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Abstract

Most of the work on the combination of uni�cation algorithms for

the union of disjoint equational theories has been restricted to al-

gorithms which compute �nite complete sets of uni�ers. Thus the

developed combination methods usually cannot be used to combine

decision procedures, i.e., algorithms which just decide solvability of

uni�cation problems without computing uni�ers. In this paper we de-

scribe a combination algorithm for decision procedures which works

for arbitrary equational theories, provided that solvability of so-called

uni�cation problems with constant restrictions|a slight generaliza-

tion of uni�cation problems with constants|is decidable for these

theories. As a consequence of this new method, we can for example

show that general A-uni�ability, i.e., solvability of A-uni�cation pro-

blems with free function symbols, is decidable. Here A stands for the

equational theory of one associative function symbol.

Our method can also be used to combine algorithms which compute

�nite complete sets of uni�ers. Manfred Schmidt-Schau�' combination

result, the until now most general result in this direction, can be

obtained as a consequence of this fact. We also get the new result

that uni�cation in the union of disjoint equational theories is �nitary,

if general uni�cation|i.e., uni�cation of terms with additional free

function symbols|is �nitary in the single theories.
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1 Introduction

E-uni�cation is concerned with solving term equations modulo an equatio-

nal theory E. The theory is called \unitary" (\�nitary") if the solutions

of a system of equations can always be represented by one (�nitely many)

solution(s). Otherwise the theory is of type \in�nitary" or \zero" (see e.g.,

[Si89, JK90, Ba91] for an introduction to uni�cation theory). Equational

theories which are of uni�cation type unitary or �nitary play an impor-

tant rôle in automated theorem provers with \built in" theories (see e.g.,

[Pl72, St85]), in generalizations of the Knuth-Bendix algorithm (see e.g.,

[JK86, Bc87]), and in logic programming with equality (see e.g., [JL84]).

The reason is that these applications usually require algorithms which com-

pute �nite complete sets of uni�ers, i.e., �nite sets of uni�ers from which all

uni�ers can be generated by instantiation. However, with the recent deve-

lopment of constraint approaches to theorem proving (see e.g., [B�u90]), term

rewriting (see e.g., [KK89]), and logic programming (see e.g., [JL87, Co90]),

the computation of �nite complete sets of uni�ers is no longer indespensable

for these applications. It is enough to decide satis�ability of the constraints,

that means e.g., solvability of the uni�cation problems. In the present pa-

per, the design of decision procedures for uni�cation problems will be a major

issue.

The signature matters

When considering uni�cation in equational theories one has to be careful with

regard to the signature over which the terms of the uni�cation problems can

be built. This leads to the distinction between elementary uni�cation (where

the terms to be uni�ed are built over the signature of the equational theory,

i.e., the function symbols occurring in the axioms of the theory), uni�cation

with constants (where additional free constant symbols may occur), and ge-

neral uni�cation (where additional free function symbols of arbitrary arity

may occur).

The following facts show that there really is a di�erence between the three

types of E-uni�cation:

� There exist theories which are unitary with respect to elementary uni-

�cation, but �nitary with respect to uni�cation with constants. An

example for such a theory is the theory of abelian monoids, i.e., the

theory of an associative-commutative (AC) function symbol with a unit
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element (see e.g., [He87]).

� There exists an equational theory for which elementary uni�cation is

decidable, but uni�cation with constants is undecidable (see [B�u86]).

� From the development of the �rst algorithm for AC -uni�cation with

constants [St75, LS75] it took almost a decade until the termination of

an algorithm for general AC-uni�cation was shown by Fages [Fa84].

The applications of theory uni�cation mentioned above require algorithms

for general uni�cation. This fact is illustrated by the following example.

Example 1.1 The theory A = ff(f(x; y); z) = f(x; f(y; z))g only contains

the binary symbol f . When talking about A-uni�cation, one �rst thinks of

unifying modulo A terms built by using just the symbol f and variables, or

equivalently, of unifying words over the alphabet V of all variables.

However, suppose that a resolution theorem prover|which has built in

the theory A|gets the formula

9x : (8y : f(x; y) = y ^ 8y9z : f(z; y) = x)

as axiom. In a �rst step, this formula has to be Skolemized, i.e., the existen-

tial quanti�ers have to be replaced by new function symbols. In our example,

we need a nullary symbol e and a unary symbol i in the Skolemized form

8y : f(e; y) = y ^ 8y : f(i(y); y) = e

of the axiom. This shows that, even if we start with formulae containing

only terms built over f , our theorem prover has to handle terms containing

additional free symbols.

The combination problem

We have seen that the question of how algorithms for elementary uni�cation

(or for uni�cation with constants) can be used to get algorithms for general

uni�cation is nontrivial and important for applications. Even more general,

one often would like to derive algorithms for uni�cation in the union of

disjoint equational theories, i.e., in the union of several equational theories

over disjoint signatures, from uni�cation algorithms in the single theories.

The importance for applications of this so-called \combination problem" is

illustrated by the following example.

4



Example 1.2 Assume that we want to compute a canonical term rewriting

system for the theory of Boolean rings. Thus we have a signature consisting

of two binary symbols \+" and \�", a unary symbol \�", and two nullary

symbols \0" and \1". Since the addition and multiplication in Boolean rings

is associative and commutative, and since commutativity cannot be oriented

into a terminating rewrite rule, we have to use rewriting modulo associativity

and commutativity of \+" and \�".

But then critical pairs also must be computed modulo associativity and

commutativity of these two symbols. To be more precise, we consider the

theories AC

+

:= f(x + y) + z = x + (y + z); x + y = y + xg, and AC

�

:=

f(x � y) � z = x � (y � z); x � y = y � xg. Critical pairs are computed with the

help of general uni�cation modulo AC

+

[AC

�

, i.e., modulo the union of the

two disjoint equational theories AC

+

and AC

�

.

This example can also be used to demonstrate that going from elementary

uni�cation to general uni�cation is in fact an instance of the combination

problem. If we de�ne the free theory for \�", \0" and \1" to be F

0;1;�

=

f�x = �x; 0 = 0; 1 = 1g, then one can use elementary uni�cation modulo

AC

+

[ AC

�

[ F

0;1;�

instead of general uni�cation modulo AC

+

[ AC

�

for

computing critical pairs.

When considering the combination problem, until now the attention was

mostly restricted to �nitary unifying theories, and by uni�cation algorithm

one meant a procedure which computes a �nite complete set of uni�ers. The

problem was �rst considered in [St75, St81, Fa84, HS87] for the case where

several AC-symbols and free symbols may occur in the terms to be uni�ed.

More general combination problems were, for example, treated in [Ki85, Ti86,

He86, Ye87, BJ89], but the theories considered in these papers always had

to satisfy certain restrictions (such as collapse-freeness or regularity

1

) on the

syntactic form of their de�ning identities.

The problem was �nally solved in its until now most general form by

Schmidt-Schau� [Sc89]. His combination algorithm imposes no restriction on

the syntactic form of the identities. The only requirements for a combination

of disjoint theories E; F are:

� All uni�cation problems with constants must be �nitary solvable in E

and F .

1

A theory E is called collapse-free if it does not contain an identity of the form x = t

where x is a variable and t is a non-variable term, and it is called regular if the left and

right hand sides of the identities contain the same variables.
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� All constant elimination problems must be �nitary solvable in E and

F .

A more e�cient version of this combination algorithm has been described by

Boudet [Bo90].

The method of Schmidt-Schau� can also handle theories which are not

�nitary. In this case, procedures which enumerate complete sets of uni�ers for

the single theories can be combined to a procedure enumerating a complete

set of uni�ers for their union. However, even if uni�cation in the single

theories is decidable, this does not show how to get a decision algorithm for

uni�ability in the combined theory.

The in�nitary theory A = ff(f(x; y); z) = f(x; f(y; z))g is an example

for this case. In 1972, Plotkin [Pl72] has described a procedure which enume-

rates minimal complete sets of A-uni�ers for general A-uni�cation problems,

and in 1977 Makanin [Ma77] has shown that A-uni�cation with constants is

decidable. But in 1991, decidability of general A-uni�cation was still men-

tioned as an open problem by Kapur and Narendran [KN91] in their table

of known decidability and complexity results for uni�cation. Such a decision

procedure could, for example, be useful when building associativity into a

theorem prover via constraint resolution; and it could be used to make Plot-

kin's enumeration procedure terminating for equations having �nite complete

sets of A-uni�ers.

