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Abstract

In a previous paper we have introduced a method that allows one

to combine decision procedures for uni�ability in disjoint equational

theories. Lately, it has turned out that the prerequisite for this me-

thod to apply|namely that uni�cation with so-called linear constant

restrictions is decidable in the single theories|is equivalent to requi-

ring decidability of the positive fragment of the �rst order theory of

the equational theories. Thus, the combination method can also be

seen as a tool for combining decision procedures for positive theories

of free algebras de�ned by equational theories.

The present paper uses this observation as the starting point of

a more abstract, algebraic approach to formulating and solving the

combination problem. Its contributions are twofold. As a new result,

we describe an (optimized) extension of our combination method to

the case of constraint solvers that also take relational constraints (such

as ordering constraints) into account. The second contribution is a

new proof method, which depends on abstract notions and results

from universal algebra, as opposed to technical manipulations of terms

(such as ordered rewriting, abstraction functions, etc.)

�

This author was supported by the EC Working Group CCL, EP6028.



Contents

1 Introduction 3

2 Free Structures 6

3 Amalgamation of Free Structures 13

4 The Decomposition Algorithm 19

5 Decision Procedures for Positive Theories 25

6 Conclusion and Outlook 30

2



1 Introduction

The integration of special inference methods (for restricted classes of pro-

blems) into general purpose deductive systems aims at a combination of the

e�ciency of the special method with the universality of the general method.

For example, G. Plotkin [Plo72] proposed to build equational axioms into

the uni�cation algorithm used by a resolution theorem prover. This was

motivated by the observation that certain axioms such as associativity and

commutativity, if left unconstrained in the data base of a deductive system,

may force it to go astray. Another example is the integration of special

uni�cation and matching algorithms into Knuth-Bendix completion proce-

dures to avoid non-termination of the rewrite systems under consideration

[JK86, Bac91]. In both cases, the term \uni�cation algorithm" refers to

an algorithm that computes a complete set of uni�ers. With the more re-

cent development of constraint approaches to theorem proving [B�ur91] and

term rewriting [KK89], the role of algorithms that compute complete sets

of uni�ers is more and more taken on by algorithms that decide solvability

of the uni�cation problems. In this setting, more general constraints than

the equational constraints s = t of uni�cation problems become important

as well. For example, one might be interested in ordering constraints of the

form s � t on terms [CT94], where the predicate � could be interpreted as

the subterm ordering or as a reduction ordering (such as the recursive path

ordering).

If more than one special inference method is to be integrated into a general

purpose deductive system then one must combine these special methods. In

order to illustrate this, let us, for the moment, concentrate on uni�cation

problems. For example, building-in associativity and commutativity of a

symbol f and associativity of a symbol g into a resolution theorem prover

requires a uni�cation algorithm that can handle mixed terms containing both

f and g. More generally, one is thus faced with the following combination

problem: Let E and F be equational theories over disjoint signatures, and

assume that uni�cation algorithms for E and for F are given. How can we

combine these algorithms to obtain a uni�cation algorithm for E [ F .

Most of the research on combining uni�cation algorithms was concerned

with the combination of algorithms that compute complete sets of uni�ers

(see [SS89, Bou90] for the most recent results). In [BS92] the problem of

combining decision procedures has been solved in a rather general way. The

main tool of this combination method is a decomposition algorithm, which

separates a given uni�cation problem � of the joined theory (i.e., an (E[F )-
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uni�cation problem) into pure uni�cation subproblems �

E

and �

F

of the

single theories. Solutions of these pure problems must satisfy additional con-

ditions, called linear constant restrictions in [BS92], to yield a solution of

�. The main result of [BS92] is that solvability of uni�cation problems in

the combined theory E [ F is decidable, provided that solvability of uni�ca-

tion problems with linear constant restrictions is decidable in E and F . It

should be noted that this result can easily be lifted to solvability of (E [F )-

uni�cation problems with linear constant restrictions. This combination re-

sult has been generalized to disuni�cation [BS93a] and to uni�cation in the

union of theories with shared constant symbols [Rin92]. The proof method

used in [BS92, BS93a, Rin92]|which depends on an in�nite ordered rewrite

system obtained by unfailing completion, term abstraction functions, etc.|

seems not to facilitate further generalizations, though (see, e.g., the rather

technical \shared constructor" condition in [DKR94]). To overcome this

problem, we are interested in more abstract formulations of the combination

problem, which should yield a better understanding, easier proofs, and thus

be a better basis for generalizations.

At �rst sight, the notion of \uni�cation with linear constant restrictions"

seems not to support such an abstract view: it is a technical notion that

makes our combination machinery work, but seems to have little further

signi�cance. This impression is wrong, however. In [BS93] it is shown that

E-uni�cation with linear constant restrictions is decidable i� the positive

fragment of the �rst-order theory of E is decidable. Since the positive theory

of E coincides with the positive theory of the E-free �-algebra T (�; X)=

=

E

over in�nitely many generators X, the combination result of [BS92] can be

reformulated as follows: Let E and F be equational theories over disjoint

signatures � and �, and let X be a countably in�nite set of generators. The

positive theory of T (�[�; X)=

=

E[F

is decidable, provided that the positive

theories of T (�; X)=

=

E

and T (�; X)=

=

F

are decidable.

This observation can be used as the starting point of a more abstract, al-

gebraic approach to formulating and solving the combination problem. Star-

ting with two algebras over disjoint signatures, the goal is to construct a

\combined" algebra such that validity of positive formulae in this algebra

can be decided by using a decomposition algorithm and decision procedures

for the positive theories of the original algebras. Obviously, this can only be

achieved if the algebras satisfy some additional properties. We will call an

algebra A combinable i� it is generated by a countably in�nite set X such

that any mapping from a �nite subset of X to A can be extended to a sur-

jective endomorphism of A. For combinable algebras A and B over disjoint

signatures � and �, we can de�ne the so-called free amalgamated product
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A�B, which is a (�[�)-algebra.

1

Now a simple modi�cation of the decom-

position algorithm of [BS92] can be used to show that the positive theory of

A� B is decidable i� the positive theories of A and of B are decidable.

Obviously, the free algebras T (�; X)=

=

E

and T (�; X)=

=

F

over a coun-

tably in�nite set of generators X are combinable. In this case, the free

amalgamated product yields an algebra that is isomorphic to the combined

free algebra T (� [ �; X)=

=

E[F

. Thus, the combination result of [BS92] is

obtained as a corollary. As described until now, the amalgamation of combin-

able algebras does not yield a real generalization of this result. Indeed, one

can use well-know results from universal algebra to show that an algebra is

combinable (as de�ned above) i� it is a free algebra over countably many ge-

nerators for an equational theory. What is new, though, is the proof method,

which|in contrast to the original proof|only depends on elementary noti-

ons from universal algebra (homomorphisms, generators). This new proof

can be seen as an adaptation of the proof ideas in [SS89] to the combination

of decision procedures. Unlike in [SS89], however, everything is done on the

abstract algebraic level instead of on the term level. Interestingly, on this

level it is also very easy to prove completeness of an optimized version of the

decomposition algorithm of [BS92], which signi�cantly reduces the number

of nondeterministic choices.

In addition, the abstract algebraic approach allows for an easier genera-

lization of the results. In fact, instead of algebras we will consider algebraic

structures in the following. This means that the signatures may contain both

function symbols and predicate symbols, and these additional predicate sym-

bols may occur in the constraint problems to be solved. With the usual notion

of homomorphism for structures, most of the results from universal algebra

carry over to structures. The combination result for combinable algebras

sketched above thus holds for free structures as well. Consequently, we ob-

tain a combination method for constraint solvers of more general constraints

than just equational constraints.

The next section recalls some results from universal algebra for free struc-

tures. In Section 3 we de�ne the free amalgamated product of free structures,

and show that it again yields a free structure. Section 4 describes the decom-

position algorithm and proves that it is sound and complete for existential

positive input formulae. In Section 5, this result is extended to positive

formulae with arbitrary quanti�er pre�x.

1

This construction is similar to the one made in [SS89] for free algebras.
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2 Free Structures

Let � be a signature consisting of a �nite set �

F

of function symbols and a

�nite set �

P

of predicate symbols, where each symbol has a �xed arity. We

assume that equality = is an additional predicate symbol that does not occur

in �

P

. An atomic �-formula is an equation s = t between �

F

-terms s; t, or

a relational atomic formula of the form p[s

1

; : : : ; s

m

] where p is a predicate

symbol in �

P

of arity m and s

1

; : : : ; s

m

are �

F

-terms. A positive �-matrix

is any �-formula obtained from atomic �-formulae using conjunction and

disjunction only. A positive �-formula is obtained from a positive �-matrix

by adding an arbitrary quanti�er pre�x, and an existential positive �-formula

is a positive formula where the pre�x consists of existential quanti�er only. As

usual, we shall sometimes write t(v

1

; : : : ; v

n

) (resp. '(v

1

; : : : ; v

n

)) to express

that t (resp. ') is a term (resp. formula) whose (free) variables are a subset

of fv

1

; : : : ; v

n

g. Sentences are formulae without free variables.

