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Abstract

We consider the problem of integrating Reiter's default logic into ter-

minological representation systems. It turns out that such an integra-

tion is less straightforward than we expected, considering the fact that

the terminological language is a decidable sublanguage of �rst-order

logic. Semantically, one has the unpleasant e�ect that the conse-

quences of a terminological default theory may be rather unintuitive,

and may even vary with the syntactic structure of equivalent concept

expressions. This is due to the unsatisfactory treatment of open de-

faults via Skolemization in Reiter's semantics. On the algorithmic

side, we show that this treatment may lead to an undecidable default

consequence relation, even though our base language is decidable, and

we have only �nitely many (open) defaults. Because of these problems,

we then consider a restricted semantics for open defaults in our termi-

nological default theories: default rules are only applied to individuals

that are explicitly present in the knowledge base. In this semantics it

is possible to compute all extensions of a �nite terminological default

theory, which means that this type of default reasoning is decidable.
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1 Introduction

Terminological representation systems are used to represent the taxonomic

and conceptual knowledge of a problem domain in a structured and well-

formed way. To describe this kind of knowledge, one starts with atomic

concepts (unary predicates) and roles (binary predicates), and de�nes more

complex concepts using the operations provided by the concept language of

the particular formalism. In addition to this concept description formalism,

most of these systems also have an assertional component. One can for

example state that an individual is an instance of a concept, or that two

individuals are connected by a role.

In terminological representation formalisms, the concept descriptions are

interpreted as universal statements, which means, unlike frame languages,

they do not allow for exceptions. As a consequence, the system can use

descriptions to automatically insert concepts at the proper place in the tax-

onomy (classi�cation), and it can use the facts stated about individuals to

deduce to which concepts they must belong (realization). For example, one

could de�ne the concept Mammal as an Animal that feeds its young with

Milk, where feeds-young-with is used as a role. If the concept Platypus

1

is de�ned as an Animal that lives-in the Water, feeds its young with Milk,

and reproduces with Eggs, then the system will recognize that Platypus is a

subconcept of Mammal.

However, commonsense reasoning is often based on assumptions that may

ultimately be shown to be false. In our example, one might want to assume

by default that Mammals reproduce Viviparously. Only if it is known that a

speci�c mammal reproduces with eggs, should this assumption be cancelled.

If one wants to use terminological systems for this kind of commonsense rea-

soning, one needs a formalism that can handle such default assumptions, but

does not destroy the de�nitional character of concept descriptions|because

otherwise the advantage of automatic concept classi�cation, etc., would be

lost (see [5]). Besides the general arguments for the importance of reason-

ing with defaults, which can be found in the nonmonotonic reasoning lit-

erature, the need for embedding defaults into terminological representation

formalisms is also substantiated by the fact that this is an important item on

the wish list of users of terminological representation systems (see e.g. [22]).

Several existing terminological systems, such as back [20], classic [6],

k-rep [16], loom [19], or sb-one [14], have been or will be extended to

provide the user with some kind of default reasoning facilities. However, as

1

We are taking this as our exceptional animal, in view of the fact that last IJCAI was

in Australia, and not in the Antarctic.
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the designers of these systems themselves point out, these approaches usually

have an ad hoc character, and are not equipped with a formal semantics. For

example, defaults in the fame system, which is built using k-rep, \will not

be complete (or even consistent)" ([16], p.11) unless the user is very careful

when using them. In classic, \a limited form of defaults can be represented

with the aid of rules and test functions." However, the user is warned to

\use this trick with extreme caution" ([6], p.45,46).

Our arguments for the importance of default extensions for terminological

representation languages so far were given from the viewpoint of the termi-

nological systems community. However, these investigations may also be of

interest for research in nonmonotonic reasoning itself. Most nonmonotonic

reasoning formalisms (e.g. Reiter's default logic [25], Circumscription [17])

use full �rst-order predicate logic as their base language. In this general form,

the formalisms are usually highly undecidable (see e.g. [25] Theorem 4.9). For

this reason, work on decision procedures for decidable subcases was mostly

restricted to propositional logic (see e.g. [13]), thus leaving the wide gap be-

tween propositional logic and full �rst-order logic almost unexplored. Since

most terminological representation languages can be viewed as decidable sub-

classes of �rst-order logic|but are nevertheless much more expressive than

propositional logic|they can serve as interesting test cases for nonmonotonic

reasoning formalisms. We shall see that this not only applies for algorithmic,

but also for semantic considerations.

We shall here consider the problem of integrating Reiter's default logic

into a terminological representation formalism. This treatment of defaults in

terminological systems has already been proposed by Brachman and Schmolze

[7], but to the best of our knowledge, this proposal was never followed up.

Reiter's default rule approach seems to �t well into the philosophy of termi-

nological systems because most of them already provide their users with a

form of \monotonic" rules. These rules can be considered as special default

rules where the justi�cations|which make the behaviour of default rules

nonmonotonic|are absent.

At �rst sight, one might think that, from a semantic point of view, the

proposed integration should be unproblematic. In fact, the terminological

representation language we shall consider (see Section 2) is a sublanguage

of �rst-order logic, and Reiter's semantics has been formulated for full �rst-

order logic. However, on closer inspection it turns out that one runs into

severe problems, due to the unsatisfactory treatment of open defaults by

Skolemization (see Section 3).

A similar problem arises when considering the integration from the al-

gorithmic point of view. In the abstract of their paper on how to compute

extensions for default logic, Junker and Konolige [12] write that their method
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is applicable if the default theory \consists of a �nite number of defaults and

premises and classical derivability for the base language is decidable." A

related formulation can be found in the abstract of Schwind and Risch's pa-

per on the same topic [28]. Since our base language is decidable, and we

certainly do not want to have in�nitely many default rules, these methods

seem to apply in our case. However, a closer look at the papers reveals that

by \a �nite number of defaults" it is meant \a �nite number of closed de-

faults." But the default rules we want to consider are open defaults. In fact,

as already pointed out by Reiter ([25], p.115) \the genuinely interesting cases

involve open defaults." In Section 4 we shall show that, with our (decidable)

terminological language as base language, a �nite set of premises and open

defaults may lead to an undecidable default consequence problem, if the open

defaults are treated as proposed by Reiter ([25], Section 7.1).

Because of the semantic as well as algorithmic problems posed by Reiter's

treatment of open defaults, we shall consider a restricted semantics for open

defaults in our integration: default rules are only applied to individuals that

are explicitly present in the assertional part (ABox) of the knowledge base.

Though one may thus lose some intuitive default inferences, this treatment of

default rules is akin to the treatment of the monotonic rules in terminological

systems such as classic.

With this restricted semantics, a �nite set of open defaults stands for a set

of closed defaults that is �nite as well. Thus the above-mentioned methods

of Schwind and Risch and of Junker and Konolige can be applied to compute

extensions (see Section 5). In order to make these methods more e�cient,

one has to solve certain algorithmic problems for the terminological language.

For Junker and Konolige's methods one has to �nd minimal proofs for asser-

tional facts|which can be seen as an abduction problem for ABoxes|and

for Schwind and Risch's method one must �nd maximal consistent sets of

assertional facts. In Section 6 we shall point out how the tableaux-based

methods for assertional reasoning developed in our group ([10, 2]) can be

modi�ed to solve these problems.

2 The Representation Formalisms

First we shall brie
y review the terminological language ALCF [11] and

Reiter's default logic. Then terminological default logic is de�ned as the

specialization of default logic to ALCF . Finally an example will illustrate

why Reiter uses Skolemization in his semantics for open default theories.
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2.1 The terminological language ALCF

Terminological knowledge representation formalisms can be used to de�ne the

relevant concepts of a problem domain (terminological knowledge), and to

describe objects of this domain with respect to their relation to concepts and

their interrelation with each other (assertional knowledge). Depending on

which constructs are allowed for building concept descriptions we get di�erent

terminological languages. In the present paper we restrict our attention to

the language ALCF .

De�nition 2.1 The terminological part of the language ALCF consists of

the following concept description formalism. The concept terms of this for-

malism are built from concept, role and attribute names using the con-

structors conjunction (C uD), disjunction (C tD), negation (:C), exists-

restriction (9R:C), value-restriction (8R:C), and agreement (u

:

= v). Here

C;D stand for concept terms, R for a role or attribute name, and u; v for

�nite sequences of attribute names.

The assertional part of our language allows us to assert facts concerning par-

ticular objects. These objects are referred to by individual names, and we can

state that an object belongs to a concept (written C(a)), or that two objects

are related by a role or attribute (written R(a; b)). Here a; b stand for indi-

vidual names, C for a concept term, and R for a role or attribute name. A

�nite set of such facts is called an ABox.