In his paper on uni�cation in the combination of arbitrary disjoint equa-

tional theories [Sc89], Schmidt-Schau� also treats the problem of how to

combine decision procedures. But in this case he needs decision procedures

for general uni�cation in the single theories as prerequisites for his combina-

tion algorithm. Thus his result cannot be used to solve the above mentioned

open problem of decidability of general A-uni�cation.

The research which will be presented in this paper builds up on the ideas

of Schmidt-Schau� and Boudet. It was motivated by the question of how to

get a decision procedure for general A-uni�cation. However, the results we

have obtained are more general. We shall present a method which allows

one to decide uni�ability in the union of arbitrary disjoint equational theo-

ries, provided that solvability of so-called uni�cation problems with constant

restrictions|a slight generalization of uni�cation problems with constants|

is decidable for the single theories. In addition, our method can also be used

to combine algorithms which compute �nite complete sets of uni�ers.
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These main results and some of the interesting consequences will be de-

scribed in the next section. Among these consequences are the new results

that general A-uni�cation is in fact decidable, and that the union of disjoint

equational theories is �nitary if the single theories are �nitary with respect

to general uni�cation.

In Section 3 we shall present the combination algorithm for the decision

problem, and describe how it can also be used to generate complete sets of

uni�ers. Section 4 proves the correctness of the method. In the �fth section

we shall describe conditions under which algorithms for solving uni�cation

problems with constant restrictions exist. Some of the consequences mentio-

ned in Section 2 depend on these results.

2 Main results and consequences

As mentioned in the introduction, we have to consider a slight generalization

of E-uni�cation problems with constants, so-called E-uni�cation problems

with constant restriction, which will be introduced below. Having an algo-

rithm which solves these kind of problems is the only prerequisite necessary

for our combination method.

Recall that an E-uni�cation problem with constants is a �nite set of equa-

tions � = fs

1

:

= t

1

; : : : ; s

n

:

= t

n

g, where the terms s

1

; : : : ; t

n

are built from

variables, the function symbols occurring in the axioms of E, and additional

free constant symbols. Now, an E-uni�cation problem with constant restric-

tion is an ordinary E-uni�cation problem with constants, �, where each free

constant c occurring in the problem � is equipped with a set V

c

of variables,

namely, the variables in whose image c must not occur. A solution of the

problem is an E-uni�er � of � such that for all c; x with x 2 V

c

, the constant

c does not occur in x�. Complete sets of solutions of uni�cation problems

with constant restriction are de�ned as in the case of ordinary uni�cation

problems.

It turns out that our combination method does not really need an al-

gorithm which can handle E-uni�cation problems with arbitrary constant

restrictions; it is enough to deal with problems with a so-called linear con-

stant restriction. Such a restriction is induced by a linear ordering on the

variables and free constants as follows: Let X be the set of all variables and

C be the set of all free constants occurring in �. For a given linear ordering

< on X [ C, the sets V

c

are de�ned as fx j x is a variable with x < cg.
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We are now ready to formulate our �rst main result, which is concerned

with combining decision algorithms. The combination algorithm which is

used to establish this result will be described in the next section.

Theorem 2.1 Let E

1

; : : : ; E

n

be equational theories over disjoint signatures

such that solvability of E

i

-uni�cation problems with linear constant restriction

is decidable for i = 1; : : : ; n. Then uni�ability is decidable for the combined

theory E

1

[ : : : [ E

n

.

By \uni�ability" we mean here solvability of elementary uni�cation pro-

blems. However, we shall see below that the result can be lifted to general

uni�cation, and to solvability of uni�cation problems with linear constant re-

striction. The theorem also has several other interesting consequences, which

are listed below.

1. Let E be an equational theory such that solvability of E-uni�cation pro-

blems with linear constant restriction is decidable. Then solvability of

general E-uni�cation problems is decidable.

In fact, for a given set 
 of function symbols we can always build the

free theory F




as exempli�ed in Example 1.2. It is easy to see that

F




satis�es the assumption of the theorem; and obviously, any general

uni�cation problem modulo E can be seen as an elementary uni�cation

modulo E [ F




(if 
 contains all the additional free function symbols

occurring in the problem).

2. This argument also shows why the result of the theorem can be lifted

to general uni�cation: in order to get decidability of general uni�cation

modulo E

1

[ : : : [ E

n

, apply the theorem to E

1

; : : : ; E

n

; F




.

3. General A-uni�ability is decidable.

For A, decidability of uni�cation problems with constant restriction is

an easy consequence of a result by Schulz [Sh91] on a generalization of

Makanin's procedure. This result shows that it is still decidable whether

a given A-uni�cation problem with constants has a solution for which the

words substituted for the variables in the problem are elements of given

regular languages over the constants. It is easy to see that problems with

constant restriction are a special case of these more generally restricted

problems.

4. General AI-uni�ability, where AI := A [ ff(x; x) = xg, is decidable.

This was also stated as an open problem in [KN91]. For AI, decidabi-

lity of uni�cation problems with constant restriction easily follows from
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the well-known fact (see e.g., [Ho76]) that �nitely generated idempotent

semigroups are �nite.

5. If solvability of the E

i

-uni�cation problems with linear constant restric-

tion can be decided by an NP-algorithm, then uni�ability in the combined

theory is also NP-decidable.

This fact will become obvious once we have described our combination

algorithm. As a consequence one gets easy proofs of Kapur and Naren-

dran's results [KN91] that solvability of general AC - and ACI -uni�cation

problems can be decided by NP-algorithms. For these theories, NP-

decidability of uni�cation problems with constant restriction can be shown

very similarly as in the case of ordinary uni�cation problems with con-

stants.

6. Let E

1

; : : : ; E

n

be equational theories over disjoint signatures such that

solvability of general E

i

-uni�cation problems is decidable for i = 1; : : : ; n.

Then uni�ability is decidable for the combined theory E

1

[ : : :[E

n

. This

result, which was �rst proved by Schmidt-Schau� (see [Sc89], Theorem

10.6), can also be obtained as a corollary to our theorem. In fact, we

can show that solvability of E-uni�cation problems with linear constant

restriction can be reduced to solvability of general E-uni�cation problems

(see Section 5).

7. Together with the second consequence mentioned above, this reduction

also shows that the result of Theorem 2.1 can be lifted to uni�cation pro-

blems with linear constant restriction.

The algorithm which will be introduced for proving Theorem 2.1 can also

be used to compute complete sets of uni�ers.

Theorem 2.2 Let E

1

; : : : ; E

n

be equational theories over disjoint signatures

such that all E

i

-uni�cation problems with linear constant restriction have

�nite complete set of solutions (i = 1; : : : ; n). Then the combined theory

E

1

[ : : : [ E

n

is �nitary.

Again, we are talking about elementary uni�cation for the combined

theory; but as for the case of the decision problem, the result can easily be

lifted to general uni�cation, and to uni�cation problems with linear constant

restriction. It should be noted that this result is e�ective in the sense that

we really get an algorithm computing �nite complete set of uni�ers for the

combined theory, provided that for the single theories there exist algorithms
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computing �nite complete sets of solutions of uni�cation problems with li-

near constant restriction. In the following, we mention two other interesting

consequences of the theorem.

8. Let E

1

; : : : ; E

n

be equational theories over disjoint signatures which are

�nitary with respect to general uni�cation. Then the combined theory

E

1

[ : : : [ E

n

is �nitary.

In fact, we can show how �nite complete sets of uni�ers for general E

i

-

uni�cation problems can be used to construct �nite complete sets of so-

lutions for uni�cation problems with linear constant restriction (see Sec-

tion 5).

9. Algorithms which compute �nite complete sets of uni�ers for uni�cation

with constants, and �nite complete sets of constant eliminators can be

used to get an algorithm which computes �nite complete sets of solutions

for uni�cation problems with constant restriction (see Section 5). As a

consequence, the combination result of Schmidt-Schau� ([Sc89], Corollary

7.14) mentioned in the introduction can also be obtained as a corollary to

Theorem 2.2.