A �-structure A has a non-empty carrier set A, and it interprets each

f 2 �

F

of arity n as an n-ary function f

A

on A, and each p 2 �

P

of arity

m as an m-ary relation p

A

. The interpretation function is extended to terms

and formulae as usual. If t = t(v

1

; : : : ; v

n

) is a �-term, then t

A

denotes

the n-ary function on A that maps (a

1

; : : : ; a

n

) to the value of t under the

evaluation fv

1

7! a

1

; : : : ; v

n

7! a

n

g. For a formula ' = '(v

1

; : : : ; v

n

), we

write A j= '(a

1

; : : : ; a

n

) to express that the formula ' is true in A under the

evaluation fv

1

7! a

1

; : : : ; v

n

7! a

n

g.

Usually, �-constraints are formulae of the form '(v

1

; : : : ; v

n

) with free

variables. A solution of such a constraint (in a �xed �-structure A) is

an evaluation fv

1

7! a

1

; : : : ; v

n

7! a

n

g such that A j= '(a

1

; : : : ; a

n

). Ob-

viously, the constraint '(v

1

; : : : ; v

n

) has a solution in A i� the formula

9v

1

: : : 9v

n

'(v

1

; : : : ; v

n

) is valid in A. In the present paper, we are only

interested in solvability of constraints, and will thus usually take this logical

point of view. In the following, tuples of variables will often be abbreviated

by ~v; ~u; ~w, and tuples of elements of a structure by ~a;

~

b, etc.

Substructures and direct products of structures are de�ned in the usual

way. If the �-substructure B ofA is generated byX � A, we write B = hXi

�

.

Note that the carrier B of B consists of all elements of A that are of the form

t

A

(x

1

; : : : ; x

n

) where t(v

1

; : : : ; v

n

) is a �-term and x

1

; : : : ; x

n

are generators

in X. In particular, any element b of B is generated by a �nite subset of X.

Later on, we will consider several signatures simultaneously. If � is a

subset of the signature �, then any �-structure A can be considered as a
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�-structure (called the �-reduct of A) by just forgetting about the inter-

pretation of the additional symbols. To make clear with respect to which

signature a given �-structure A is currently considered we will sometimes

write A

�

for the full �-structure and A

�

for its �-reduct.

A �-homomorphism is a mapping h between two �-structures A and B

such that

h(f

A

(a

1

; : : : ; a

n

)) = f

B

(h(a

1

); : : : ; h(a

n

))

p

A

[a

1

; : : : ; a

n

] ) p

B

[h(a

1

); : : : ; h(a

n

)]

for all f 2 �

F

, p 2 �

P

, a

1

; : : : ; a

n

2 A. A �-isomorphism is a bijective

�-homomorphism whose inverse is also a �-homomorphism.

If two homomorphisms agree on the generators of a substructure then

they agree on the whole substructure. To be more precise, assume that

h

1

; h

2

: A! B are �-homomorphisms, and that b 2 hY i

�

. If h

1

and h

2

agree

on Y then h

1

(b) = h

2

(b). In particular, let h : A! A be a �-endomorphism,

and assume that b is generated by Y . If h is the identity on Y then h(b) = b.

This and the next property concerning homomorphisms and generators will

be used later on. Let h : A ! B be a �-homomorphism, let b 2 hXi

�

, and

let Z � B be such that each element of h(X) is generated by Z. Then Z is

a set of generators for h(b).

There is an interesting connection between surjective homomorphisms

and positive formulae, which will frequently be used in proofs.

Lemma 2.1 Let h : A ! B be a surjective homomorphism between the �-

structures A and B, '(v

1

; : : : ; v

m

) be a positive �-formula, and a

1

; : : : ; a

m

be

elements of A. Then A j= '(a

1

; : : : ; a

m

) implies B j= '(h(a

1

); : : : ; h(a

m

)).

A proof of this lemma can be found in [Mal73], pp. 143, 144. As for the

case of algebras, �-varieties are de�ned as classes of �-structures that are

closed under direct products, substructures, and homomorphic images. The

well-known Birkho� Theorem says that a class of �

F

-algebras is a variety i�

it is an equational class, i.e., the class of models of a set of equations [Bir35].

For structures, a similar characterization is possible [Mal71].

Theorem 2.2 A class V of �-structures is a �-variety if, and only if, there

exists a set E of atomic �-formulae

2

such that V is the class of models of E.

2

As usual, open formulae are here considered as implicitly universally quanti�ed.
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In this situation, we say that V is the �-variety de�ned by E, and we

write V = V(E). As in the case of varieties of algebras, varieties of structures

always have free objects.

De�nition 2.3 Let K be a class of �-structures, and let A 2 K be a �-

structure that is generated by the set X � A. Then A is called free for K

over X i� every mapping from X into the carrier of a �-structure B 2 K

can be extended to a �-homomorphism of A into B.

3

If A and B are free �-structures for the same class K, and if their sets of

generators have the same cardinality then these structures are isomorphic.

Every non-trivial variety contains free structures with sets of generators of

arbitrary cardinality [Mal71]. Conversely, free structures are always free for

some variety.

Theorem 2.4 Let A be a �-structure that is generated by X. Then the

following conditions are equivalent:

1. A is free over X for fAg.

2. A is free over X for some class K of �-structures.

3. A is free over X for some �-variety.

Proof. \1! 2" and \3! 1" are trivial. In order to show \2! 3", one

considers the variety generated by K, i.e., the closure of K under building

direct products, substructures and homomorphic images. It is easy to see

that A is also free over X for this variety (see [Mal71, Coh65] for details).

In the following, a �-structure A will be called free (over X) i� it is

free (over X) for fAg. Let us now analyze how free �-structures look like

(see [Mal71, Wea93] for more information). Obviously, the �

F

-reduct of

such a structure is a free �

F

-algebra, and thus it is (isomorphic to) an E-free

�

F

-algebra T (�

F

; X)=

=

E

for an equational theory E. In particular, the =

E

-

equivalence classes [s] of �

F

-terms constitute the carrier of A. It remains to

be shown how the predicate symbols are interpreted on this carrier. Since

A is free over X, any mapping from X into T (�

F

; X)=

=

E

can be extended

to a �-endomorphism of A. This, together with the de�nition of homomor-

phisms of structures, shows that the interpretation of the predicates must

3

Since A is generated by X , this homomorphism is unique.
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be closed under substitution, i.e., for all p 2 �

P

, all substitutions �, and all

terms s

1

; : : : ; s

m

, if p[[s

1

]; : : : ; [s

m

]] holds in A then p[[s

1

�]; : : : ; [s

m

�]] must

also hold in A. Conversely, it is easy to see that any extension of the �

F

-

algebra T (�

F

; X)=

=

E

to a �-structure that satis�es this property is a free

�-structure over X.

Example 2.5 Let �

F

be an arbitrary set of function symbols, and assume

that �

P

consists of a single binary predicate symbol �. Consider the (ab-

solutely free) term algebra T (�

F

; X). We can extend this algebra to a �-

structure by interpreting � as subterm ordering. Another possibility would

be to take a reduction ordering [Der87] such as the lexicographic path orde-

ring. In both cases, we have closure under substitution, which means that

we obtain a free �-structure.

Free structures over countably in�nite sets of generators are canonical for

the positive theory of their variety in the following sense:

Theorem 2.6 Let A be free over the countably in�nite set X for a �-variety

V(E), and let � be a positive �-formula. Then the following are equivalent:

1. � is valid in all elements of V(E), i.e., � is a logical consequence of the

set of atomic formulae E.

2. � is valid in A.

Proof. Without loss of generality we may assume that � is closed. \1!

2" is trivial. Now assume that A j= �. Suppose that there exists an element

of V(E) where � does not hold. By the theorem of L�owenheim-Skolem there

exists a countable member B of V(E) such that � does not hold in B. Ob-

viously there exists a surjective mapping from the generators of A onto B,

which can be extended to a surjective homomorphism from A onto B. By

Lemma 2.1, we obtain a contradiction.

For the purpose of this paper, the following characterization of free struc-

tures is useful.

Lemma 2.7 Let A be a �-structure that is generated by the countably in�-

nite set X. Then the following conditions are equivalent:

1. A is free over X.
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2. For every �nite subset X

0

of X, every mapping h

0

: X

0

! A can be

extended to a surjective endomorphism of A.

Proof. To show \1 ! 2," assume that h

0

: X

0

! A is given. Let

h

1

: X n X

0

! X be a bijection. Let h be an extension of h

0

_

[h

1

to an

endomorphism of A. By (1), such an endomorphism exists. Since A is

generated by X, h is surjective.

To show \2 ! 1," assume that h

0

: X ! A is given. Let X

1

� X

2

�

X

3

: : : be an increasing chain of subsets of X such that X =

S

1

i=1

X

i

. For

i � 1, let h

i

be the restriction of h

0

to X

i

. Because of (2) we know that the

mappings h

i

can be extended to surjective endomorphisms H

i

of A.

Let A

i

denote the substructure of A generated by X

i

. It is easy to see

that i < j implies that A

i

is a substructure of A

j

, and that H

i

and H

j

coincide on A

i

. In addition, any element a of A is generated by �nitely many

generators, and thus there exists a least index i(a) such that a 2 A

i(a)

.

We de�ne the mapping H

0

from A to A as the \limit" of the homo-

morphisms H

i

; more precisely: H

0

(a) := H

i(a)

(a). It remains to be shown

that H

0

is a homomorphism. Thus, let f be an n-ary function symbol,

and let a

1

; : : : ; a

n

be elements of A. For i := maxfi(a

1

); : : : ; i(a

n

)g we have

H

0

(a

j

) = H

i

(a

j

) for all j; 1 � j � n. In addition, since f

A

(a

1

; : : : ; a

n

)

is also in A

i

we have H

0

(f

A

(a

1

; : : : ; a

n

)) = H

i

(f

A

(a

1

; : : : ; a

n

)). Since H

i

is a homomorphism, we obtain H

0

(f

A

(a

1

; : : : ; a

n

)) = H

i

(f

A

(a

1

; : : : ; a

n

)) =

f

A

(H

i

(a

1

); : : : ; H

i

(a

n

)) = f

A

(H

0

(a

1

); : : : ; H

0

(a

n

)). The homomorphism con-

dition for predicates can be proved in the same way.