The semantics of an ABox can either be given directly by de�ning inter-

pretations and models, or by a translation into �rst-order logic. In order to

make the fact explicit that we are dealing with a sublanguage of �rst-order

logic, we choose the second option.

Concept names are considered as symbols for unary predicates, and role

and attribute names as symbols for binary predicates. Consequently, concept

names A are translated into (atomic) formulae A(x) with one free variable,

and role and attribute names R into (atomic) formulae R(x; y) with two free

variables. The attributes have to be interpreted as partial functions, which

can be expressed by a formula 8x; y; z: (f(x; y) ^ f(x; z) ! y = z) for each

attribute name f .

Concept terms are also translated into formulae with one free variable.

The semantics of conjunction, disjunction, and negation are de�ned in the

obvious way, i.e., (C u D)(x) := C(x) ^ D(x), (C t D)(x) := C(x) _ D(x),

and (:C)(x) := :C(x). For value-restrictions we de�ne (8R:C)(x) :=

8y: (R(x; y) ! C(y)), and the semantics of exists-restrictions is given by

(9R:C)(x) := 9y: (R(x; y) ^ C(y)). Let u = f

1

� � � f

m

, and v = g

1

� � � g

n

be

sequences of attributes. The agreement construct built from these sequences
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is translated into the formula (u

:

= v)(x) := 9y

1

; . . . ; y

m

; z

1

; . . . z

n

: (f

1

(x; y

1

)^

. . . f

m

(y

m�1

; y

m

) ^ g

1

(x; z

1

) ^ . . . g

n

(z

n�1

; z

n

) ^ y

m

= z

n

):

The individual names of the Abox are considered as constant symbols.

In terminological systems one usually has a unique name assumption, which

can be expressed by the formulae a 6= b for all distinct individual names

a; b. The formula corresponding to the assertional fact C(a) (resp. R(a; b))

is obtained by replacing the free variable(s) in the formula corresponding to

C (resp. R) by a (resp. a; b). To sum up, an ABox is translated into a set

of �rst order formulae consisting of the translations of the ABox facts, the

formulae expressing unique name assumption, and the formulae expressing

that attributes are partial functions.

The basic inference service for ABoxes is called instantiation. It answers

the question of whether (the translation of) a given ABox fact C(a) is a

(logical) consequence of (the translation of) a given ABox A. If the answer

is yes we say that a is an instance of C with respect to A (A j= C(a)). Algo-

rithms which solve this inference problem have, for example, been described

in [10, 2].

2.2 Reiter's default logic

Reiter [25] deals with the problem of how to formalize nonmonotonic rea-

soning by introducing nonstandard, nonmonotonic inference rules, which he

calls default rules. A default rule is any expression of the form

� : �

1

; . . . ; �

n




;

where �, �

1

, . . . , �

n

, 
 are �rst-order formulae. Here � is called the prerequi-

site of the rule, �

1

; . . . ; �

n

are its justi�cations, and 
 is its consequent. For a

set of default rules D, we denote the sets of formulae occurring as prerequi-

sites, justi�cations, and consequents in D by Pre(D), Jus(D), and Con(D),

respectively.

A default rule is closed i� �, �

1

; . . . ; �

n

, 
 do not contain free variables. A

default theory is a pair (W;D) whereW is a set of closed �rst-order formulae

(the world description) and D is a set of default rules. A default theory is

closed i� all its default rules are closed.

Intuitively, a closed default rule can be applied, i.e., its consequent is

added to the current set of beliefs, if its prerequisite is already believed

and all its justi�cations are consistent with the set of beliefs. Formally,

the consequences of a closed default theory are de�ned with reference to

the notion of an extension, which is a set of deductively closed �rst-order

formulae de�ned by a �xed point construction (see [25], p.89). In general,
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a default theory may have more than one extension, or even no extension.

Depending on whether one wants to employ skeptical or credulous reasoning,

a closed formula � is a consequence of a closed default theory i� it is in all

extensions or if it is in at least one extension of the theory. In general, this

consequence relation is not even recursively enumerable (see [25], Theorem

4.9).

Reiter also gives an alternative characterization of an extension, which we

shall use, in a slightly modi�ed way, as the de�nition of extension. Here and

in the following, Th(�) stands for the deductive closure of a set of formulae

�.

De�nition 2.2 Let E be a set of closed formulae, and (W;D) be a closed

default theory. We de�ne

E

0

:=W

and for all i � 0

E

i+1

:= E

i

[ f
 j � : �

1

; . . . ; �

n

=
 2 D; � 2 Th(E

i

);

and :�

1

; . . . ;:�

n

62 Th(E)g:

Then Th(E) is an extension of (W;D) i�

Th(E) =

1

[

i=0

Th(E

i

):

Note that the extension Th(E) to be constructed by this iteration process

occurs in the de�nition of each iteration step. Since we are only adding

consequents of defaults during the iteration, any extension Th(E) of (W;D)

is of the form Th(W [ Con(D

0

)) for a subset D

0

of D. Reiter shows ([25],

Theorem 2.5) that the set

b

D =

n

� : �

1

; . . . ; �

n




2 D j � 2 Th(E) and :�

1

; . . . ;:�

n

62 Th(E)

o

:

always satis�es this property. For this reason it is called set of generating

defaults for the extension Th(E). Another easy consequence of De�nition 2.2

is that (W;D) has an inconsistent extension i� W is inconsistent.

Reiter de�nes extensions of arbitrary default theories (W;D), i.e., default

theories with open defaults, as follows. First, the formulae of W and the

consequents of the defaults are Skolemized (see [25], Section 7). Second, a

set D

0

of closed default rules is generated by taking all ground instances (over

the initial signature together with the newly introduced Skolem functions) of

the defaults of D. Now E is an extension of (W;D) i� E is an extension of the

closed default theory (W

0

;D

0

), where W

0

is the Skolemized form of W. The

reason for Skolemizing before building ground instances will be explained by

an example in Subsection 2.4.
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2.3 Terminological default theories

A terminological default theory is a pair (A;D) whereA is an ABox andD is a

�nite set of default rules whose prerequisites, justi�cations, and consequents

are concept terms. Obviously, since ABoxes can be seen as sets of closed

formulae, and since concept terms can be seen as formulae with one free

variable,

2

terminological default theories are subsumed by Reiter's notion of

an open default theory.

However, as for ABox reasoning without defaults, we are not interested in

arbitrary formulae as consequences of a terminological default theory (A;D),

but only in assertional facts of the form C(a), where a is an individual name

occurring in the original ABox A.

2.4 Why is Skolemization necessary ?

The following example shows that intuitively valid consequences would get

lost if one did not Skolemize. Suppose that our ABox consists of the fact

that Tom has some child who is a doctor, i.e., A = f(9child:doctor)(Tom)g.

By default we want to conclude that doctors usually are rich persons, and

usually have children who are doctors. Thus D consists of the default rules

doctor : rich-person

rich-person

and

doctor : 9child:doctor

9child:doctor

:

Skolemization of the world description A yields A

0

= fchild(Tom;Bill);

doctor(Bill)g, where Bill is a new Skolem constant, whereas Skolemiza-

tion of the consequent of the second default yields a unary Skolem func-

tion, say child-of. It is easy to see that the corresponding closed default

theory has exactly one extension, and that this extension contains the as-

sertional facts that Tom has a rich child and a grandchild who is a doc-

tor, i.e., (9child:rich-person)(Tom), and (9child:9child:doctor)(Tom). Intu-

itively, this comes from the fact that the closed defaults obtained by in-

stantiating our open defaults with the Skolem constant Bill are applicable.

Without these ground instances, the above facts could not have been deduced

by default. To deduce by default that the grandchild of Tom is not only a

doctor, but also a rich one, the �rst default has to be instantiated by the

term child-of(Bill).

2

The concept terms occurring in one rule are assumed to have identical free variables.
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3 Problems Caused by Skolemization

In addition to the problem that Skolemization usually destroys the nice com-

positional character of our concept formulae, it is also problematic for more

severe reasons to be presented below. We shall give three examples which

demonstrate that Reiter's treatment of open defaults is problematic, from an

intuitive as well as a formal point of view.

Our �rst example shows that the Skolemization of the world description

may lead to counterintuitive consequences of the default theory. Consider

the following concept term which can be used to express that an adult man

is married to a woman or is a bachelor

(9spouse:Woman) t Bachelor:

We assume that our ABox asserts that the individual Tom belongs to this

concept term, and that he is married to the woman Mary. In addition, we

take the following default (without prerequisite)

: :Woman

:Woman

;

which corresponds to a still-prevailing male chauvinism in linguistic usage.

