But then the �rst component already

decreases because a new axiom a : C has been asserted. Now assume that a and b are di�erent.

We �rst consider a.

� If a is old, its associated 4-tuple decreases. In fact, the �rst component cannot increase,

as shown above. The second component is always ;. Now, consider the third component.

The exists-in restriction rule is no longer applicable to a : 9R:C, and because a and b are

distinct, no new axiom a : D has been asserted. Hence, the third component gets smaller.

� The remaining case for a new a is analogous to (3).

The remaining cases related to b correspond to the respective cases in (3).

(5) Assume that the predicate restriction rule has been applied to a : P (u

1

; :::; u

n

). We use

the same naming as in the de�nition of the rule. Every a�ected object is mentioned in the rule

as an a, b

ij

, or an x

i

. We observe that

(�) in this derivation step no axiom of the form c : C is asserted.

For old objects, the �rst component cannot increase, and it may decrease by inserting a new

feature axiom. The second component remains ;. For new objects, the �rst and second compo-

nent remain unchanged as a consequence of (�). For the object a, the third component strictly

decreases, because the predicate-restriction rule is no longer applicable to a : P (u

1

; :::; u

n

). For

the other a�ected objects it cannot increase, because of (�). But the fourth component might

increase, because there could be a new pair of axioms b : 8f:C, (b; c) : f , where the latter has

been newly introduced. Fortunately, if b is old, the �rst component of its 4-tuple must get

smaller. If b is new, its �rst component is already smaller than the �rst component of

A

(a).

The latter can be seen along the same lines as in the last part of (3) and (4).

This concludes the proof of Lemma 6.4 and thus the �rst part of Proposition 6.1.

To prove the second part of Proposition 6.1, we now de�ne the notion of contradictory A-

boxes which is the syntactic equivalent of inconsistent A-boxes. The de�nition is by induction on

the relation \descendant" which we have just proved to be noetherian. An A-box A occurring

in the computation is contradictory with respect to a computation i�

20

� A does not have descendants and contains a clash, or

� all descendants of A are contradictory.

Please note that according to this de�nition A

1

is contradictory i� after the loop there is no

clash free A-box A in the set M

r

.

Lemma 6.6 (soundness)

An A-box that is contradictory with respect to a given computation is inconsistent.

Proof. The proof is by induction on the de�nition of contradictory, with a case analysis according

to the transformation rule applied. Assume that a contradictory A-box A is given. We have to

show that it does not have a model.

If A does not have a descendant, it must contain a clash. But obviously, an A-box with a

clash cannot have a model. For the induction step, assume to the contrary that A has a model

I. We have to show that the descendant (resp. one of the descendants in case of the disjunction

rule) of A has a model. This will be a contradiction to the induction hypothesis, because all

descendants of contradictory A-box are contradictory.

We shall only demonstrate the case of the value restriction rule. The other cases can be

treated similarly. Assume that the rule has been applied to the axioms a : 8R:C and (a; b) : R

in A, generating the descendant A

0

. Please, note that A

0

is a superset of A and that the only

axiom in A

0

that is not in A is b : C. Hence, it su�ces to show that I satis�es b : C. This is an

immediate consequence of the de�nition of a value restriction.

Lemma 6.7 (completeness)

If the initial A-box A

1

is not contradictory with respect to a given computation then it has a

model.

Proof. If A

1

is not contradictory then there is an A-box A � A

1

in M

r

to which none of the

clash rules is applicable. We de�ne an interpretation I of A as follows:

1. Because the clash rule related to the concrete domain is not applicable, there is a vari-

able assignment � that satis�es the conjunction of all occurring axioms of the form

P (x

1

; . . . ; x

n

). The interpretation I interprets an x 2 OC as �(x).

2. The domain dom(I) consists of all the objects of OA occurring in A.

3. Let Q be a primitive concept name. Then we set a 2 Q

I

i� a : Q occurs in A.