3 The combination algorithm

For the sake of convenience we shall restrict the presentation to the combi-

nation of two theories. The combination of more than two theories can be

treated analogously. Before we can start with the description of the algorithm

we have to introduce some notation.

Let E

1

; E

2

be two equational theories built over the disjoint signatures




1

;


2

, and let E = E

1

[E

2

denote their union. Since we are only interested

in elementary E-uni�cation, we can restrict our attention to terms built from

variables and symbols of 


1

[


2

. The elements of 


1

will be called 1-symbols

and the elements of 


2

2-symbols. A term t is called i-term i� it is of the

form t = f(t

1

; :::; t

n

) for an i-symbol f (i = 1; 2). A subterm s of a 1-term t

is called alien subterm of t i� it is a 2-term such that every proper superterm

of s in t is a 1-term. Alien subterms of 2-terms are de�ned analogously. An

i-term s is pure i� it contains only i-symbols and variables. An equation

s

:

= t is pure i� there exists an i; 1 � i � 2, such that s and t are pure

i-terms or variables; this equation is then called an i-equation. Please note

that according to this de�nition equations of the form x

:

= y where x and
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y are variables are both 1- and 2-equations. In the following, the symbols

x; y; z, with or without indices, will always stand for variables.

Example 3.1 Let 


1

consist of the binary (in�x) symbol \�" and 


2

of the

unary symbol \h", let E

1

:= fx � (y � z) = (x � y) � zg be the theory which

says that \�" is associative, and let E

2

:= fh(x) = h(x)g be the free theory

for \h".

The term y �h(z �h(x)) is a 1-term which has h(z �h(x)) as its only alien

subterm. The equation h(x

1

) � x

2

:

= y is not pure, but it can be replaced

by two pure equations as follows. We replace the alien subterm h(x

1

) of

h(x

1

) � x

2

by a new variable z. This yields the pure equation z � x

2

:

= y. In

addition, we consider the new equation z

:

= h(x

1

). This process of replacing

alien subterms by new variables is called variable abstraction. It will be the

�rst of the �ve steps of our combination algorithm.

The main procedure

The input for the combination algorithm is an elementary E-uni�cation pro-

blem, i.e., a system �

0

= fs

1

:

= t

1

; : : : ; s

n

:

= t

n

g, where the terms s

1

; : : : ; t

n

are built from variables and the function symbols occurring in 


1

[ 


2

, the

signature of E = E

1

[ E

2

. The �rst two steps of the algorithm are deter-

ministic, i.e., they transform the given system of equations into one new

system.

Step 1: variable abstraction. Alien subterms are successively replaced

by new variables until all terms occurring in the system are pure. To

be more precise, assume that s

:

= t or t

:

= s is an equation in the current

system, and that s contains the alien subterm s

1

. Let x be a variable

not occurring in the current system, and let s

0

be the term obtained

from s by replacing s

1

by x. Then the original equation is replaced by

the two equations s

0

:

= t and x

:

= s

1

. This process has to be iterated

until all terms occurring in the system are pure. It is easy to see that

this can be achieved after �nitely many iterations. Now all the terms

in the system are pure, but there may still exist non-pure equations,

consisting of a 1-term on one side and a 2-term on the other side.

Step 2: split non-pure equations. Each non-pure equations of the form

s

:

= t is replaced by two equations x

:

= s; x

:

= t where the x are always

new variables.
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It is quite obvious that these two steps do not change solvability of the

system. The result is a system which consists of pure equations. The third

and the fourth step are nondeterministic, i.e., a given system is transformed

into �nitely many new systems. Here the idea is that the original system is

solvable i� at least one of the new systems is solvable.

Step 3: variable identi�cation. Consider all possible partitions of the

set of all variables occurring in the system. Each of these partitions

yields one of the new systems as follows. The variables in each class of

the partition are \identi�ed" with each other by choosing an element of

the class as representative, and replacing in the system all occurrences

of variables of the class by this representative.

Step 4: choose ordering and theory indices. This step doesn' t change

a given system, it just adds some information which will be important

in the next step. For a given system, consider all possible strict linear

orderings < on the variables of the system, and all mappings ind from

the set of variables into the set of theory indices f1; 2g. Each pair

(<; ind) yields one of the new systems obtained from the given one.

The last step is again deterministic. It splits each of the systems already

obtained into a pair of pure systems.

Step 5: split systems. A given system � is split into two systems �

1

and

�

2

such that �

1

contains only 1-equations and �

2

only 2-equations.

These systems can now be considered as uni�cation problems with li-

near constant restriction. In the system �

i

, the variables with index i

are still treated as variables, but the variables with alien index j 6= i

are treated as free constants. The linear constant restriction for �

i

is

induced by the linear ordering chosen in the previous step.

The output of the algorithm is thus a �nite set of pairs (�

1

;�

2

) where

the �rst component �

1

is an E

1

-uni�cation problem with linear constant

restriction, and the second component �

2

is an E

2

-uni�cation problem with

linear constant restriction.

Proposition 3.2 The input system �

0

is solvable if and only if there exists

a pair (�

1

;�

2

) in the output set such that �

1

and �

2

are solvable.
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A proof of this proposition is described in the next section. Obviously,

if solvability of E

1

- and E

2

-uni�cation problems with linear constant re-

strictions is decidable, the proposition implies decidability of elementary E-

uni�ability, which proves Theorem 2.1.

An example

We consider the theories E

1

and E

2

of Example 3.1, and the uni�cation

problem

fh(x) � y = y � h(z

1

� z

2

)g:

Step 1: variable abstraction. This step results in the new system

fx

1

� y = y � x

2

; x

1

= h(x); x

2

= h(x

3

); x

3

= z

1

� z

2

g:

Step 2: split non-pure equations. Since all equations are already pure,

nothing is done in this step.

Step 3: variable identi�cation. As an example, we consider the parti-

tion where x

1

and x

2

are in one class, and all the other variables are in

singleton classes. Choosing x

1

as representative for its class, we obtain

the new system

fx

1

� y = y � x

1

; x

1

= h(x); x

1

= h(x

3

); x

3

= z

1

� z

2

g:

Step 4: choose ordering and theory indices. As an example, we take

the linear ordering

z

1

< z

2

< x

3

< x < x

1

< y;

and the theory indices

ind(x

1

) = ind(x) = ind(z

1

) = ind(z

2

) = 2 and ind(x

3

) = ind(y) = 1:

Step 5: split systems. On the one hand, we get the system

�

1

= fx

1

� y = y � x

1

; x

3

= z

1

� z

2

g

consisting of pure 1-equations. In this system the variables with index

1, i.e., x

3

and y, are still treated as variables, but the variables of index

2, i.e., x

1

, z

1

and z

2

, are treated as free constants. The linear constant

restriction induced by the linear ordering is given by V

x

1

= fx

3

g; V

z

1

=

13



V

z

2

= ;.

On the other hand, we obtain the system

�

2

= fx

1

= h(x); x

1

= h(x

3

)g

consisting of pure 2-equations. Here x and x

1

are treated as variables,

and x

3

is treated as free constant. The constant restriction is given by

V

x

3

= ;.

This pair (�

1

;�

2

) is one element in the set which is the output of the algo-

rithm. It is easy to see that �

1

has the solution fx

3

7! z

1

� z

2

; y 7! x

1

g, and

�

2

has the solution fx

1

7! h(x

3

); x 7! x

3

g. Consequently, the proposition

implies that the original system has a solution.

Combination of uni�ers

The combination algorithm can also be used to compute complete sets of

uni�ers for elementary (E

1

[E

2

)-uni�cation problems, provided that one can

compute �nite complete sets of solutions for all E

i

-uni�cation problems with

linear constant restriction (i = 1; 2). The reason is that solutions of the

problems �

1

;�

2

in the output of the algorithm can be combined to solutions

of the original input system. This combined solution is de�ned inductively

over the linear ordering chosen in Step 4 of the algorithm.