In order to know with what individuals this default has to be instantiated,

we have to Skolemize our ABox facts. Translated into traditional �rst-order

syntax, these facts yield the world description

f(9y: spouse(Tom; y) ^Woman(y)) _ Bachelor(Tom);

spouse(Tom;Mary);

Woman(Mary)g:

The Skolemized version of the �rst formula is

(�) (spouse(Tom;Gordy) ^Woman(Gordy)) _ Bachelor(Tom);

where Gordy is introduced as a new Skolem constant. Because of the dis-

junction in this formula, our Skolemized world description does not im-

ply Woman(Gordy). Thus the chauvinistic default can �re, and we get

:Woman(Gordy). Together with the formula (�) this yields Bachelor(Tom)

as a consequence of our default theory, which is rather surprising since our

ABox actually contains a female spouse of Tom.

As already pointed out by Poole, the reason for this strange behaviour

comes from that fact that \we have lost the context of what the Skolem

constants represent" ([23], p.907), in our case the context that Gordy was
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originally introduced to stand for a female spouse of Tom. Poole proposes to

keep track of this context by using Hilbert's �-symbol.

Although Poole's approach may avoid the problem in the above example,

it is of no avail in our next examples. These examples demonstrates that,

due to the problems caused by Skolemization, the consequences of a default

theory depend on the syntactic form of the world description, i.e., for identical

sets of open defaults, logically equivalent world descriptions may lead to

di�erent results.

In our second example we consider concept terms C

1

:= 9R:(A u B) and

C

2

:= 9R:A where R is a role name and A;B are concept names. Obviously,

if we assert that an individual a is in the �rst term this implies that it is

in the second one as well. For this reason, the ABoxes A

1

:= fC

1

(a)g and

A

2

:= fC

1

(a); C

2

(a)g are logically equivalent. When Skolemizing the �rst

ABox, we get a single new Skolem constant b which is R-related to a and lies

in A u B, whereas when Skolemizing the second ABox we get two Skolem

constants c and d, both R-related to a, but where c lies in AuB and d lies in

A. Now consider the (open) default A : :B=:B: For the Skolemized version

ofA

1

, this default is instantiated with a; b, whereas for the Skolemized version

of A

2

it is instantiated with a; c; d. Obviously, the default rule cannot �re for

b and c, because their being in AuB is inconsistent with its justi�cation. On

the other hand, this default rule can be applied to d, because being in A is

consistent with being in :B. For this reason, d is put into :B, which shows

that the Skolemized version of A

2

has (9R::B)(a) as a default consequence,

whereas this fact cannot be deduced by default from the Skolemized version of

A

1

. Technically, the reason for this behaviour is due to the fact that, before

the application of the default, the individuals c and d might be identical

(which is the reason why the two ABoxes are logically equivalent) whereas

this is no longer possible after the default has been applied.

The third example is similar to the second. It is quite obvious that the

concept terms 9R:(A t B) and (9R:A) t (9R:B) are equivalent. Let A

1

be an ABox where a is asserted to be in the �rst concept term, and A

2

one

where a is asserted to be in the second concept term. When using a standard

Skolemization method, the �rst ABox yields one new Skolem constant, and

the second ABox yields two. Now it is easy to see that the corresponding

instantiations of the default rule A t B : C=C can only �re for the Skolemized

version of the �rst ABox. Consequently, we have a in 9R:C as a default

consequence of the �rst ABox, but not of the second one, even though these

two ABoxes are equivalent.

Lifschitz [15] proposes a treatment of open defaults which avoids Skolem-

ization by working with classes of models instead of sets of formulae in the

de�nition of default extensions. Obviously, working with models means that
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logically equivalent formulae must yield the same results. This shows that

Lifschitz's approach can overcome the problem pointed out in the previous

two examples, even though it was not motivated by the problems connected

with Skolemization (see footnote 1 in [15]: \Skolemization ... is irrelevant

for this discussion.") Lifschitz's motivation was to make it possible to derive

by default universally quanti�ed formulae of the form 8x: C(x), which is not

possible with Reiter's approach, but which is not necessary in our context

(because the terminological inference service is only meant to derive new

ABox facts, i.e., formulae of the form C(a)). From our point of view, the

main problem of Lifschitz's approach is that working with models means that

it becomes even harder to get algorithms for computing extensions. Another

problem of his approach is that one gets rather unexpected consequences,

due to the fact that models of di�erent cardinality are treated separately.

For example, assume that one has formulae � 3 and � 2 expressing that a

model has at least 3 and at most 2 elements, respectively, which would, for

example, be available in concept languages allowing for number-restrictions

and a universal role, i.e., a role U that satis�es 8x; y: U(x; y). The default

theory consisting of an empty world description and the closed defaults

� 2 :

C(a)

and

� 3 :

C(a)

has C(a) as consequence, which means that this approach makes a case anal-

ysis with respect to the cardinality of models. But for other cases, Lifschitz's

approach still does not make case analysis. For example, the theory consist-

ing of an empty world description and the closed defaults

A(a) :

C(a)

and

:A(a) :

C(a)

does not have C(a) as a consequence.

4 An Undecidability Result

In addition to the semantic problems caused by Skolemization, we shall now

show that, for our base language ALCF , this treatment of open defaults also

leads to an undecidable default consequence relation, even though ALCF is

decidable. This is achieved by reducing the word problem for semigroups

[24] to the consequence problem of a default theory.

Let � be a �nite alphabet, and let R = f(u

1

; v

1

); . . . , (u

n

; v

n

)g be a �nite

set of relations presenting a semigroup over �. In the following we shall treat

the elements of � as attribute names. The semigroup presentation is used
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to de�ne a �nite set of open defaults as follows. For any f 2 � and for any

relation (u

i

; v

i

) 2 R we have defaults

A :

8f:A

and

A :

u

i

:

= v

i

:

If we want to decide whether the words u; v are equivalent with respect to

R, we take the ABox A

u;v

:= fA(a); (u

:

= u)(a); (v

:

= v)(a)g as our world

description.

Proposition 4.1 With respect to the set of defaults induced by � and R,

the ABox fact (u

:

= v)(a) is a default consequence of A

u;v

i� u and v are

equivalent with respect to R.

Intuitively, the world description puts a into A, and asserts sequences

of attributes u, v starting from a. The implicit individuals lying on these

sequences are made explicit by Skolemization. The �rst type of defaults puts

all individuals reachable from a by a sequence of attributes into A, and the

second type identi�es individuals which can be reached by the respective

sequences u

i

and v

i

from an individual in A, thus simulating application of

relations from R. (It should be noted that the consequents of this second

type of defaults are also responsible for the introduction of new implicit

individuals.)

Since a formal proof of the proposition is straightforward but rather te-

dious, we shall just illustrate it by an example. Consider the semigroup

presentation R = f(fg; gf)g over the alphabet � = ff; gg. This presenta-

tion is transformed into the default rules

A :

8f:A

;

A :

8g:A

; and

A :

fg

:

= gf

:

Obviously, the words fgg and ggf are equivalent with respect to R. If we

want to obtain this equivalence as a consequence of applying the above default

rules, we take the Abox A

fgg;ggf

= fA(a); (fgg

:

= fgg)(a); (ggf

:

= ggf)(a)g

as our world description.

Translated into �rst-order logic and then Skolemized, this ABox yields

the world description

f A(a);

f(a; b

1

) ^ g(b

1

; b

2

) ^ g(b

2

; b

3

);

g(a; c

1

) ^ g(c

1

; c

2

) ^ f(c

2

; c

3

);

8x; y; z: (f(x; y) ^ f(x; z)! y = z);

8x; y; z: (g(x; y) ^ g(x; z)! y = z) g;
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where the last two formulae are expressing that f; g are interpreted as partial

functions, and b

1

; . . . ; c

3

are Skolem constants. Note that these formulae

have already been used to simplify the rest of the ABox, and that redundant

equalities have been removed. We want to show that b

3

= c

3

is a consequence

of the default theory.

The translated and Skolemized form of the consequent fg

:

= gf of the

third default is f(x; h

1

(x)) ^ g(h

1

(x); h

2

(x)) ^ g(x; k

1

(x)) ^ f(k

1

(x); k

2

(x)) ^

h

2

(x) = k

2

(x), where h

1

; h

2

; k

1

; k

2

are unary Skolem functions.

Since A(a) is in our world description, the third default, instantiated

by a, is applicable, and yields f(a; h

1

(a)) ^ g(h

1

(a); h

2

(a)) ^ g(a; k

1

(a)) ^

f(k

1

(a); k

2

(a)) ^ h

2

(a) = k

2

(a). The formulae which express that f; g are

partial functions yield h

1

(a) = b

1

, h

2

(a) = b

2

, and k

1

(a) = c

1

.

Applying the second default, instantiated by a, we get 8y: (g(a; y) !