4. Let R be a role or feature name. Then we set (a; b) 2 R

I

i� (a; b) : R occurs in A. This is

well de�ned even if R is a feature, because there is no fork in A, and the �rst clash rule

is not applicable.

It will be shown by induction on the size of the axioms that I is not only an interpretation but

also a model of A. Assume that ax is an axiom in A.

1. Let ax be (a; b) : R. Then I satis�es the axiom by de�nition.

21

2. Let ax be a : P (u

1

; . . . ; u

n

). We use the same naming conventions as in the predicate

restriction rule. Then there is an axiom P (x

1

; . . . ; x

n

) in A and u

I

i

(a) = x

I

i

holds for all

i = 1; . . . ; n. Hence by de�nition of � we get that I satis�es a : P (u

1

; . . . ; u

n

).

3. Let ax be a : Q, where Q is a primitive concept name. Then by de�nition of I we have

a 2 Q

I

.

4. Let ax be a : :Q. Then Q is a primitive concept, and because A is clash free, a : Q is not

in A. Hence we get by de�nition of I that ax is satis�ed by I.

5. Let ax be a : C uD (resp. a : C tD). Because no transformation rule is applicable a : C

and a : D (resp. a : C or a : D) are in A. By induction a : C and (resp. or) a : D are (resp.

is) satis�ed by I, and hence ax is satis�ed.

6. Let ax be a : 8R:C. If there is an axiom (a; b) : R in A then b is in OA, because the

second clash rule is not applicable. Hence for a : 8R:C and all axioms (a; b) : R the value

restriction rule has been applied. By induction hypothesis, I satis�es b : C for all these b,

and hence ax is satis�ed.

7. Let ax be a : 9R:C. Then the exists-in restriction rule has been applied and two axioms

(a; b) : R and b : C are in A. By the induction hypothesis they are satis�ed by I, and

hence ax is satis�ed.

Finally, we use A

1

� A to conclude that I is also a model for A

1

.

7 Expressing Interval Relations: An Example

In

[

Allen, 1983

]

J. F. Allen proposes a formalism to represent relations between time intervals

that is based on 13 disjoint basic relations on pairs of intervals. These relations correspond

to a case analysis of the relative positions of the interval borders. In addition, he presents a

consistency test for given sets of relations that is built around a transitive closure algorithm.

This algorithm uses a big propagation table which has the following form: Given two basic

interval relations c(i

1

; i

2

), d(i

2

; i

3

) it says which basic relations could possibly apply to (i

1

; i

3

).

In this section we show how the instance ALC(R) of our language scheme can be used

to check his choice of basic relations and his propagation table. We will de�ne concepts that

correspond to the basic interval relations. The subsumption and the satis�ability test of the

T-box can then be used to check that his case analysis of relative positions of interval borders

is exhaustive and that there are no overlapping cases. Finally, the consistency test for A-boxes

will be used to verify the propagation table.

13

The set dom(R) together with the predicates <;�; >;�;=; 6= generates a simple admissible

concrete domain that su�ces for the purpose of this section. We will write the binary predicates

in the more readable in�x notation.

An interval i is considered as an ordered pair of real numbers (x

1

; x

2

); x

1

� x

2

. This is

reected in the de�nition of the concept Interval. Its de�nition refers to the predicate � of the

concrete domain, and applies it to the features left and right.

Interval = (left � right)

13

This example has been implemented by Andreas Abecker and Dennis Drollinger.

22

Allen's 13 basic relations are binary relations on intervals. Thus, we de�ne a concept Pair that

groups two intervals using the features �rst and second.

