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teresting consequence. Even in cases where the (full) positive theory of a

ground component structure is undecidable, our combination methods can

be applied to show decidability of the existential positive theory even for

the ground combined structure, provided that the (full) positive theories of

the non-ground component structures are decidable. Our remark following

Lemma 9.1 shows that decidability of the full positive theory of such a non-

ground structure can sometimes be obtained by an easy modi�cation of the

decision method for the existential positive case. Free semigroups are an ex-

ample for this situation: the positive theory of a free semigroup with a �nite

number n � 2 of generators is undecidable, whereas the positive theory of the

countably generated free semigroup (which corresponds to our non-ground

case) is decidable [VaR83].

ture and that \substitution" of ground elements for atoms is homomorphic.
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structure should satisfy. It was shown that in certain cases there exists a ca-

nonical structure|called the free amalgamated product|that yields a most

general admissible closure of a given amalgamation base.

We have introduced a class of structures|called SC-structures|that are

equipped with structural properties that guarantee (1) that a canonical amal-

gamation construction can be applied to SC-structures over disjoint signatu-

res, and (2) that validity of positive existential formulae in the amalgama-

ted structure obtained by this construction can be reduced to validity of

positive formulae in the component structures. For the subclass of strong

SC-structures we have obtained stronger results. Interestingly, a very simi-

lar class of structures has independently been introduced in [SS88, Wil91]

in order to characterize a maximal class of algebras where equation (and

constraint) solving essentially behaves like uni�cation.

14

It is interesting to compare the concrete combined solution domains that

can be found in the literature with the combined domains obtained by our

amalgamation construction. It turns out that there can be di�erences if the

elements of the components have a tree-like structure that allows for in�nite

paths (as in the examples of non-wellfounded sets and rational trees). In

these cases, frequently a combined solution structure is chosen where an

in�nite number of \signature changes" may occur when following an in�nite

path in an element of the combined domain. In contrast, our amalgamation

construction yields a combined structure where elements allow for a �nite

number of signature changes only. This indicates that the free amalgamated

product, even if it exists, is not necessarily the only interesting combined

domain. It remains to be seen which additional natural ways to combine

structures exist, and how di�erent ways of combining structures are formally

related.

It should be noted that for most of the results presented in the paper

the presence of countably many atoms (\variables") in the structures to be

combined is an essential precondition. On the other hand, many constraint-

based approaches consider ground structures as solution domains. In most

cases, however, a corresponding non-ground structure containing the neces-

sary atoms exists. Thus, our combination method can be applied to these

non-ground variants. Of course, the combined structure obtained in this way

is again non-ground. For existential positive formulae, however, validity in

the non-ground combined structure is equivalent to validity in the ground

variant of the combined structure.

15

This observation has the following in-

14

The notion of an SC-structure can be considered as a sort-free version of the concepts

that have been discussed in [SS88, Wil91].

15

We assume here that the ground structure is a substructure of the non-ground struc-

64



variable v in 


0

, has a solution, then the input system 
 has a solution in

L

h


(Y )

�

.

Proof. Suppose that �

0

is a solution of 


0

that assigns to each variable v 2 W

a word over F

v

= fy; hyi 2 E

v

g [ f _w;w < vg [ fcg, the licensed alphabet.

Let v = l

1

�� � � � l

s

be an equation of 
, let v = l

0

1

�� � �� l

0

s

be the corresponding

equation of 


0

. We have

v

�

0

= l

0

1

�

0

� � � � � l

0

s

�

0

:

In order to �nd an admissible solution � of the input system 
, we shall give

an assignment � that maps each element of f _wjw 2 Wg[fcg to an element of

L

h


(Y ) and leaves urelements y 2 Y �xed. The mapping � will be identi�ed

with its homomorphic extension on nested wellfounded lists with urelements

in Y [ f _wjw 2 Wg [ fcg. Thus we obtain v

�

0

�

= l

0

1

�

0

�

� � � � � l

0

s

�

0

�

. Hence, in

order to show that � := �

0

� � is a solution of the input system 
 it su�ces

to prove (a) that each stabilizer hyi occurring in the value w

�

of a variable

w is licensed by D

w

, and (b) that h _w

�

0

�

i (= h _w

�

i) = hw

�

i, for all w 2 W .

Let c

�

:= h i. The remaining part of the mapping � will be de�ned by

induction, using the partial ordering < on W . Let _v be a dotted variable,

and suppose that � has been de�ned for all _w such that w < v. We assume

(*) that each atom occurring in _w

�

2 L

h


(Y ) belongs to E

w

, for all w < v.

We may now de�ne _v

�

:= v

�

0

�

. In fact, the de�nition is well-de�ned since

w < v for all dotted _w occurring in v

�

0

, by de�nition of F

v

. This also shows

that condition (*) holds again, by induction hypothesis, since w < v implies

E

w

� E

v

, according to Step 2.

If the atom hyi occurs in w

�

= w

�

0

�

, then either hyi occurs in w

�

0

, or hyi

occurs in a value _u

�

for some u < w. In the former case we have hyi 2 E

w

,

since �

0

respects the licensed alphabet F

w

. In the latter case, condition (*)

shows that hyi 2 E

u

� E

w

. Thus hyi 2 D

w

, which shows that (a) is satis�ed.

Similarly (b) holds since h _w

�

0

�

i = h _w

�

i = hw

�

0

�

i = hw

�

i.

10 Conclusion

This paper should be seen as a �rst step to provide an abstract framework for

the combination of constraint languages and constraint solvers. We have in-

troduced the notion \admissible amalgamated product" in order to capture|

in an abstract algebraic setting|our intuition of what a combined solution
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form u 2 W or hyi (with y 2 Y ) are not modi�ed. The new system '

0

is a

system of word equations. To each variable v, we assign its licensed alphabet

F

v

:= fy; hyi 2 E

v

g [ f _w;w < vg [ fcg.

Each system '

0

, with a �xed licensed alphabet F

v

for each variable v, is

one output system. Again, the proof of Lemma 9.6 is complete when we show

that Algorithm 4 is complete and sound.

Lemma 9.7 (Completeness of Algorithm 4)

If the input system 
(~x

1

; ~v

1

; : : : ; ~x

k

; ~v

k

) of Algorithm 4, with given sets D

v

,

has a solution in L

h


(Y )

�

, then there exists a solvable output system.

Proof. Suppose that '(~x

1

; ~v

1

; : : : ; ~x

k

; ~v

k

), with given setsD

v

, has a solution �.

In Step 1 of Algorithm 4 we assign to each variable v the new set of licensed

stabilizers E

v

:= fx;x is a stabilizer occurring in v

�

g. Since � solves the

input system we have E

v

� D

v

, for all variables v. Furthermore, we de�ne

v < w i� v

�

is a proper subtree of w

�

. Obviously, \<" is a partial ordering

and v < w implies that E

v

� E

w

. Thus our choices are admissible and de�ne

a unique output system of Algorithm 4.

The solution � assigns to each variable v a list v

�

= hm

1

; : : : ;m

k

i. We

shall distinguish three types of elements. Elements m

i

of type 1 have the

form y where hyi 2 E

v

. Elements m

j

of type 2 are the lists which have the

form w

�

, for some variable w 2 W . Note that in this case E

w

� E

v

and

w < v, by de�nition of <. Hence _w 2 F

v

, by de�nition of F

v

. Elements of

type 3 are lists of another form. We de�ne a projection � on lists that leaves

each element m

i

of type 1 �xed, maps each element m

i

of the form w

�

(type

2) to the constant m

0

i

:= _w and maps elements m

i

of type 3 to the constant

m

0

i

:= c. Let us assign to each variable v the new value v

�

0

:= �(v

�

) =

�(hm

1

; : : : ;m

k

i) = hm

0

1

; : : : ;m

0

k

i. We have seen that each letter m

0

i

is in the

licensed alphabet F

v

of v.

Consider an equation v = l

1

� � � � � l

s

of 
. We have v

�

= l

�

1

� � � � � l

�

s

und thus v

�

0

= �(v

�

) = �(l

�

1

) � � � � � �(l

�

s

). Take the corresponding equation

v = l

0

1

�� � ��l

0

s

of 


0

. In order to prove that �

0

solves the equation we show that

�(l

�

i

) = l

0

i

�

0

, for 1 � i � s. If l

i

has the form hwi, then l

0

i

�

0

= l

0

i

= h _wi = �(l

�

i

).

If l

i

has the form hyi, for some urelement y, then l

0

i

�

0

= l

0

i

= l

i

= l

�

i

= �(l

�

0

i

).

In the remaining case, l

0

i

= l

i

= u is a variable and �(l

�

i

) = �(u

�

) = u

�

0

= l

0

i

�

0

.

Thus �

0

is a solution of the constrained output system.

Lemma 9.8 (Soundness of Algorithm 4)

If an output system 


0

of Algorithm 4, with licensed alphabet F

v

for each
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It is simple to see that the limit of each sequence ( _w

�

n

)

n�1

de�nes a unique

non-wellfounded hereditarily �nite nested list over the set of urelements Y ,

which we take to be the value of _w under � . Furthermore, we de�ne c

�

:=

c

�

= h i. Note that (1) and (2) guarantee that hyi 2 E

w

, for all urelements y

occurring in _w

�

. If _w occurs in v

�

0

, then E

w

� E

v

� D

v

, by de�nition of F

v

.

It follows that � := �

0

� � assigns licensed values to each variable v. Thus (a)

is satis�ed. Since w

�

= w

�

0

�

= _w

��

= _w

�

also (b) is satis�ed.

9.2 Nested, hereditarily �nite wellfounded lists

The domain L

h


(Y ) of nested, hereditarily �nite wellfounded lists over Y

contains all ordered, �nite trees where the topmost node has label \h i" (re-

presenting a list constructor of variable �nite arity), each node that has at

least one successor has label \h i", and leaves have label y 2 Y or \h i".

Atom set X, signature �, formulas, and operations (lists construction, con-

catenation) are as before.

Lemma 9.6 Validity of positive sentences over L

h


(Y )

�

is decidable.

Proof. To prove the lemma, we must show, as before, that it is decidable

if a system of equations '(~x

1

; ~v

1

; : : : ; ~x

k

; ~v

k

) has a solution in L

�

h


(Y ) such

that the value of each variable v occurring in ~v

i

belongs to the stable hull of

X

1;i

(where X

1;i

denotes the set of all atoms occurrig in ~x

1

; : : : ; ~x

i

, for each

i, 1 � i � k). Equations have the form v = l

1

� � � � � l

s

(s � 1), where the

arguments l

i

are variables, or atoms of the form hyi, or lists of the form hwi,

where w is a variable. We assign to each variable v of ~v

i

its \set of licensed

stabilizers" D

v

:= X

1;i

.

Algorithm 4

The input is the constraint system '(~x

1

; ~v

1

; : : : ; ~x

k

; ~v

k

) with given sets of

licensed stabilizers D

v

, for each variable v occurring in the system. Let W

denote the set of variables occurring in 
.

Step 1: For each v 2 W , choose a new set of licensed stabilizers E

v

� D

v

.

In addition, choose a partial ordering < on W such that v < w implies

E

v

� E

w

.

Step 2: Let c be a new constant. In each equation v = l

1

� � � � � l

k

of


, replace every element l

i

of the form hwi by the new element l

0

i

:= h _wi,

introducing a new constant _w for each variable w. The elements l

i

of the
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equation of 


0

. In order to prove that �

0

solves the equation we show that

�(l

�

i

) = l

0

i

�

0

, for 1 � i � s. If l

i

has the form hwi, then l

0

i

�

0

= l

0

i

= h _wi = �(l

�

i

).

If l

i

has the form hyi, for some urelement y, then l

0

i

�

0

= l

0

i

= l

i

= l

�

i

= �(l

�

i

).

In the remaining case, l

0

i

= l

i

= u is a variable and �(l

�

i

) = �(u

�

) = u

�

0

= l

0

i

�

0

.

Thus �

0

is a solution of the constrained output system.

Lemma 9.5 (Soundness of Algorithm 3)

If an output system 


0

of Algorithm 3, with licensed alphabet F

v

for each

variable v in 


0

, has a solution, then the input system 
 has a solution in

L

hfnwl

(Y )

�

.

Proof. Suppose that �

0

is a solution of 


0

that assigns to each variable v 2 W

a word over F

v

= fy; hyi 2 E

v

g [ f _w;E

w

� E

v

g [ fcg, its licensed alphabet.

Let v = l

1

�� � � � l

s

be an equation of 
, let v = l

0

1

�� � �� l

0

s

be the corresponding

equation of 


0

. We have

v

�

0

= l

0

1

�

0

� � � � � l

0

s

�

0

:

In order to �nd an admissible solution � of the input system 
, we shall give

an assignment � that maps each element of f _wjw 2 Wg [ fcg to an element

of L

hfnwl

(Y ) and leaves urelements y 2 Y �xed. The mapping � will be

identi�ed with its homomorphic extension on nested (non-wellfounded) lists

with urelements in Y [ f _wjw 2Wg [ fcg. Thus we obtain v

�

0

�

= l

0

1

�

0

�

� � � � �

l

0

s

�

0

�

. Hence, in order to show that � := �

0

�� is a solution of the input system


 it su�ces to prove (a) that each atom hyi occurring in the value w

�

of a

variable w is always licensed by D

w

, and (b) that h _wi

�

0

�

(= h _wi

�

) = hwi

�

,

for all w 2 W .

Let us now start with the de�nition of � . Consider the mapping

� :

8

>

<

>

:

_w 7! w

�

0

forw 2 W;

y 7! y fory 2 Y;

c 7! h i empty list.