Assume that �

1

is a solution of �

1

and �

2

is a solution of �

2

. Without loss

of generality we may assume that the substitution �

i

maps all variables of

index i to terms containing only variables of index j 6= i (which are treated

as free constants in �

i

) or new variables, i.e., variables not occurring in �

0

,

�

1

, or �

2

. This can simply be achieved by renaming variables if necessary.

First, we de�ne the combined solution � on the variables occurring in the

system obtained after Step 4 of the algorithm. Note that the input system

�

0

may contain additional variables which have been replaced during the

variable identi�cation step.

Let x be the least variable with respect to the linear ordering chosen

in Step 4, and let i be its index. Since the solution �

i

of �

i

satis�es the

constant restriction induced by the linear ordering, the term x�

i

does not

contain any variables of index j 6= i (Recall that these variables are treated

as free constants in �

i

.) Thus we can simply de�ne x� := x�

i

.

Now let x be an arbitrary variable with index i, and let y

1

; : : : ; y

m

be the

variables with index j 6= i occurring in x�

i

. Since �

i

satis�es the constant

14



restriction induced by the linear ordering, the variables y

1

; : : : ; y

m

(which are

treated as free constants in �

i

) have to be smaller than x. That means that

y

1

�; : : : ; y

m

� are already de�ned. The term x� is now obtained from x�

i

by

replacing the y

k

by y

k

� (k = 1; : : : ; m). Because we have assumed that the

other variables occurring in x�

i

are new variables, we thus have x� = x�

i

�.

Finally, let x be a variable of the input system which has been replaced

by the variable y during the variable identi�cation step. Thus y� is already

de�ned, and we can simply set x� := y�.

For all variables z not occurring in the input system, or in �

1

or �

2

, we

de�ne z� := z.

Example 3.3 For the above example, the solutions �

1

= fx

3

7! z

1

� z

2

; y 7!

x

1

g and �

2

= fx

1

7! h(x

3

); x 7! x

3

g of �

1

;�

2

are combined to fz

1

7! z

1

; z

2

7!

z

2

; x

3

7! z

1

� z

2

; x 7! z

1

� z

2

; x

1

7! h(z

1

� z

2

); x

2

7! h(z

1

� z

2

); y 7! h(z

1

� z

2

)g.

This construction can now be used to generate complete sets of uni�ers

for elementary (E

1

[E

2

)-uni�cation problems. For a given input system �

0

,

let f(�

1;1

;�

1;2

); : : : ; (�

n;1

;�

n;2

)g be the output of the combination algorithm.

For i = 1; : : : ; n and j = 1; 2, let M

i;j

be a complete set of solutions of the

E

i

-uni�cation problem with linear constant restriction, �

i;j

.

Proposition 3.4 The set of substitutions

n

[

i=1

f� j � is the combined solution obtained from �

1

2M

i;1

and �

2

2M

i;2

g

is a complete set of (E

1

[ E

2

)-uni�ers of the input system �

0

.

A proof of this proposition will be given in the next section. Obviously,

if all the sets M

i;j

are �nite, then the complete set given by the proposition

is also �nite, which proves Theorem 2.2.

4 Correctness of the combination algorithm

In this section we shall prove Proposition 3.2 and Proposition 3.4, which

shows that our combination method is correct when applied to decision pro-

blems. Before we can start with our task, we have to introduce a useful tool,

which has �rst been utilized in connection with the combination problem in

[BJ89], namely unfailing completion of the combined theory.
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Let E

1

; E

2

be equational theories over disjoint signatures 


1

;


2

. We

assume that both theories are consistent, that means, they have at least one

model of cardinality greater than one, or equivalently, the identity x =

E

i

y

does not hold in either theory. One can now apply unfailing completion

(see e.g., [DJ87] for de�nitions and properties) to the combined theory E =

E

1

[ E

2

. This yields a possibly in�nite ordered-rewriting system R which is

conuent and terminating on ground terms. In the following, we shall also

apply this system to terms containing variables from a �xed countable set of

variables X

0

; but this is not a problem because these variables can simply

be treated like constants. In particular, this means that the simpli�cation

ordering used during the completion must also take care of these additional

\constants." The ordered-rewriting system R consists of (possibly in�nitely

many) equations g = d. Such an equation can be applied to a term s 2

T (


1

[


2

; X

0

) i� there exists an occurrence u in t and a substitution � such

that s = s[u  g� ] (s = s[u  d� ], resp.) and g� is greater than d� (d�

is greater than g� , resp.) with respect to the simpli�cation ordering. This

application results in the new term s[u d� ] (s[u g� ], resp.).

It is easy to see that, because the signatures of E

1

and E

2

are disjoint,

the system R is the union of two systems R

1

and R

2

, where the terms in R

i

are built over the signature 


i

(i = 1; 2). The R

i

is just the system which

would be obtained by applying unfailing completion to E

i

. This is an easy

consequence of the de�nition of critical pairs used for unfailing completion,

and of the fact that E

1

and E

2

are assumed to be consistent.

Let T (


1

[ 


2

; X

0

) be the set of terms built from function symbols in




1

[ 


2

and variables in X

0

, and let T

#R

denote its R-irreducible elements.

We consider an arbitrary bijection � : T

#R

�! Y where Y is a set of va-

riables which is disjoint to X

0

. This bijection induces mappings �

1

; �

2

of

terms in T (


1

[ 


2

; X

0

) to terms in T (


1

[ 


2

; Y ) as follows. For varia-

bles x 2 X

0

, x

�

1

:= �(x) (Note that variables are always R-irreducible.) If

t = f(t

1

; : : : ; t

n

) for a 1-symbol f , then t

�

1

:= f(t

�

1

1

; : : : ; t

�

1

n

). Finally, if t is a

2-term then t

�

1

:= y where y = �(s) for the unique R-irreducible element s

of the =

E

-class of t. The mapping �

2

is de�ned analogously. The mappings

�

i

may be regarded as projections which map a possibly mixed term to an i-

pure term. We write these mappings as superscripts to distinguish them from

substitutions. The inverse �

�1

of � can be seen as a substitution which map

the variables y in Y back to the terms �

�1

(y), and is the identity on all other

variables. Obviously, we have t

�

i

�

�1

=

E

t for all terms t 2 T (


1

[ 


2

; X

0

),

and if t is an R-irreducible term or an i-term such that all its alien subterms

are R-irreducible, then (t

�

i

)�

�1

= t.
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A substitution � is called R-normalized on a �nite set of variables Z i�

z� 2 T

#R

for all variables z 2 Z. The next lemma will be important in the

proof of Proposition 3.2.

Lemma 4.1 Let s; t be pure i-terms or variables, and let � be a substitution

which is R-normalized on the variables occurring in s; t. Then

s� =

E

t� i� (s�)

�

i

=

E

i

(t�)

�

i

:

Proof. (1) The if-direction is easy to prove. Obviously, (s�)

�

i

=

E

i

(t�)

�

i

implies (s�)

�

i

=

E

(t�)

�

i

, and thus (s�)

�

i

�

�1

=

E

(t�)

�

i

�

�1

. By our assump-

tions on s; t and �, the j-terms (for j 6= i) in s� and t� are R-irreducible,

which �nally yields s� = (s�)

�

i

�

�1

=

E

(t�)

�

i

�

�1

= t�.

(2) From s� =

E

t� follows the existence of an R-irreducible term r which

is a common R-descendant of s� and t�. Let us now consider the derivation

s

0

:= s� !

R

s

1

!

R

: : : r more closely. The goal is to show s

�

i

0

=

E

i

s

�

i

1

=

E

i

: : : r

�

i

. Symmetrically, we could then also deduce (t�)

�

i

=

E

i

r

�

i

, which �nally

would prove the lemma.

The case where s is a variable is trivial since then s

0

is R-irreducible,

which yields s

0

= r. Thus assume that s is a pure i-term. Since all alien

subterms of s� are R-irreducible, the �rst step of the derivation from s

0

to

r must take place at an occurrence u which is not inside an alien subterm

of s

0

= s�. In particular, this means that it is done by applying a rule

g = d of R

i

. To be more precise, there exists a substitution � such that

s

0

= s

0

[u  g� ], s

1

= s

0

[u  d� ], and g� is greater than d� with respect

to the simpli�cation ordering. From the fact that u is not inside an alien

subterm of s

0

we get that s

�

i

0

= s

�

i

0

[u (g�)

�

i

] and s

�

i

1

= s

�

i

0

[u (d�)

�

i

].