Pair = 9�rst:Interval u 9second:Interval

Now Allen's 13 basic interval relations can be de�ned in a straightforward manner as

Equals = Pair u (�rst left = second left)

u (�rst right = second right)

Before = Pair u (�rst right < second left)

After = Pair u (�rst left > second right)

Meets = Pair u (�rst right = second left)

Met-by = Pair u (�rst left = second right)

Overlaps = Pair u (�rst left < second left)

u (�rst right < second right)

u (�rst right > second left)

Overlapped-by = Pair u (�rst right > second right)

u (�rst left > second left)

u (�rst left < second right)

During = Pair u (�rst left > second left)

u (�rst right < second right)

Contains = Pair u (�rst right > second right)

u (�rst left < second left)

Starts = Pair u (�rst left = second left)

u (�rst right < second right)

Started-by = Pair u (�rst left = second left)

u (�rst right > second right)

Finishes = Pair u (�rst left > second left)

u (�rst right = second right)

Finished-by = Pair u (�rst right = second right)

u (�rst left < second left)

To show that the 13 cases considered by Allen do not overlap, we verify that all pairwise

conjunctions of the respective concepts are inconsistent. For example to check that Meets does

not overlap with After we check whether the concept

Meets u After

is not satis�able.

It is obvious that the set of all pairs of intervals form a predicate that is more general

than each of Allen's interval relations. Nevertheless, we could use the subsumption service to

verify, for example, that Pair subsumes Meets. To see conversely that Allen's case distinction is

exhaustive, we show that the disjunction of all corresponding concepts

23

Equals t Before t After t Meets t Met-by t Overlaps t Overlapped-by t During t

Contains t Starts t Started-by t Finishes t Finished-by

subsumes Pair.

To verify the propagation table we make use of A-box reasoning. Assume that C and D are

concepts that correspond to basic interval relations c and d, respectively, and that Pair

j

, I

k

are

object names from OA. Then the A-box A de�ned by

(Pair

1

; I

1

) : �rst; (Pair

1

; I

2

) : second;

(Pair

2

; I

2

) : �rst; (Pair

2

; I

3

) : second;

Pair

1

: C; Pair

2

: D;

corresponds to interval relations c(i

1

; i

2

) and d(i

2

; i

3

). If we want to know, whether an interval

relation e may possibly apply to (i

1

; i

3

), then in a �rst step we extend A with the following

axioms where E denotes the concept corresponding to e.

(Pair

3

; i

1

) : �rst; (Pair

3

; i

3

) : second;

Pair

3

: E:

In a second step, the consistency test for A-boxes checks whether the extended A-box has a

model. If it has a modelM , the basic interval relation e(i

1

; i

3

) holds in conjunction with c(i

1

; i

2

)

and d(i

2

; i

3

) for the intervals i

j

= (left

M

(I

M

j

); right

M

(I

M

j

)); j = 1; 2; 3. Otherwise such intervals

do not exist. Iterating the procedure over all triples of interval relations (c; d; e) we can verify

Allen's propagation table.

8 An Undecidability Result

The concept languages we have considered until now do not provide any operators for con-

structing complex role terms out of role names. However, for many applications it would be

convenient if one were allowed to use e.g. transitive closure of roles when de�ning concepts. For

example, assume that we have the concept Man and the role child. We can easily de�ne the

concept Mos of all men having only sons as

Mos = Man u 8child:Man:

Assume that we also want to express the concept of all men having only male o�springs, for

shortMomo. We cannot just introduce a new role o�spring because there would be no connection

between the two atomic roles child and o�spring. But the intended meaning of o�spring is that

it is the transitive closure of child, i.e., in any interpretation I the binary relation o�spring

I

should be the transitive closure of the binary relation child

I

.

In

[

Baader, 1991

]

, the following \transitive extension" of the language ALC is investigated:

instead of roles names one may use role terms involving union, composition and transitive closure

of roles in concept de�nitions. In this language, the concept Momo can be de�ned as

Momo = Man u 8trans(child):Man:

24

The semantics of the role operator trans is de�ned in the obvious way, i.e., for any role R

and any interpretation I, one has trans(R)

I

:=

S

n�1

(R

I

)

n

. Baader

[

Baader, 1991

]

shows that

satis�ability and subsumption of concept terms in the extended language are still decidable.