A(y)), which in turn yields A(c

1

). Now we can apply the third default,

instantiated by c

1

, which yields f(c

1

; h

1

(c

1

))^g(h

1

(c

1

); h

2

(c

1

))^g(c

1

; k

1

(c

1

))^

f(k

1

(c

1

); k

2

(c

1

)) ^ h

2

(c

1

) = k

2

(c

1

). Because of the formulae expressing that

f; g are partial functions we get c

2

= k

1

(c

1

); c

3

= k

2

(c

1

), and, using the

additional fact k

1

(a) = c

1

, also k

2

(a) = h

1

(c

1

).

To sum up we have b

2

= h

2

(a) = k

2

(a) = h

1

(c

1

), c

3

= k

2

(c

1

) = h

2

(c

1

),

and g(b

2

; b

3

) as well as g(h

1

(c

1

); h

2

(c

1

)). This yields b

3

= h

2

(c

1

) = c

3

, which

is what we wanted to show.

Since the word problem for semigroups is in general undecidable, the

proposition shows that our terminological default theories in general have an

undecidable consequence problem.

Corollary 4.2 The consequence problem for an open default theory is in

general undecidable, even if one has a �nite set of defaults and the base

language is decidable.

It should be noted that the default rules used in the reduction are mono-

tonic (i.e., they do not have justi�cations). Consequently, the default theory

has exactly one extension, which shows that the undecidability result is inde-

pendent of whether one wants to employ skeptical or credulous reasoning. In

addition, this shows that the consequences of rule applications in the classic

system would become undecidable, if classic applied rules not only to indi-

viduals explicitly present in the ABox, but also to implicit individuals. This

result for classic rules has already been mentioned by Nebel and Smolka

[21], but without proof. In the next section we shall see that the restriction

to explicit individuals leads to a decidable consequence relation even if one

allows nonmonotonic default rules instead of classic's monotonic rules.
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5 Computing Extensions

Because of the problems caused by Skolemization in Reiter's treatment of

open defaults, we now propose a restricted semantics for open default the-

ories: default rules are only applied to individuals that are explicitly men-

tioned in the ABox.

De�nition 5.1 In the restricted semantics for terminological default theo-

ries, an open default of a terminological default theory (A;D) is interpreted

as representing the closed defaults obtained by instantiating the free variable

by all individual names occurring in A.

Because the ABox A and the set of open defaults D are assumed to be

�nite, we end up with a �nite set of closed defaults. Since our terminological

language is decidable, the methods of Junker and Konolige, or of Schwind and

Risch can be applied to compute all extensions (according to our restricted

semantics).

In principle, both methods depend on the fact that any extension of a

closed default theory (A;D) is of the form Th(A [ Con(

b

D)) for a subset

b

D

of D. If D is �nite, there are only �nitely many such subsets, and the only

problem is to decide which of these generate an extension. In fact, if the

base language is decidable, one could even use for this purpose the iteration

process described in the de�nition of an extension. This is so because de-

cidability of the base language makes each iteration step e�ective, and the

iteration process terminates because there are only �nitely many consequents

to be added. However, with this method one has to consider all the (expo-

nentially many) subsets of D. The two methods which we shall describe

below try to avoid considering all subsets, thus making the search for (the

sets of generating defaults of) all extensions more e�cient.

5.1 Junker and Konolige's method

Junker and Konolige [12] translate a closed default theory (A;D) into a Truth

Maintenance Network (TMN) �a la Doyle [8]. The nodes of the TMN are the

consequents C

D

, and the prerequisites and negated justi�cations L

D

of the

defaults. A default � : �

1

; . . . ; �

n

=
 of D is translated into a nonmonotonic

justi�cation hin(�); out(:�

1

; . . . ;:�

n

) ! 
i of the TMN. In order to sup-

ply the truth maintenance system with enough information about �rst-order

derivability in the base language, each prerequisite and negated justi�cation

of a default gives rise to several monotonic justi�cations of the TMN. These

justi�cations are of the form hin(Q)! qi where q 2 L

D

, and Q is a minimal

15



subset of C

D

such that A [Q entails q|i.e., A [Q j= q but A [Q

0

6j= q for

every proper subset Q

0

of Q.

Junker and Konolige show that there is a 1{1-correspondence between

admissible labellings of the TMN thus obtained and extensions of the de-

fault theory, and they describe an algorithm which computes all admissible

labellings of a TMN. Given such an admissible labelling, the set of gener-

ating defaults of the corresponding extension consists of the defaults whose

consequents are labelled \in."

In order to make the translation of terminological default theories into

TMNs e�ective, one has to show how to compute the above mentioned mono-

tonic justi�cations of the TMN. First note that the elements of L

D

[ C

D

are

admissible assertional facts. This is obvious for the prerequisites and the

consequents of our instantiated defaults, and for the negated justi�cations it

follows from the fact that the concept language has negation as an operator.

For this reason, A [ Q for a subset Q of C

D

is an admissible ABox of our

language, and the entailment problem A [Q j= q for q 2 L

D

is an ordinary

instantiation problem. As mentioned in Section 2, the instantiation problem

is decidable for our language. A brute force algorithm could just compute

all subsets Q of C

D

such that A [ Q entails q 2 L

D

, and then, for each q,

eliminate the ones which are not minimal. Of course, this simple algorithm

is very ine�cient, and thus not appropriate for actual implementations.

Because A[Q entails an assertional fact C(a) i� A[Q[ f:C(a)g is in-

consistent, we need a solution of the following problem: Let A, B be ABoxes.

Find all minimal subsets Q of B such that A [ Q is inconsistent. Since a

similar algorithmic problem has to be solved for the method obtained from

Schwind and Risch's characterization of an extension, we defer the descrip-

tion of a more e�cient solution of this problem to a separate section.

A characteristic feature of Junker and Konolige's method is that|after

the computation of the minimal sets Q|it is completely abstracted from

derivability in the base language. This may be advantageous from a con-

ceptual point of view, but it can be problematic from the algorithmic point

of view. In fact, one has to compute the corresponding minimal sets for all

elements q in L

D

, even though this information may not contribute to the

computation of an extension.

5.2 A method based on a theorem by Schwind and

Risch

Schwind and Risch [28] give a theorem which characterizes those subsets

b

D

of D which are sets of generating defaults of an extension of a closed default

theory (W;D). They use this characterization for computing extensions of
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propositional default theories. In this subsection, we shall show how to apply

the theorem to computing extensions of terminological default theories.

Before we can formulate the theorem we need one more piece of notation.

De�nition 5.2 Let W be a set of closed formulae, and D be a set of closed

defaults. We de�ne D

0

= ; and, for i � 0,

D

i+1

= D

i

[ fd =

� : �

1

; . . . ; �

n




j d 2 D and W [ Con(D

i

) j= �g:

Then D is called grounded in W i� D =

S

1

i=0

D

i

.

This de�nition of groundedness di�ers from the one given in [28], but

it is easy to see that both formulations are equivalent. The advantage of

our formulation is that it can directly be used as a procedure for deciding

groundedness, if D is �nite and the entailment problem in the base language

is decidable. If D is not grounded in W, then

S

1

i=0

D

i

is the largest subset of

D that is grounded in W.

The iteration process described above corresponds to the iteration in the

de�nition of extensions, with the main di�erence that it disregards the justi-

�cations. The second condition given in the following theorem makes up for

this neglect.

Theorem 5.3 (Schwind and Risch) Let (W;D) be a closed default the-

ory. A subset

b

D of D is a set of generating defaults of an extension of (W;D)

i� the following two conditions hold:

1.

b

D is grounded in W.

2. For all d 2 D with d = � : �

1

; . . . ; �

n

=
 we have d 2

b

D i� W [

Con(

b

D) j= � and for all i; 1 � i � n, W [ Con(

b

D) 6j= :�

i

.

IfD is �nite, and the entailment problem in the base language is decidable,

this theorem provides us with an e�ective test of whether a subset

b

D of D is

a set of generating defaults of an extension of (W;D). We shall now describe

a method based on this theorem which allows us to compute (the sets of

generating defaults of) all extensions without having to consider all subsets

of D.