In order to conclude s

�

i

0

=

E

i

s

�

i

1

, it thus remains to be shown that

(g�)

�

i

=

E

i

(d�)

�

i

. To see this, we de�ne the substitution �

�

i

:= fx 7!

(x�)

�

i

j x occurs in g or dg. Since g; d are pure i-terms or variables, we have

g(�

�

i

) = (g�)

�

i

and d(�

�

i

) = (d�)

�

i

. Because g = d 2 R

i

implies g =

E

i

d, we

thus get (g�)

�

i

= g(�

�

i

) =

E

i

d(�

�

i

) = (d�)

�

i

.

If we want to continue by induction, we have to know that all alien sub-

terms of s

1

are R-irreducible. This need not be the case for arbitrary deriva-

tions from s� to r. The problem is that we only have an ordered-rewriting

system which is terminating on ground terms. For this reason it may well

be the case that d contains variables not contained in g; and in general we

cannot be sure that the image of these variables under � does not introduce

reducible alien subterms into s

1

. However, if we assume that the derivation
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from s� to r is a bottom-up derivation where all the matching substitutions

(such as our �) are R-normalized, then � cannot introduce reducible alien

subterms. This assumption can be made without loss of generality because

it is easy to see that, whenever a term is not R-irreducible, then we can

apply a rule of R to this term in a way that satis�es the constraints of the

assumption.

Proof of Proposition 3.2

First, we shall show soundness of the combination algorithm, that means, we

have to demonstrate that �

0

is solvable if there exists a pair (�

1

;�

2

) in the

output set such that �

1

and �

2

are solvable.

Assume that �

1

is a solution of �

1

and �

2

is a solution of �

2

. In the

previous section we have already described how these two solutions of the

single problems can be combined to a substitution �, which we have called

the combined solution. It remains to be shown that � is in fact a solution of

�

0

. Obviously, it is su�cient to prove that � is a solution of the system �

0

which was obtained by Step 4 of the algorithm, and which in Step 5 was split

into �

1

and �

2

. Let s

:

= t be an equation in �

0

, and assume without loss of

generality that this equation was put into �

1

in Step 5. Thus we know that

s�

1

=

E

1

t�

1

. As an easy consequence of the de�nition of �, one gets that

� = �

1

�. Since s�

1

=

E

1

t�

1

obviously implies s�

1

� =

E

1

t�

1

�, and thus also

s�

1

� =

E

t�

1

�, this shows that s� =

E

t�.

In the second part of the proof we have to show completeness of the

combination algorithm, that means, we have to demonstrate that there exists

a pair (�

1

;�

2

) in the output set such that �

1

and �

2

are solvable if �

0

is

solvable.

Let � be a solution of �

0

. Without loss of generality we assume that

� is also a solution of the system obtained after the �rst two steps of the

algorithm, that the set Y

0

of all variables occurring in this system is disjoint

to X

0

, and that � is R-normalized on Y

0

. In particular, this implies that the

variables occurring in y� for y 2 Y

0

are elements of X

0

. The solution � can

be used to de�ne the correct alternatives in the nondeterministic steps of the

combination algorithm:

� The partition of the set of all variables, which has to be chosen in the

third step, is de�ned as follows. Two variables y and z are in the same

class i� y� = z�. Obviously, this means that � is also a solution of the
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system obtained after the variable identi�cation step corresponding to

this partition.

� In the fourth step, the variable y gets index i if y� is an i-term. If y� is

itself a variable, y gets index 1 (This is arbitrary, we could have taken

index 2 as well.)

� In the fourth step, we also have to choose an appropriate linear ordering

on the variables occurring in the system. Consider the strict partial

ordering de�ned by y < z i� y� is a strict subterm of z�. We take an

arbitrary extension of this partial ordering to a linear ordering on the

variables occurring in the system.

The choices we have just described determine a system �

0

in the set

of systems obtained after Step 4 of the algorithm, and thus a particular

pair of systems (�

1

;�

2

) in the output set of the combination algorithm. It

remains to be shown that �

1

;�

2

are solvable. In order to de�ne solutions �

i

of these systems, we consider a bijection � from the R-irreducible elements

of T (


1

[ 


2

; X

0

) onto a set of variables Y .

This bijection has to satisfy two conditions. First, Y should contain all

the variables occurring in �

0

. Since � is assumed to be R-normalized on

Y

0

, we have that y� is R-irreducible for all variables y occurring in �

0

. The

second condition on � is that �(y�) = y for all these variables y. For the

satis�ability of these conditions, the variable identi�cation step is important.

The reason is that only because of this step we can be sure that �

0

does not

contain two di�erent variables y; y

0

with y� = y

0

�.

As described above, the bijection � induces mappings �

1

; �

2

. These map-

pings will now be used to construct the solutions �

i

; i = 1; 2. The substitution

�

i

is de�ned on the variables y occurring in �

0

by y�

i

:= (y�)

�

i

.

If y is a variable of index j 6= i, the term y� is either a variable in X

0

or

a j-term. In both cases we get y�

i

= (y�)

�

i

= �(y�) = y by de�nition of �

i

and �

i

. This shows that �

i

really treats the variables of index j as constants.

Now assume that s

:

= t is an equation in �

i

. Since this equation is also

contained in �

0

, and since � solves �

0

, we know that s� =

E

t�. Since � was

assumed to be R-normalized on Y

0

, and since s

:

= t is an i-equation, we can

apply the lemma to get (s�)

�

i

=

E

i

(t�)

�

i

. Using the de�nition of �

i

and

the fact that s

:

= t is an i-equation, it is easy to see that (s�)

�

i

= s�

i

and

(t�)

�

i

= t�

i

. Thus �

i

really solves the equation s

:

= t.

It remains to be shown that �

i

satis�es the constant restriction. Assume
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that x is a variable of index i, and that the variable y of index j 6= i (which

is treated as a constant in �

i

) occurs in x�

i

. We have to show that x is not

an element of V

y

, i.e., that x 6< y. Recall that x�

i

= (x�)

�

i

, and that x�

is R-irreducible. Thus, since y 62 X

0

, the occurrence of y in x�

i

must come

from the occurrence of y� as a subterm of x�. Because of the identi�cation

step, the fact that x and y are di�erent variables also implies that x� and

y� are di�erent terms. Thus y� is a strict subterm of x�, which yields y < x

because of the way the linear ordering was chosen.

Proof of Proposition 3.4

In the �rst part of the proof of Proposition 3.2 we have already shown that

the elements of the set of substitution de�ned in the formulation of Proposi-

tion 3.4 are solutions of �

0

. It remains to be shown that this set is complete.

Let � be a solution of �

0

. Without loss of generality we assume that

� is also a solution of the system obtained after the �rst two steps of the

algorithm, that the set Y

0

of all variables occurring in this system is disjoint

to X

0

, and that � is R-normalized on Y

0

. In the second part of the proof of

Proposition 3.2 we have shown that � can be used to �nd a pair of systems

(�

1

;�

2

) in the output set of the combination algorithm, and to construct so-

lutions �

1

and �

2

of these systems. This construction makes use of a bijection

� and mappings �

1

; �

2

induced by this bijection as described above.

Since �

i

is a solution of �

i

, there exist an element �

i

in the complete set

of solutions of �

i

and a substitution �

i

such that �

i

=

E

i

�

i

�

i

hY

i

i,

2

where

Y

i

denotes the set of variables occurring in �

i

(i.e., the variables of index i).

Without loss of generality we may assume that the substitution �

i

maps the

variables in Y

i

to terms containing only variables of index j 6= i (which are

treated as constants by �

i

) or new variables from a set of variables Z

i

. We

may assume that the domain of �

i

is Z

i

, and that the sets X

0

; Y

0

; Z

1

; Z

2

are

pairwise disjoint.