We identify � with its homomorphic extension on the set of nested non-

wellfounded lists with urelements in Y [

_

f _wjw 2 Wg [ fcg. Let n � 1

be a natural number, and suppose that (1) hyi 2 E

w

, for all urelements y

occurring in _w

�

n

, and that (2) E

u

� E

w

for all dotted variables _u occurring

in _w

�

n

. We assume that (1) and (2) hold for all w 2 W . From the de�nition

of � and from the choice of the licensed alphabets F

w

it follows that (1) and

(2) hold for each value w

�

n+1

as well.
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argument l

i

of the form hwi (for w 2 W ) by the new argument l

0

i

:= h _wi. The

arguments l

i

of the form u 2 W or hyi (with y 2 Y ) are not modi�ed. The

resulting system 


0

is a system of word equations since all symbols occurring

as elements of lists are constants (of the form _w or y 2 Y ). To each variable

v 2 W , we assign its licensed alphabet

F

v

:= fyjhyi 2 E

v

g [ f _wjE

w

� E

v

g [ fcg:

Each system 


0

, with �xed licensed alphabet F

v

for each variable v, is one

output system.

Each output system can be considered as a system 


0

of word equations,

where for each variable v a �nite alphabet F

v

is speci�ed. A solution of such

a system is a mapping � that assigns to each variable v 2 W a word over its

licensed alphabet F

v

and solves all equations of 


0

. Solvability of these kind

of \constrained" systems of word equations is known to be decidable ([Sc90]).

Thus, in order to prove Lemma 9.3 it su�ces to show that Algorithm 3 is

sound and complete.

Lemma 9.4 (Completeness of Algorithm 3)

If the input system 
(~x

1

; ~v

1

; : : : ; ~x

k

; ~v

k

) of Algorithm 3, with given sets D

v

,

has a solution in L

hfnwl

(Y )

�

, then there exists a solvable output system.

Proof. Suppose that 
(~x

1

; ~v

1

; : : : ; ~x

k

; ~v

k

), with given sets of licensed stabili-

zers D

v

, has a solution �. In Step 1 of Algorithm 3 we assign to each variable

v the new set of licensed stabilizers E

v

:= fx 2 X;x occurs in v

�

g. Since

� solves the input system we have E

v

� D

v

, for all variables v. Thus our

choice is admissible and de�nes a unique output system.

The solution � assigns to each variable v a list v

�

= hm

1

; : : : ;m

k

i. Let

us distinguish three types of elements. Elements m

i

of type 1 have the form

y where hyi 2 E

v

. Elements m

i

of type 2 are the lists which have the form

w

�

, for some variable w 2 W . Note that in this case E

w

� E

v

and _w 2 F

v

,

by de�nition of F

v

. Elements of type 3 are lists of another form. We de�ne

a projection � on lists that leaves each element m

i

of type 1 �xed, maps

each element m

i

of the form w

�

(type 2) to the constant m

0

i

:= _w, and maps

elementsm

i

of type 3 to the constant m

0

i

:= c. Let us assign to each variable

v the new value v

�

0

:= �(v

�

) = �(hm

1

; : : : ;m

k

i) = hm

0

1

; : : : ;m

0

k

i. We have

seen that each letter m

0

i

is in the licensed alphabet F

v

of v.

Consider an equation v = l

1

� � � � � l

s

of 
. Since v

�

= l

�

1

� � � � � l

�

s

we have

v

�

0

= �(v

�

) = �(l

�

1

) � � � � � �(l

�

s

). Let v = l

0

1

� � � � � l

0

s

be the corresponding
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quanti�er free positive matrix 


1

. The equations that represent the atomic

subformulae of 


1

have the form v = l

1

�� � ��l

s

(s � 1) where v is a variable and

the arguments l

i

are either variables or they have the form hwi, where w is a

variable. The formula '

1

may obtained by introducing new equations u = l,

where u is always a new variable that is existentially quanti�ed immediately

in front of the actual quanti�er free matrix. Let us assume that '

1

has the

form 8~u

1

9~v

1

: : :8~u

k

9~v

k




1

(~u

1

; ~v

1

; : : : ; ~u

k

; ~v

k

); where 


1

is quanti�er free.

Our next aim is to apply Lemma 9.1. For each i, 1 � i � k, let ~x

i

be

an arbitrary, but �xed sequence of distinct atoms of length j~u

i

j, such that

distinct sequences ~x

i

and ~x

j

do not have common elements. Let X

1;i

denote

the set of all atoms occurring in the sequences ~x

1

; : : : ; ~x

i

(i = 1; : : : ; k). By

Lemma 9.1, we have to ask if 


1

(~x

1

; ~v

1

; : : : ; ~x

k

; ~v

k

) has a solution such that

the value of each variable v occurring in ~v

i

belongs to the stable hull of X

1;i

.

By assumption, 


1

(~x

1

; ~v

1

; : : : ; ~x

k

; ~v

k

) is a positive Boolean combination of

equations. These new equations are \partially evaluated", which means that

the universally quanti�ed variables u of '

1

have been replaced by atoms.

Thus the new equations have the form l

0

= l

1

� � � � � l

s

(s � 1), where l

0

may be an atom or a variable, and the remaining arguments l

i

are either

variables, or atoms, or lists of the form hwi, where w is a variable or an

atom. All atoms are in X

1;k

. Without loss of generality we may assume that




1

is just a system (i.e., a conjunction) of equations. To simplify the following

arguments we consider an equivalent system 


2

where each equation has the

form v = l

1

�� � � � l

s

(s � 1), where the arguments l

i

are variables, or atoms of

the form hyi, or lists of the form hwi, where w is a variable. As we indicated

above, such a system can be reached by introducing new equations.

Let us now assign to each variable v of ~v

i

its \set of licensed stabilizers"

D

v

:= X

1;i

. For the remaining variables v occurring in 
 := 


2

we de�ne

D

v

:= X

1;k

. We shall now give a non-deterministic algorithm, consisting of

two steps.

Algorithm 3

The input is a system of equations 
(~x

1

; ~v

1

; : : : ; ~x

k

; ~v

k

), with given sets of

licensed stabilizers D

v

, for each variable v occurring in the system. Let W

be the set of variables occurring in 
.

Step 1: We choose a new set of licensed stabilizers E

v

� D

v

, for each

v 2 W .

Step 2: We introduce a new constant _w for each w 2 W , and one addi-

tional new constant c. In each equation v = l

1

� � � � � l

s

of 
, we replace every
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Looking at the second condition of the lemma, one sees that a positive sent-

ence can be reduced to an existential positive sentence where the universally

quanti�ed variables are replaced by atoms (i.e., free constants), and addi-

tional restrictions are imposed on the values of the existentially quanti�ed

variables. For this reason, it is often not hard to extend decision procedures

for the existential positive theory of an SC-structure to a decision procedure

for the full positive theory.

In the next two subsections this way of proceeding will be used to prove

that the positive theories of the two domains of nested, heriditarily �nite

wellfounded or non-wellfounded lists (compare Examples 4.9 (6)) are deci-

dable. Similar proofs show that the positive theories of the two domains

of nested, heriditarily �nite wellfounded or non-wellfounded sets (compare

Examples 4.9 (4), (5)) are decidable.

Corollary 9.2 Simultaneous free amalgamated products have a decidable po-

sitive theory if the components are non-ground rational feature structures

with arity, �nite or rational tree algebras, or nested, heriditarily �nite well-

founded or non-wellfounded sets, or nested, heriditarily �nite wellfounded or

non-wellfounded lists, and if the signatures of the components are disjoint.

9.1 Nested, hereditarily �nite non-wellfounded lists

For the convenience of the reader, let us recall some notation. Let Y denote

a countably in�nite set of \urelements". The domain L

hfnwl

(Y ) of nested,

hereditarily �nite non-wellfounded lists over Y contains all ordered, rational

13

trees where the topmost node has label \h i" (representing a list constructor

of variable �nite arity), each node that has at least one successor has label

\h i", and leaves have label y 2 Y or \h i". Let X = fhyi; y 2 Y g denote the

atom set. As operations we consider concatenation \�" and (singleton-) list

construction h�i : l 7! hli. Accordingly, formulas are built over the signature

� := f�; h�ig. Expressions h�i(t) will be written in the form hti, and letters

u; v; w; : : : denote variables of the language.

Lemma 9.3 Validity of positive sentences over L

hfnwl

(Y )

�

is decidable.

Proof. Let '

0

be a positive �-sentence. In order to decide if '

0

holds in

L

hfnwl

(Y )

�

, we shall �rst compute an equivalent sentence '

1

of a particular

form. The sentence '

1

starts with a mixed quanti�er pre�x, followed by a

13

A �nite or in�nite tree is rational if it has only a �nite number of distinct substrees.
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9 Applications

The prerequisite for combining constraint solvers with the help of our decom-

position algorithms is that validity of arbitrary positive sentences is decidable

in both components (Theorems 7.1 and 8.3). If we leave the realm of free

structures, not many results are known that show that the positive theory of

a particular SC-structure is decidable. Nevertheless, two SC-structures that

we mentioned in our list of examples 4.9 are known to have a decidable full

�rst order theory:

� The �rst order theory of the algebra of rational trees|like the theory

of the algebra of �nite trees|is decidable [Mah88].

12

� The �rst order theory of the structure of rational feature trees with arity

(compare Examples 4.9, (7)) is decidable. The decidability result has

been obtained for the ground structure [BaT94] by giving a complete

axiomatization. But it is simple to see that all axioms hold in the non-

ground structure as well. Thus, ground and non-ground variant are

elementary equivalent, which implies that the �rst order theory of the

non-ground structure is decidable, too.

In general, the problem of deciding validity of existential positive sentences

and the problem of deciding validity of arbitrary positive sentences in a given

structure can be quite di�erent. For the case of SC-structures, however, the

following variant of Lemma 4.13 shows that the di�erence is not drastic.

Lemma 9.1 Let (A

�

;M; X) be an SC-structure, let

8~u

1

9~v

1

: : : 8~u

k

9~v

k

'(~u

1

; ~v

1

; : : : ; ~u

k

; ~v

k

)

be a positive �-sentence, and let, for each i; 1 � i � k, ~x

i

be an arbitrary (but

�xed) sequence of length j~u

i

j of distinct atoms such that distinct sequences

~x

i

and ~x

j

do not have common elements. Let X

1;i

denote the set of all

atoms occurring in the sequences ~x

1

; : : : ; ~x

i

(i = 1; : : : ; k). Then the following

conditions are equivalent:

1. A

�

j= 8~u

1

9~v

1

: : :8~u

k

9~v

k

'(~u

1

; ~v

1

; : : : ; ~u

k

; ~v

k

),

2. there exist ~e

1

2 SH

A

M

(X

1;1

); : : : ; ~e

k

2 SH

A

M

(X

1;k

) such that

A

�

j= '(~x

1

; ~e

1

; : : : ; ~x

k

; ~e

k

).

12

Maher considers ground tree algebras, but over possibly in�nite signatures. Therefore

his result can be lifted to the non-ground case by treating variables as constants.
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Proposition 8.2 A

�[�

1

j= '

1

if, and only if, there exists an output triple

(�; �; �) such that A

�

j= �, B

�

j= �, and T (�; X) j= �, where � consists of

the Skolem functions introduced in Phase 1 and 2 of the algorithm.

Proof. As before, let \
" denote the free amalgamated product of two

strong SC-structures, as constructed in Section 6.1. Assume that A

�[�

1

'

A

�


 B

�

j= '

1

. By Lemma 8.1 and Theorem 6.10, this implies that (A

�




B

�

) 
 T (�

1

; X) ' A

�


 (B

�


 T (�

1

; X)) j= '

0

1

, where '

0

1

is the formula

obtained from '

1

by Skolemization. Let 9~u

1




1

be one of the disjuncts in '

0

1

satis�ed by A

�


(B

�


T (�

1

; X)). Since the decomposition algorithm is cor-

rect, one of the output pairs (�; '

2

) generated by applying the decomposition

algorithm to 9~u

1




1

satis�es A

�

j= � and B

�


 T (�

1

; X) j= '

2

.

We have shown in Proposition 3.6 that T (�

1

; X) 
 T (�

2

; X) ' T (�

1

[

�

2

; X). Applying Lemma 8.1 and Theorem 6.10 a second time, we obtain

(B

�


 T (�

1

; X)) 
 T (�

2

; X) ' B

�


 T (�

1

[ �

2

; X) j= '

0

2

, where '

0

2

is the

positive existential sentence that is obtained from '

2

via Skolemization. The

decomposition algorithm, applied to '

0

2

, thus yields an output pair (�; �) at

the end of Phase 2 such that B

�

j= � and T (�

1

[ �

2

; X) j= �.

It is easy to see that all arguments used during this proof also apply in

the other direction.

The proposition shows that decidability of the positive theory of the free

amalgamated product A

�


B

�

can be reduced to decidability of the positive

theories of A

�

, B

�

, and of an absolutely free term algebra T (�; X). It is

well-known that the whole �rst-order theory of absolutely free term algebras

is decidable [Mal71, Mah88, CL89].

Theorem 8.3 If (A

�

;M; X) and (B

�

;N ; X) are strong SC-structures over

disjoint signatures, then the (full) positive theory of the free amalgamated

product A

�


 B

�

is decidable, provided that the positive theories of A

�

and

of B

�

are decidable.

In connection with the Theorems 6.10 and 6.6, this provides the basis

for constraint solving in the combination of any �nite number of strong SC-

structures.

Theorem 8.4 If (A

�

1

1

;M

1

; X); : : : ; (A

�

n

n

;M

n

; X) are strong SC-structures

over disjoint signatures, then the (full) positive theory of A

�

1

1


 � � � 
A

�

n

n

is

decidable, provided that the positive theories of all structures A

�

i

i

are decida-

ble (1 � i � n).
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(p4) Terms f

j

(b

1

; : : : ; b

j�1

) are distinct from all their arguments b

�

.