Note that the second condition in the lemma is the combinability con-

dition that was mentioned in the introduction. The lemma together with

Theorem 2.4 shows that this condition holds i� the structure is a free struc-

ture for some variety.

The next lemma will be important for the proof of correctness of our

combination method. It is a consequence of Lemma 2.1 and the fact that

free structures satisfy the combinability condition.

Lemma 2.8 Let A be a free �-structure over the countably in�nite set of

generators X, and let


 = 8~u

1

9~v

1

: : :8~u

k

9~v

k

'(~u

1

; ~v

1

; : : : ; ~u

k

; ~v

k

)

be a positive �-sentence. Then the following conditions are equivalent:
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1. A j= 8~u

1

9~v

1

: : : 8~u

k

9~v

k

'(~u

1

; ~v

1

; : : : ; ~u

k

; ~v

k

),

2. There exist tuples ~x

1

2

~

X;~e

1

2

~

A; : : : ; ~x

k

2

~

X;~e

k

2

~

A and �nite subsets

Z

1

; : : : ; Z

k

of X such that

(a) A j= '(~x

1

; ~e

1

; : : : ; ~x

k

; ~e

k

),

(b) all generators occurring in the tuples ~x

1

; : : : ; ~x

k

are distinct,

(c) for all j; 1 � j � k, the components of ~e

j

are generated by Z

j

, i.e.,

are elements of hZ

j

i

�

, and

(d) for all j; 1 < j � k, no component of ~x

j

occurs in Z

1

[ : : :[Z

j�1

.

Proof. \1 ) 2". First, select an arbitrary tuple ~x

1

of distinct generators

from X such that this tuple has the same length as ~u

1

. Since A satis�es 
,

there exists a tuple ~e

1

2

~

A such that

(�) A j= 8~u

2

9~v

2

: : :8~u

k

9~v

k

'(~x

1

; ~e

1

; ~u

2

; ~v

2

; : : : ; ~u

k

; ~v

k

):

Let Z

1

be a �nite subset of X such that each component of ~e

1

is contained in

hZ

1

i

�

. Obviously, such a �nite set exists. Now, we may choose a �nite tuple

~x

2

of distinct generators from X such that this tuple has the same length as

~u

2

and none of its components occurs in Z

1

or ~x

1

. This is possible because

X is in�nite by assumption, and Z

1

is �nite.

Because of (�), there exist a tuple ~e

2

2

~

A such that

A j= 8~u

3

9~v

3

: : :8~u

k

9~v

k

'(~x

1

; ~e

1

; ~x

2

; ~e

2

; ~u

3

; ~v

3

; : : : ; ~u

k

; ~v

k

):

Obviously, this argument can be iterated until Condition 2 of the lemma is

proved.

\2 ) 1". Let ~x

1

2

~

X;~e

1

2

~

A; : : : ; ~x

k

2

~

X;~e

k

2

~

A and �nite subsets

Z

1

; : : : ; Z

k

of X as in Condition 2 be given. We claim that this implies, for

all i; 0 � i � k, the following condition C

i

:

C

i

: For all ~a

1

2

~

A there exists

~

b

1

2

~

A, ..., for all ~a

i

2

~

A there exists

~

b

i

2

~

A,

and there exist ~y

i+1

; : : : ; ~y

k

2

~

X,

~

b

i+1

; : : : ;

~

b

k

2

~

A and �nite subsets

U

1

; : : : ; U

i

; V

1

; : : : ; V

k

of X such that

(a') A j= '(~a

1

;

~

b

1

; : : : ;~a

i

;

~

b

i

; ~y

i+1

;

~

b

i+1

; : : : ; ~y

k

;

~

b

k

),

(b') all generators occurring in the tuples ~y

i+1

; : : : ; ~y

k

are distinct,

(c') for all j; 1 � j � i, the components of ~a

j

are generated by U

j

, and

for all j; 1 � j � k, the components of

~

b

j

are generated by V

j

,
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(d') for all j; i < j � k, no component of ~y

j

occurs in

S

j�1

�=1

V

�

[

S

i

�=1

U

�

.

Obviously, the condition C

k

is just Condition 1 of the lemma. We show

that condition C

i

holds for all i; 0 � i � k, by induction on i. For i = 0,

validity of C

0

follows from Condition 2.

Now, assume that C

i

holds for some i; 0 � i < k. To show C

i+1

, assume

that an arbitrary tuple ~a

i+1

2

~

A is given. Let U

i+1

be a �nite subset of X

such that each component of ~a

i+1

is contained in hU

i+1

i

�

. For j = i+1; :::; k,

we de�ne a mapping h

j

from a �nite set of generators X

j

to A by induction

on j.

For j = i + 1, the set X

i+1

consists of V

i+1

[

S

i

�=1

(U

�

[ V

�

) and the

components of ~y

i+1

. The mapping h

i+1

leaves all elements of

S

i

�=1

(U

�

[ V

�

)

invariant. It maps (each component of) ~y

i+1

to (the corresponding component

of) ~a

i+1

. The elements of V

i+1

that have not yet obtained an image this way

are mapped in an arbitrary way. Note that this de�nition of h

i+1

is consistent

because of (b') and (d') of C

i

.

Now assume that X

j

; h

j

are already de�ned (for some i + 1 � j < k).

The set X

j+1

is obtained as the union of X

j

with V

j+1

and the components

of ~y

j+1

. The mapping h

j+1

is obtained as follows:

1. Its restriction to X

j

coincides with h

j

.

2. Let Y

j

be a �nite subset of X such that any element of h

j

(X

j

) is

contained in hY

j

i

�

, and let ~z

j

be a tuple of distinct generators such

that no component of ~z

j

occurs in Y

j

. (Such a tuple exists since the set

of generators was assumed to be in�nite, and Y

j

is �nite.) The mapping

h

j+1

maps (each component of) ~y

j+1

to (the corresponding component

of) ~z

j+1

.

3. The elements of V

i+1

that have not yet obtained an image this way are

mapped in an arbitrary way.

Note that Condition 1 does not con
ict with Condition 2 since (b') and (d')

of C

i

imply that none of the components of ~y

j+1

occurs in X

j

.

Since A is free over X, and X

k

is a �nite subset of X, Lemma 2.7 implies

that there exists a surjective endomorphism H of A that extends h

k

. By

de�nition of h

k

, we have H(~a

1

) = ~a

1

, H(

~

b

1

) =

~

b

1

, ..., H(~a

i

) = ~a

i

, H(

~

b

i

) =

~

b

i

,

H(~y

i+1

) = ~a

i+1

, and for i+1 < j � k, H(~y

j

) = ~z

j

. Thus, Lemma 2.1 implies

A j= '(~a

1

;

~

b

1

; : : : ;~a

i

;

~

b

i

;~a

i+1

; H(

~

b

i+1

); ~z

i+2

; H(

~

b

i+2

); : : : ; ~z

k

; H(

~

b

k

)):
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This yields (a') of C

i+1

. For all j; i+1 � j � k, the set V

j

of generators of

~

b

j

is contained in X

j

. In addition, any element of H(X

j

) = h

j

(X

j

) is generated

by Y

j

. Consequently, there exists a subset V

0

j

of Y

j

such that all components

of H(

~

b

j

) are generated by V

0

j

. Thus, (c') holds for H(

~

b

j

) and V

0

j

. It is easy

to see that the mapping h

k

was constructed such that (b') and (d') hold as

well.

3 Amalgamation of Free Structures

Let � and � be disjoint signatures, and let X be a countably in�nite set

(of generators). Let A be a free �-structure over X and and let B be a

free �-structure over X. Equivalently, A is free over X for some �-variety

V(E) and B is free over X for some �-variety V(F ) (by Theorem 2.4). The

following construction yields a (� [�)-structure A� B that is free over X

for the (� [�)-variety V(E [ F ).

We consider two countably in�nite supersets X

1

and Y

1

of X

0

:= Y

0

:=

X such that X

1

\Y

1

= X and X

1

nX

0

and Y

1

nY

0

are in�nite. Let A

1

be

free for V(E) over X

1

, and let B be free for V(F ) over Y

1

. Obviously, A is

the substructure of A

1

that is generated by X

0

� X

1

. Since both structures

are free for the same variety, and since their generating sets X

0

and X

1

have

the same cardinality, A and A

1

are isomorphic. The same holds for B and

B

1

.

We shall make a zig-zag construction that de�nes an ascending tower

of �-structures A

n

, and similarly an ascending tower of �-structures B

n

.

These structures are connected by bijective mappings h

n

and g

n

. The free

amalgamated product A � B will be obtained as the limit structure, which

obtains its functional and relational structure from both towers by means of

the limits of the mappings h

n

and g

n

.

n = 0: Let A

0

:= A = hX

0

i

�

. We interpret the \new" elements in A

0

nX

0

as generators in B

1

. For this purpose, select a subset Y

1

� Y

1

such that

Y

1

\Y

0

= ;, jY

1

j = jA

0

nX

0

j, and the remaining complement Y

1

n (Y

0

[Y

1

) is

countably in�nite. Choose any bijection h

0

: Y

0

[Y

1

! A

0

where h

0

j

Y

0

= id

Y

0

.