As described in the �rst part of the proof of Proposition 3.2, the solutions

�

1

; �

2

of �

1

;�

2

can be combined to a solution � of �. Since this combined

solution is an element of the set of substitution de�ned in the formulation

of Proposition 3.4, it remains to be shown that there exists a substitution

� such that � =

E

�� hXi, where X denotes the set of variables occurring

in �

0

. We de�ne � := (�

1

[ �

2

)�

�1

, where (�

1

[ �

2

) is meant to denote the

2

Recall that, for a �nite set Z of variables, �

1

=

E

�

2

hZi means that z�

1

=

E

z�

2

for all

z 2 Z.
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substitution which is equal to �

i

on Z

i

(i = 1; 2), and the identity on all

variables not contained in Z

1

[ Z

2

.

First, we show � =

E

�� hY

1

[ Y

2

i. The proof is by induction on the

linear ordering < chosen in Step 4 of the combination algorithm. Without

loss of generality, we consider a variable y 2 Y

1

. By the de�nition of �, we

have y�� = (y�

1

)��. The variables occurring in the term y�

1

are either

variables of index 2, i.e., elements of Y

2

, or new variables, i.e., elements of

Z

1

. We want to show that on these variables, the substitutions �� and �

1

�

�1

coincide modulo E.

Let z

1

be an element of Z

1

occurring in y�

1

. Since we have assumed that

the elements of Z

1

are new variables, z

1

is not in the domain of �, which yields

z

1

�� = z

1

�. By de�nition of �, and since z

1

2 Z

1

, we get z

1

� = z

1

�

1

�

�1

.

If y is the least variable with respect to the linear ordering <, then the

term y�

1

does not contain a variable of Y

2

. This is so because �

1

satis�es the

linear constant restriction induced by <. Now assume that y is an arbitrary

variable in Y

1

, and let y

2

be an element of Y

2

occurring in y�

1

. Since �

1

satis�es the linear constant restriction, we know that y

2

< y. By induction,

we thus get y

2

�� =

E

y

2

� . We also have y

2

� = (y

2

�)

�

1

�

�1

= y

2

�

1

�

�1

. Since

�

1

and �

1

treat variables of index 2 as constants, we get y

2

�

1

�

�1

= y

2

�

�1

=

y

2

�

1

�

�1

. Thus we have shown y

2

�� =

E

y

2

�

1

�

�1

.

To sum up, we have just shown that, for all variables z occurring in

y�

1

, we have z�� =

E

z�

1

�

�1

. Consequently, we get y�� = (y�

1

)�� =

E

(y�

1

)�

1

�

�1

=

E

y�

1

�

�1

= (y�)

�

1

�

�1

= y� as required.

Finally, assume that x is a variable occurring in �

0

, but x 62 Y

1

[ Y

2

.

This means that x has been substituted by a variable y 2 Y

1

[ Y

2

during the

variable identi�cation step of the algorithm. On the one hand, this means

that y� = x� (since this must have triggered the identi�cation). On the other

hand, because of this identi�cation step, we have de�ned x� := y�. Thus we

have x� = y� =

E

y�� = x��. This completes the proof of the proposition.

5 Solving uni�cation problems with constant

restriction

We have seen that algorithms for E-uni�cation with linear constant restric-

tion may be used to obtain|via our combination method|algorithms for
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general uni�cation. In the �rst part of this section we shall describe how,

conversely, algorithms for general uni�cation can be used to solve uni�cation

problems with linear constant restrictions. In the second part, constant eli-

mination algorithms together with algorithms for uni�cation with constants

are used to solve uni�cation problems with arbitrary constant restriction. In

the following, F is assumed to be an arbitrary consistent equational theory.

5.1 Using algorithms for general uni�cation

In this subsection we shall consider both the problem of deciding solvability

and of generating complete sets of solutions of uni�cation problems with

linear constant restrictions.

The decision problem

Let � be an F -uni�cation problem with a linear constant restriction, and let

< be the linear ordering by which this restriction is induced. In the following,

let X denote the set of all variables and C denote the set of all free constants

occurring in �. Our goal is to construct a general F -uni�cation problem �

0

such that � is solvable i� �

0

is solvable.

In this new system �

0

, the free constants of � will be treated as variables,

i.e., the solutions are allowed to substitute terms for these \constants." For

any free constant c of � we introduce a new (free) function symbol f

c

of arity

jV

c

j. Recall that V

c

= fx 2 X j x < cg is the set of variables in whose �-image

c must not occur for a solution � of the problem �. The general F -uni�cation

problem|in which the free constants of � are treated as variables|is now

de�ned as

�

0

:= � [ fc

:

= f

c

(x

1

; : : : ; x

n

) j c 2 C and V

c

= fx

1

; : : : ; x

n

gg :

Proposition 5.1 The F -uni�cation problem with linear constant restric-

tion, �, is solvable i� the general F -uni�cation problem �

0

is solvable.

Please note that the proposition only holds for uni�cation problems with

linear constant restriction. The following example demonstrates that the

construction described above cannot be used for uni�cation problems with

arbitrary constant restriction.

22



Example 5.2 Let F be the empty theory, and let x; y be variables and c; d

be free constants. We consider the following F -uni�cation problem with

constant restriction:

� = fx

:

= d; y

:

= cg; V

c

= fxg; V

d

= fyg:

It is easy to see that the restriction cannot be induced by a linear ordering

on fx; y; c; dg. Obviously, the problem has the solution fx 7! d; y 7! cg.

The corresponding general F -uni�cation problem is

�

0

= fx

:

= d; y

:

= c; c

:

= f

c

(x); d

:

= f

d

(y)g;

where c; d are now treated as variables. It is easy to see that this problem

does not have a solution.

However, as we shall prove below, our construction is correct for uni�ca-

tion problems with linear constant restriction, �.

Generating complete sets of solutions

Now we shall describe how this construction can be used to get a �nite

complete set of solutions of �, provided that a �nite complete set of F -uni�ers

of �

0

exists.

Let R be the possibly in�nite ordered-rewriting system which is obtained

when applying unfailing completion to F . We assume that the simpli�cation

ordering used during the completion also takes the additional symbols f

c

and

variables (which are however treated as constants by the ordering) out of a

countable set X

0

of new variables into account. This means that we can

apply R to terms built out of symbols in the signature of F , the additional

symbols f

c

, and variables in X

0

. Let T

#R

be the R-irreducible elements of

the set of these terms.

Now we shall show how an element �

0

of a complete set of F -uni�ers of

�

0

can be used to de�ne a solution � of �. Without loss of generality we

may assume that �

0

is R-normalized on the variables occurring in �

0

. In

fact, for any substitution there exists an =

F

-equivalent substitution which

is R-normalized on the variables occurring in �

0

; and exchanging an element

of a complete set of F -uni�ers of �

0

by an =

F

-equivalent substitution still

leaves us with a complete set of F -uni�ers of �

0

.

Let � be a bijection from T

#R

onto a set of variables Y . This bijection

has to satisfy two conditions. First, Y should contain all the free constants
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occurring in � (which are treated as variables in �

0

). Since �

0

is assumed

to be R-normalized on the variables occurring in �

0

, we have that c�

0

is

R-irreducible for all these constants c. The second condition on � is that

�(c�

0

) = c for these constants c. The two conditions are satis�able because

for c 6= c

0

we have c�

0

6= c

0

�

0

. In fact, since �

0

solves �

0

, we know that

c�

0

=

F

f

c

(x

1

�

0

; : : : ; x

n

�

0

) and c

0

�

0

=

F

f

c

0

(x

1

�

0

; : : : ; x

n

�

0

). But this implies

that c�

0

has f

c

as root symbol, and c

0

�

0

the di�erent symbol f

c

0

.

As described in Section 4, the bijection � induces a mapping �

1

. To this

purpose we treat the symbols of the signature of F as 1-symbols and the

symbols f

c

as 2-symbols. The mapping �

1

is now used to de�ne our solution

� of �. For all variables x occurring in � we de�ne x� := (x�

0

)

�

1

. The

constants c of � are really treated as constants by �, i.e., c� = c. However,

note that c = (c�

0

)

�

1

holds, anyway.