Now, (p1) and (p2) can be used to show part (b) of Condition 2 of

Lemma 4.13. By de�nition of the bijections h

1

and g

1

, the h

1

-image of B

1

n

Y

1

is in X

1

, and thus f

A

1

i

(a

1

; : : : ; a

i�1

) = h

1

(f

i

(g

1

(a

1

); : : : ; g

1

(a

i�1

))) 2

X

1

by (p2). This shows that the elements f

A

1

i

(a

1

; : : : ; a

i�1

) of the sequence

are in fact atoms, i.e., elements of X

1

. All these atoms are di�erent because

of (p1). Indeed, since h

1

is a bijection, (p1) implies

f

A

1

i

(a

1

; : : : ; a

i�1

) = h

1

(f

i

(g

1

(a

1

); : : : ; g

1

(a

i�1

))) 6=

h

1

(f

j

(g

1

(a

1

); : : : ; g

1

(a

j�1

))) = f

A

1

j

(a

1

; : : : ; a

j�1

)

for all i 6= j.

To prove (c), we must show that (for all i; 1 < i � k) f

A

1

i

(a

1

; : : : ; a

i�1

)

is not an element of Stab

M

1

(a

1

) [ : : : [ Stab

M

1

(a

i�1

). Let b

1

; : : : ; b

i�1

be

the images of a

1

; : : : ; a

i�1

under the bijection g

1

, and let m be the mini-

mal number such that fa

1

; : : : ; a

i�1

g � A

m

. Obviously, this implies that

Stab

M

1

(a

1

) [ : : : [ Stab

M

1

(a

i�1

) �

S

m

j=0

X

j

.

First, we consider the case where the sequence a

1

; : : : ; a

i�1

contains an

element a

j

2 A

m

n(A

m�1

[X

m

). Then b

j

= g

1

(a

j

) is an element of Y

m+1

. Pro-

perty (p3) yields f

i

(b

1

; : : : ; b

i�1

) 62 B

m

[ Y

m+1

, and thus f

A

1

i

(a

1

; : : : ; a

i�1

) =

h

1

(f

i

(b

1

; : : : ; b

i�1

)) 62 A

m

[ X

m+1

. Hence f

A

1

i

(a

1

; : : : ; a

i�1

) 62

S

m

j=0

X

j

�

A

m

[X

m+1

, and we are done.

Otherwise, the sequence a

1

; : : : ; a

j�1

contains a non-zero number of ele-

ments of X

m

(these will be called atoms of type 1), and possibly some ele-

ments of A

m�1

. The latter elements are stabilized by atoms in

S

m�1

j=0

X

j

(which will be called atoms of type 2). Recall that g

1

(X

m

) = B

m�1

n(B

m�2

[

Y

m�1

). By (p3), f

i

(b

1

; : : : ; b

i�1

) 62 B

m�2

[Y

m�1

, and thus f

A

1

i

(a

1

; : : : ; a

i�1

) =

h

1

(f

i

(b

1

; : : : ; b

i�1

)) 62 A

m�2

[ X

m�1

. This implies that f

A

1

i

(a

1

; : : : ; a

i�1

) is

di�erent from all atoms of type 2. In addition, (p4) says that f

i

(b

1

; : : : ; b

i�1

) is

di�erent from all its arguments b

1

; : : : ; b

i�1

. Consequently, f

A

1

i

(a

1

; : : : ; a

i�1

)

is distinct from all its arguments a

1

; : : : ; a

i�1

, and thus from all atoms of type

1. This completes the proof that Condition 2 of Lemma 4.13 is satis�ed.

Applying the lemma, we obtain

A

�[�

1

j= 8u

1

9v

1

: : :8u

k

9v

k

'(u

1

; v

1

; : : : ; u

k

; v

k

):

Since 
 = 8u

1

9v

1

: : : 8u

k

9v

k

'(u

1

; v

1

; : : : ; u

k

; v

k

) is a pure �-formula, and

since A

�

and A

�

1

are isomorphic, this shows A

�

j= 
.

Correctness of Algorithm 2 is an easy consequence of this lemma.
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8u

1

9v

1

: : :8u

k

9v

k

'(u

1

; v

1

; : : : ; u

k

; v

k

). Skolemization yields the existential

formula 


0

= 9v

1

: : : 9v

k

'(f

1

; v

1

; f

2

(v

1

); v

2

; : : : ; f

k

(v

1

; : : : ; v

k�1

); v

k

). Thus, �

consists of k distinct new Skolem functions f

1

; f

2

; : : : ; f

k

having the arities

0; 1; : : : ; k � 1, respectively.

First, assume that A

�

j= 
. The structures A

�

and A

�

1

are isomorphic,

and thus

(�) A

�

1

j= 8u

1

9v

1

: : : 8u

k

9v

k

'(u

1

; v

1

; : : : ; u

k

; v

k

):

Suppose that the Skolem symbols f

1

; f

2

; : : : ; f

k

are interpreted by the func-

tions f

A

1

1

; : : : ; f

A

1

k

on the carrier A

1

of A

�[�

1

. Because of (�) there exists

a

1

2 A

1

such that A

�[�

1

j= 8u

2

9v

2

: : :8u

k

9v

k

'(f

A

1

1

; a

1

; u

2

; v

2

; : : : ; u

k

; v

k

).

Iterating this argument, we obtain a

1

; : : : ; a

k

2 A

1

such that

A

�[�

1

j= '(f

A

1

1

; a

1

; f

A

1

2

(a

1

); a

2

; : : : ; f

A

1

k

(a

1

; : : : ; a

k�1

); a

k

):

This yields

A

�[�

1

j= 9v

1

: : : 9v

k

'(f

1

; v

1

; f

2

(v

1

); v

2

; : : : ; f

k

(v

1

; : : : ; v

k�1

); v

k

);

i.e., A

�[�

1

j= 


0

.

For the converse direction, assume that

A

�[�

1

j= 9v

1

: : : 9v

k

'(f

1

; v

1

; f

2

(v

1

); v

2

; : : : ; f

k

(v

1

; : : : ; v

k�1

); v

k

):

There exist a

1

; : : : ; a

k

2 A

1

such that

(��) A

�[�

1

j= '(f

A

1

1

; a

1

; f

A

1

2

(a

1

); a

2

; : : : ; f

A

1

k

(a

1

; : : : ; a

k�1

); a

k

);

where f

A

1

1

; : : : ; f

A

1

k

again denote the functions on A

1

that interpret the

symbols f

1

; : : : ; f

k

.

Our goal is to apply Lemma 4.13. Obviously, (��) shows that the sequence

f

A

1

1

; a

1

; f

A

1

2

(a

1

); a

2

; : : : ; f

A

1

k

(a

1

; : : : ; a

k�1

); a

k

satis�es part (a) of Condition 2

of Lemma 4.13. It remains to be shown that part (b) and (c) are valid as

well. The proof will depend on the following four properties, which are an

easy consequence of the fact that B

�

1

is an absolutely free �-algebra. Note

that the carrier of B

�

1

consists of the �-terms over the set (of variables) Y

1

,

i.e., the symbols f

i

interpret themselves.

(p1) Elements of B

1

of the form f

i

(b

1

; : : : ; b

i�1

) and f

j

(b

0

1

; : : : ; b

0

j�1

) are

distinct if i 6= j.

(p2) Elements of B

1

of the form f

i

(b

1

; : : : ; b

i�1

) are elements of B

1

n Y

1

.

(p3) If b 2 B

m+1

n B

m

, then f

j

(: : : ; b; : : :) 62 B

m

[ Y

m+1

.
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into positive �-sentences � and positive (� [ �

1

)-sentences '

2

. Thus, the

output of Phase 1 is a �nite set of pairs (�; '

2

).

Phase 2

In the second phase, '

2

is treated exactly as '

1

was treated before, app-

lying Skolemization to universally quanti�ed variables and Steps 1{4 of the

decomposition algorithm a second time. Now we consider the two (disjoint)

signatures � and � = �

1

[ �

2

, where �

2

contains the Skolem functions that

are introduced by the Skolemization step of Phase 2. We obtain output pairs

of the form (�; �), where � is a positive sentence over the signature � and �

is a positive sentence over the signature �. Together with the corresponding

sentence � (over the signature �) we thus obtain triples (�; �; �) as output.

For each of these triple, the sentence � is now tested for validity in A

�

,

� is tested for validity in B

�

, and � is tested for validity in the absolutely

free term algebra T (�; X) with countably many generators X, i.e., the free

algebra over X for the class of all �-algebras.

10

We have seen that this

structure is a strong SC-structure with atom set X (Examples 4.9 (3)).

Correctness of Algorithm 2

We want to show that the original sentence '

1

is valid i� for one of the

output triples, all three components are valid in the respective structures.

The proof depends on the following lemma, which exhibits an interesting

connection between Skolemization and free amalgamation with an absolutely

free algebra.

Lemma 8.1 Let A

�

be a strong SC-structure with atom set X, and let 


be a positive �-sentence. Suppose that the existential positive sentence 


0

is

obtained from 
 via Skolemization of the universally quanti�ed variables in


, introducing the set of Skolem function symbols �. Let B

�

:= T (�; X), and

let A

�[�

1

be the free amalgamated product of A

�

and B

�

as constructed in

Section 6. Then A

�

j= 
 if, and only if, A

�[�

1

j= 


0

.

Proof. In order to avoid notational overhead, we assume without loss of

generality that existential and universal quanti�ers alternate in 
,

11

i.e., 
 =

10

Note that � contains no predicate symbols.

11

Obviously one can introduce additional quanti�ers over variables not occurring in 


to generate an equivalent formula of this form.
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8 Combining Constraint Solvers for Strong

SC-Structures: The General Positive Case

For strong SC-structures (A

�

;M; X) and (B

�

;N ; X), the structure A

�


B

�

is the free amalgamated product of A

�

and B

�

over X with respect to

Adm(A

�

;B

�

). In this case, our combination method is not restricted to

existential positive sentences. The main idea is to transform positive sent-

ences (with arbitrary quanti�er pre�x) into existential positive sentences by

Skolemizing the universally quanti�ed variables. In principle, the decompo-

sition algorithm for positive sentences is now applied twice to decompose

the input sentence into three positive sentences �; �; �, whose validity must

respectively be decided in A

�

, B

�

, and the absolutely free term algebra over

the Skolem functions (see Algorithm 2 below). The restriction to strong

SC-structures is necessary since Theorem 6.10 (associativity of free amalga-

mation) is used in the proof of correctness, and this theorem was proved only

for the case of strong SC-structures.

Algorithm 2

The input is a positive sentence '

1

in the mixed signature �[�. We assume

that '

1

is in prenex normalform, and that the matrix of '

1

is in disjunctive

normalform. The algorithm proceeds in two phases.

Phase 1

Via Skolemization of universally quanti�ed variables,

9

'

1

is transformed into

an existential sentence '

0

1

over the signature � [ � [ �

1

. Here �

1

is the

signature consisting of all the new Skolem function symbols that have been

introduced.

Suppose that '

0

1

is of the form 9~u

1

(

W




1;i

), where the 


1;i

are conjunctions

of atomic formulae. Obviously, '

0

1

is equivalent to

W

(9~u

1




1;i

), and thus it is

su�cient to decide validity of the sentences 9~u

1




1;i

. Each of these sentences

is used as input for the decomposition algorithm.

The atomic formulae in 


1;i

may contain symbols from the two (disjoint)

signatures � and � [ �

1

. In Phase 1 we treat the sentences 9~u

1




1;i

by

means of Steps 1{4 of the decomposition algorithm, �nally splitting them

9

We are Skolemizing universally quanti�ed variables since we are interested in validity

of the sentence and not in satis�ability.
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Part (a) of this condition is satis�ed since B

�[�

1

j= 9~u

1;�




2;�

(�(~u

2

); ~u

1;�

),

and thus

B

�

1

j= 9~u

1;�




2;�

(

~

b

1

; ~y

1

; : : : ;

~

b

k

; ~y

k

; ~u

1;�

):

Part (b) of the condition is satis�ed since the �-images of all shared variables

in ~u

2

are distinct according to our choice in the variable identi�cation step.

Finally, part (c) is satis�ed because of our choice of the linear ordering.

In fact, any component b of

~

b

j

belongs to B

j�1

, and is thus an element

of SH

B

1

N

1

(

S

j�1

i=0

Y

i

)

�

. For this reason, Stab

N

1

(

~

b

j

) �

S

j�1

i=0

Y

i

, whereas the

components of ~y

j

are in Y

j

. Thus, the components of ~y

j

are not contained in

Stab

N

1

(

~

b

1

) [ : : : [ Stab

N

1

(

~

b

j�1

) �

S

j�1

i=0

Y

i

.

This shows that we can apply Lemma 4.13, which yields B

�

' B

�

1

j= �.

In order to show A

�

j= �, we use the fact that h

1

: B

�[�

! A

�[�

is a

(� [ �)-isomorphism. Thus, B

�[�

1

j= 9~u

1;�




2;�

(�(~u

2

); ~u

1;�

) implies that

A

�

1

j= 9~u

1;�




2;�

(h

1

(�(~u

2

)); ~u

1;�

).

Let ~x

i

:= h

1

(

~

b

i

) = h

1

(�(~v

i

)) and ~a

i

:= h

1

(~y

i

) = h

1

(�(~w

i

)) (for i =

1; : : : ; k). We claim that the sequence ~x

1

;~a

1

; : : : ; ~x

k

;~a

k

satis�es Condition 2

of Lemma 4.13 for ' = 9~u

1;�




2;�

and A

�

1

.