Let B

0

:= hY

0

i

�

. As for A

0

, we interpret the \new" elements in B

0

n Y

0

as generators in A

1

. Select a subset X

1

� X

1

such that X

1

\ X

0

= ;,

jX

1

j = jB

0

nY

0

j and the remaining complement X

1

n (X

0

[X

1

) is countably

in�nite. Choose any bijection g

0

: X

0

[X

1

! B

0

where g

0

j

X

0

= id

X

0

.
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n ! n + 1: Suppose that A

n

= h

S

n

i=0

X

i

i

�

and B

n

= h

S

n

i=0

Y

i

i

�

are

already de�ned, and that subsets X

n+1

of X

1

and Y

n+1

of Y

1

are already

given. We assume that the complements X

1

n

S

n+1

i=0

X

i

and Y

1

n

S

n+1

i=0

Y

i

are

in�nite, and that the sets X

i

(resp. Y

i

) are pairwise disjoint. In addition, we

assume that bijections

h

n

: B

n�1

[ Y

n

[ Y

n+1

! A

n

g

n

: A

n�1

[X

n

[X

n+1

! B

n

are de�ned such that

(�) g

n

(h

n

(b)) = b for b 2 B

n�1

[ Y

n

h

n

(g

n

(a)) = a for a 2 A

n�1

[X

n

(��) h

n

(Y

n+1

) = A

n

n (A

n�1

[X

n

)

g

n

(X

n+1

) = B

n

n (B

n�1

[ Y

n

):

Note that (��) implies that h

n

(B

n�1

[Y

n

) = A

n�1

[X

n

and g

n

(A

n�1

[X

n

) =

B

n�1

[ Y

n

.

We de�ne A

n+1

= h

S

n+1

i=0

X

i

i

�

and B

n+1

= h

S

n+1

i=0

Y

i

i

�

, and select subsets

Y

n+2

� Y

1

and X

n+2

� X

1

such that Y

n+2

\

S

n+1

i=0

Y

i

= ; = X

n+2

\

S

n+1

i=0

X

i

.

In addition, the cardinalities must satisfy jY

n+2

j = jA

n+1

n (A

n

[X

n+1

)j and

jX

n+2

j = jB

n+1

n (B

n

[ Y

n+1

)j, and the remaining complements Y

1

n

S

n+2

i=0

Y

i

and X

1

n

S

n+2

i=0

X

i

must be countably in�nite. Let

�

n+1

: Y

n+2

! A

n+1

n (A

n

[X

n+1

);

�

n+1

: X

n+2

! B

n+1

n (B

n

[ Y

n+1

)

be arbitrary bijections. We de�ne h

n+1

:= �

n+1

[ g

�1

n

[ h

n

and g

n+1

:=

�

n+1

[ h

�1

n

[ g

n

. In more detail:

h

n+1

(b) =

8

>

<

>

:

�

n+1

(b) for b 2 Y

n+2

h

n

(b) for b 2 B

n�1

[ Y

n

[ Y

n+1

g

�1

n

(b) for b 2 B

n

n (B

n�1

[ Y

n

)

and

g

n+1

(a) =

8

>

<

>

:

�

n+1

(a) for a 2 X

n+2

g

n

(a) for a 2 A

n�1

[X

n

[X

n+1

h

�1

n

(a) for a 2 A

n

n (A

n�1

[X

n

):

Without loss of generality we may assume (for notational convenience) that

the construction eventually covers all generators in X

1

and Y

1

; in other
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words, we assume that

S

1

i=0

X

i

= X

1

and

S

1

i=0

Y

i

= Y

1

, and thus

S

1

i=0

A

i

=

A

1

and

S

1

i=0

B

i

= B

1

. We de�ne the limit mappings

h

1

:=

1

[

i=0

h

i

: B

1

! A

1

;

g

1

:=

1

[

i=0

g

i

: A

1

! B

1

:

It is easy to see that h

1

and g

1

are bijections that are inverse to each other:

in fact, given b 2 B

1

there is a minimal n such that b 2 B

n�1

. By (�) it

follows that g

n

(h

n

(b)) = b and thus g

1

(h

1

(b)) = b. Accordingly, we obtain

h

1

(g

1

(a)) = a for all a 2 A

1

.

The bijections h

1

and g

1

may be used to carry the �-structure of B

1

to A

1

and to carry the �-structure of A

1

to B

1

: let f (f

0

) be an n-ary

function symbol of � (�) and a

1

; : : : ; a

n

2 A

1

(b

1

; : : : ; b

n

2 B

1

). We de�ne

f

A

1

(a

1

; : : : ; a

n

) := h

1

(f

B

1

(g

1

(a

1

); : : : ; g

1

(a

n

)));

f

0

B

1

(b

1

; : : : ; b

n

) := g

1

(f

0

A

1

(h

1

(b

1

); : : : ; h

1

(b

n

))):

Let p (q) be an n-ary predicate symbol of � (�) and a

1

; : : : ; a

n

2 A

1

(b

1

; : : : ; b

n

2 B

1

). We de�ne

p

A

1

[a

1

; : : : ; a

n

] :() p

B

1

[g

1

(a

1

); : : : ; g

1

(a

n

)];

q

B

1

[b

1

; : : : ; b

n

] :() q

A

1

[h

1

(b

1

); : : : ; h

1

(b

n

)]:

With this de�nition, the mappings h

1

and g

1

are inverse isomorphisms bet-

ween the (�[�)-structures A

1

and B

1

. Identifying isomorphic structures,

we call A

�[�

1

' B

�[�

1

the free amalgamated product A� B of A and B. As

a �-structure, A�B is isomorphic to A, which is free over X for V(E), and

as a �-structure it is isomorphic to B, which is free over X for V(F ). Now,

we show that as a (�[�)-structure it is free over X for V(E [F ). First, let

us show that it is generated by X.

Lemma 3.1 As a (�[�)-structure, the free amalgamated product A�B is

generated by X, the set of generators of both A and B.

Proof. Obviously, hXi

�[�

is a (� [ �)-substructure of A

1

. To prove

the other direction, assume that a is an element of A

1

, i.e, a 2 A

n

for

some n � 0. We show a 2 hXi

�[�

by induction on n. For n = 0 we have

a 2 A

0

= hXi

�

� hXi

�[�

.
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Now, assume that n > 0. We distinguish three cases: First, let a 2 A

n�1

.

We obtain a 2 hXi

�[�

by the induction hypothesis. Second, assume that

a 2 X

n

. Then we have g

n�1

(a) 2 B

n�1

n (B

n�2

[ Y

n�1

). This means that

there are a �-term t (with m di�erent variables), and elements b

1

; : : : ; b

m

of

B

n�2

[ Y

n�1

such that g

1

(a) = g

n�1

(a) = t

B

1

(b

1

; : : : ; b

m

). Thus, we have

a = h

1

(g

1

(a)) = h

1

(t

B

1

(b

1

; : : : ; b

m

)) = t

A

1

(h

1

(b

1

); : : : ; h

1

(b

m

));

since h

1

is a (� [ �)-homomorphism. Since h

1

(b

1

); : : : ; h

1

(b

m

) 2 A

n�1

,

the induction hypothesis yields h

1

(b

1

); : : : ; h

1

(b

m

) 2 hXi

�[�

, which shows

a = t

A

1

(h

1

(b

1

); : : : ; h

1

(b

m

)) 2 hXi

�[�

.

Finally, assume that a 2 A

n

n (A

n�1

[ X

n

). Thus, there are a �-term s

(with m di�erent variables), and elements a

1

; : : : ; a

m

of A

n�1

[X

n

such that

a = s

A

1

(a

1

; : : : ; a

m

). By induction and by what we have shown above, we

know that a

1

; : : : ; a

m

2 hXi

�[�

, which yields a = s

A

1

(a

1

; : : : ; a

m

) 2 hXi

�[�

.

Theorem 3.2 A� B is free over X for the (� [�)-variety V(E [ F ).

Proof. Let C be a (�[�)-structure that satis�es E[F , i.e., C 2 V(E[F ),

and let ' : X ! C be a mapping.

Because of Lemma 3.1, it remains to be shown that ' can always be

extended to a (� [ �)-homomorphism � of A

1

to C. For this purpose, we

de�ne for all n � 0 mappings

�

�;n

: A

n

! C

�

�;n

: B

n

! C

that satisfy the following properties:

1. �

�;n

is a �-homomorphism and �

�;n

is a �-homomorphism.

2. If n > 0 then, for all x 2

S

n

i=1

X

i

,

�

�;n

(x) = �

�;n�1

(g

1

(x));

and, for all y 2

S

n

i=1

Y

i

,

�

�;n

(y) = �

�;n�1

(h

1

(y)):

3. If n > 0 then the restriction of �

�;n

to A

n�1

yields �

�;n�1

and the

restriction of �

�;n

to B

n�1

yields �

�;n�1

.
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4. For all x 2 X, �

�;n

(x) = '(x) = �

�;n

(x).

n = 0: Obviously, C can be considered as a �-structure, and this �-

structure belongs to the �-variety V(E). Since A = A

0

is free over X = X

0

for V(E), the mapping ' : X ! C can be extended to a �-homomorphism

from A

0

to C. We call this homomorphism �

�;0

. Condition 1 is thus trivially

satis�ed. For Conditions 2 and 3 there is nothing to show since n = 0.