For many applications it is desirable to have both access to an admissible concrete domain

and transitive closure of features. As a motivation, consider the example given in Section 7.

There we have de�ned the concept \pair of intervals" as

Pair = 9�rst:Interval u 9second:Interval

and for instance the subconcept \pair of successive intervals" as

Meets = Pair u (�rst right = second left)

To improve the readability we have written the binary concrete predicate \=" in in�x notation.

Similarly, one can of course de�ne triples, quadruples, etc. of successive intervals; but it is not

possible to de�ne the concept \sequence of successive intervals" this way. However, if we were

allowed to use transitive closure of features the concept \sequence of intervals" could be de�ned

as

Sequence = 9head:Interval u

8trans(tail): (9head:Interval) ;

where the feature head yields the �rst element of a given sequence and the feature tail yields the

remaining sequence after the �rst element is removed. Now the concept \sequence of successive

intervals" can be expressed by the concept term

sequence u ((head right = tail head left) t 8tail:Bottom) u

8trans(tail): ((head right = tail head left) t 8tail:Bottom)

Here Bottom is intended to denote a concept which is always interpreted as the empty set;

for example, de�ning Bottom = A u :A for an arbitrary concept A would do. Thus the term

8tail:Bottom expresses that the feature tail is unde�ned. This means that the end of the sequence

is reached.

In the above concept term we have used both transitive closure of features and predicates of

a concrete domain. We know that adding one of these two facilities to a concept language such

as ALC leaves the interesting inference problems decidable. However, the situation changes if

we want to have both facilities in one language.

If, starting with ALC, we allow transitive closure of features and integrate the admissible

concrete domain R (which stands for real arithmetic) then the satis�ability problem becomes

undecidable.

This will be shown by reducing the Post Correspondence Problem to the satis�ability prob-

lem for this language. The reduction will use only very simple predicates from real arithmetic,

namely equalities between linear polynomials in at most two variables.

First, we recall the de�nition of the Post Correspondence Problem. Let � be a �nite alpha-

bet. A Post Correspondence System over � is a nonempty �nite set S = f(l

i

; r

i

); i = 1; :::; mg

where the l

i

; r

i

are words over �. A nonempty sequence 1 � i

1

; :::; i

n

� m is called a solution of

the system S i� l

i

1

� � � l

i

m

= r

i

1

� � � r

i

m

. It is well-known that the Post Correspondence Problem,

25

i.e., the question whether there exists a solution for a given system, is in general undecidable if

the alphabet contains at least two symbols

[

Post, 1946

]

.

In order to reduce this problem to a satis�ability problem for concept terms which use

transitive closure of features and refer to the concrete domain R, we have to encode words into

real numbers. This can be done as follows. For B := j�j+ 1 we can consider the elements of �

as digits 1; 2; :::; B � 1 of numbers represented at base B. For a given nonempty word w over

� we denote by w the nonnegative integer (in ordinary representation at base 10) it represents

at base B. We assume that the empty word " represents the integer 0. Obviously, the mapping

w 7! w is a 1�1-mapping from �

�

into the set of nonnegative integers. Concatenation of words

is reected on the corresponding numbers as follows. Let v; w be two words over �. Then we

have vw = v �B

jwj

+ w, where jwj denotes the length of the word w.