Proposition 5.3 Let C(�

0

) be a complete set of F -uni�ers of �

0

, which are

(without loss of generality) assumed to be R-normalized on the variables oc-

curring in �

0

. Then the set C(�) := f� j �

0

2 C(�

0

)g, where � is constructed

out of �

0

as described above, is a complete set of solutions of the F -uni�cation

problem with linear constant restriction, �.

Again, the proposition only holds for uni�cation problems with linear

constant restriction.

Proof of Proposition 5.1

Recall that X denote the set of all variables and C denote the set of all free

constants occurring in �.

To prove the \only-if" direction, assume that � is a solution of �. Without

loss of generality we may assume that for all x 2 X the variables occurring

in x� are new variables (i.e., variables not contained in X), and that � is the

identity on all variables y 62 X. We de�ne a substitution �

0

on X [C (where

the elements of C are now treated as variables) by induction on the linear

ordering < which induces the constant restriction of �.

First, we consider the least element of X [ C with respect to <. If this

is a variable x 2 X, then for all c 2 C we have x 2 V

c

. This implies that x�

does not contain any of these free constants, and we can de�ne x�

0

:= x�.

If the least element of X [ C is a constant c 2 C, then V

c

= ;. This means

that f

c

is a constant symbol, and we de�ne c�

0

:= f

c

.
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Now let x be an arbitrary element of X, and let c

1

; : : : ; c

m

2 C be the

free constants occurring in x�. Since � satis�es the constant restriction

induced by the linear ordering, the constants c

1

; : : : ; c

m

(which are treated as

variables in �

0

) have to be smaller than x. That means that we may assume

by induction that c

1

�

0

; : : : ; c

m

�

0

are already de�ned. The term x�

0

is now

obtained from x� by replacing the c

k

by c

k

�

0

(k = 1; : : : ; m).

Finally, let c be an arbitrary element of C. By de�nition, the system

�

0

contains the equation c

:

= f

c

(x

1

; : : : ; x

n

), where x

1

; : : : ; x

n

are the ele-

ments of X which are smaller than c with respect to <. Thus we can

assume by induction that x

1

�

0

; : : : ; x

n

�

0

are already de�ned, and we set

c�

0

:= f

c

(x

1

�

0

; : : : ; x

n

�

0

).

It remains to be shown that �

0

is a solution of �

0

. Obviously, the de�nition

of �

0

implies that it solves the equations c

:

= f

c

(x

1

; : : : ; x

n

) in �

0

. Now let

s

:

= t be an equation of �. Since � solves �, we get s� =

F

t�. In addition,

it is easy to see that for all c 2 C we have c�

0

= c��

0

and for all x 2 X we

have x�

0

= x��

0

. But then s�

0

= s��

0

=

F

t��

0

= t�

0

.

To prove the \if" direction, assume that �

0

is a solution of �

0

. Without

loss of generality, we assume that �

0

is R-normalized on the set X [ C of

all variables occurring in �

0

. As described above, �

0

can be used to de�ne a

new substitution � as follows: For all variables x occurring in � one de�nes

x� := (x�

0

)

�

1

. We have to show that � solves �.

Let s

:

= t be an equation of �. Since �

0

solves �

0

, we know that s�

0

=

F

t�

0

.

Now we can apply Lemma 4.1 to get (s�

0

)

�

1

=

F

(t�

0

)

�

1

. Using the de�nition

of � and the fact that the terms s; t do not contain the symbols f

c

, it is easy

to see that (s�

0

)

�

1

= s� and (t�

0

)

�

1

= t�. Thus � really solves the equation

s

:

= t.

It remains to be shown that � satis�es the constant restriction. Let c 2 C

be a free constant. Since �

0

solves �

0

, we know that c�

0

=

F

f

c

(x

1

�

0

; : : : ; x

n

�

0

),

where fx

1

; : : : ; x

n

g = V

c

. In addition, �

0

was assumed to be R-normalized

on X [C, which implies that c�

0

; x

1

�

0

; : : : ; x

n

�

0

are R-irreducible terms; and

since the symbol f

c

does not occur in any rule ofR, the term f

c

(x

1

�

0

; : : : ; x

n

�

0

)

is also R-irreducible. Thus we have c�

0

= f

c

(x

1

�

0

; : : : ; x

n

�

0

), which shows

that c�

0

is not a subterm of any of the terms x

1

�

0

; : : : ; x

n

�

0

. But then c

cannot occur in x

i

� = (x

i

�

0

)

�

1

(i = 1; : : : ; n).
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Proof of Proposition 5.3

Now we shall show that the set C(�), as de�ned in the formulation of Pro-

position 5.3, is a complete set of solutions of �. In the second part of the

proof of Proposition 5.1 we have already shown that the substitution � con-

structed from a solution �

0

of �

0

is itself a solution of �. Thus C(�) is a set

of solutions of �. It remains to be shown that it is a complete set. As before,

let X denote the set of variables and C the set of free constants occurring in

�. Recall that the elements of C are treated as variables in �

0

.

Let � be a solution of �. Without loss of generality we assume that, for

all x 2 X, the variables occurring in x� are elements of X

0

. As shown in the

�rst part of the proof of Proposition 5.1, � can be used to de�ne a solution �

0

of �

0

. Because of our assumption on � , it is easy to see that for all z 2 X[C,

the variables occurring in z�

0

are elements of X

0

.

Since C(�

0

) is a complete set of F -uni�ers of �

0

, there exists an element

�

0

of C(�

0

) and a substitution �

0

such that �

0

=

F

�

0

�

0

hX [Ci. Let � be the

element of C(�) constructed out of �

0

. Our aim is to de�ne a substitution

� which satis�es � =

F

�� hXi. Let Y

0

� Y denote the set of all variables

occurring in the terms x� for x 2 X. These terms may also contain elements

of C, which however have to be treated as constants by �.

In the construction of � out of �

0

we have used a bijection � from T

#R

onto a set of variables Y which contains C. In addition, this bijection had

to satisfy �(c�

0

) = c for all c 2 C. The substitution � was then de�ned by

x� := (x�

0

)

�

1

for all x 2 X. In order to be able to reverse the construction

of �

0

out of � we shall now consider an analogous bijection � from T

#R

onto

Y . The condition on � is that �((c�

0

)

#R

) = c for all c 2 C. Here (c�

0

)

#R

denotes the unique R-irreducible element of the =

F

-class of c�

0

. As an easy

consequence of this condition together with the de�nition of �

0

, we get that

x� = (x�

0

)

�

1

for all x 2 X.

The substitution � is now de�ned on all y 2 Y

0

as y� := (y�

�1

�

0

)

�

1

. To

complete the proof of the proposition we have to show that � =

F

�� hXi.

In this proof we need a lemma which is a stronger version of Lemma 4.1

for the special case of the union of an arbitrary equational theory F with a

disjoint free theory.

Lemma 5.4 Let s; t be terms built out of symbols in the signature of F , the

additional symbols f

c

, and variables in X

0

. Then s =

F

t i� s

�

1

=

F

t

�

1

.

Proof. (1) From s

�

1

=

F

t

�

1

we can deduce s

�

1

�

�1

=

F

t

�

1

�

�1

, and we also
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have s =

F

s

�

1

�

�1

and t =

F

t

�

1

�

�1

.

(2) Obviously, it is su�cient to prove the \only-if" direction for the case

where t is obtained from s by one application of an identity of F . Thus assume

that g = d is an identity of F , u is an occurrence in s, and � is a substitution

such that s = s[u g� ], t = s[u d� ]. If the occurrence u is strictly below

an occurrence of a free function symbol, then it is easy to see that s

�

1

= t

�

1

.

Otherwise, we have s

�

1

= s

�

1

[u (g�)

�

1

] and s

�

1

= s

�

1

[u (d�)

�

1

]. What

remains to be shown is (g�)

�

1

=

F

(d�)

�

1

, and this can be done as in the

proof of Lemma 4.1.

We can now continue with the proof of the proposition. For all x 2 X

we have x�

0

=

F

x�

0

�

0

= (x�

0

)

�

1

�

�1

�

0

= x��

�1

�

0

. But then the lemma yields

x� = (x�

0

)

�

1

=

F

(x��

�1

�

0

)

�

1

. It remains to be shown that (x��

�1

�

0

)

�

1

=

F

x��.