Condition 4 is satis�ed by de�nition of �

�;0

. The �-homomorphism �

�;0

:

B

0

! C is de�ned analogously.

n ! n + 1: Assume that mappings �

�;n

and �

�;n

satisfying Conditions

1{4 are given. We de�ne mappings '

�;n+1

:

S

n+1

i=0

X

i

! C and '

�;n+1

:

S

n+1

i=0

Y

i

! C by

'

�;n+1

(x) =

(

�

�;n

(g

1

(x)) if x 2 X

n+1

�

�;n

(x) else,

'

�;n+1

(y) =

(

�

�;n

(h

1

(y)) if y 2 Y

n+1

�

�;n

(y) else.

Let �

�;n+1

be the extension of '

�;n+1

to a �-homomorphism of A

n+1

to C,

and let �

�;n+1

be the extension of '

�;n+1

to a �-homomorphism of B

n+1

to

C. We must show that the four conditions are again satis�ed.

1. Condition 1 is trivially satis�ed.

2. We proof Condition 2 for �

�;n+1

. For x 2 X

n+1

, the condition is satis-

�ed by de�nition of '

�;n+1

(x). For x 2

S

n

i=0

X

i

we have �

�;n+1

(x) =

'

�;n+1

(x) = �

�;n

(x). We know �

�;n

(x) = �

�;n�1

(g

1

(x)) by assump-

tion. Looking back at the de�nition of the free amalgamated product,

we see that g

1

(x) is an element of B

n�1

. By assumption, we know that

�

�;n�1

and �

�;n

agree on B

n�1

.

3. By de�nition, �

�;n

and �

�;n+1

agree on the generators

S

n

i=1

X

i

of A

n

.

4. For x 2 X = X

0

, we have �

�;n+1

(x) = �

�;n

(x) = '(x) by assumption.

This completes the construction of the mappings �

�;n

and �

�;n

(n � 0).

The mappings �

�

: A

1

! C and �

�

: B

1

! C are the limits of these

ascending chains of mappings. More precisely, we de�ne mappings '

�

:

S

1

i=0

X

i

! C and '

�

:

S

1

i=0

Y

i

! C by

'

�

(x) := �

�;n

(x) for x 2 X

n

'

�

(y) := �

�;n

(y) for y 2 Y

n

17



Now �

�

is the extension of '

�

to a �-homomorphism of A

1

to C, and �

�

is

the extension of '

�

to a �-homomorphism of B

1

to C. Since A

n

(resp. B

n

)

is generated by

S

n

i=0

X

i

(resp.

S

n

i=0

Y

i

), the restriction of �

�

to A

n

coincides

with �

�;n

(resp. the restriction of �

�

to B

n

coincides with �

�;n

).

By construction �

�

is a �-homomorphism and �

�

is a �-homomorphism.

It remains to be shown that they are (� [�)-homomorphisms. In order to

show this we prove the following claim:

(�) �

�

� h

1

= �

�

and �

�

� g

1

= �

�

:

4

From the second identity of (�) we can easily deduce that �

�

is a (� [�)-

homomorphism. In fact, we already know that it is a �-homomorphism. In

addition, �

�

is a �-homomorphism and g

1

is a (� [ �)-homomorphism.

Thus the composition �

�

� g

1

is a �-homomorphism. Accordingly, the �rst

identity of (�) implies that �

�

is a (� [�)-homomorphism.

To complete the proof, we show the �rst identity of (�). (The second

follows by symmetry.) Let b be an element of B

1

. Thus there is an n � 0

such that b 2 B

n

n B

n�1

. First, assume that b 2 Y

n

. By construction of the

free amalgamated product, this implies h

1

(b) 2 A

n�1

, and thus we have

�

�

(h

1

(b)) = �

�;n�1

(h

1

(b)) = �

�;n

(b) = �

�

(b):

The second identity holds by Condition 2 in the construction of the mappings

�

�;n

and �

�;n

since B

n

is generated by

S

n

i=0

Y

i

. The third identity follows

from the de�nition of �

�

.

Second, assume that b 2 B

n

n (B

n�1

[ Y

n

). In this case we have h

1

(b) =

g

�1

1

(b) 2 X

n+1

, and thus �

�

(h

1

(b)) = �

�;n+1

(g

�1

1

(b)) = �

�;n

(g

1

(g

�1

1

(b))) =

�

�;n

(b) = �

�

(b).

Free structures for the same variety and over generator sets of equal car-

dinality are isomorphic. This, together with the above theorem yields:

Corollary 3.3 Let A

1

be free over X in the �

1

-variety V(E

1

), A

2

be free

over X in the �

2

-variety V(E

2

), and A

3

be free over X in the �

3

-variety

V(E

3

), where X is countably in�nite and �

1

;�

2

, and �

3

are pairwise disjoint.

Then (A

1

�A

2

)�A

3

' A

1

� (A

2

� A

3

).

Proof. By the theorem, both structures are free over X for the (�

1

[�

2

[

�

3

)-variety V(E

1

[ E

2

[ E

3

).

4

Here, composition should be read from right to left, i.e., apply �rst h

1

and then �

�

.
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4 The Decomposition Algorithm

As in the previous section, let V(E) be a �-variety and V(F ) be a �-variety,

where � and � are disjoint signatures. For a countably in�nite set of ge-

nerators X, let A be free for V(E) over X, and let B be free for V(F ) over

X. We know that the positive theories of V(E) and A (resp. V(F ) and B)

coincide (by Theorem 2.6), and that the free amalgamated product A�B is

free for V(E [ F ) over X (by Theorem 3.2).

In this section, we consider only existential positive (� [ �)-sentences.

The decomposition algorithm described below can be used to reduce validity

of such sentences in A � B (or, equivalently, in V(E [ F )) to validity of

positive sentences in A and in B.

Before we can describe the algorithm, we must introduce some notation.

In the following, V denotes an in�nite set of variables used by the �rst order

languages under consideration. Let t be a (� [�)-term. This term is called

pure i� it is either a �-term or a �-term. An equation is pure i� it is an

equation between pure terms of the same signature. A relational formula

p[s

1

; : : : ; s

m

] is pure i� s

1

; : : : ; s

m

are pure terms of the signature of p. Now

assume that t is a non-pure term whose topmost function symbol is in �.

A subterm s of t is called alien subterm of t i� its topmost function symbol

belongs to � and every proper superterm of s in t has its top symbol in �.

Alien subterms of terms with top symbol in � are de�ned analogously. For

a relational formula p[s

1

; : : : ; s

m

], alien subterms are de�ned as follows: if s

i

has a top symbol whose signature is di�erent from the signature of p then

s

i

itself is an alien subterm; otherwise, any alien subterm of s

i

is an alien

subterm of p[s

1

; : : : ; s

m

].

Algorithm 1

Let '

0

be a positive existential (�[�)-sentence. Without loss of generality,

we may assume that '

0

has the form 9~u

0




0

, where 


0

is a conjunction of ato-

mic formulae. Indeed, since existential quanti�ers distribute over disjunction,

a sentence 9~u

0

(


1

_ 


2

) is valid i� 9~u

0




1

or 9~u

0




2

is valid.

Step 1: Transform non-pure atomic formulae.

(1) Equations s = t of 


0

where s and t have topmost function symbols

belonging to di�erent signatures are replaced by (the conjunction of)

two new equations u = s; u = t, where u is a new variable. The
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quanti�er pre�x is extended by adding an existential quanti�cation for

u.

(2) As a result, we may assign a unique label � or � to each atomic

formula that is not an equation between variables. The label of an

equation s = t is the signature of the topmost function symbols of s

and/or t. The label of a relational formula p[s

1

; : : : ; s

m

] is the signature

of p.

(3) Now alien subterms occurring in atomic formulae are successively

replaced by new variables. For example, assume that s = t is an

equation in the current formula, and that s contains the alien subterm

s

1

. Let u be a variable not occurring in the current formula, and let s

0

be the term obtained from s by replacing s

1

by u. Then the original

equation is replaced by (the conjunction of) the two equations s

0

= t

and u = s

1

. The quanti�er pre�x is extended by adding an existential

quanti�cation for u. The equation s

0

= t keeps the label of s = t, and

the label of u = s

1

is the signature of the top symbol of s

1

. Relational

atomic formulae with alien subterms are treated analogously. This

process is iterated until all atomic formulae occurring in the conjunctive

matrix are pure. It is easy to see that this is achieved after �nitely many

iterations.

Step 2: Remove atomic formulae without label.

Equations between variables occurring in the conjunctive matrix are

removed as follows: If u = v is such an equation then one removes 9u

from the quanti�er pre�x and u = v from the matrix. In addition, every

occurrence of u in the remaining matrix is replaced by v. This step is

iterated until the matrix contains no equations between variables.

Let '

1

be the new sentence obtained this way. The matrix of '

1

can

be written as a conjunction 


1;�

^ 


1;�

, where 


1;�

is a conjunction of all

atomic formulae from '

1

with label �, and 


1;�

is a conjunction of all atomic

formulae from '

1

with label �. There are three di�erent types of variables

occurring in '

1

: shared variables occur both in 


1;�

and in 


1;�

; �-variables

occur only in 


1;�

; and �-variables occur only in 


1;�

. Let ~u

1;�

be the tuple

of all �-variables, ~u

1;�

be the tuple of all �-variables, and ~u

1

be the tuple of

all shared variables.