We are now ready to de�ne names for the predicates of the concrete domain R we shall use

in our reduction. For i = 1; :::; m,

C

i

l

(x; y; z) () y = l

i

^ z = y + x �B

jl

i

j

;

C

i

r

(x; y; z) () y = r

i

^ z = y + x �B

jr

i

j

;

E(x; y) () x = y; and L(x)() x = 0:

Let l; r; w

l

; w

r

, and f be feature names. The concept term C(S) corresponding to the Post

Correspondence System S is now de�ned as follows:

C(S) =

m

G

i=1

�

C

i

l

(w

l

; l; f w

l

) u C

i

r

(w

r

; r; f w

r

)

�

u

L(w

l

) u L(w

r

) u

8trans(f):

m

G

i=1

�

C

i

l

(w

l

; l; f w

l

) u C

i

r

(w

r

; r; f w

r

)

�

!

u

9trans(f):E(w

l

; w

r

):

Proposition 8.1 The concept term C(S) is satis�able if and only if the Post Correspondence

System S has a solution. Consequently, satis�ability is in general undecidable for concept terms

which may contain transitive closure of features and predicate restrictions of an admissible con-

crete domain.

Proof. Assume that S has a solution i

1

; :::; i

n

of length n. We extend this sequence to an in�nite

sequence i

1

; :::; i

n

; i

n+1

; i

n+2

; ::: by choosing arbitrary indices 1 � i

n+1

; i

n+2

; ::: � m. This new

sequence is used to de�ne an interpretation I as follows:

dom(I) := fk; k � 1g; and for all k � 1;

f

I

(k) := k + 1;

l

I

(k) := l

i

k

and r

I

(k) := r

i

k

;

w

I

l

(k) := l

i

1

� � � l

i

k�1

and w

I

r

(k) := r

i

1

� � � r

i

k�1

:

Please note that for k = 1, the word l

i

1

� � � l

i

k�1

is the empty word, and thus l

i

1

� � � l

i

k�1

= 0. It

is now easy to show that 1 2 C(S)

I

. Obviously, this implies that C(S) is satis�able.

26

On the other hand, assume that C(S) is satis�able, and let I be an interpretation such that

C(S)

I

6= ;. This interpretation can be used to �nd a solution of S. Consider an arbitrary

element c of C(S)

I

. Obviously, c 2 (L(w

l

) u L(w

r

))

I

yields w

I

l

(c) = 0 = w

I

r

(c). Since

c 2

m

G

i=1

�

C

i

l

(w

l

; l; f w

l

) u C

i

r

(w

r

; r; f w

r

)

�

!

I

;

we know that there exists an index between 1 and m, say i

1

, such that

c 2

�

C

i

1

l

(w

l

; l; f w

l

) u C

i

1

r

(w

r

; r; f w

r

)

�

I

:

By the de�nition of the concrete predicates we get that l

I

(c) = l

i

1

and r

I

(c) = r

i

1

, and

(f w

l

)

I

(c) = l

i

1

and (f w

r

)

I

(c) = r

i

1

.

Similarly, one can show by induction on k that for all k � 0 there exists an index i

k+1

between

1 and m such that

(f

k

l)

I

(c) = l

i

k+1

; (f

k

r)

I

(c) = r

i

k+1

;

(f

k+1

w

l

)

I

(c) = l

i

1

� � � l

i

k+1

; (f

k+1

w

r

)

I

(c) = r

i

1

� � � r

i

k+1

:

From c 2 (9trans(f):E(w

l

; w

r

))

I

we can now deduce that there exists a positive integer n

such that (f

n

w

l

)

I

(c) = (f

n

w

r

)

I

(c), and thus we have l

i

1

� � � l

i

n

= r

i

1

� � � r

i

n

. Consequently,

l

i

1

� � � l

i

n

= r

i

1

� � � r

i

n

, which shows that the sequence i

1

; :::; i

n

is a solution of S.

9 Conclusion

We have proposed a kl-one based knowledge representation and reasoning system which is hy-

brid in two respects. On the one hand, it makes the usual distinction between two epistemolog-

ical di�erent kinds of knowledge, the terminological knowledge and the assertional knowledge.

On the other hand, the terminological and assertional language, which usually describes the

knowledge on an abstract logical level, is extended by allowing to refer to concrete domains and

predicates on these domains.