Obviously, A

�

1

j= 9~u

1;�




2;�

(h

1

(�(~u

2

)); ~u

1;�

) implies that part (a) of the

condition is satis�ed. To see that part (b) is satis�ed, recall that, by our

choice in the variable identi�cation step, the �-images of di�erent shared

variables in ~u

2

are distinct. Since h

1

is a bijection, this holds for their

(h

1

� �)-images as well.

Part (c) is an easy consequence of the following properties, which in turn

are consequences of the de�nition of the bijection h

1

and and its inverse g

1

:

1. Since the components of

~

b

1

are in B

0

, we know that the components of

~x

1

are in X

0

[X

1

.

2. For 1 < i � k, the components of

~

b

i

are in B

i�1

n (B

i�2

[ Y

i�1

). Thus,

the components of ~x

i

are in X

i

.

3. For 1 � i � k, the components of ~y

i

are in Y

i

. Thus, the components

of ~a

i

are in A

i�1

n (A

i�2

[ Y

i�1

).

Thus, we can apply Lemma 4.13, and obtain A

�

' A

�

1

j= �.
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Lemma 7.3 If A

�[�

1

j= '

0

then A

�

j= � and B

�

j= � for some output pair

(�; �).

Proof. Assume that A

�[�

1

' B

�[�

1

j= 9~u

0




0

. Obviously, this implies

that B

�[�

1

j= 9~u

1

(9~u

1;�




1;�

(~u

1

; ~u

1;�

) ^ 9~u

1;�




1;�

(~u

1

; ~u

1;�

)), i.e., B

�[�

1

sa-

tis�es the sentence that is obtained after Step 2 of the decomposition algo-

rithm. Thus there exists an assignment � : V ! B

1

such that B

�[�

1

j=

9~u

1;�




1;�

(�(~u

1

); ~u

1;�

) ^ 9~u

1;�




1;�

(�(~u

1

); ~u

1;�

).

In Step 3 of the decomposition algorithm, we identify two shared variables

u and u

0

of ~u

1

if, and only if, �(u) = �(u

0

). With this choice, B

�[�

1

j=

9~u

1;�




2;�

(�(~u

2

); ~u

1;�

) ^ 9~u

1;�




2;�

(�(~u

2

); ~u

1;�

), and all components of �(~u

2

)

are distinct.

In Step 4, a shared variable u in ~u

2

is labeled with � if �(u) 2 B

1

n

(

S

1

i=1

Y

i

), and with � otherwise. In order to choose the linear ordering on

the shared variables, we partition the range B

1

of � as follows:

B

0

; Y

1

; B

1

n (B

0

[ Y

1

); Y

2

; B

2

n (B

1

[ Y

2

); Y

3

; B

3

n (B

2

[ Y

3

); : : :

Now, let ~v

1

; ~w

1

; : : : ; ~v

k

; ~w

k

be a re-ordering of the tuple ~u

2

such that the

following holds:

1. The tuple ~v

1

contains exactly the shared variables whose �-images are

in B

0

.

2. For all i; 1 � i � k, the tuple ~w

i

contains exactly the shared variables

whose �-images are in Y

i

.

3. For all i; 1 < i � k, the tuple ~v

i

contains exactly the shared variables

whose �-images are in B

i�1

n (B

i�2

[ Y

i�1

).

Obviously, this implies that the variables in the tuples ~w

i

have label �,

whereas the variables in the tuples ~v

i

have label �. Note that some of these

tuples may be of dimension 0. The re-ordering determines the linear ordering

we choose in Step 4. Let

� = 8~v

1

9~w

1

: : :8~v

k

9~w

k

9~u

1;�




2;�

� = 9~v

1

8~w

1

: : :9~v

k

8~w

k

9~u

1;�




2;�

be the output pair that is obtained by these choices. Let ~y

i

:= �(~w

i

) 2

~

Y

and

~

b

i

:= �(~v

i

) 2

~

B

1

. We claim that the sequence

~

b

1

; ~y

1

; : : : ;

~

b

k

; ~y

k

satis�es

Condition 2 of Lemma 4.13 for ' = 9~u

1;�




2;�

and B

�

1

.

8

8

Note that, in contrast to the formulation of the lemma, our sequence starts with a

tuple of structure elements instead of atoms. The lemma applies nevertheless since in its

formulation we did not assume that all tuples have a non-zero dimension.
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Proof. Since A

�

and A

�

1

are isomorphic �-structures (see the points

(a0) and (b0) in the amalgamation construction), we know that A

�

1

j= �.

Accordingly, we also have B

�

1

j= �. Moreover, since A

�[�

1

and B

�[�

1

are

isomorphic, we know that A

�

1

j= �, i.e., the �-reduct of the (�[�)-structure

A

�[�

1

satis�es �. This means

(�) A

�

1

j= 8~v

1

9~w

1

: : :8~v

k

9~w

k

9~u

1;�




2;�

(~v

1

; ~w

1

; : : : ; ~v

k

; ~w

k

; ~u

1;�

);

(��) A

�

1

j= 9~v

1

8~w

1

: : :9~v

k

8~w

k

9~u

1;�




2;�

(~v

1

; ~w

1

; : : : ; ~v

k

; ~w

k

; ~u

1;�

):

Because of the existential quanti�cation over ~v

1

in (��), there exist elements

~a

1

2

~

A

1

such that

(� � �) A

�

1

j= 8~w

1

: : :9~v

k

8~w

k

9~u

1;�




2;�

(~a

1

; ~w

1

; : : : ; ~v

k

; ~w

k

; ~u

1;�

):

Because of the universal quanti�cation over ~v

1

in (�) we have

A

�

1

j= 9~w

1

: : :8~v

k

9~w

k

9~u

1;�




2;�

(~a

1

; ~w

1

; : : : ; ~v

k

; ~w

k

; ~u

1;�

):

Because of the existential quanti�cation over ~w

1

in this formula there exist

elements ~c

1

2

~

A

1

such that

A

�

1

j= 8~v

2

9~w

2

: : : 8~v

k

9~w

k

9~u

1;�




2;�

(~a

1

;~c

1

; ~v

2

; ~w

2

; : : : ; ~v

k

; ~w

k

; ~u

1;�

):

Because of the universal quanti�cation over ~w

1

in (� � �) we have

A

�

1

j= 9~v

2

8~w

2

: : : 9~v

k

8~w

k

9~u

1;�




2;�

(~a

1

;~c

1

; ~v

2

; ~w

2

; : : : ; ~v

k

; ~w

k

; ~u

1;�

):

Iterating this argument, we thus obtain

A

�

1

j= 9~u

1;�




2;�

(~a

1

;~c

1

; : : : ;~a

k

;~c

k

; ~u

1;�

);

A

�

1

j= 9~u

1;�




2;�

(~a

1

;~c

1

; : : : ;~a

k

;~c

k

; ~u

1;�

):

It follows that

A

�[�

1

j= 9~u

1;�




2;�

(~a

1

;~c

1

; : : : ;~a

k

;~c

k

; ~u

1;�

)^9~u

1;�




2;�

(~a

1

;~c

1

; : : : ;~a

k

;~c

k

; ~u

1;�

):

Obviously, this implies that

A

�[�

1

j= 9~u

2

(9~u

1;�




2;�

^ 9~u

1;�




2;�

) ;

i.e., one of the sentences obtained after Step 3 of the algorithm holds in

A

�[�

1

. It is easy to see that this implies that A

�[�

1

j= '

0

.

Next, we show completeness of the decomposition algorithm, i.e., if the

input sentence was valid then there exists a valid output pair.

48



choosing an element of the class as representative, and replacing in the

sentence all occurrences of variables of the class by this representative.

Quanti�ers for replaced variables are removed.

Let 9~u

2

(9~u

1;�




2;�

^ 9~u

1;�




2;�

) denote one of the sentences obtained by

Step 3.

Step 4: Choose signature labels and ordering.

We choose a label � or � for every (shared) variable in ~u

2

, and a linear

ordering < on these variables.

For each of the choices made in Step 3 and 4, the algorithm yields a pair

(�; �) of sentences as output.

Step 5: Generate output sentences.

The sentence 9~u

2

(9~u

1;�




2;�

^ 9~u

1;�




2;�

) is split into two sentences

� = 8~v

1

9~w

1

: : :8~v

k

9~w

k

9~u

1;�




2;�

and

� = 9~v

1

8~w

1

: : :9~v

k

8~w

k

9~u

1;�




2;�

:

Here ~v

1

~w

1

: : : ~v

k

~w

k

is the unique re-ordering of ~u

2

along <. The varia-

bles ~v

i

(~w

i

) are the variables with label � (label �).

Thus, the overall output of the algorithm is a �nite set of pairs of sent-

ences. Note that the sentences � and � are positive formulae, but they need

no longer be existential positive formulae.

Obviously, Theorem 7.1 follows immediately as soon as we have shown

that the decomposition algorithm is sound and complete.

7.2 Correctness of the Decomposition Algorithm

This proof is very similar to the one given in [BaS94a] for the combination

of constraint solvers in free structures. First, we show soundness of the

algorithm, i.e., if one of the output pairs is valid then the original sentence

was valid.

Lemma 7.2 A

�[�

1

j= '

0

if A

�

j= � and B

�

j= � for some output pair

(�; �).
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(3) Now alien subterms occurring in atomic formulae are successively

replaced by new variables. For example, assume that s = t is an

equation in the current formula, and that s contains the alien subterm

s

1

. Let u be a variable not occurring in the current formula, and let s

0

be the term obtained from s by replacing s

1

by u. Then the original

equation is replaced by (the conjunction of) the two equations s

0

= t

and u = s

1

. The quanti�er pre�x is extended by adding an existential

quanti�cation for u. The equation s

0

= t keeps the label of s = t, and

the label of u = s

1

is the signature of the top symbol of s

1

. Relational

atomic formulae with alien subterms are treated analogously. This

process is iterated until all atomic formulae occurring in the conjunctive

matrix are pure. It is easy to see that this is achieved after �nitely many

iterations.

Step 2: Remove atomic formulae without label.

Equations between variables occurring in the conjunctive matrix are

removed as follows: If u = v is such an equation then one removes 9u

from the quanti�er pre�x and u = v from the matrix. In addition, every

occurrence of u in the remaining matrix is replaced by v. This step is

iterated until the matrix contains no equations between variables.

Let '

1

be the new sentence obtained this way. The matrix of '

1

can

be written as a conjunction 


1;�

^ 


1;�

, where 


1;�

is a conjunction of all

atomic formulae from '

1

with label �, and 


1;�

is a conjunction of all atomic

formulae from '

1

with label �. There are three di�erent types of variables

occurring in '

1

: shared variables occur both in 


1;�

and in 


1;�

; �-variables

occur only in 


1;�

; and �-variables occur only in 


1;�

. Let ~u

1;�

be the tuple

of all �-variables, ~u

1;�

be the tuple of all �-variables, and ~u

1

be the tuple of

all shared variables.

7

Obviously, '

1

is equivalent to the sentence

9~u

1

(9~u

1;�




1;�

^ 9~u

1;�




1;�

) :

The next two steps of the algorithm are nondeterministic, i.e., a given

sentence is transformed into �nitely many new sentences. Here the idea is

that the original sentence is valid i� at least one of the new sentences is valid.

Step 3: Variable identi�cation.

Consider all possible partitions of the set of all shared variables. Each

of these partitions yields one of the new sentences as follows. The va-

riables in each class of the partition are \identi�ed" with each other by

7

The order in these tuples can be chosen arbitrarily.
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7.1 The decomposition algorithm

The decomposition algorithm described below decomposes a positive existen-

tial (�[�)-sentence '

0

into a �nite set of pairs (�; �), where � is a positive

�-sentence and � is a positive �-sentence. This algorithm coincides with the

one described in [BaS94a], where it has been used in the restricted context

of combination problems for free structures.

Before we can describe the algorithm, we must introduce some notation.

In the following, V denotes an in�nite set of variables used by the �rst order

languages under consideration. Let t be a (�[�)-term. This term is called

pure i� it is either a �-term or a �-term. An equation is pure i� it is an

equation between pure terms of the same signature. A relational formula

p[s

1

; : : : ; s

m

] is pure i� s

1

; : : : ; s

m

are pure terms of the signature of p. Now

assume that t is a non-pure term whose topmost function symbol is in �.

A subterm s of t is called alien subterm of t i� its topmost function symbol

belongs to � and every proper superterm of s in t has its top symbol in �.

Alien subterms of terms with top symbol in � are de�ned analogously. For

a relational formula p[s

1

; : : : ; s

m

], alien subterms are de�ned as follows: if s

i

has a top symbol whose signature is di�erent from the signature of p then

s

i

itself is an alien subterm; otherwise, any alien subterm of s

i

is an alien

subterm of p[s

1

; : : : ; s

m

].

Algorithm 1

Let '

0

be a positive existential (�[�)-sentence. Without loss of generality,

we may assume that '

0

has the form 9~u

0




0

, where 


0

is a conjunction of ato-

mic formulae. Indeed, since existential quanti�ers distribute over disjunction,

a sentence 9~u

0

(


1

_ 


2

) is valid i� 9~u

0




1

or 9~u

0




2

is valid.

Step 1: Transform non-pure atomic formulae.

(1) Equations s = t of 


0

where s and t have topmost function symbols

belonging to di�erent signatures are replaced by (the conjunction of)

two new equations u = s; u = t, where u is a new variable. The

quanti�er pre�x is extended by adding an existential quanti�cation for

u.

(2) As a result, we may assign a unique label � or � to each atomic

formula that is not an equation between variables. The label of an

equation s = t is the signature of the topmost function symbols of s

and/or t. The label of a relational formula p[s

1

; : : : ; s

m

] is the signature

of p.
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g

B

i

�B

23

�h

B

23

�B

123

is a �

i

-homomorphism from B

i

to B

123

that extends g (for

i = 2; 3).