5

Obviously, '

1

is equivalent to the sentence

9~u

1

(9~u

1;�




1;�

^ 9~u

1;�




1;�

) :

The next two steps of the algorithm are nondeterministic, i.e., a given

sentence is transformed into �nitely many new sentences. Here the idea is

5

The order in these tuples can be chosen arbitrarily.
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that the original sentence is valid i� at least one of the new sentences is valid.

Step 3: Variable identi�cation.

Consider all possible partitions of the set of all shared variables. Each

of these partitions yields one of the new sentences as follows. The va-

riables in each class of the partition are \identi�ed" with each other by

choosing an element of the class as representative, and replacing in the

sentence all occurrences of variables of the class by this representative.

Quanti�ers for replaced variables are removed.

Let 9~u

2

(9~u

1;�




2;�

^ 9~u

1;�




2;�

) denote one of the sentences obtained by

Step 3.

Step 4: Choose signature labels and ordering.

We choose a label � or � for every (shared) variable in ~u

2

, and a linear

ordering < on these variables.

For each of the choices made in Step 3 and 4, the algorithm yields a pair

(�; �) of sentences as output.

Step 5: Generate output sentences.

The sentence 9~u

2

(9~u

1;�




2;�

^ 9~u

1;�




2;�

) is split into two sentences

� = 8~v

1

9~w

1

: : :8~v

k

9~w

k

9~u

1;�




2;�

and

� = 9~v

1

8~w

1

: : :9~v

k

8~w

k

9~u

1;�




2;�

:

Here ~v

1

~w

1

: : : ~v

k

~w

k

is the unique re-ordering of ~u

2

along <. The varia-

bles ~v

i

(~w

i

) are the variables with label � (label �).

Thus, the overall output of the algorithm is a �nite set of pairs of senten-

ces. Note that the sentences � and � are positive formulae, but they need

no longer be existential positive formulae.

Algorithm 1 is an optimization of the decomposition algorithm described

in [BS92] in that the nondeterministic steps|which are responsible for the

NP-complexity of the algorithm|are applied only to shared variables and

not to all variables occurring in the system. This may drastically decrease

the number of nondeterministic choices. For example, if there are no sha-

red variables then the algorithm is completely deterministic, and the output

formulae are existential positive formulae.
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Correctness of Algorithm 1

First, we show soundness of the algorithm, i.e., if one of the output pairs is

valid then the original sentence was valid.

Lemma 4.1 A� B j= '

0

if A j= � and B j= � for some output pair (�; �).

Proof. Since A

�

and A

�

1

are isomorphic �-structures, we know that

A

�

1

j= �. Accordingly, we also have B

�

1

j= �. More precisely, this means

(�) A

�

1

j= 8~v

1

9~w

1

: : : 8~v

k

9~w

k

9~u

1;�




2;�

(~v

1

; ~w

1

; : : : ; ~v

k

; ~w

k

; ~u

1;�

)

(��) B

�

1

j= 9~v

1

8~w

1

: : : 9~v

k

8~w

k

9~u

1;�




2;�

(~v

1

; ~w

1

; : : : ; ~v

k

; ~w

k

; ~u

1;�

):

Because of the existential quanti�cation over ~v

1

in (��), there exist elements

~

b

1

2

~

B

1

such that

(� � �) B

�

1

j= 8~w

1

: : :9~v

k

8~w

k

9~u

1;�




2;�

(

~

b

1

; ~w

1

; : : : ; ~v

k

; ~w

k

; ~u

1;�

):

We consider ~a

1

:= h

1

(

~

b

1

). Because of the universal quanti�cation over ~v

1

in

(�) we have

A

�

1

j= 9~w

1

: : :8~v

k

9~w

k

9~u

1;�




2;�

(~a

1

; ~w

1

; : : : ; ~v

k

; ~w

k

; ~u

1;�

):

Because of the existential quanti�cation over ~w

1

in this formula there exist

elements ~c

1

2

~

A

1

such that

A

�

1

j= 8~v

2

9~w

2

: : :8~v

k

9~w

k

9~u

1;�




2;�

(~a

1

;~c

1

; ~v

2

; ~w

2

; : : : ; ~v

k

; ~w

k

; ~u

1;�

):

We consider

~

d

1

:= g

1

(~c

1

). Because of the universal quanti�cation over ~w

1

in

(� � �) we have

B

�

1

j= 9~v

2

8~w

2

: : :9~v

k

8~w

k

9~u

1;�




2;�

(

~

b

1

;

~

d

1

; ~v

2

; ~w

2

; : : : ; ~v

k

; ~w

k

; ~u

1;�

):

Iterating this argument, we thus obtain

A

�

1

j= 9~u

1;�




2;�

(~a

1

;~c

1

; : : : ;~a

k

;~c

k

; ~u

1;�

);

B

�

1

j= 9~u

1;�




2;�

(

~

b

1

;

~

d

1

; : : : ;

~

b

k

;

~

d

k

; ~u

1;�

);

where ~a

i

= h

1

(

~

b

i

) and

~

d

i

= g

1

(~c

i

) (for 1 � i � k). Since h

1

is a (� [�)-

isomorphism that is the inverse of g

1

, we also know that

A

�

1

j= 9~u

1;�




2;�

(~a

1

;~c

1

; : : : ;~a

k

;~c

k

; ~u

1;�

):
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It follows that

A

�[�

1

j= 9~u

1;�




2;�

(~a

1

;~c

1

; : : : ;~a

k

;~c

k

; ~u

1;�

)^9~u

1;�




2;�

(~a

1

;~c

1

; : : : ;~a

k

;~c

k

; ~u

1;�

):

Obviously, this implies that

A� B ' A

�[�

1

j= 9~u

2

(9~u

1;�




2;�

^ 9~u

1;�




2;�

) ;

i.e., one of the sentences obtained after Step 3 of the algorithm holds inA�B.

It is easy to see that this implies that A� B j= '

0

.

Next, we show completeness of the decomposition algorithm, i.e., if the

input sentence was valid then there exists a valid output pair.

Lemma 4.2 If A � B j= '

0

then A j= � and B j= � for some output pair

(�; �).

Proof. Assume that A � B ' B

�[�

1

j= 9~u

0




0

. Obviously, this implies

that B

�[�

1

j= 9~u

1

(9~u

1;�




1;�

(~u

1

; ~u

1;�

) ^ 9~u

1;�




1;�

(~u

1

; ~u

1;�

)), i.e., B

�[�

1

sa-

tis�es the sentence that is obtained after Step 2 of the decomposition algo-

rithm. Thus there exists an assignment � : V ! B

1

such that B

�[�

1

j=

9~u

1;�




1;�

(�(~u

1

); ~u

1;�

) ^ 9~u

1;�




1;�

(�(~u

1

); ~u

1;�

).

In Step 3 of the decomposition algorithm we identify two shared variables

u and u

0

of ~u

1

if, and only if, �(u) = �(u

0

). With this choice, B

�[�

1

j=

9~u

1;�




2;�

(�(~u

2

); ~u

1;�

) ^ 9~u

1;�




2;�

(�(~u

2

); ~u

1;�

), and all components of �(~u

2

)

are distinct.

In Step 4, a shared variable u in ~u

2

is labeled with � if �(u) 2 B

1

n

(

S

1

i=1

Y

i

), and with � otherwise. In order to choose the linear ordering on

the shared variables, we partition the range B

1

of � as follows:

B

0

; Y

1

; B

1

n (B

0

[ Y

1

); Y

2

; B

2

n (B

1

[ Y

2

); Y

3

; B

3

n (B

2

[ Y

3

); : : :

Now, let ~v

1

; ~w

1

; : : : ; ~v

k

; ~w

k

be a re-ordering of the tuple ~u

2

such that the

following holds:

1. The tuple ~v

1

contains exactly the shared variables whose �-images are

in B

0

.

2. For all i; 1 � i � k, the tuple ~w

i

contains exactly the shared variables

whose �-images are in Y

i

.
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3. For all i; 1 < i � k, the tuple ~v

i

contains exactly the shared variables

whose �-images are in B

i�1

n (B

i�2

[ Y

i�1

).

Obviously, this implies that the variables in the tuples ~w

i

have label �,

whereas the variables in the tuples ~v

i

have label �. Note that some of these

tuples may be of dimension 0. The re-ordering determines the linear ordering

we choose in Step 4. Let

� = 8~v

1

9~w

1

: : :8~v

k

9~w

k

9~u

1;�




2;�

� = 9~v

1

8~w

1

: : :9~v

k

8~w

k

9~u

1;�




2;�

be the output pair that is obtained by these choices. Let ~y

i

:= �(~w

i

) 2

~

Y and

~

b

i

:= �(~v

i

) 2

~

B

1

. We claim that the sequence

~

b

1

; ~y

1

; : : : ;

~

b

k

; ~y

k

satis�es Con-

dition 2 of Lemma 2.8 for ' = 9~u

1;�




2;�

, the structure B

�

1

, and appropriate

sets Z

1

; : : : ; Z

k

.

6

Part (a) of this condition is satis�ed since B

�[�

1

j= 9~u

1;�




2;�

(�(~u

2

); ~u

1;�

),

and thus

B

�

1

j= 9~u

1;�




2;�

(

~

b

1

; ~y

1

; : : : ;

~

b

k

; ~y

k

; ~u

1;�

):

Part (b) of the condition is satis�ed since the �-images of all shared variables

in ~u

2

are distinct according to our choice in the variable identi�cation step.