The di�erent parts of the system are integrated with the help of a uni�ed model-theoretic

semantics. Reasoning in the terminological and the assertional part can be done with the help

of a single basic reasoning algorithm. This algorithm creates subtasks which have to be solved

by the special purpose reasoner of the concrete domain (see the fourth clash rule in De�nition

5.3). But there is no other interaction necessary between our basic reasoning algorithm and the

reasoner on the concrete domain.

Our approach di�ers from other extensions of kl-one which were done for similar reasons in

several respects. Firstly, we have proposed a scheme for such an extension, and not a particular

extension by some speci�c concrete domains. The formal semantics and the algorithm are

given on this scheme level. Secondly, the basic reasoning algorithm is not only sound but also

complete with respect to this semantics. In addition, we can utilize special purpose reasoners

which may already exist for the concrete domain in question. This shows another di�erence to

e.g. the meson system where the important relationships between the user-de�ned or machine-

de�ned predicates have to be explicitly supplied by the user. Because of the relatively narrow

27

interface which we allow between the abstract and the concrete part of our formalism, the special

purpose reasoner of the concrete domain may be considered as a black box. This is di�erent

to e.g. Schmiedel's Temporal Terminological Logic where the terminological and the temporal

parts are interleaved in a way which seems to make it impossible to separate the corresponding

reasoning components.

Our main motivation for developing the presented kl-one extension was to represent knowl-

edge in a mechanical engineering domain. In particular, we wanted to describe both geometric

and other attributes of lathe work pieces in a uni�ed framework. For that purpose we intend

to use the language ALC(R) where geometric properties can be described with the help of

predicates over real numbers. Unfortunately, linear predicates (i.e., predicates built from equal-

ities and inequalities between linear polynomials) are not su�cient in this context. However,

it is possible to specify geometric primitives|such as circle, cone, lateral area of a cone, etc.|

which can be used to build up larger predicates. Since these primitives are relatively simple

they can be preprocessed with the help of a quanti�er elimination procedure for linear state-

ments with parameters (see e.g.

[

Weispfenning, 1988; Loos and Weispfenning, 1990

]

). After this

elimination|which has to be done only once for a given collection of geometric primitives|

the satis�ability problems generated by our basic reasoning algorithm are purely existential

problems. These problems can e.g. be solved by the method described in

[

Canny, 1988

]

.

As already indicated by the examples given in Section 2, there are also other interesting

instances of our scheme. For example, by using the language ALC(AL), or by expressing

intervals in ALC(R) as demonstrated in Section 7, one can get a simple integration of temporal

knowledge into kl-one. Though this approach is not as expressive as the one of Schmiedel, it

may be su�cient for some applications; and it has the obvious advantage that there exist sound

and complete reasoning algorithms.

References

[

Allen, 1983

]

J. F. Allen. Maintaining knowledge about temporal intervals. Communications

of the ACM, 26(11):832{843, 1983.

[

Baader and Hanschke, 1991

]

F. Baader and P. Hanschke. A scheme for integrating concrete

domains into concept languages. In Proceedings of the 12

th

International Joint Conference

on Arti�cial Intelligence, 1991. A long version (the one you are reading now) is available as

DFKI Research Report RR-91-10.

[

Baader, 1990

]

F. Baader. Terminological cycles in kl-one-based knowledge representation

languages. In Proceedings of the Eighth National Conference on Arti�cial Intelligence, vol-

ume 2, pages 621{626. AAAI, 1990. A long version is available as DFKI Research Report

RR-90-01.

[

Baader, 1991

]

F. Baader. Augmenting concept languages by transitive closure of roles: An

alternative to terminological cycles. In Proceedings of the 12

th

International Joint Conference

on Arti�cial Intelligence, 1991. A long version is available as DFKI Research Report RR-

90-13.

[

Borgida et al., 1989

]

A. Borgida, R. J. Brachman, D. L. McGuinness, and L. A. Resnick.

CLASSIC: A structural data model for objects. In International Conference on Management

28

of Data. ACM SIGMOD, 1989.