It remains to be shown that these extensions are unique. Assume that

f

B

i

�B

123

: B

i

! B

123

are �

i

-homomorphisms extending g (i = 2; 3). Then

f

B

i

�B

123

� k

B

123

�B

23

: B

i

! B

23

is a �

i

-homomorphism extending g

0

= g �

k

B

123

�B

23

, and thus uniqueness of g

B

i

�B

23

with this property implies f

B

i

�B

123

�

k

B

123

�B

23

= g

B

i

�B

23

. It follows that

g

B

i

�B

23

� h

B

23

�B

123

= f

B

i

�B

123

� k

B

123

�B

23

� h

B

23

�B

123

= f

B

i

�B

123

;

which yields the desired uniqueness result.

To sum up, we have shown that Theorem 3.8 can be applied, which yields:

Theorem 6.10 Free amalgamation of strong SC-structures with disjoint si-

gnatures over the same atom set is associative.

7 Combining Constraint Solvers for arbitrary

SC-Structures: The Existential Positive

Case

Let (A

�

;M; X) and (B

�

;N ; X) be two SC-structures over disjoint signa-

tures � and �; let A

�


 B

�

= A

�[�

1

denote their amalgamated product,

as constructed in the previous section. In this section we shall prove the

following result.

Theorem 7.1 The existential positive theory of A

�


 B

�

is decidable, pro-

vided that the positive theories of A

�

and of B

�

are decidable.

Note that this theorem holds for arbitrary SC-structures, i.e., it is not

required that A

�

and B

�

are strong. In this general setting, however, it is

not yet clear in which sense the amalgamated product A

�


 B

�

obtained

by our construction plays a unique rôle among all possible closures of the

amalgamation base (X;A

�

;B

�

). For strong SC-structures we know that

A

�


 B

�

is the free amalgamated product.
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amalgamated product, there exists a unique homomorphism h

B

23

�C

: B

23

!

C such that

g

B

i

�C

= h

B

i

�B

23

� h

B

23

�C

(i = 2; 3): (11)

We show that the restriction of h

B

23

�C

to X coincides with g. In fact,

h

B

23

�C

j

X

= (h

B

2

�B

23

� h

B

23

�C

)j

X

= g

B

2

�C

j

X

= g:

The �rst identity holds because of (10), the second because of (11), and the

third because g

B

2

�C

extends g. This shows that there exists an extension of

g to a homomorphism from B

23

to C.

In order to prove C 2 Adm(B

1

;B

2


 B

3

), it remains to be shown that

this extension is unique. Thus, assume that f

B

23

�C

: B

23

! C is another

homomorphism that extends g. Because of (10), we can deduce that the

composition h

B

2

�B

23

� f

B

23

�C

is a homomorphism of B

2

into C that extends

g. Since g

B

2

�C

is unique with this property, we obtain

g

B

2

�C

= h

B

2

�B

23

� f

B

23

�C

: (12)

Similarly, it can be shown that

g

B

3

�C

= h

B

3

�B

23

� f

B

23

�C

: (13)

Because h

B

23

�C

is the unique homomorphism satisfying (11), the identities

(12) and (13) imply f

B

23

�C

= h

B

23

�C

.

Lemma 6.9 fB

1


 (B

2


B

3

); (B

1


 B

2

)
B

3

g � Adm(B

1

;B

2

;B

3

):

Proof. We show B

1


 (B

2


B

3

) 2 Adm(B

1

;B

2

;B

3

). (The other inclusion

follows by symmetry.) As before, we denote B

1


 (B

2


 B

3

) by B

123

and

B

2


 B

3

by B

23

.

Let g : X ! B

123

be a mapping. We know that B

123

= B

1


 (B

2




B

3

) is an element of Adm(B

1

;B

2


 B

3

), and thus there exists a unique �

1

-

homomorphism g

B

1

�B

123

: B

1

! B

123

that extends g.

As a (�

2

[ �

3

)-structure, B

23

is isomorphic to B

123

(by property (b0) in

the construction). Let h

�

2

[�

3

B

23

�B

123

be the corresponding isomorphism, and let

k

�

2

[�

3

B

123

�B

23

be its inverse. We consider the mapping g

0

= g � k

B

123

�B

23

: X !

B

23

. Since B

23

= B

2


 B

3

is in Adm(B

2

;B

3

), there exist unique extensions

of g

0

to �

i

-homomorphisms g

B

i

�B

23

: B

i

! B

23

(for i = 2; 3). Obviously,
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X with respect to End

�[�

A

1

. Symmetrically, one can prove that every element

of B

n+1

is stabilized by a �nite subset of X with respect to End

�[�

B

1

.

Obviously, the set of admissible structures, as introduced in De�nition 6.2

above, satis�es Adm(A

�

;B

�

) = Adm(B

�

;A

�

). Thus, the amalgamation

construction is commutative. In order to show associativity, we must prove

that the assumptions of Theorem 3.8 are satis�ed.

First, we extend the de�nition of the class of admissible structures to

the case of the simultaneous amalgamation of three structures: For strong

SC-structures (B

�

i

i

;M

i

; X) (i = 1; 2; 3), the class of admissible structures,

Adm(B

1

;B

2

;B

3

), consists of all structures C

�

1

[�

2

[�

3

such that for every map-

ping g

X�C

: X ! C there exist unique homomorphisms g

�

i

B

i

�C

: B

�

i

i

! C

�

i

(i = 1; 2; 3) extending g

X�C

. As an obvious consequence of this de�nition we

obtain:

Lemma 6.7 Adm(B

1

;B

2

;B

3

) � Adm(B

1

;B

2

) \ Adm(B

2

;B

3

).

Thus, we have proved that the assumptions of Theorem 3.8 are satis�ed,

as soon as we have shown the next two lemmas.

Lemma 6.8 Adm(B

1

;B

2

;B

3

) � Adm(B

1

;B

2


B

3

) \ Adm(B

1


 B

2

;B

3

).

Proof. We show Adm(B

1

;B

2

;B

3

) � Adm(B

1

;B

2


 B

3

). (The other in-

clusion follows by symmetry.) Thus, assume that C 2 Adm(B

1

;B

2

;B

3

), and

that g : X ! C is given. By de�nition of Adm(B

1

;B

2

;B

3

), the mapping g

can uniquely be extended to homomorphisms g

B

i

�C

: B

i

! C (for i = 1; 2; 3).

Now, we apply the amalgamation construction to B

2

and B

3

, which yields

the free amalgamated product B

23

:= B

2


 B

3

. Since the common part X

of B

2

and B

3

is embedded via Id

X

, the embedding homomorphisms h

B

i

�B

23

:

B

i

! B

23

of this product satisfy h

B

2

�B

23

j

X

= h

B

3

�B

23

j

X

, i.e., their restriction

to X coincide. By construction, this restriction to X coincides with Id

X

,

which means that we have

h

B

2

�B

23

j

X

= Id

X

= h

B

3

�B

23

j

X

: (10)

By Lemma 6.7, C is also an element of Adm(B

2

;B

3

). In addition, the

embedding homomorphisms g

B

2

�C

: B

2

! C and g

B

3

�C

: B

3

! C satisfy

Id

X

� g

B

2

�C

= g

B

2

�C

j

X

= g = g

B

3

�C

j

X

= Id

X

� g

B

3

�C

, which shows that C

is an admissible amalgamated product of B

2

and B

3

. Since B

23

is the free
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n ! n + 1. Suppose that h

0

�[�

A

1

�D

and h

�[�

A

1

�D

coincide on A

n

, and that

h

0

�[�

B

1

�D

and h

�[�

B

1

�D

coincide on B

n

. For x 2 X

n+1

we have g

1

(x) 2 B

n

,

and thus h

0

�[�

A

1

�D

(x) = h

0

�[�

B

1

�D

(g

1

(x)) = h

�[�

B

1

�D

(g

1

(x)) = h

�[�

A

1

�D

(x). Thus

h

0

�[�

A

1

�D

and h

�[�

A

1

�D

also coincide on

S

n+1

i=0

X

i

. It follows from Lemma 6.4

that both homomorphisms coincide on A

n+1

. Similarly, it can be shown that

h

0

�[�

B

1

�D

and h

�[�

B

1

�D

coincide on B

n+1

.

For strong SC-structures, the amalgamation construction can be applied

iteratedly because the obtained structure is again a strong SC-structure:

Theorem 6.6 The free amalgamated product of two strong SC-structures

with common atom set X is a strong SC-structure with atom set X.

Proof. We must show that (A

�[�

1

;End

�[�

A

1

; X) is an SC-structure. If we

choose D

�[�

= A

�[�

1

, the �rst part of the previous proof shows that every

mapping h

X�A

1

: X ! A

1

can be extended to an endomorphism of A

�[�

1

.

Thus X is an atom set for A

�[�

1

. It remains to be shown that every element

a 2 A

1

is stabilized|with respect to End

�[�

A

1

|by a �nite subset of X. By

induction on n (n � 0) we shall show that every a 2 A

n

and every b 2 B

n

is stabilized|with respect to End

�[�

A

1

and End

�[�

B

1

, respectively|by a �nite

subset of X.

n = 0. Let a 2 A

0

= SH

A

1

M

1

(X). Thus a is stabilized by X = X

0

with respect to End

�

A

1

. In addition, since (A

�

1

;End

�

A

1

; X

1

) is a strong SC-

structure, a is stabilized by a �nite subset of X

1

. Both facts together imply

that the stabilizer of a with respect to End

�

A

1

is a �nite subset, say Z, of

X = X

0

. Since every (� [ �)-endomorphism is a �-endomorphism, Z also

stabilizes a with respect to End

�[�

A

1

. A symmetric argument shows that every

b 2 B

0

= SH

B

1

N

1

(X) is stabilized by a �nite subset of X = Y

0

with respect to

End

�[�

B

1

.

n! n+ 1. Suppose that every a

0

2 A

n

and every b

0

2 B

n

is stabilized|

with respect to End

�[�

A

1

and End

�[�

B

1

respectively|by a �nite subset of X.

For a 2 A

n+1

, let Z denote the stabilizer of a with respect to End

�

A

1

. Thus,

Z is �nite, and as in the case \n = 0" one can deduce Z �

S

n+1

i=0

X

i

. It is

easy to see that Z

0

:= g

1

(Z) stabilizes b := g

1

(a) with respect to End

�

B

1

,

and thus also with respect to End

�[�

B

1

. By de�nition of the mapping g

1

, we

know that Z

0

� B

n

, and thus we can apply the induction hypothesis. This

yields a �nite set R � X that stabilizes all elements of Z

0

with respect to

End

�[�

B

1

. Consequently, R stabilizes b with respect to End

�[�

B

1

. It follows

that h

1

(R) = R � X stabilizes a = h

1

(b) with respect to End

�[�

A

1

. Thus,

we have shown that every element of A

n+1

is stabilized by a �nite subset of
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From the second identity of (y) we can easily deduce that h

�

A

1

�D

is a (�[�)-

homomorphism. In fact, we already know that it is a �-homomorphism. In

addition, h

�

B

1

�D

is a �-homomorphism and g

1

is a (�[�)-homomorphism.

Thus the composition g

1

� h

�

B

1

�D

is a �-homomorphism. Accordingly, the

�rst identity of (y) implies that h

�

B

1

�D

is a (� [�)-homomorphism.

To complete Part 1 of the proof, we show the �rst identity of (y). (The

second follows by symmetry.) Let b be an element of B

1

. Thus there is an

n � 0 such that b 2 B

n

n B

n�1

. First, assume that b 2 Y

n

. By construction

of A

�[�

1

, this implies h

1

(b) 2 A

n�1

, and thus we have

h

�

A

1

�D

(h

1

(b)) = h

�

A

n�1

�D

(h

1

(b)) = h

�

B

n

�D

(b) = h

�

B

1

�D

(b):

The second identity holds by Condition 2 in the construction of the mappings

h

�

B

n

�D

and h

�

A

n

�D

, and the third follows from the de�nition of h

�

B

1

�D

.

Second, assume that b 2 B

n

n (B

n�1

[ Y

n

). In this case we have h

1

(b) =

g

�1

1

(b) 2 X

n+1

, and thus

h

�

A

1

�D

(h

1

(b)) = h

�

A

n+1

�D

(g

�1

1

(b))

= h

�

B

n

�D

(g

1

(g

�1

1

(b))) = h

�

B

n

�D

(b)

= h

�

B

1

�D

(b):

To sum up, we have shown the existence of a (�[�)-homomorphism h

�

A

1

�D

that extends g

X�D

, which completes the �rst part of the proof.

(2) In order to show uniqueness, assume that there exists a (� [ �)-

homomorphism h

0

A

1

�D

such that

h

0

�[�

A

1

�D

: A

�[�

1

! D

�[�

such that

(#

0

) Id

A

� h

0

�[�

A

1

�D

= g

�

A�D

;

(#

0

#

0

) h

1

j

B

�h

0

�[�

A

1

�D

= g

�

B�D

:

Let h

0

�[�

B

1

�D

:= h

1

� h

0

�[�

A

1

�D

. It follows that h

0

�[�

A

1

�D

= g

1

� h

0

�[�

B

1

�D

. By

induction on n we shall show that h

0

�[�

A

1

�D

and h

�[�

A

1

�D

coincide on A

n

, and

that h

0

�[�

B

1

�D

and h

�[�

B

1

�D

coincide on B

n

. This implies that h

0

�[�

A

1

�D

and

h

�[�

A

1

�D

coincide on A

1

=

S

1

n=0

A

n

.

n = 0. The conditions (#

0

) and (#

0

#

0

) imply that the restriction of

h

0

�[�

A

1

�D

to A = A

0

coincides with g

A�D

, and the restriction of h

0

�[�

B

1

�D

to

B = B

0

coincides with g

B�D

. Thus, both coincide with g

X�D

on X. Since,

by Lemma 6.4, there exist unique extensions of g

X�D

to homomorphisms

A

0

! D and B

0

! D, we are done.
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n! n+1: Assume that mappings h

�

A

n

�D

and h

�

B

n

�D

satisfying Conditions

1{4 are given. We de�ne mappings f

�

n+1

:

S

n+1

i=0

X

i

! D and f

�

n+1

:

S

n+1

i=0

Y

i

!