Finally, part (c) and (d) can be satis�ed because of our choice of the linear

ordering. In fact, any component b of

~

b

j

belongs to B

j�1

, and is thus gene-

rated by

S

j�1

i=0

Y

i

, whereas the components of ~y

j

are in Y

j

. Thus, there exists

a (�nite) subset Z

j

of

S

j�1

i=0

Y

i

such that part (c) of Condition 2 of the lemma

is satis�ed. Part (d) is satis�ed as well since Y

j

and

S

j�1

i=0

Y

i

are disjoint by

de�nition.

Thus, we can apply Lemma 2.8, which yields B ' B

�

1

j= �. In order

to show A j= �, we use the fact that h

1

: B

1

! A

1

is a (� [ �)-

isomorphism. Thus, B

�[�

1

j= 9~u

1;�




2;�

(�(~u

2

); ~u

1;�

) implies that A

�

1

j=

9~u

1;�




2;�

(h

1

(�(~u

2

)); ~u

1;�

).

Let ~x

i

:= h

1

(

~

b

i

) = h

1

(�(~v

i

)) and ~a

i

:= h

1

(~y

i

) = h

1

(�(~w

i

)) (for i =

1; : : : ; k). We claim that the sequence ~x

1

;~a

1

; : : : ; ~x

k

;~a

k

satis�es Condition 2

of Lemma 2.8 for ' = 9~u

1;�




2;�

, the structure A

�

1

, and appropriate sets

Z

0

1

; : : : ; Z

0

k

.

Obviously, A

�

1

j= 9~u

1;�




2;�

(h

1

(�(~u

2

)); ~u

1;�

) implies that part (a) of the

condition is satis�ed. To see that part (b) is satis�ed, recall that, by our

6

Note that, in contrast to the formulation of the lemma, our sequence starts with a

tuple of structure elements instead of generators. The lemma applies nevertheless since in

its formulation we did not assume that all tuples have a non-zero dimension.
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choice in the variable identi�cation step, the �-images of di�erent shared

variables in ~u

2

are distinct. Since h

1

is a bijection, this holds for their

(h

1

� �)-images as well.

Now part (c) and (d) are an easy consequence of the following properties,

which in turn are consequences of the de�nition of the bijection h

1

and and

its inverse g

1

:

1. Since the components of

~

b

1

are in B

0

, we know that the components of

~x

1

are in X

0

[X

1

.

2. For 1 < i � k, the components of

~

b

i

are in B

i�1

n (B

i�2

[ Y

i�1

). Thus,

the components of ~x

i

are in X

i

.

3. For 1 � i � k, the components of ~y

i

are in Y

i

. Thus, the components

of ~a

i

are in A

i�1

n (A

i�2

[ Y

i�1

).

The third property shows that there exist (�nite) subsets Z

0

j

of

S

j�1

i=0

X

i

sa-

tisfying part (c). Obviously, the properties 1 and 2 imply that part (d) is

satis�ed as well. Thus, we can apply Lemma 2.8, and obtain A ' A

�

1

j= �.

The two lemmas obviously imply the next theorem.

Theorem 4.3 Let V(E) be a �-variety and V(F ) be a �-variety for disjoint

signatures � and �. The positive existential theory of the (� [ �)-variety

V(E[F ) is decidable, provided that the positive theories of V(E) and of V(F )

are decidable.

If the signatures contain no predicate symbols, this theorem is a refor-

mulation of Theorem 2.1 of [BS92]. What is new here is the algebraic proof

method and the fact that relational constraints can be treated as well.

5 Decision Procedures for Positive Theories

A disadvantage of Theorem 4.3 is that it does not show modularity of deci-

dability of the positive theory of varieties of structures. Indeed, the prere-

quisites of the theorem (decidability of the full positive theories of V(E) and

V(F )) are stronger than its consequence (decidability of the existential posi-

tive theory of V(E [ F )). This problem will be overcome by the algorithm
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described in this section, which can be used to reduce decidability of the full

positive theory of V(E [ F ) to decision procedures for the positive theories

of V(E) and V(F ). This shows that Theorem 4.3 can be applied iteratively.

Algorithm 2

The input is a positive sentence '

1

in the mixed signature �[�. We assume

that '

1

is in prenex normalform, and that the matrix of '

1

is in disjunctive

normalform. The algorithm proceeds in two phases.

Phase 1

Via Skolemization of universally quanti�ed variables,

7

'

1

is transformed into

an existential sentence '

0

1

over the signature � [ � [ �

1

. Here �

1

is the

signature consisting of all the new Skolem function symbols that have been

introduced.

Suppose that '

0

1

is of the form 9~u

1

(

W




1;i

), where the 


1;i

are conjunctions

of atomic formulae. Obviously, '

0

1

is equivalent to

W

(9~u

1




1;i

), and thus it is

su�cient to decide validity of the sentences 9~u

1




1;i

. Each of these sentences

is used as input for Algorithm 1. Subsequently, 9~u

1




1

denotes one of these

sentences.

The atomic formulae in 


1

may contain symbols from the two (disjoint)

signatures � and �[�

1

. In Phase 1 we treat the sentences 9~u

1




1;i

by means

of Steps 1{4 of Algorithm 1, �nally splitting them into positive �-sentences

� and positive (�[�

1

)-sentences '

2

. Thus, the output of Phase 1 is a �nite

set of pairs (�; '

2

).

Phase 2

In the second phase, '

2

is treated exactly as '

1

was treated before, apply-

ing Skolemization to universally quanti�ed variables and Steps 1{4 of Algo-

rithm 1 a second time. Now we consider the two (disjoint) signatures � and

� = �

1

[ �

2

, where �

2

contains the Skolem functions that are introduced

by the Skolemization step of Phase 2. We obtain output pairs of the form

(�; �), where � is a positive sentence over the signature � and � is a positive

7

We are Skolemizing universally quanti�ed variables since we are interested in validity

of the sentence and not in satis�ability.
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sentence over the signature �. Together with the corresponding sentence �

(over the signature �) we thus obtain triples (�; �; �) as output.

For each of these triple, the sentence � is now tested for validity in A,

� is tested for validity in B, and � is tested for validity in the absolutely

free term algebra T (�; X) with countably many generators X, i.e., the free

algebra over X for the class of all �-algebras.

8

Correctness of Algorithm 2

We want to show that the original sentence '

1

is valid i� for one of the output

triples, all three components are valid in the respective structures. The proof

depends on the following lemma, which exhibits an interesting connection

between Skolemization and amalgamation with an absolutely free algebra.

Lemma 5.1 Let A be a �-structure that is free in V(E) over the countably

in�nite set of generators X, and let 
 be a positive �-sentence. Suppose that

the (positive) existential sentence 


0

is obtained from 
 via Skolemization

of the universally quanti�ed variables in 
, introducing the set of Skolem

function symbols �. Then A j= 
 if, and only if, A� T (�; X) j= 


0

.

Proof. Let B = T (�; X). In order to avoid notational overhead, we as-

sume without loss of generality that existential and universal quanti�ers al-

ternate in 
,

9

i.e., 
 = 8u

1

9v

1

: : :8u

k

9v

k

'(u

1

; v

1

; : : : ; u

k

; v

k

). Skolemization

yields the existential formula 


0

= 9v

1

: : :9v

k

'(f

1

; v

1

; f

2

(v

1

); v

2

; : : : ; f

k

(v

1

; : : : ;

v

k�1

); v

k

). Thus, � consists of k distinct new Skolem functions f

1

; f

2

; : : : ; f

k

having the arities 0; 1; : : : ; k � 1, respectively.

First, assume that A j= 
. As �-structures, A and A�B are isomorphic,

and thus

(�) A� B j= 8u

1

9v

1

: : :8u

k

9v

k

'(u

1

; v

1

; : : : ; u

k

; v

k

):

Since A�B can also be considered as a (�[�)-structure, the Skolem symbols

f

1

; f

2

; : : : ; f

k

are interpreted by functions g

1

; g

2

; : : : ; g

k

on the carrier A� B

of A � B. Because of (�), for g

1

2 A � B there exists a

1

2 A � B such

that A � B j= 8u

2

9v

2

: : :8u

k

9v

k

'(g

1

; a

1

; u

2

; v

2

; : : : ; u

k

; v

k

). Iterating this

argument, we obtain a

1

; : : : ; a

k

2 A� B such that

A� B j= '(g

1

; a

1

; g

2

(a

1

); a

2

; : : : ; g

k

(a

1

; : : : ; a

k�1

); a

k

):

8

Note that � contains no predicate symbols.

9

Obviously one can introduce additional quanti�ers over variables not occurring in 


to generate an equivalent formula of this form.
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Since the functions g

i

are the interpretation of the symbols f

i

in A�B, this

yields

A� B j= 9v

1

: : :9v

k

'(f

1

; v

1

; f

2

(v

1

); v

2

; : : : ; f

k

(v

1

; : : : ; v

k�1

); v

k

);

i.e., A� B j= 


0

.

For the converse direction, assume that

A� B j= 9v

1

: : :9v

k

'(f

1

; v

1

; f

2

(v

1

); v

2

; : : : ; f

k

(v

1

; : : : ; v

k�1

); v

k

):

Since A� B ' A

�[�

1

, there exist a

1

; : : : ; a

k

2 A

1

such that

(��) A

�[�

1

j= '(f

A

1

; a

1

; f

A

2

(a

1

); a

2

; : : : ; f

A

k

(a

1

; : : : ; a

k�1

); a

k

);

where f

A

1

; : : : ; f

A

k

denote the functions on A

1

that interpret the symbols

f

1

; : : : ; f

k

.