[

Brachman and Schmolze, 1985

]

R. J. Brachman and J. G. Schmolze. An overview of the kl-

one knowledge representation system. Cognitive Science, 9(2):171{216, 1985.

[

Brachman et al., 1979

]

R. J. Brachman, R. J. Bobrow, P. R. Cohen, J. W. Klovstad, B. L.

Webber, and W. A. Woods. Research in natural language understanding, annual report.

Tech. Rep. No. 4274, Cambrige, MA, 1979. Bolt Beranek and Newman.

[

Brachman et al., 1985

]

R. J. Brachman, V. Pigman Gilbert, and H. J. Levesque. An essential

hybrid reasoning system: knowledge and symbol level accounts in krypton. In Proceedings

of the 9th International Joint Conference on Arti�cial Intelligence, pages 532{539, 1985.

[

Canny, 1988

]

J. Canny. Some algebraic and geometric computations in pspace. In Proceedings

of the ACM Symposium on Theory of Computing, pages 460{467. ACM, 1988.

[

Collins, 1975

]

G. E. Collins. Quanti�er elimination for real closed �elds by cylindrical algebraic

decomposition. In 2nd Conference on Automata Theory & Formal Languages, volume 33 of

LNCS, 1975.

[

Colmerauer, 1990

]

A. Colmerauer. An introduction to prolog iii. Communications of the

ACM, 33(7), 1990.

[

Davis, 1973

]

M. Davis. Hilbert's tenth problem is unsolvable. Am. Math. Monthly, 80:239{269,

1973.

[

Dershowitz and Manna, 1979

]

N. Dershowitz and Z. Manna. Proving termination with multi-

set orderings. Communications of the ACM, 8(22):465{476, 1979.

[

Dincbas et al., 1988

]

M. Dincbas, P. Van Hentenryck, H. Simonis, and A. Aggoun. The con-

straint logic programming language chip. In Proceedings of the 2nd International Conference

on Fifth Generation Computer Systems, pages 249{264, 1988.

[

Edelmann and Owsnicki, 1986

]

J. Edelmann and B. Owsnicki. Data models in knowledge rep-

resentation systems: a case study. In GWAI-86 und 2.

�

Ostereichische Arti�cial-Intelligence-

Tagung, volume 124 of Informatik-Fachberichte, pages 69{74. Springer, 1986.

[

Hollunder and Nutt, 1990

]

B. Hollunder and W. Nutt. Subsumption algorithms for concept

languages. Research Report RR-90-04, DFKI / Kaiserslautern, 1990.

[

Hollunder et al., 1990

]

B. Hollunder, W. Nutt, and M. Schmidt-Schau�. Subsumption algo-

rithms for concept description languages. In 9th European Conference on Arti�cial Intelli-

gence (ECAI'90), pages 348{353, 1990.

[

Hollunder, 1990

]

B. Hollunder. Hybrid inferences in kl-one-based knowledge representation

systems. In GWAI-90; 14th German Workshop on Arti�cial Intelligence, volume 251 of

Informatik-Fachberichte, pages 38{47. Springer, 1990.

[

Ja�ar et al., 1990

]

J. Ja�ar, S. Michaylov, P. J. Stuckey, and R. H. C. Yap. The CLP(R)

language and system. CMU-CS-90-181, School of Computer Science, Carnegie Mellon Uni-

versity, 1990. Early Version in Proceedings of the 4th International Conference on Logic

Programming, May 1987.

29

[

Kobsa, 1989

]

A. Kobsa. The sb-one knowledge representation workbench. In Preprints of the

Workshop on Formal Aspects of Semantic Networks, 1989. Two Harbors, Cal.

[

Lassez, 1987

]

C. Lassez. Constraint logic programming. In Constraint Logic Programming: A

Reader, 1987. Fourth IEEE Symposium on Logic Programming, San Francisco.