D by

f

�

n+1

(x) =

(

h

�

B

n

�D

(g

1

(x)) if x 2 X

n+1

h

�

A

n

�D

(x) else,

f

�

n+1

(y) =

(

h

�

A

n

�D

(h

1

(y)) if y 2 Y

n+1

h

�

B

n

�D

(y) else.

By Lemma 6.4, there exists a unique extension of f

�

n+1

to a �-homomorphism

h

�

A

n+1

�D

: A

n+1

! D, and a unique extension of f

�

n+1

to a �-homomorphism

h

�

B

n+1

�D

: B

n+1

! D. In addition, these homomorphisms extend h

�

A

n

�D

and

h

�

B

n

�D

, respectively. Thus Conditions 1, 3 and 4 are again satis�ed. Without

loss of generality, we prove Condition 2 only for h

�

A

n+1

�D

. For x 2 X

n+1

, the

condition is satis�ed by de�nition of f

�

n+1

(x). For x 2

S

n

i=0

X

i

we have

h

�

A

n+1

�D

(x) = f

�

n+1

(x) = h

�

A

n

�D

(x). By assumption, we know h

�

A

n

�D

(x) =

h

�

B

n�1

�D

(g

1

(x)). Looking back at the de�nition of A

�[�

1

, we see that g

1

(x)

is an element of B

n�1

. By assumption, we know that h

�

B

n�1

�D

and h

�

B

n

�D

agree on B

n�1

.

This completes the construction of the mappings h

�

A

n

�D

and h

�

B

n

�D

(n �

0). Because of Condition 3, we know that (h

�

A

n

�D

)

n�0

and (h

�

B

n

�D

)

n�0

are

ascending chains of mappings. Thus there exist limit mappings h

�

A

1

�D

:

A

1

! D and h

�

B

1

�D

: B

1

! D. Obviously, the restriction of h

�

A

1

�D

to A

n

coincides with h

�

A

n

�D

(resp. the restriction of h

�

B

1

�D

to B

n

coincides with

h

�

B

n

�D

).

It is easy to see that h

A

1

�D

is a �-homomorphism and h

B

1

�D

is a �-

homomorphism. For instance, assume that f is an n-ary function symbol in

�, and that a

1

; : : : ; a

n

2 A

1

=

S

1

i=0

A

i

. Thus, there exists k � 0 such that

a

1

; : : : ; a

n

2 A

k

. By Lemma 4.3, we know that A

k

= SH

�

M

1

(

S

k

i=0

X

i

) is a

substructure of A

1

, and thus f

A

1

(a

1

; : : : ; a

n

) 2 A

k

. Since h

�

A

1

�D

coincides

with h

�

A

k

�D

on A

k

, we obtain

h

A

1

�D

(f

A

1

(a

1

; : : : ; a

n

)) = h

A

k

�D

(f

A

k

(a

1

; : : : ; a

n

))

= f

D

(h

A

k

�D

(a

1

); : : : ; h

A

k

�D

(a

n

))

= f

D

(h

A

1

�D

(a

1

); : : : ; h

A

1

�D

(a

n

)):

It remains to be shown that h

A

1

�D

and h

B

1

�D

are even (� [�)-homo-

morphisms. In order to show this we prove the following claim:

(y) h

1

� h

�

A

1

�D

= h

�

B

1

�D

and g

1

� h

�

B

1

�D

= h

�

A

1

�D

:
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�

�

��

@

@

@R

Q

Q

Q

Q

Qs

�

�

�

�

�3

-

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�:

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Xz

X

A

�

B

�

(A
 B)

�[�

D

�[�

Id

Id

Id

h

1

g

A�D

g

B�D

!

case Id

A

�h

A

1

�D

is a homomorphism from A

�

to D

�

that extends g

X�D

, and

h

1

j

B

�h

A

1

�D

is a homomorphism from B

�

to D

�

that extends g

X�D

. Thus

(#) and (##) are immediate consequences of (�) and (��), respectively.

In order to construct an appropriate homomorphism h

�[�

A

1

�D

: A

�[�

1

!

D

�[�

, we de�ne mappings

h

�

A

n

�D

: A

n

! D

h

�

B

n

�D

: B

n

! D

that satisfy the following properties:

1. h

�

A

n

�D

is a �-homomorphism and h

�

B

n

�D

is a �-homomorphism.

2. If n > 0 then, for all x 2

S

n

i=1

X

i

,

h

�

A

n

�D

(x) = h

�

B

n�1

�D

(g

1

(x));

and, for all y 2

S

n

i=1

Y

i

,

h

�

B

n

�D

(y) = h

�

A

n�1

�D

(h

1

(y)):

3. If n > 0 then the restriction of h

�

A

n

�D

to A

n�1

yields h

�

A

n�1

�D

and the

restriction of h

�

B

n

�D

to B

n�1

yields h

�

B

n�1

�D

.

4. For all x 2 X, h

�

A

n

�D

(x) = g

X�D

(x) = h

�

B

n

�D

(x).

n = 0: Recall that X

0

= X = Y

0

. By Lemma 6.4, there exist unique

extensions of g

X�D

to homomorphisms

h

�

A

0

�D

: A

0

! D;

h

�

B

0

�D

: B

0

! D:

Obviously, Conditions 1{4 are satis�ed.
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Since there is a unique homomorphism with this property, namely f

�

A

n

�D

, it

coincides with this homomorphism.

(3) and (4) follow by symmetry of our construction.

Theorem 6.5 If (A

�

;M; X) and (B

�

;N ; X) are strong SC-structures over

disjoint signatures, then A

�[�

1

is the free amalgamated product of A

�

and

B

�

over X with respect to the class Adm(A

�

;B

�

) of admissible structures

de�ned above.

Proof. We have already shown that A

�[�

1

is an admissible amalgamated

product of A

�

and B

�

. Recall that Id

A

is the embedding homomorphism

h

A�A

1

: A

�

! A

�[�

1

, and h

1

is the embedding homomorphism h

B�A

1

:

B

�

! A

�[�

1

.

In order to show that this admissible amalgamated product is free, assume

that D

�[�

2 Adm(A

�

;B

�

) is another admissible amalgamated product, i.e.,

there are homomorphic embeddings g

�

A�D

: A

�

! D

�

and g

�

B�D

: B

�

! D

�

such that h

X�A

� g

�

A�D

= h

X�B

� g

�

B�D

. The embeddings h

X�A

and h

X�B

of the amalgamation base (X;A

�

;B

�

) are the identity on X, which implies

that g

A�D

and g

B�D

coincide on X. Let g

X�D

denote the restriction of both

g

A�D

and g

B�D

to X. Because D

�[�

was assumed to be admissible, we know

that

(�) every extension of g

X�D

to a homomorphism A

�

! D

�

coincides with

g

�

A�D

,

(��) every extension of g

X�D

to a homomorphism B

�

! D

�

coincides with

g

�

B�D

.

We must show that there exists a unique homomorphism

h

�[�

A

1

�D

: A

�[�

1

! D

�[�

such that

(#) Id

A

� h

�[�

A

1

�D

= g

�

A�D

;

(##) h

1

j

B

�h

�[�

A

1

�D

= g

�

B�D

:

This situation is illustrated in the �gure. In the �rst part of the proof we

show that such a homomorphism h

A

1

�D

exists. In the second part, we show

uniqueness.

(1) It is su�cient to show that the mapping g

X�D

can be extended to a

homomorphism h

�[�

A

1

�D

: A

�[�

1

! D

�[�

. In fact, it is easy to see that in this
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g

X�A

1

. It remains to be shown that this extension is unique. It is easy to see

that for any g

0

B�A

1

extending g

X�A

1

, the composition g

0

B�B

1

:= g

0

B�A

1

�g

1

is a homomorphism extending g

X�B

1

= g

X�A

1

� g

1

. By property (b3), this

implies g

0

B�A

1

� g

1

= g

B�B

1

, and thus g

0

B�A

1

= g

B�B

1

� h

1

= g

B�A

1

.

The lemma shows that, for strong SC-structures, our construction yields

an admissible amalgamated product with respect to Adm(A

�

;B

�

). Before

we can prove that this product is in fact the free amalgamated product, we

need one more technical lemma.

Lemma 6.4 Assume that our construction is applied to strong SC-structures

(A

�

;M; X) and (B

�

;N ; X). Let D

�[�

2 Adm(A

�

;B

�

) be an admissible

structure.

1. For every mapping f

n

:

S

n

i=0

X

i

! D there exists a unique homomor-

phism f

�

A

n

�D

: A

�

n

! D

�

that extends f

n

.

2. Moreover, if f

n+1

:

S

n+1

i=0

X

i

! D extends f

n

, then f

�

A

n+1

�D

extends

f

�

A

n

�D

.

3. For every mapping g

n

:

S

n

i=0

Y

i

! D there exists a unique homomor-

phism f

�

B

n

�D

: B

�

n

! D

�

that extends g

n

.

4. Moreover, if g

n+1

:

S

n+1

i=0

Y

i

! D extends g

n

, then g

�

B

n+1

�D

extends

g

�

B

n

�D

.

Proof. (1) For n = 0, the existence of a unique homomorphisms f

�

A

0

�D

extending the given mappings f

0

: X = X

0

! D follows from the de�nition

of Adm(A

�

;B

�

).

For n > 0, let � : X !

c

X

n

:=

S

n

i=0

X

i

be an arbitrary bijection. By

property (a4), � has a unique extension �

�

to an isomorphism from A

�

=

SH

A

1

M

1

(X) to A

�

n

= SH

A

1

M

1

(

c

X

n

). Because of the de�nition of Adm(A

�

;B

�

),

the mapping � �f

n

has a unique extension to a homomorphism f

�

A�D

: A

�

!

D

�

. Thus, f

�

A

n

�D

:= �

�1

�

� f

�

A�D

is a homomorphism from A

�

n

to D

�

that

extends f

�

n

.

In order to show uniqueness, assume that

b

f

�

A

n

�D

: A

�

n

! D

�

is another

extension of f

n

. It follows that �

�

�

b

f

�

A

n

�D

extends � � f

n

, and thus f

�

A�D

=

�

�

�

b

f

�

A

n

�D

. Obviously, this implies �

�1

�

� f

�

A�D

=

b

f

�

A

n

�D

.

(2) Suppose that f

n+1

:

S

n+1

i=0

X

i

! D extends f

n

:

S

n

i=0

X

i

! D. The

restriction of f

�

A

n+1

�D

to A

�

n

is a homomorphism A

�

n

! D

�

that extends f

n

.
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With this de�nition, the mappings h

1

and g

1

are inverse isomorphisms bet-

ween the (�[�)-structures A

�[�

1

and B

�[�

1

. For this reason, it is irrelevant

whether we take A

�[�

1

or B

�[�

1

as the combined structure de�ned by the

construction. In the following, we shall use A

�[�

1

as combined structure,

and denote it by A

�


B

�

.

Lemma 6.1 A

�


B

�

closes the amalgamation base (X;A

�

;B

�

), i.e., A

�




B

�

is an amalgamated product of A

�

and B

�

.

Proof. Obviously, Id

A

gives the embedding homomorphism from A

�

to

A

�[�

1

. The restriction of h

1

to B

�

yields an embedding homomorphism

from B

�

to A

�[�

1

. Note that the embedding homomorphisms are even 1{

1 in this case. These homomorphisms agree on the shared substructure X

since h

1

(x) = x for all x 2 X by construction. Thus, (A

�[�

1

; Id

A

; h

1

j

B

) is

an amalgamated product of A

�

and B

�

.

6.2 Free amalgamation of strong SC-structures

In order to obtain a better characterization of what the above construction

generates, we restrict our attention to strong SC-structures. First, we must

de�ne a class of admissible structures. To this purpose we use the algebraic

condition of Proposition 3.2:

De�nition 6.2 For strong SC-structures (A

�

;M; X) and (B

�

;N ; X), the

class of admissible structures, Adm(A

�

;B

�

), consists of all structures C

�[�

such that for every mapping g

X�C

: X ! C there exist unique homomor-

phisms g

�

A�C

: A

�

! C

�

and g

�

B�C

: B

�

! C

�

extending g

X�C

.

Lemma 6.3 Let (A

�

;M; X) and (B

�

;N ; X) be strong SC-structures. Then

A

�


 B

�

is in the chosen class Adm(A

�

;B

�

) of admissible structures.