Our goal is to apply Lemma 2.8. Obviously, (��) shows that the sequence

f

A

1

; a

1

; f

A

2

(a

1

); a

2

; : : : ; f

A

k

(a

1

; : : : ; a

k�1

); a

k

satis�es part (a) of Condition 2 of

Lemma 2.8. It remains to be shown that part (b), (c) and (d) are valid as

well (for an appropriate choice of the sets Z

1

; : : : ; Z

k

). The proof will depend

on the following four properties, which are an easy consequence of the fact

that B

�

1

is an absolutely free �-algebra. Note that the carrier of B

�

1

consists

of the �-terms over the set (of variables) Y

1

, i.e., the symbols f

i

interpret

themselves.

(p1) Elements of B

1

of the form f

i

(b

1

; : : : ; b

i�1

) and f

j

(b

0

1

; : : : ; b

0

j�1

) are

distinct if i 6= j.

(p2) Elements of B

1

of the form f

i

(b

1

; : : : ; b

i�1

) are elements of B

1

n Y

1

.

(p3) If b 2 B

m+1

nB

m

, then f

j

(: : : ; b; : : :) 62 B

m

[ Y

m+1

.

(p4) Terms f

j

(b

1

; : : : ; b

j�1

) are distinct from all their arguments b

�

.

Now, (p1) and (p2) can be used to show part (b) of Condition 2 of

Lemma 2.8. By de�nition of the bijections h

1

and g

1

, the h

1

-image of B

1

n

Y

1

is in X

1

, and thus f

A

i

(a

1

; : : : ; a

i�1

) = h

1

(f

i

(g

1

(a

1

); : : : ; g

1

(a

i�1

))) 2

X

1

by (p2). This shows that the elements f

A

i

(a

1

; : : : ; a

i�1

) of the sequence

are in fact generators, i.e., elements of X

1

. All these generators are di�erent

because of (p1). Indeed, since h

1

is a bijection, (p1) implies

f

A

i

(a

1

; : : : ; a

i�1

) = h

1

(f

i

(g

1

(a

1

); : : : ; g

1

(a

i�1

))) 6=

h

1

(f

j

(g

1

(a

1

); : : : ; g

1

(a

j�1

))) = f

A

j

(a

1

; : : : ; a

j�1

)

28



for all i 6= j.

To establish (c) and (d), we must �nd �nite sets of generators Z

1

; : : : ; Z

k

such that (c) a

i

is generated by Z

i

(for all i; 1 � i � k), and (d) the generator

f

A

i

(a

1

; : : : ; a

i�1

) is not an element of Z

1

[ : : : [ Z

i�1

(for all i; 1 < i � k).

Let Z

k

be an arbitrary �nite set of generators of a

k

. To de�ne Z

i�1

for

all i; 1 < i � k, let b

1

; : : : ; b

i�1

be the images of a

1

; : : : ; a

i�1

under the bijec-

tion g

1

, and let m be the minimal number such that fa

1

; : : : ; a

i�1

g � A

m

.

Obviously, this implies that there exist (�nite) sets Z

1

; : : : ; Z

i�1

satisfying

(c) such that Z

1

[ : : : [ Z

i�1

�

S

m

j=0

X

j

. This information, however, is not

su�cient to infer part (d).

First, we consider the case where the sequence a

1

; : : : ; a

i�1

contains an

element a

j

2 A

m

n (A

m�1

[ X

m

). Then b

j

= g

1

(a

j

) is an element of Y

m+1

.

Property (p3) yields f

i

(b

1

; : : : ; b

i�1

) 62 B

m

[Y

m+1

, and thus f

A

i

(a

1

; : : : ; a

i�1

) =

h

1

(f

i

(b

1

; : : : ; b

i�1

)) 62 A

m

[ X

m+1

. Hence f

A

i

(a

1

; : : : ; a

i�1

) 62

S

m

j=0

X

j

�

A

m

[X

m+1

, and we can take an arbitrary �nite subset Z

i�1

of

S

m

j=0

X

j

that

generates a

i�1

(without violating (d)).

Otherwise, the sequence a

1

; : : : ; a

j�1

contains a non-zero number of ele-

ments of X

m

(these will be called generators of type 1), and possibly some

elements of A

m�1

. The latter elements have (�nitely many) generators in

S

m�1

j=0

X

j

(which will be called generators of type 2). Recall that g

1

(X

m

) =

B

m�1

n (B

m�2

[ Y

m�1

). By (p3), f

i

(b

1

; : : : ; b

i�1

) 62 B

m�2

[ Y

m�1

, and thus

f

A

i

(a

1

; : : : ; a

i�1

) = h

1

(f

i

(b

1

; : : : ; b

i�1

)) 62 A

m�2

[ X

m�1

. This implies that

f

A

i

(a

1

; : : : ; a

i�1

) is di�erent from all generators of type 2. In addition, (p4)

says that f

i

(b

1

; : : : ; b

i�1

) is di�erent from all its arguments b

1

; : : : ; b

i�1

. Con-

sequently, f

A

i

(a

1

; : : : ; a

i�1

) is distinct from all its arguments a

1

; : : : ; a

i�1

, and

thus from all generators of type 1. Thus, we can de�ne Z

i�1

to be the set

of all generators of type 1 or 2. This completes the proof that Condition 2

of Lemma 2.8 can be satis�ed by an appropriate choice of sets of generators

Z

1

; : : : ; Z

k

.

Applying the lemma, we obtain

A

�[�

1

j= 8u

1

9v

1

: : :8u

k

9v

k

'(u

1

; v

1

; : : : ; u

k

; v

k

):

Since 
 = 8u

1

9v

1

: : :8u

k

9v

k

'(u

1

; v

1

; : : : ; u

k

; v

k

) is a pure �-formula, and

since, as �-structures, A and A

1

are isomorphic, this shows A j= 
.

Correctness of Algorithm 2 is an easy consequence of this lemma.

Proposition 5.2 A � B j= '

1

if, and only if, there exists an output triple

(�; �; �) such that A j= �, B j= �, and T (�; X) j= �, where � consists of the
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Skolem functions introduced in Phase 1 and 2 of the algorithm and X is a

countably in�nite set (of variables).

Proof. Assume that A � B j= '

1

. By Lemma 5.1, this implies that

(A� B)� T (�

1

; X) ' A� (B � T (�

1

; X)) j= '

0

1

, i.e., the formula obtained

from '

1

by Skolemization. Let 9~u

1




1

be one of the disjuncts in '

0

1

satis�ed

by A � (B � T (�

1

; X)). Since Algorithm 1 is correct, one of the output

pairs (�; '

2

) generated by applying Algorithm 1 to 9~u

1




1

satis�es A j= �

and B � T (�

1

; X) j= '

2

.

Applying Lemma 5.1 a second time, we obtain (B�T (�

1

; X))�T (�

2

; X) '

B � T (�

1

[ �

2

; X) j= '

0

2

, where '

0

2

is the positive existential sentence that

is obtained from '

2

via Skolemization. Algorithm 1, applied to '

0

2

, thus

yields an output pair (�; �) at the end of Phase 2 such that B j= � and

T (�

1

[ �

2

; X) j= �.

It is easy to see that all arguments used during this proof also apply in

the other direction.

The proposition shows that decidability of the positive theory of A � B

can be reduced to decidability of the positive theories of A, B, and of an

absolutely free term algebra T (�; X). It is well-known that the whole �rst-

order theory of absolutely free term algebras is decidable [Mal71, Mah88,

CL89]. Thus, we obtain the desired modularity result:

Theorem 5.3 Let V(E) be a �-variety and V(F ) be a �-variety for disjoint

signatures � and �. The positive theory of the (� [ �)-variety V(E [ F )

is decidable, provided that the positive theories of V(E) and of V(F ) are

decidable.

6 Conclusion and Outlook

We have presented an abstract algebraic approach to the problem of combi-

ning constraint solvers for constraint languages over disjoint signatures. The

constraints that can be handled this way are built from atomic equational

and relational constraints with the help of conjunction, disjunction, and both

universal and existential quanti�ers. Solvability means validity of such (clo-

sed) constraint formulae in a free structure, or equivalently in a variety of

structures.
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Simple examples of free structures with a non-trivial relational part are

(absolutely free) term algebras that are equipped with an ordering that is

invariant under substitution, such as the lexicographic path ordering or the

subterm ordering. For our combination result to apply, however, the positive

theory of these structures must be decidable. For a total lexicographic path

ordering, this is not the case. For the subterm ordering and for partial

lexicographic path orderings, the existential theory is decidable, but the full

�rst-order theory is undecidable [CT94]. Decidability of the positive theory

is still an open problem.

Combination of constraint solving techniques in the presence of predi-

cate symbols other than equality have independently been considered by

H. Kirchner and Ch. Ringeissen [KR94]. However, their approach is based

on the rewriting and abstraction techniques mentioned in the introduction

(see, e.g., [BS92, Bou90]). Consequently, the interpretation of the predicate

symbols in the combined structure is de�ned in a rather technical way, and

it is not a priori clear what this de�nition means in an intuitive algebraic

sense. It would be interesting to �nd out whether, for free structures, the

combined structure of [KR94] coincides with our free amalgamated product.

We are currently working on a generalization of the notion of \combinable

structure" that considerably extends the notion of a \free structure." An

example of a structure that is not a free structure, but nevertheless satis�es

the generalized combinability condition, is the algebra of rational trees.
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