IfW is inconsistent then there is only one extension, namely the set of all

formulae. In the following, we shall without loss of generality assume that

W is consistent. Now, let D

0

be the largest subset of D that is grounded in

W, and let D

1

; . . . ;D

m

be all maximal subsets of D

0

such that W [Con(D

i

)

is consistent. Since W is assumed to be consistent, extensions are consistent
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Compute-All-Extensions(W;D)

begin

(1) if W is inconsistent

(2) then print \Inconsistent world description"

(3) else for all maximal subsets D

0

of D

0

such that

W [ Con(D

0

) is consistent

(4) do Remove-Defaults(W;D;D

0

);

end

Remove-Defaults(W;D;D

0

)

begin

(1) let D

0

be the largest subset of D

0

that is grounded in W;

(2) if W [ Con(D

0

) j= :�

i

for some justi�cation �

i

2 Jus(D

0

)

(3) then let d = � : �

1

; . . . ; �

n

=
 be the corresponding default;

(4) Remove-Defaults(W;D;D

0

n fdg);

(5) for all maximal subsets D

00

of D

0

such that

d 2 D

00

and W [ Con(D

00

) 6j= :�

i

(6) do Remove-Defaults(W;D;D

00

);

(7) else if for each � : �

1

; . . . ; �

n

=
 2 D n D

0

either W [ Con(D

0

) 6j= �

(8) or W [ Con(D

0

) j= :�

i

for some i

(9) then add D

0

to the list of sets of generating defaults;

end

Figure 1: Procedure for computing the sets of generating defaults of all

extensions of the closed default theory (W;D). Proviso: D is �nite and

entailment in the base language is decidable.

as well, which means that a generating set of defaults of an extension is a

subset of one of the D

i

. The idea underlying our method is to start with

these maximal sets D

i

, and successively eliminate defaults violating the �rst

condition of the theorem, or the \only if" part of the second condition. If

no more defaults can be eliminated, the \if" part of the second condition is

tested.

Figure 1 describes the procedure for computing all extensions of a closed

default theory. To show soundness and completeness of the procedure (The-

orem 5.7) we need three lemmas.

Lemma 5.4 Let (W;D) be a closed default theory and let D

0

� D be such

that W[Con(D

0

) is consistent. Suppose the call Remove-Defaults(W;D;D

0

)

returns the list L of sets of defaults. If D

0

2 L then D

0

is a set of generating
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defaults for an extension of (W;D).

Proof. We prove this lemma by showing that a set D

0

of defaults con-

tained in L satis�es Conditions 1 and 2 of Theorem 5.3.

Suppose that D

0

is contained in L. It is easy to see that D

0

is a subset of

D

0

that is grounded in W (because of line (1)), which shows that Condition

1 of Theorem 5.3 holds for D

0

.

To show that D

0

satis�es the second condition of Theorem 5.3, �rst as-

sume that d = � : �

1

; . . . ; �

n

=
 2 D

0

. Recall that D

0

is grounded in W,

which implies that W [ Con(D

0

) j= �. Furthermore, observe that, for all i,

1 � i � n, W [ Con(D

0

) 6j= :�

i

(because the condition in line (2) does not

hold for D

0

). Both facts together show that the \only if" part of Condition

2 holds.

Now assume that d = � : �

1

; . . . ; �

n

=
 2 D n D

0

. Then either W [

Con(D

0

) 6j= � or W [ Con(D

0

) j= :�

i

for some i (because the condition in

lines (7) and (8) holds for D

0

). This shows that the \if" part of Condition 2

is also satis�ed.

Lemma 5.5 Let D

0

be a set of generating defaults for an extension of a

closed default theory (W;D), and let D

0

be a subset of D such that D

0

� D

0

and W [ Con(D

0

) is consistent. If Remove-Defaults(W;D;D

0

) recursively

calls Remove-Defaults then there is a call with arguments W;D;D

00

where

D

0

� D

00

� D

0

.

Proof. Let D

0

� D

0

be sets of defaults satisfying the assumptions of the

lemma. Suppose Remove-Defaults is called with arguments W;D;D

0

. Let

D

0

0

be the largest subset of D

0

that is grounded inW. Then D

0

� D

0

0

because

every set of generating defaults for an extension of (W;D) is grounded inW.

If the condition in line (2) does not hold for D

0

0

, Remove-Defaults is

obviously not called recursively, and nothing has to be shown. Thus assume

that the condition in line (2) holds for D

0

0

. This means that there is a

default d = � : �

1

; . . . ; �

n

=
 2 D

0

0

such that W [ Con(D

0

0

) j= :�

i

for some i,

1 � i � n.

If d 62 D

0

we have D

0

� D

0

0

n fdg � D

0

0

, and the call of Remove-Defaults

with arguments W;D;D

0

0

n fdg) (cf. line (4)) satis�es the required property.

Now assume that d 2 D

0

. Since D

0

is a set of generating defaults for an

extension we know that W [ Con(D

0

) 6j= :�

i

. Thus there is a maximal

subset D

00

of D

0

0

with W [Con(D

00

) 6j= :�

i

that contains D

0

, and this means

that the call Remove-Defaults(W;D;D

00

) has the required property (cf. line

(5) and (6)).
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Lemma 5.6 Let D

0

be a set of generating defaults for an extension of a

closed default theory (W;D), and let D

0

be a subset of D such that D

0

� D

0

and W [ Con(D

0

) is consistent. Suppose Remove-Defaults is called with

arguments W;D;D

0

. Then

� there is a recursive call of Remove-Defaults, or

� D

0

is added to the list of sets of generating defaults.

Proof. Let D

0

� D

0

be sets of defaults satisfying the assumptions of the

lemma. Suppose the call Remove-Defaults(W;D;D

0

) does not recursively

call Remove-Defaults. This means that the condition in line (2) does not

hold for D

0

0

, where D

0

0

is the largest subset of D

0

that is grounded in W. We

show that D

0

0

= D

0

.

Since D

0

is grounded in W, we get D

0

� D

0

0

, and thus we only have to

show D

0

0

� D

0

. Assume to the contrary that D

0

0

n D

0

6= ;. First we show

that W [ Con(D

0

) j= � for some default � : �

1

; . . . ; �

n

=
 2 D

0

0

n D

0

. To see

this, recall that D

0

0

is grounded in W. This means that there is a sequence

d

0

1

; d

0

2

; . . . of default in D

0

0

such that W [ Con(fd

0

1

; . . . ; d

0

k�1

g) j= �

0

k

where

�

0

k

is the prerequisite of the k-th default. Let l be the smallest number such

that d

0

l

2 D

0

0

n D

0

. Thus d

0

j

2 D

0

for all j, 1 � j < l, which shows that

W [ Con(D

0

) j= �

0

l

.

Second, we have W [ Con(D

0

0

) 6j= :�

i

for all justi�cations �

i

2 Jus(D

0

0

)

because the condition in line (2) does not hold for D

0

0

. Since D

0

� D

0

0

we

especially know that W [ Con(D

0

) 6j= :�

i

for all justi�cations �

i

2 Jus(D

0

).

Thus, we have shown that there is some default d 2 D

0

0

n D

0

, d =

� : �

1

; . . . ; �

n

=
, such that W [ Con(D

0

) j= � and W [ Con(D

0

) 6j= :�

i

for all i, 1 � i � n. Because of Theorem 5.3 this is a contradiction with our

assumption that D

0

is a set of generating defaults. Therefore the assumption

D

0

0

n D

0

6= ; is falsi�ed, and we can conclude that D

0

0

= D

0

.

Since D

0

is a set of generating defaults, the condition in lines (7), (8)

holds for D

0

(cf. Condition 2 of Theorem 5.3). Thus D

0

is added to the list

of sets of generating defaults.

Now we are ready to prove soundness and completeness of our algorithm.

First we observe that every set of defaults computed by the algorithm is in

fact a set of generating defaults for an extension of a closed default theory

(W;D) (cf. Lemma 5.4).

Now assume that D

0

is a set of generating defaults for an extension of

(W;D). Recall that W [ Con(D

0

) is consistent. Thus there is a maximal

subset D

0

of D such thatW[Con(D

0

) is consistent and D

0

contains D

0

. This

shows that Compute-All-Extensions(W;D) generates a call Remove-Defaults
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with arguments W;D;D

0

(cf. lines (3) and (4) in the function Compute-All-

Extensions) for some subset D

0

of D with D

0

� D

0

.

If the call Remove-Defaults(W;D;D

0

) returns the list L of sets of defaults

then D

0

is contained in L. This result is an immediate consequence of the

previous two lemmas. In fact, Lemma 5.5 shows that there is a sequence of

calls of Remove-Defaults such that W, D, C

i

are the arguments of the i-th

call where C

1

= D

0

, C

i+1

� C

i

, and D

0

� C

i

for all i. Since D is assumed to

be �nite and the C

i

's are decreasing, there is some m � i such that Remove-

Defaults(W;D; C

m

) does not generate a recursive call of Remove-Defaults.

In this case D

0

is added to the list L of sets of defaults (Lemma 5.6).

Theorem 5.7 The call of the procedure Compute-All-Extensions with input

(W;D) computes sets of generating defaults for all extensions of the closed

default theory (W;D).