[

Levesque and Brachman, 1987

]

H. J. Levesque and R. J. Brachman. Expressiveness and

tractability in knowledge representation and reasoning. Computational Intelligence, 3:78{

93, 1987.

[

Loos and Weispfenning, 1990

]

R. Loos and V. Weispfenning. Applying linear quanti�er elim-

ination. Technical report, Wilhelm Schickard-Institut f�ur Informatik, Universit�at T�ubingen,

Germany, 1990.

[

Matijacevi�c, 1970

]

Y. Matijacevi�c. Enumerable sets are diophantine. Soviet Math. Doklady,

11:354{357, 1970. English translation.

[

Mays et al., 1987

]

E. Mays, C. Apt�e, J. Griesmer, and J. Kastner. Organizing knowledge in a

complex �nancial domain. IEEE Expert, 2(3):61{70, 1987.

[

Mays et al., 1988

]

E. Mays, C. Apt�e, J. Griesmer, and J. Kastner. Experience with K-Rep:

an object centered knowledge representation language. In Proceedings of IEEE CAIA-88,

pages 62{67, 1988.

[

Nebel and von Luck, 1988

]

B. Nebel and K. von Luck. Hybrid reasoning in back. In Z. W.

Ras and L. Saitta, editors, Methodologies for Intelligent Systems, volume 3, pages 260{269.

North-Holland, 1988.

[

Nebel, 1989

]

B. Nebel. Terminological cycles: Semantics and computational properties. In

Proceedings of the Workshop on Formal Aspects of Semantic Networks, 1989. Two Harbors,

Cal.

[

Nebel, 1990

]

B. Nebel. Terminological reasoning is inherently intractable. Arti�cial Intelli-

gence, 43(2):235{249, 1990.

[

Patel-Schneider et al., 1990

]

P. F. Patel-Schneider, B. Owsnicki-Klewe, A. Kobsa, N. Guarino,

R. McGregor, W. S. Mark, D. McGuiness, B. Nebel, A. Schmiedel, and J. Yen. Report on

the workshop on term subsumption languages in knowledge representation. AI Magazine,

11(2):16{23, 1990.

[

Patel-Schneider, 1984

]

P. F. Patel-Schneider. Small can be beautiful in knowledge represen-

tation. In Proceedings of the IEEE Workshop on Principles of Knowledge-Based Systems,

pages 11{16. Denver, Colo., 1984. An extended version including a KANDOR system de-

scription is available as AI Technical Report No. 37, Palo Alto, Cal., Schlumberger Palo Alto

Research,1984.

[

Post, 1946

]

E. M. Post. A varian of a recursively unsolvable problem. Bull. Am. Math. Soc.,

52:264{268, 1946.

[

Schmidt-Schau� and Smolka, 1991

]

M. Schmidt-Schau� and G. Smolka. Attributive concept

descriptions with complements. To appear in Journal of Arti�cial Intelligence, 47, 1991.

30

[

Schmidt-Schau�, 1989

]

M. Schmidt-Schau�. Subsumption in kl-one is undecidable. In R. J.

Brachman, editor, First International Conference on Principles of Knowledge Representation

and Reasoning, pages 421{431, 1989.

[

Schmiedel, 1990

]

A. Schmiedel. A temporal terminological logic. In Proceedings of the Eighth

National Conference on Arti�cial Intelligence, volume 2, pages 640{645. AAAI, 1990.

[

Tarski, 1951

]

A. Tarski. A Decision Method for Elementary Algebra and Geometry. U. of

California Press. Berkley, 1951.

[

Vilain, 1985

]

M. Vilain. The restricted language architecture of a hybrid representation system.

In Proceedings of the 9th International Joint Conference on Arti�cial Intelligence, pages 547{

551, 1985.

[

Weispfenning, 1988

]

V. Weispfenning. The complexity of linear problems in �elds. J. Symbolic

Computation, 5:3{27, 1988.

31