For this purpose, we de�ne a substitution (�

�1

�

0

)

�

1

on Y

0

[C as follows:

for all z 2 Y

0

[C, z(�

�1

�

0

)

�

1

:= (z�

�1

�

0

)

�

1

. Because the terms x� for x 2 X

do not contain any of the free function symbols f

c

, it is easy to see that

(x��

�1

�

0

)

�

1

= (x�)(�

�1

�

0

)

�

1

.

Obviously, the substitutions � and (�

�1

�

0

)

�

1

coincide on Y

0

, but for c 2 C

we need not have c(�

�1

�

0

)

�

1

= c. However, we can show that c(�

�1

�

0

)

�

1

=

F

c.

In fact, c�

�1

�

0

= c�

0

�

0

=

F

c�

0

, and thus the lemma yields (c�

�1

�

0

)

�

1

=

F

(c�

0

)

�

1

. But our assumption on � yields (c�

0

)

�

1

= c. To sum up, we have just

seen that � =

F

(�

�1

�

0

)

�

1

hY

0

[ Ci, which implies (x�)� =

F

(x�)(�

�1

�

0

)

�

1

.

This completes the proof of the proposition.

5.2 Using algorithms for constant elimination and for

uni�cation with constants

In this subsection we shall consider uni�cation problems with arbitrary con-

stant restrictions. It will be shown how to reduce solving this kind of pro-

blems to solving both uni�cation problems with constants and constant eli-

mination problems.

A constant elimination problem in the theory F is a �nite set � =

f(c

1

; t

1

); :::; (c

n

; t

n

)g where the c

i

's are free constants (i.e., constant sym-

bols not occurring in the signature of F ) and the t

i

's are terms (built over

the signature of F , variables, and free constants). A solution to such a pro-

blem is called a constant eliminator. It is a substitution � such that for

all i; 1 � i � n, there exists a term t

0

i

not containing the free constant c

i

27



with t

0

i

=

F

t

i

�. The notion complete set of constant eliminators is de�ned

analogously to the notion complete set of uni�ers.

Let � be an F -uni�cation problem with arbitrary constant restriction.

The goal is to construct a complete set of solutions of this problem. In

the �rst step, we just ignore the constant restriction, and solve � as an

ordinary F -uni�cation problem with constants. Let C(�) be a complete set

of F -uni�ers of this problem. In the second step, we de�ne for all uni�ers

� 2 C(�) a constant elimination problem �

�

as follows:

�

�

:= f(c; x�) j c is a free constant in � and x 2 V

c

g:

For all � 2 C(�), let C

�

be a complete set of solutions of the constant

elimination problem �

�

.

Before we can describe the complete set of solutions of the F -uni�cation

problem with constant restriction, �, we have to de�ne a slightly modi�ed

composition \
" of substitutions. Let � be an element of C(�), and let �

be a constant eliminator in C

�

. Without loss of generality we assume that

� is the identity on variables not occurring in �

�

, and that the terms y�

for variables y occurring in �

�

contain only new variables. In particular, we

will need for technical reasons that they do not contain variables occurring

in terms x� for variables x occurring in �.

For a given variable x, let fc

1

; : : : ; c

n

g be the set of all constants c

i

oc-

curring in � such that x 2 V

c

i

. If this set is empty (i.e., n = 0,) we

de�ne x(�
 �) := x�� . Now assume that n > 0. Obviously, we have

f(c

1

; x�); : : : ; (c

n

; x�)g � �

�

. Since � is a solution of �

�

, there exist terms

s

1

; : : : ; s

n

such that for all i; 1 � i � n, x�� =

F

s

i

and c

i

does not occur in

s

i

. It is easy to see that this also implies the existence of a single term s such

c

1

; : : : ; c

n

do not occur in s and x�� =

F

s. We de�ne x(�
�) := s.

Proposition 5.5 The set

[

�2C(�)

f�
� j � 2 C

�

g

is a complete set of solutions of the F -uni�cation problem with constant re-

striction, �.

Proof. First, we have to show that the elements �
� of this set solve all the

equations s

:

= t of �. Since � is an F -uni�er of �, we have s� =

F

t�, which

implies s�� =

F

t�� . But the de�nition of �
� was such that �� =

F

�
� ,

and thus we get s(�
�) =

F

t(�
�).
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Second, we must prove that �
� satis�es the constant restriction. Assume

that x 2 V

c

. Then the constant elimination problem �

�

contains the tuple

(c; x�). By de�nition of �
� , we get that x(�
�) is a term s not containing

c.

Finally, it remains to be shown that the set is complete. Assume that

� is a solution of the F -uni�cation problem with constant restriction, �. In

particular, this means that � solves the F -uni�cation problem � (where the

restrictions are ignored). Hence there exist an element � of the complete set

C(�) and a substitution � such that � =

F

�� hXi, where X denotes the set

of all variables occurring in �. Thus we have

� for all x 2 X: x� =

F

(x�)�, and

� for all c with x 2 V

c

: c does not occur in x�,

which shows that � solves the constant elimination problem �

�

. Conse-

quently, there exist an element � of the complete set C

�

and a substitution

�

0

such that � =

F

��

0

hY i, where Y denotes the set of all variables occurring

in �

�

. Without loss of generality, we assume that z�

0

= z� for all variables

z not occurring in one of the terms y� with y 2 Y .

We want to show that for all x 2 X we have x� =

F

x(�
 �)�

0

. For

all x 2 X, we know that x� =

F

x��, and since �� =

F

�
� we also have

x(�
�)�

0

=

F

x���

0

. Thus it remains to be shown that x�� =

F

x���

0

. We

have to distinguish two cases. First, assume that (c; x�) 2 �

�

for some c.

In this case all variables occurring in x� are elements of Y , and thus � =

F

��

0

hY i yields x�� =

F

x���

0

. For the second case, assume that x� contains

a variable z which is not an element of Y , the set of all variables occurring in

�

�

. We are �nished if we can show that, nevertheless, z� =

F

z��

0

holds for

all such variables z. Since � was assumed to be the identity on variables not

occurring in �

�

, we have z� = z. Since z occurs in x� for a variable x 2 X,

our second assumption on � implies that z does not occur in any term y�

with y 2 Y . But then z�

0

= z� by our assumption on �

0

, which completes

the proof of x�� =

F

x���

0

.

6 Conclusion

We have presented a new method for treating the problem of uni�cation in

the union of disjoint equational theories. Unlike most of the other methods
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developed for this purpose, it can be used to combine decision procedures as

well as procedures computing �nite complete sets of uni�ers. Applicability of

our method depends on a new type of prerequisite, namely on the solvability

of uni�cation problems with linear constant restrictions. Presupposing the

existence of a constant elimination algorithm|as necessary for the method

of Schmidt-Schau�|seems to be a stronger requirement. In fact, we have

seen that constant elimination procedures can be used to solve uni�cation

problems with arbitrary constant restrictions. However, it is still an open

problem whether there exists an equational theory for which solving uni�ca-

tion problems with linear constant restrictions is �nitary (or decidable) but

solving uni�cation problems with arbitrary constant restrictions is not.

Our main results together with the results described in the previous sec-

tion show that there is a close correspondence between solving uni�cation

problems with linear constant restrictions and solving general uni�cation

problems. For a given equational theory, the �rst kind of problems is deci-

dable (�nitary solvable) if and only if the second kind of problems is. As an

interesting open problem it remains to be shown whether there exists an equa-

tional theory for which uni�cation with constants is decidable (�nitary) but

general uni�cation|or equivalently, solving uni�cation problems with linear

constant restrictions|is not. One should note that there already exist such

results for the case of single equations, i.e., uni�cation problems of cardinality

one. Narendran and Otto [NO90] have shown that there exists an equatio-

nal theory E such that solvability is decidable for E-uni�cation problems

(with constants) of cardinality one, but is undecidable for E-uni�cation pro-

blems of cardinality greater than one, and thus also for general E-uni�cation

problems.

To make the presentation and the proof of correctness of the combination

method more concise, we did not consider possible optimizations which would

rule out certain partitions in Step 3 and certain linear orderings in Step 4 of

the algorithm.
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