The functions Compute-All-Extensions and Remove-Defaults use the fol-

lowing subprocedures which have not explicitly been described:

� Decide whether W is consistent.

� Compute all maximal subsets D

0

of D such that W [ Con(D

0

) is con-

sistent.

� Compute the largest subset D

0

of D

0

that is grounded in W.

� Compute all maximal subsets D

00

of D

0

such thatW[Con(D

00

) 6j= :�

i

.

The �rst subprocedure is a direct application of the decision algorithm for

entailment in the base language. The third subprocedure is simply obtained

by implementing the de�nition of groundedness.

The other two procedures depend on an algorithm for the following prob-

lem, which will be considered in the next section: Let A;B be ABoxes.

Compute all maximal subsets Q of B such that A [Q is consistent.

In fact, the second subprocedure is a direct application of such an al-

gorithm. For the fourth subprocedure, note that W [ Con(D

00

) 6j= :�

i

i�

W [ Con(D

00

) [ f�

i

g is consistent.

6 ComputingMinimal Inconsistent andMax-

imal Consistent ABoxes

This section is concerned with the following algorithmic problems: Given

two ABoxes A;B, �nd all minimal (resp. maximal) subsets Q of B such that

A [Q is inconsistent (resp. consistent).

21



Since consistency of ABoxes in ALCF is decidable, there is the obvious

\brute-force" solution which tests consistency of A [ Q for all subsets Q

of B, and then takes the minimal inconsistent (maximal consistent) ones.

In the following we shall describe a more e�cient method of �nding these

minimal (maximal) sets. The method is an extension of the tableaux-based

consistency algorithms for ABoxes described in [1, 10]. The idea of employing

tableaux-based methods for such purposes was already used in [18, 28], but

these papers restricted themselves to propositional logic, which is a much

easier case.

In order to decide whether an ABox A is consistent, the tableaux-based

consistency algorithm tries to generate a �nite model of A. In principle, it

starts with A, and adds new assertional facts with the help of certain rules

until the obtained ABox is \complete," i.e., one can apply no more rules.

Because of the presence of disjunction in our language, a given ABox must

sometimes be transformed into two di�erent new ABoxes, with the intended

meaning that the original ABox is consistent i� one of the new ABoxes is

consistent. Formally, this means that one is working with sets of ABoxes

instead of a single ABox.

For ease of presentation, we restrict ourselves in this formal description

to the terminological language ALC where we do not have attributes and

agreements. Later on, we shall point out how the algorithm can be extended

to ALCF .

Figure 2 describes the transformation rules of the tableaux-based con-

sistency algorithm for ALC. Without loss of generality we assume that the

concept terms occurring in A

0

are in negation normal form, i.e., negation

occurs only directly in front of concept names. Negation normal forms can

be generated using the fact that the following pairs of concept terms are

equivalent: ::C and C, :(C uD) and :C t :D, :(C tD) and :C u :D,

:(9R:C) and 8R::C, as well as :(8R:C) and 9R::C.

The following facts make clear why the rules of Figure 2 provide us with a

decision procedure for consistency of ABoxes of ALC (see [10, 1] for a proof).

Proposition 6.1

1. If A

1

is obtained from A

0

by application of the conjunction, exists-

restriction, or value-restriction rule then A

0

is consistent i� A

1

is con-

sistent.

2. If A

1

;A

2

are obtained from A

0

by application of the disjunction rule

then A

0

is consistent i� A

1

or A

2

is consistent.

3. A complete ABox, i.e., an ABox to which no more rules apply, is

consistent i� it does not contain an obvious contradiction, i.e., facts
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Let M be a �nite set of ABoxes, and let A

0

be an element of

M. The following rules replace A

0

by an ABox A

1

or by two

ABoxes A

1

and A

2

.

The conjunction rule. Assume that (C uD)(a) is in A

0

, and that A

0

does not contain both assertions C(a) and D(a). The ABox A

1

is

obtained from A

0

by adding C(a) and D(a).

The disjunction rule. Assume that (C tD)(a) is in A

0

, and that A

0

contains neither C(a) nor D(a). The ABox A

1

is obtained from A

0

by adding C(a), and the ABox A

2

is obtained from A

0

by adding

D(a).

The exists-restriction rule. Assume that (9R:C)(a) is in A

0

, and

that A

0

does not contain assertions R(a; c) and C(c) for some indi-

vidual c. One generates a new individual name b, and obtains A

1

from A

0

by adding R(a; b) and C(b).

The value-restriction rule. Assume that (8R:C)(a) and R(a; b) are in

A

0

, and that A

0

does not contain the assertion C(b). The ABox

A

1

is obtained from A

0

by adding C(b).

Figure 2: Transformation rules of the consistency algorithm for ALC.

A(b);:A(b) for an individual name b and a concept name A.

4. The transformation process always terminates.

An obvious contradiction of the form A(b);:A(b) will also be called

\clash" in the following.

To check whether a given ABox A is consistent one thus starts with fAg,

and applies transformation rules (in arbitrary order) as long as possible.

Eventually, this yields a �nite set M of complete ABoxes with the property

that A is consistent i� one of the ABoxes in M is consistent. Since the

elements of M are complete their consistency can simply be decided by

looking for an obvious contradiction.

Now assume that A;B are ABoxes, and we want to �nd all minimal (resp.

maximal) subsets Q of B such that A [Q is inconsistent (resp. consistent).

We start with applying the tableaux-based consistency algorithm to A [

B. Let A

1

; . . . ;A

m

be the complete ABoxes obtained this way. If one of

these is not obviously contradictory, A [ B is consistent, and there are no

minimal inconsistent sets to compute (resp. B is the maximal consistent
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set). Otherwise, we want to know which elements of B can be dispensed

with without destroying the property that all complete ABoxes contain an

obvious contradiction (resp. which elements of B have to be removed to get

at least one complete ABox without obvious contradiction).

For this reason, it is important to know which facts in B contribute to

a particular obvious contradiction. To this purpose we introduce a proposi-

tional variable for each element of B, and label assertional facts with \mono-

tonic" boolean formulae built from these variables, i.e., propositional formu-

lae built from the variables by using conjunction and disjunction only. In

the original ABox A [ B, the elements of A are labelled with \true," and

the elements of B are labelled with the corresponding propositional variable.

If, during the consistency test, n assertional facts with labels �

1

; . . . ; �

n

give

rise to a new fact, the new one is labelled by �

1

^ . . . ^ �

n

. Since the same

assertional fact may arise in more than one way, we also get disjunctions in

labels. Again, we end up with complete ABoxes A

1

; . . . ;A

m

, but now all

assertional facts occurring in these ABoxes have labels.

More formally, we shall now describe a labelled consistency algorithm for

ABoxes A[B consisting of \hard" facts A and of \refutable" facts B. With-

out loss of generality we assume that the concept terms occurring in A [ B

are in negation normal form. Initially, the elements of A[B are labelled with

monotonic boolean formulae as described above. We shall refer to the label

of an assertional fact � by ind(�). Starting with the singleton set fA [ Bg,

the transformation rules of Figure 3 are applied as long as possible.

As for the unlabelled consistency algorithm, there cannot be an in�nite

chain of rule applications. This can, for example, be shown by a straight-

forward adaptation to the labelled case of the termination ordering used in

[1].

Thus the labelled consistency algorithm also terminates with a �nite set

of complete ABoxes, i.e., labelled ABoxes to which no rules apply. The labels

occurring in these ABoxes can be used to describe which of the original facts

in B are responsible for the obvious contradictions.

De�nition 6.2 (Clash formula) Let A

1

; . . . ;A

n

be the complete ABoxes

obtained by applying the labelled consistency algorithm to A[B. A particular

clash A(a);:A(a) 2 A

i

is expressed by the propositional formula ind(A(a))^

ind(:A(a)). Now let  

i;1

; . . . ;  

i;k

i

be the formulae expressing all the clashes

in A

i

. The clash formula associated with A [ B is

n

^

i=1

k

i

_

j=1

 

i;j

:
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Let M be a �nite set of labelled ABoxes, and let A

0

be an

element of M. The following rules replace A

0

by an ABox

A

1

or by two ABoxes A

1

and A

2

. These new ABoxes either

contain additional assertional facts, or the indices of existing

assertional facts are changed. In order to avoid having to

distinguish between these two cases in the formulation of the

rules, we introduce a new notation. An ABox is extended by

an assertional fact with index � means the following: If this

fact is already present with index  , we just change its index

to  _�. Otherwise, it is added to the ABox and gets index �.

The conjunction rule. Assume that (C uD)(a) is in A

0

, and that A

0

does not contain assertions C(a) and D(a) whose indices are both

implied by ind((CuD)(a)). The ABox A

1

is obtained by extending

A

0

by C(a) with index ind((C u D)(a)) and by D(a) with index

ind((C uD)(a)).