Proof. Let g

X�A

1

: X ! A

1

be a mapping. By property (a3), there

exists a unique

6

homomorphism g

A�A

1

: A

�

! A

�

1

that extends g

X�A

1

. By

property (b3), the mapping g

X�B

1

:= g

X�A

1

� g

1

: X ! B

1

has a unique

extension to a �-homomorphism g

B�B

1

: B

�

! B

�

1

. Thus, g

B�A

1

:=

g

B�B

1

� h

1

: B

�

! A

�

1

is a �-homomorphism. Restricted to X, g

B�A

1

is equal to to g

X�A

1

� g

1

� h

1

= g

X�A

1

, i.e., it is in fact an extension of

6

The assumption \(A

�

;M;X) strong" is necessary to have uniqueness.
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; = X

n+2

\

S

n+1

i=0

X

i

. In addition, the cardinalities must satisfy jY

n+2

j =

jA

n+1

n (A

n

[X

n+1

)j and jX

n+2

j = jB

n+1

n (B

n

[ Y

n+1

)j, and the remaining

complements Y

1

n

S

n+2

i=0

Y

i

and X

1

n

S

n+2

i=0

X

i

must be countably in�nite. Let

�

n+1

: Y

n+2

! A

n+1

n (A

n

[X

n+1

);

�

n+1

: X

n+2

! B

n+1

n (B

n

[ Y

n+1

)

be arbitrary bijections. We de�ne h

n+1

:= �

n+1

[ g

�1

n

[ h

n

and g

n+1

:=

�

n+1

[ h

�1

n

[ g

n

. In more detail:

h

n+1

(b) =

8

>

<

>

:

�

n+1

(b) for b 2 Y

n+2

h

n

(b) for b 2 B

n�1

[ Y

n

[ Y

n+1

g

�1

n

(b) for b 2 B

n

n (B

n�1

[ Y

n

)

and

g

n+1

(a) =

8

>

<

>

:

�

n+1

(a) for a 2 X

n+2

g

n

(a) for a 2 A

n�1

[X

n

[X

n+1

h

�1

n

(a) for a 2 A

n

n (A

n�1

[X

n

):

Without loss of generality we may assume (for notational convenience) that

the construction eventually covers all atoms in X

1

and Y

1

; in other words,

we assume that

S

1

i=0

X

i

= X

1

and

S

1

i=0

Y

i

= Y

1

, and thus

S

1

i=0

A

i

= A

1

and

S

1

i=0

B

i

= B

1

. We de�ne the limit mappings

h

1

:=

1

[

i=0

h

i

: B

1

! A

1

;

g

1

:=

1

[

i=0

g

i

: A

1

! B

1

:

It is easy to see that h

1

and g

1

are bijections that are inverse to each other:

in fact, given b 2 B

1

there is a minimal n such that b 2 B

n�1

. By (�) it

follows that g

n

(h

n

(b)) = b and thus g

1

(h

1

(b)) = b. Accordingly, we obtain

h

1

(g

1

(a)) = a for all a 2 A

1

.

The bijections h

1

and g

1

may be used to carry the �-structure of B

�

1

to A

�

1

and to carry the �-structure of A

�

1

to B

�

1

: let f (f

0

) be an n-ary

function symbol of � (�) and a

1

; : : : ; a

n

2 A

1

(b

1

; : : : ; b

n

2 B

1

). We de�ne

f

A

1

(a

1

; : : : ; a

n

) := h

1

(f

B

1

(g

1

(a

1

); : : : ; g

1

(a

n

)));

f

0

B

1

(b

1

; : : : ; b

n

) := g

1

(f

0

A

1

(h

1

(b

1

); : : : ; h

1

(b

n

))):

Let p (q) be an n-ary predicate symbol of � (�) and a

1

; : : : ; a

n

2 A

1

(b

1

; : : : ; b

n

2 B

1

). We de�ne

p

A

1

[a

1

; : : : ; a

n

] :() p

B

1

[g

1

(a

1

); : : : ; g

1

(a

n

)];

q

B

1

[b

1

; : : : ; b

n

] :() q

A

1

[h

1

(b

1

); : : : ; h

1

(b

n

)]:

34



morphisms" h

X�A

: X ! A

�

and h

X�B

: X ! B

�

are given by Id

X

. In

order to close this amalgamation base, we shall �rst embed A

�

and B

�

into

isomorphic superstructures. Let (A

�

1

;M

1

; X

1

) be an SC-superstructure of

(A

�

;M; X) satisfying (a0){(a4) of Theorem 5.4. Analogously, there exists an

SC-superstructure (B

�

1

;N

1

; Y

1

) of (B

�

;N ; X) such that the corresponding

properties (b0){(b4) hold.

Starting from A

�

0

:= A

�

and B

�

0

:= B

�

, we shall make a zig-zag con-

struction that de�nes an ascending tower of �-structures A

�

n

, and similarly

an ascending tower of �-structures B

�

n

. These structures are connected by

bijective mappings h

n

and g

n

. The amalgamated product is obtained as the li-

mit structure, which obtains its functional and relational structure from both

towers by means of the limits of the mappings h

n

and g

n

. Let X

0

:= Y

0

:= X.

n = 0: Consider A

�

0

= A

�

= SH

A

1

M

1

(X

0

)

�

. We interpret the \new"

elements in A

0

nX

0

as atoms in B

�

1

. For this purpose, select a subset Y

1

� Y

1

such that Y

1

\ Y

0

= ;, jY

1

j = jA

0

n X

0

j, and the remaining complement

Y

1

n (Y

0

[ Y

1

) is countably in�nite. Choose any bijection h

0

: Y

0

[ Y

1

! A

0

where h

0

j

Y

0

= Id

Y

0

.

Consider B

�

0

= B

�

= SH

B

1

N

1

(Y

0

)

�

. As for A

0

, we interpret the \new"

elements in B

0

n Y

0

as atoms in A

1

. Select a subset X

1

� X

1

such that

X

1

\X

0

= ;, jX

1

j = jB

0

nY

0

j and the remaining complementX

1

n (X

0

[X

1

)

is countably in�nite. Choose any bijection g

0

: X

0

[X

1

! B

0

where g

0

j

X

0

=

Id

X

0

.

n ! n + 1: Suppose that the structures A

�

n

= SH

A

1

M

1

(

S

n

i=0

X

i

)

�

and

B

�

n

= SH

B

1

N

1

(

S

n

i=0

Y

i

)

�

and the atom sets X

n+1

� (X

1

n

S

n

i=0

X

i

) and Y

n+1

�

(Y

1

n

S

n

i=0

Y

i

) are already de�ned. We assume that the complements X

1

n

S

n+1

i=0

X

i

and Y

1

n

S

n+1

i=0

Y

i

are in�nite. In addition, we assume that bijections

h

n

: B

n�1

[ Y

n

[ Y

n+1

! A

n

g

n

: A

n�1

[X

n

[X

n+1

! B

n

are de�ned such that

(�) g

n

(h

n

(b)) = b for b 2 B

n�1

[ Y

n

h

n

(g

n

(a)) = a for a 2 A

n�1

[X

n

(��) h

n

(Y

n+1

) = A

n

n (A

n�1

[X

n

)

g

n

(X

n+1

) = B

n

n (B

n�1

[ Y

n

):

Note that (��) implies that h

n

(B

n�1

[Y

n

) = A

n�1

[X

n

and g

n

(A

n�1

[X

n

) =

B

n�1

[Y

n

. We de�neA

�

n+1

:= SH

A

1

M

1

(

S

n+1

i=0

X

i

)

�

and B

�

n+1

= SH

B

1

N

1

(

S

n+1

i=0

Y

i

)

�

and select subsets Y

n+2

� Y

1

and X

n+2

� X

1

such that Y

n+2

\

S

n+1

i=0

Y

i

=
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is a homomorphism that extends g

X�A

1

. It is easy to see that there is

a 1{1 correspondence between the extensions of g

X�A

1

to homomorphisms

A

�

! A

�

1

and the extensions of g

X

0

�A

to homomorphismsA

�

0

! A

�

. Thus,

in the case of strong SC-structures, uniqueness of the extension g

A

0

�A

of

g

X

0

�A

implies uniqueness of the extension g

A�A

1

of g

X�A

1

.

(5) In order to prove (a4), assume that X

0

is a set with X � X

0

� X

1

.

Let X

0

0

:= h

A

1

�A

(X

0

). It is easy to check that a 2 A

1

is stabilized by X

0

with respect to M

1

if, and only if, h

A

1

�A

(a) 2 A is stabilized by X

0

0

with

respect to M. Thus h

A�A

1

(SH

A

M

(X

0

0

)) = SH

A

1

M

1

(X

0

). Let g : X ! X

0

be

a bijection, and de�ne g

0

: X

0

! X

0

0

by g

0

(x

0

) := h

A

1

�A

(g(h

A�A

1

(x

0

))).

It is easy to see that there is a 1{1 correspondence between the extensions

of g to isomorphisms SH

A

1

M

1

(X) ! SH

A

1

M

1

(X

0

) and the extensions of g

0

to isomorphisms SH

A

M

(X

0

) ! SH

A

M

(X

0

0

). Thus, (a4) follows from (4) of

Lemma 5.3.

6 Amalgamation of Simply Combinable Struc-

tures

Our motivation for introducing the class of SC-structures was, on the one

hand, that it comprises many solution structures for interesting constraint

languages. On the other hand, SC-structures over disjoint signatures allow

for an explicit construction that closes any amalgamation base, as we shall

see below. For two strong SC-structures over disjoint signatures, this con-

struction yields the free amalgamated product of these structures. In the

general case, the resulting structure also seems to play a unique role, but

a precise characterization of this intuition has not yet been obtained. The

following construction is almost identical to the amalgamation construction

given in [BaS94a] for the case of free structures. There is just one essential

di�erence. In [BaS94a], substructures that are generated by increasing sets

of free generators are used in each step of the construction. Here, in the case

of SC-structures, stable hulls (as de�ned in De�nition 4.2) of increasing sets

of atoms must be used instead.

6.1 The amalgamation construction

Let (A

�

;M; X) and (B

�

;N ; X) be two SC-structures over disjoint signa-

tures � and �. We consider the amalgamation base (X;A

�

;B

�

), where

the common part is just the set of atoms X. Thus, the embedding \homo-
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have shown that (A

�

1

;M

1

; X

1

) is an SC-structure. As mentioned before,

(a2) holds.

(3) In order to prove (a1), it remains to be shown that A

�

= SH

A

1

M

1

(X).

We know that A

�

0

= SH

A

M

(X

0

).

First, assume that a 2 A. Since h

A�A

1

maps A

0

bijectively onto A, there

exists a

0

2 A

0

such that a = h

A�A

1

(a

0

). Now assume that m

1

and m

0

1

coincide on X. It follows that m;m

0

coincide on X

0

. In fact, let x

0

2 X

0

.

Then h

A�A

1

(x

0

) 2 X, and thus

m(x

0

) = h

A

1

�A

(m

1

(h

A�A

1

(x

0

)))

= h

A

1

�A

(m

0

1

(h

A�A

1

(x

0

)))

= m

0

(x

0

):

Thus, we know that m;m

0

coincide on A

�

0

= SH

A

M

(X

0

). It follows that

m

1

(a) = h

A�A

1

(m(h

A

1

�A

(a)))

= h

A�A

1

(m(a

0

))

= h

A�A

1

(m

0

(a

0

))

= h

A�A

1

(m

0

(h

A

1

�A

(a)))

= m

0

1

(a);

and thus we have proved a 2 SH

A

1

M

1

(X).

Second, assume that a 2 SH

A

1

M

1

(X). We show that this implies that its

image h

A

1

�A

(a) 2 SH

A

M

(X

0

) = A

�

0

. Since the restriction of h

A�A

1

to A

0

maps A

0

onto A, it follows that a = h

A�A

1

(h

A

1

�A

(a)) 2 A. Thus, assume

that m;m

0

2 M coincide on X

0

. It is easy to see that this implies that

m

1

;m

0

1

coincide on X, and thus they coincide on a 2 SH

A

1

M

1

(X). It follows

that

m(h

A

1

�A

(a)) = h

A

1

�A

(m

1

(a))

= h

A

1

�A

(m

0

1

(a))

= m

0

(h

A

1

�A

(a));

which proves h

A

1

�A

(a) 2 SH

A

M

(X

0

).

(4) In order to prove (a3), assume that g

X�A

1

: X ! A

1

is an arbitrary

mapping. There is a corresponding mapping

g

X

0

�A

: X

0

! A : x 7! h

A

1

�A

(g

X�A

1

(h

A�A

1

(x))):

By Lemma 5.3, g

X

0

�A

can be extended to a homomorphism g

�

A

0

�A

: A

�

0

!

A

�

. Now

g

�

A�A

1

: A

�

! A

�

1

: a 7! h

A�A

1

(g

A

0

�A

(h

A

1

�A

(a)))

31



function symbol, and a

1

; : : : ; a

n

2 A

1

. We de�ne the interpretation of f in

A

�

1

by

f

A

1

(a

1

; : : : ; a

n

) := h

A�A

1

(f

A

(h

A

1

�A

(a

1

); : : : ; h

A

1

�A

(a

n

))):

Let p 2 � be an m-ary predicate symbol, and a

1

; : : : ; a

m

2 A

1

. We de�ne

the interpretation of p in A

�

1

by

p

A

1

[a

1

; : : : ; a

n

] :() p

A

[h

A

1

�A

(a

1

); : : : ; h

A

1

�A

(a

n

)]:

Note that this de�nition is compatible with the given �-structure on A � A

1

since h

A

0

�A

, i.e., the restriction of h

A�A

1

to A

0

, is a �-isomorphism. With

this de�nition, the mapping h

A�A

1

becomes an isomorphism between the

�-structures A

�

1

and A

�

, and h

A

1

�A

is the inverse isomorphism.

(2) In the second part of the proof, we de�ne the monoidM

1

, show that

(A

�

1

;M

1

; X

1

) is an SC-structure, and that (a2) holds. The submonoidM

of End

�

A

induces a corresponding submonoidM

1

of End

�

A

1

as follows: For

each m 2 End

�

A

we may de�ne a corresponding endomorphism m

1

: a 7!

m

1

(a) := h

A�A

1

(m(h

A

1

�A

(a))) ofA

1

. LetM

1

be the set fm

1

j m 2 Mg.