The disjunction rule. Assume that (C tD)(a) is in A

0

, and that A

0

does not contain C(a) or D(a) whose index is implied by ind((C t

D)(a)). The ABox A

1

is obtained by extending A

0

by C(a) with

index ind((C tD)(a)), and the ABox A

2

is obtained by extending

A

0

by D(a) with index ind((C tD)(a)).

The exists-restriction rule. Assume that (9R:C)(a) is in A

0

, and

that A

0

does not contain assertions R(a; c) and C(c) whose in-

dices are both implied by ind((9R:C)(a)). One generates a new

individual name b, and obtains A

1

from A

0

by adding R(a; b) and

C(b), both with index ind((9R:C)(a)).

The value-restriction rule. Assume that (8R:C)(a) and R(a; b) are in

A

0

, and that A

0

does not contain an assertion C(b) whose index is

implied by ind((8R:C)(a))^ind(R(a; b)). The ABox A

1

is obtained

by extending A

0

by C(b) with index ind((8R:C)(a))^ ind(R(a; b)).

Figure 3: Transformation rules of the labelled consistency algorithm forALC.

We have used conjunction when expressing a single clash because both

assertional facts are necessary for the contradiction. Now recall that we need

at least one clash in each of the complete ABoxes to have inconsistency.

This explains why disjunction is used to combine the formulae expressing

the clashes of one complete ABox, and why the formulae corresponding to
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the di�erent complete ABoxes are combined with the help of conjunction.

Proposition 6.3 Let  be the clash formula associated with A [ B, let

Q � B, and let ! be the valuation which replaces the propositional vari-

ables corresponding to elements of Q by \true" and the others by \false."

Then A [Q is inconsistent i�  evaluates to \true" under !.

Before proving this proposition we point out how the clash formula can

be used to �nd minimal (resp. maximal) subsets Q of B such that A [ Q

is inconsistent (resp. consistent). By Proposition 6.3, such minimal (resp.

maximal) sets directly correspond to minimal (resp. maximal) valuations

making the clash formula  \true" (resp. \false"). Here \minimal" and

\maximal" for valuations is meant with respect to the partial ordering !

1

�

!

2

i� !

1

(p

i

) � !

2

(p

i

) for all propositional variables p

i

, where we assume that

\false" is smaller than \true."

It is easy to see that the problem of �nding maximal valuations making a

monotonic boolean formula \false" can be reduced to the problem of �nding

minimal valuations making a monotonic boolean formula \true." In fact, for

a given monotonic boolean formula  and a valuation !, let  

d

denote the

formula obtained from  by replacing conjunction by disjunction and vice

versa, and let !

d

denote the valuation obtained from ! by replacing \true"

by \false" and vice versa. Then ! is a maximal valuation making  \false"

i� !

d

is a minimal valuation making  

d

\true."

It should be noted that the problem of �nding minimal valuations that

make a monotonic boolean formula  \true" is NP-complete. In fact, if  

is in conjunctive normal form, this is just the well-known problem of �nd-

ing minimal hitting sets [26, 9]. On the other hand, if  is in disjunctive

normal form, the minimal valuations can be found in polynomial time. How-

ever, transforming a given monotonic boolean formula into disjunctive normal

form may cause an exponential blow-up. To optimize the search for minimal

valuations one can use the method described in [27].

The rules of the labelled consistency algorithm as described have the un-

pleasant property that deciding whether or not a rule is applicable is an

NP-hard problem. In fact, the preconditions of the rules include an entail-

ment test for monotonic boolean formulae, which is NP-hard. However, one

can weaken the precondition by testing a necessary condition for entailment

(e.g. occurrence of the index in the top-level disjunction) without destroying

termination and the property stated in Proposition 6.3. In this case, the

rules will in general produce longer formulae occurring as indices, but the

test whether a rule applies becomes tractable.
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Proof of Proposition 6.3

First we shall explain the connection between application of rules of the

labelled consistency algorithm, starting with A [ B, on the one hand, and

application of rules of the unlabelled algorithm, starting with A [ Q for

Q � B, on the other hand.

De�nition 6.4 Let A

0

be a labelled ABox, and let ! be a valuation. The

!-projection of A

0

(for short, !(A

0

)) is obtained from A

0

by removing all

facts whose labels evaluate to \false."

Let Q be a subset of B. In the following, the valuation ! is assumed to be

such that it replaces the variables corresponding to elements of Q by \true"

and the others by \false." Obviously, this means that !(A[ B) = A[Q.

Now we shall show how application of a rule of the labelled consistency

algorithm to a labelled ABox A

0

corresponds to application of a rule of the

unlabelled algorithm to !(A

0

). To get this correspondence, the conditions

on applicability of the disjunction and the exists-restriction rules have to be

weakened for the unlabelled algorithm:

The modi�ed disjunction rule. Assume that (C t D)(a) is in A

0

, and

that A

0

does not contain C(a) and D(a). The ABox A

1

is obtained

from A

0

by adding C(a), and the ABox A

2

is obtained from A

0

by

adding D(a).

The modi�ed exists-restriction rule. Assume that (9R:C)(a) is in A

0

.

One generates a new individual name b, and obtains A

1

from A

0

by

adding R(a; b) and C(b).

Since the modi�ed exists-restriction rule can be applied in�nitely often to

the same fact (9R:C)(a) the modi�ed set of rules need no longer terminate.

But it is easy to see that the �rst two properties stated in Proposition 6.1

still hold. This will be su�cient for our purposes.

Lemma 6.5 Let A

0

;A

1

be labelled ABoxes such that A

1

is obtained from A

0

by application of the conjunction (resp. exists-restriction, value-restriction)

rule. Then we either have !(A

1

) = !(A

0

), or !(A

1

) is obtained from

!(A

0

) by application of the (unlabelled) conjunction (resp. modi�ed exists-

restriction, value-restriction) rule.

Proof. (1) Assume that the conjunction rule is applied to the assertional

fact (C uD)(a), and that this fact has index � in A

0

.

First, consider the case where !(�) = false. In this case, we have !(A

1

) =

!(A

0

). In fact, if C(a) (resp. D(a)) is not in A

0

then this fact has index � in
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A

1

. Since !(�) = false this means that C(a) (resp. D(a)) is not in !(A

1

). If

C(a) (resp. D(a)) is an element of A

0

with index  then C(a) (resp. D(a))

has index  _ � in A

1

. Since !(�) = false we have !( _ �) = !( ), which

shows that C(a) (resp. D(a)) is an element of !(A

1

) i� it is an element of

!(A

0

).

Now assume that !(�) = true. Thus (C uD)(a) is an element of !(A

0

).

Since A

1

is obtained by extending A

0

by C(a) and D(a), both with index �,

we also know that C(a) and D(a) are contained in !(A

1

). If both facts are

already present in !(A

0

) we have !(A

1

) = !(A

0

). Otherwise, !(A

1

) can be

obtained from !(A

0

) by applying the conjunction rule to (C uD)(a).

(2) Assume that the value-restriction rule is applied to the assertional

facts (8R:C)(a) and R(a; b), and that these facts respectively have index �

1

and �

2

in A

0

.

As for the conjunction rule, !(�

1

^ �

2

) = false implies !(A

1

) = !(A

0

).

Thus assume that !(�

1

^ �

2

) = true. Then (8R:C)(a) and R(a; b) are con-

tained in !(A

0

). Since A

1

is obtained by extending A

0

by C(b) with index

�

1

^ �

2

, we know that C(b) is an element of !(A

1

). If this assertional fact

is already present in !(A

0

) then !(A

1

) = !(A

0

). Otherwise, !(A

1

) can be

obtained from !(A

0

) by applying the value-restriction rule to (8R:C)(a) and

R(a; b).

(3) Assume that the exists-restriction rule is applied to the assertional

fact (9R:C)(a), and that this fact has index � in A

0

.

The case where !(�) = false is again trivial. Thus assume that !(�) =

true. Then (9R:C)(a) is an element of !(A

0

). The labelled ABox A

1

is

obtained from A

0

by generating a new individual b, and adding C(b) and

R(a; b) to A

0

, both with index �. For this reason, C(b) and R(a; b) are con-

tained in !(A

1

). We can obtain !(A

1

) from !(A

0

) by applying the modi�ed

exists-restriction rule to (9R:C)(a) (without loss of generality we may assume

that the newly generated individual is called b). It should be noted that the

(unmodi�ed) exists-restriction rule need not be applicable since !(A

0

) may

well contain an individual c and assertions C(c) and R(a; c).

For the disjunction rule, we have a similar lemma.

Lemma 6.6 Let A

0

;A

1

;A

2

be labelled ABoxes such that A

1

;A

2

are obtained

from A

0

by application of the disjunction rule. Then we either have !(A

1

) =

!(A

0

) = !(A

2

), or !(A

1

); !(A

2

) are obtained from !(A

0

) by application of

the (unlabelled) modi�ed disjunction rule.

Proof. Assume that the disjunction rule is applied to the assertional fact

(C tD)(a), and that this fact has index � in A

0

.
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If !(�) = false then !(A

1

) = !(A

0

) = !(A

2

). This can be shown as in

the corresponding cases in the proof of Lemma 6.5.

Thus assume that !(�) = true. Then (C tD)(a) is an element of !(A

0

).

In addition, we know that C(a) is contained in !(A

1

) and that D(a) is

contained in !(A

2

). If both C(a) and D(a) are already present in !(A

0

)

then !(A

1

) = !(A

0

) = !(A

2

). Otherwise, we can obtain !(A

1

); !(A

2

) from

!(A

0

) by applying the modi�ed disjunction rule to (C t D)(a). It should

be noted that the (unmodi�ed) disjunction rule need not be applicable since

!(A

0

) may well contain one of C(a) and D(a), but not both.

Now assume that we have obtained the complete ABoxes A

1

; . . . ;A

n

by

starting with A[B, and applying the rules of the labelled consistency algo-

rithm as long as possible. By Lemma 6.5 and 6.6, and since the (modi�ed)

rules of the unlabelled consistency algorithm preserve solvability, we know

that !(A[B) = A[Q is consistent i� one of !(A

1

); . . . ; !(A

n

) is consistent.

The next lemma implies that these projected ABoxes are also complete.

Lemma 6.7 Let A

0

be a labelled ABox to which none of the rules of the

labelled consistency algorithm applies. Then none of the (unmodi�ed) rules

of the unlabelled consistency algorithm applies to !(A

0

).

Proof. We consider an assertional fact (C u D)(a) in !(A

0

), and show

that the conjunction rule cannot be applied to this fact in !(A

0

). (The other

cases can be treated similarly.)

Since (C u D)(a) is present in !(A

0

) its index � in A

0

satis�es !(�) =

true. Completeness of A

0

implies that the (labelled) conjunction rule is not

applicable to (C uD)(a) in A

0

. For this reason, A

0

contains the assertional

facts C(a) and D(a), and their indices (say  

1

;  

2

) are implied by �. But

then !(�) = true implies !( 

1

) = true = !( 

2

). Thus C(a) and D(a) are

contained in !(A

0

), which shows that the conjunction rule is not applicable

to (C uD)(a) in !(A

0

).

Since A

1

; . . . ;A

n

are complete we thus know that !(A

1

); . . . ; !(A

n

) are

complete as well. Now Proposition 6.1 implies that !(A

i

) is inconsistent i�

it contains a clash. A particular clash A(a);:A(a) 2 A

i

is still present in

!(A

i

) i� ! evaluates ind(A(a))^ ind(:A(a)) to \true." Now let  

i;1

; . . . ;  

i;k

i

be the formulae expressing all the clashes in A

i

. Obviously, !(A

i

) contains

a clash i� ! evaluates

W

k

i

j=1

 

i;j

to \true." For this reason, all the ABoxes

!(A

1

); . . . ; !(A

n

) contain a clash i� ! evaluates to \true" the clash formula

n

^

i=1

k

i

_

j=1

 

i;j

computed by the labelled consistency algorithm. This concludes the proof of

Proposition 6.3.
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Extension to ALCF

In the remaining part of this section we shall sketch how the above described

algorithm can be extended to handle the attributes and agreements ofALCF .

Attributes in exists- and value-restrictions are treated like roles. Applying

the exists-restriction rule to two assertional facts (9f:C)(a) and (9f:D)(a) in-

troduces two di�erent individual names c; d with the assertional facts f(a; c),

f(a; d). If f is an attribute, this means that c and d have to be interpreted

as the same individual. This shows that we can no longer have a unique

name assumption for the individuals which are introduced by rules. For this

reason, we shall now distinguish between \old" individuals, i.e., individuals

present in the original ABox A [ B, and \new" individuals introduced by

rule applications. New individuals are not subjected to the unique name

assumption. In order to make the constraint that c; d have to be interpreted

by the same individual explicit, the consistency algorithm for ALCF (see

[11]) identi�es these two individual names, e.g., by replacing every occur-

rence of c by d. In the labelled consistency algorithm, instead of making

an actual replacement, we just introduce an equality fact c = d. Of course,

this equality has to be equipped with an index, in the same way as other

facts are. Here the fact c = d gets index ind(f(a; c)) ^ ind(f(a; d)) if it is

newly introduced, otherwise one takes the disjunction of its old index with

ind(f(a; c)) ^ ind(f(a; d)). In case ind(f(a; c)) ^ ind(f(a; d)) implies the old

index, nothing has to be changed.

With the help of the equality facts, it is easy to formulate an agreement

rule. In principle, the agreement rule applied to (f

1

� � � f

m

:

= g

1

� � � g

n

)(a) in-

troduces the assertional facts f

1

(a; c

1

), ..., f

m

(c

m�1

; c

m

), g

1

(a; d

1

), ..., g

n

(d

n�1

;

d

n

) and c

m

= d

n

, where c

1

, ..., d

n

are new individual names. Applicability of

this rule, and the indices of the new facts (or new indices of existing facts)

are de�ned analogously to the other rules.

The equality facts de�ne an equivalence relation on individual names,

which has to be taken into account when �ring rules or looking for clashes.

Premises of rules have to be read modulo this equivalence. For example, this

means that the value-restriction rule may be applicable to the facts (8R:C)(a)

and R(a

0

; b), if there are equalities a = a

0

; a

1

= a

2

; . . . ; a

n

= a

0

in the ABox.

Of course, the indices of these equalities have to contribute to the new index

of C(b) as well. On the other hand, this rule need not be applied if there

exists an assertional fact C(b

0

) and equalities b = b

0

; b

1

= b

2

; . . . ; b

m

= b

0

such

that ind((8R:C)(a)) ^ ind(R(a

0

; b)) ^ ind(a = a

0

) . . . ^ ind(a

n

= a

0

) implies

ind(C(b

0

)) ^ ind(b = b

0

) . . . ^ ind(b

m

= b

0

).

Similarly, there is a clash if A(a) and :A(a

0

) is in the ABox, along with

equalities a = a

0

; a

1

= a

2

; . . . ; a

n

= a

0

. Because we still have unique name

assumption for the old individuals, the equalities may cause another kind of
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obvious contradiction. We have a clash if a; a

0

are old individuals and there

are equalities a = a

0

; a

1

= a

2

; . . . ; a

n

= a

0

in the ABox. The index associated

with this clash is ind(a = a

0

) ^ . . . ^ ind(a

n

= a

0

).

To sum up, we thus have a solution of the two algorithmic problems

described at the beginning of this section. Together with the methods of

Section 5 this give us e�ective procedures to compute all extensions of ter-

minological default theories.

7 Conclusion

We have investigated the integration of Reiter's default logic into a termi-

nological representation formalism, and have shown that the treatment of

open defaults by Skolemization is problematic, both from a semantic and an

algorithmic point of view. For this reason, we have considered a restricted se-

mantics where default rules are only applied to individuals explicitly present

in the knowledge base. This treatment of default rules is similar to the treat-

ment of monotonic rules in many terminological systems, which means that

users of such systems are already familiar with the e�ects this restriction to

explicit individuals has. However, because of the nonmonotonic character of

default rules, this restriction may sometimes lead to more consequences than

would have been obtained without it.

With respect to the restricted semantics, the methods of Junker and

Konolige and of Schwind and Risch for computing all extensions of a default

theory can be applied. We have shown how the algorithmic requirements

for Junker and Konolige's method (i.e., the computation of minimal incon-

sistent sets of assertional facts) and for an optimized algorithm based on a

theorem of Schwind and Risch (i.e., the computation of maximal consistent

sets of assertional facts) can be solved by an extension of the tableaux-based

algorithm for assertional reasoning.

As an alternative to the pragmatic solution described in the present pa-

per, [4] proposes a new semantics for open defaults, in which defaults are

also applied to implicit individuals. To make this possible without encoun-

tering the problems pointed out in Section 3, open defaults are not viewed

as schemata for certain instantiated defaults. Instead, they are used to de-

�ne a preference relation on models, which is then treated with a modi�ed

preferential approach.

According to Reiter's semantics the speci�city of prerequisites of rules

has no in
uence on the order in which defaults rules are supposed to �re. In

[3] we describe a modi�cation of terminological default logic in which more

speci�c defaults are preferred.
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