Since

m

1

�m

0

1

(a) = h

A�A

1

(m

0

(h

A

1

�A

(h

A�A

1

(m(h

A

1

�A

(a))))))

= h

A�A

1

(m �m

0

(h

A

1

�A

(a)))

= (m �m

0

)

1

(a);

M

1

is in fact a submonoid of End

�

A

1

. As in the proof of Lemma 5.3, we can

show that the mapping m 7! m

1

is an isomorphism between the monoids

End

�

A

and End

�

A

1

. In particular, this implies that M

1

= End

�

A

1

if, and

only if, M = End

�

A

. Again, this will imply (a2) as soon as we have proved

that (A

�

1

;M

1

; X

1

) is an SC-structure.

To this purpose, we show that X

1

is an M

1

-atom set of A

�

1

. Let

g

X

1

�A

1

: X

1

! A

1

be a mapping. There is a corresponding mapping

g

X�A

: X ! A : x 7! h

A

1

�A

(g

X

1

�A

1

(h

A�A

1

(x))):

Since (A

�

;M; X) is an SC-structure, there exists an extension g

A�A

of g

X�A

to an endomorphism inM. Its image (g

A�A

)

1

is an endomorphisms inM

1

,

and it is easy to see that this endomorphism extends g

X

1

�A

1

. Thus, X

1

is

in fact an M

1

-atom set of of A

�

1

.

For a given a 2 A

1

is also straightforward to verify that the �nite set

h

A�A

1

(Stab

M

(h

A

1

�A

(a)) � X

1

stabilizes a with respect to M

1

. Thus we
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Theorem 5.4 Let (A

�

;M; X) be an SC-structure. There exists an SC-

structure (A

�

1

;M

1

; X

1

) such that:

(a0) A

�

and A

�

1

are isomorphic.

(a1) A

�

= SH

A

1

M

1

(X), X � X

1

, and X

1

nX is in�nite.

(a2) (A

�

1

;M

1

; X

1

) is strong i� (A

�

;M; X) is strong.

(a3) Every mapping X ! A

1

can be extended to a homomorphisms h

�

A�A

1

:

A

�

! A

�

1

. If (A

�

;M; X) is a strong SC-structure, then this extension

is unique.

(a4) For every X

0

such that X � X

0

� X

1

, every bijection g : X ! X

0

can

be extended to an isomorphism between SH

A

1

M

1

(X) and SH

A

1

M

1

(X

0

). If

(A

�

;M; X) is a strong SC-structure, then this extension is unique.

Proof. (1) In the �rst part of the proof, we de�ne the structure A

�

1

and show that is isomorphic to A

�

. Let X

0

be an in�nite subset of X such

that X nX

0

is in�nite, and let (A

�

0

;M

0

; X

0

) = SH

A

M

(X

0

) be the isomorphic

SC-substructure satisfying the properties stated in Lemma 5.3. Let h

A

0

�A

:

A

�

0

! A

�

be an isomorphism that extends a bijection between the atom sets

X

0

and X.

As carrier of the SC-superstructure to be constructed, we take an arbi-

trary countably in�nite superset A

1

of A such that A

1

n A is in�nite. Let

X

1

be a subset of A

1

such that

1. X � X

1

and X

1

nX is in�nite,

2. X

1

\ A = X,

3. the sets A n (A

0

[X) and A

1

n (A [X

1

) have the same cardinality.

We extend h

A

0

�A

to a bijection h

A�A

1

: A ! A

1

such that h

A�A

1

(X) =

X

1

. This is possible because of our choice of h

A

0

�A

and of X

1

. In fact,

by Lemma 4.10, A = A

0

] (X nX

0

) ] (A n (A

0

[X)) is a partitioning of A,

and our assumptions ensure that A

1

= A ] (X

1

nX) ] (A

1

n (A [X

1

)) is

a partitioning of A

1

. In addition, both X n X

0

and X

1

n X are countably

in�nite, and A n (A

0

[X) and A

1

n (A [X

1

) have the same cardinality by

assumption.

The bijection h

A�A

1

and its inverse h

A

1

�A

:= h

�1

A�A

1

can be used to

de�ne a �-structure A

�

1

on the carrier A

1

as follows: Let f 2 � be an n-ary

29



(1.3) Since Stab

M

(h

A

0

�A

(a)) is a �nite subset of X, we know that the

set h

A�A

0

(Stab

M

(h

A

0

�A

(a))) is a �nite subset of X

0

. Thus, every element

of A

0

is stabilized by a �nite subset of X

0

, which completes the proof that

(A

�

0

;M

0

; X

0

) is an SC-structure.

(2) Obviously, the third statement in Lemma 5.2 implies that the SC-

structure (A

�

0

;M

0

; X

0

) is strong i� (A

�

;M; X) is strong.

(3) Let g

X

0

�A

: X

0

! A be a mapping. We choose an arbitrary extension

g

X�A

: X ! A of g

X

0

�A

. Since X is an M-atom set, g

X�A

can be extended

to an endomorphism g

A�A

: A

�

! A

�

in M. The restriction g

A

0

�A

of g

A�A

to A

0

= SH

A

M

(X

0

) is a homomorphism between A

�

0

and A

�

that extends

g

X

0

�A

.

If (A

�

0

;M

0

; X

0

) is strong, then (A

�

;M; X) is also strong. Let h

X�X

0

:

X ! X

0

be a bijection, and let h

A�A

0

be an extension of h

X�X

0

to an

isomorphism from A

�

= SH

A

M

(X) to A

�

0

= SH

A

M

(X

0

) (see Lemma 4.6).

For all homomorphisms g

0

: A

�

0

! A

�

that extend g

X

0

�A

, the composition

h

A�A

0

� g

0

is an endomorphism of A

�

that extends the mapping h

X�X

0

�

g

X

0

�A

: X ! A. Since (A

�

;M; X) is strong, all these endomorphisms

h

A�A

0

� g

0

coincide.

5

Because h

A�A

0

is an isomorphism, this implies that

all homomorphisms g

0

extending g

X

0

�A

coincide, which yields the desired

uniqueness result.

(4) Let g

0

: X

0

! X

0

0

be a bijection, whereX

0

� X

0

0

� X. By Lemma 4.6,

g

0

can be extended to an isomorphism between A

�

0

= SH

A

M

(X

0

) and A

0�

0

:=

SH

A

M

(X

0

0

).

Suppose that (A

�

0

;M

0

; X

0

) is strong. Then (A

�

;M; X) is also strong.

Let h

X�X

0

and h

A�A

0

be de�ned as in part (3) of the proof. For all homo-

morphisms g

00

: A

�

0

! A

0�

0

that extend g

0

, the composition h

A�A

0

� g

00

is an

endomorphism ofA

�

that extends the mapping h

X�X

0

�g

0

. Since (A

�

;M; X)

is strong, all these endomorphisms h

A�A

0

� g

00

coincide, Because h

A�A

0

is an

isomorphism, this implies that all homomorphisms g

00

extending g

0

coincide.

Until now, we have seen that any countably in�nite subset X

0

of the

atom set X of an SC-structure (A

�

;M; X) is an atom set for an appropriate

isomorphic SC-substructure (A

�

0

;M

0

; X

0

) of (A

�

;M; X). In the remainder

of this section, we use this result to go in the other direction, i.e., we show

that a given SC-structure (A

�

;M; X) can be embedded into an isomorphic

SC-superstructure.

5

The assumption \(A

�

;M;X) strong" is necessary, since otherwise uniqueness only

holds for elements ofM, and we could not be sure that all g

A�A

0

� g

0

belong toM.
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and it is easy to see that H

#

� H

"

is the identity on End

�

A

, and H

"

� H

#

is

the identity on End

�

A

0

. Thus, both are isomorphisms that are inverse to each

other.

(3) SinceH

#

is bijective, the imagesM

0

ofM under H

#

is equal to End

�

A

0

i�M = End

�

A

.

Lemma 5.3 1. (A

�

0

;M

0

; X

0

) is an SC-structure.

2. (A

�

0

;M

0

; X

0

) is strong i� (A

�

;M; X) is strong.

3. Every mapping g

X

0

�A

: X

0

! A can be extended to a homomorphism

g

A

0

�A

: A

�

0

! A

�

. If (A

�

0

;M

0

; X

0

) is strong, then this extension is

unique.

4. Let X

0

0

be such that X

0

� X

0

0

� X. Every bijection g

0

: X

0

! X

0

0

can

be extended to an isomorphism between A

�

0

= SH

A

M

(X

0

) and SH

A

M

(X

0

0

).

If (A

�

0

;M

0

; X

0

) is strong, then this extension is unique.

Proof. (1.1) First, we show that X

0

is an M

0

-atom set of A

�

0

. Let

g

X

0

�A

0

: X

0

! A

0

be a mapping. There is a corresponding mapping

g

X�A

: X ! A : x 7! h

A

0

�A

(g

X

0

�A

0

(h

A�A

0

(x)):

4

Since (A

�

;M; X) is an SC-structure, there exists an extension g

A�A

of g

X�A

to an endomorphism in M. Its image (g

A�A

)

#

is an endomorphism in M

0

,

and it is easy to see that this endomorphism extends g

X

0

�A

0

.

(1.2) Second, we show that every element a of A

0

is stabilized by the set

h

A�A

0

(Stab

M

(h

A

0

�A

(a))). Letm

#

andm

0

#

be two endomorphisms inM

0

that

coincide on h

A�A

0

(Stab

M

(h

A

0

�A

(a))). For x 2 Stab

M

(h

A

0

�A

(a)) we have

m(x) = h

A

0

�A

(m

#

(h

A�A

0

(x)))

= h

A

0

�A

(m

0

#

(h

A�A

0

(x))) = m

0

(x);

which shows that m and m

0

coincide on Stab

M

(h

A

0

�A

(a)). Thus m and m

0

coincide on h

A

0

�A

(a). We obtain

m

#

(a) = h

A�A

0

(m(h

A

0

�A

(a)))

= h

A�A

0

(m

0

(h

A

0

�A

(a)))

= m

0

#

(a):

4

Recall that h

A�A

0

maps X to X

0

.
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For SC-structures, a similar property holds, which is, however, harder to

prove. For this reason, we treat this problem in a separate, rather techni-

cal section. The reader who is eager to see how amalgamated products can

be constructed may skip this section, and|for the moment|just believe its

results.

Let (A

�

;M; X) be an SC-structure, letX

0

be an in�nite subset ofX, and

let A

�

0

:= SH

A

M

(X

0

). Our �rst goal is to show that A

�

0

is an SC-structure

with atom set X

0

, and that there are close connections between this SC-

structure and the SC-structure (A

�

;M; X). This will justify to call A

�

0

an

isomorphic SC-substructure of A

�

.

Lemma 5.1 There exists an isomorphism h

A�A

0

: A

�

! A

�

0

that maps X

bijectively to X

0

.

Proof. By Lemma 4.10, A

�

= SH

A

M

(X), and thus Lemma 4.6 implies

that every bijection between X and X

0

can be extended to an isomorphism

from A

�

to A

�

0

.

Let h

A

0

�A

:= h

�1

A�A

0

be the inverse isomorphism. For m 2 End

�

A

, the

mappingm

#

:= h

A

0

�A

�m � h

A�A

0

is obviously an endomorphism of A

�

0

. We

de�ne M

0

:= fm

#

j m 2 Mg.

Lemma 5.2 1. M

0

is a submonoid of End

�

A

0

.

2. The mapping H

#

: m 7! m

#

is an isomorphism between the monoids

End

�

A

and End

�

A

0

.

3. M

0

= End

�

A

0

if, and only if, M = End

�

A

.

Proof. (1) Since

m

#

�m

0

#

= h

A

0

�A

�m � h

A�A

0

� h

A

0

�A

�m

0

� h

A�A

0

= h

A

0

�A

�m �m

0

� h

A�A

0

= (m �m

0

)

#

;

M

0

is a submonoid of End

�

A

0

, and H

#

is a homomorphism between the mo-

noids End

�

A

and End

�

A

0

.

(2) There is a dual homomorphism

H

"

: End

�

A

0

! End

�

A

: m 7! m

"

:= h

A�A

0

�m � h

A

0

�A

;
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of

S

i

�=1

(Stab

M

(~a

�

)[Stab

M

(

~

b

�

)) invariant. It maps (each component of) ~y

i+1

to (the corresponding component of) ~a

i+1

. The elements of Stab

M

(

~

b

i+1

) that

have not yet obtained an image this way are mapped in an arbitrary way.

Note that this de�nition of h

i+1

is consistent because of (b') and (c') of C

i

.

Now assume that X

j

; h

j

are already de�ned (for some i+1 � j < k). The

setX

j+1

is obtained as the union ofX

j

with Stab

M

(

~

b

j+1

) and the components

of ~y

j+1

. The mapping h

j+1

is obtained as follows:

1. Its restriction to X

j

coincides with h

j

.

2. Let ~z

j

be a tuple of distinct atoms such that no component of ~z

j

occurs

in Stab

M

(h

j

(X

j

)). (Such a tuple exists since the set of atoms was

assumed to be in�nite, and Stab

M

(h

j

(X

j

)) is �nite.) The mapping

h

j+1

maps (each component of) ~y

j+1

to (the corresponding component

of) ~z

j+1

.

3. The elements of Stab

M

(

~

b

i+1

) that have not yet obtained an image this

way are mapped in an arbitrary way.

Note that Condition 1 does not con
ict with Condition 2 since (b') and (c')

of C

i

imply that none of the components of ~y

j+1

occurs in X

j

.

Since X is an in�nite M-atom set of the countably in�nite �-structure

A

�

, and X

k

is a �nite subset of X, Lemma 4.7 implies that there exists a

surjective endomorphism H 2 M that extends h

k

. By de�nition of h

k

, we

have H(~a

1

) = ~a

1

, H(

~

b

1

) =

~

b

1

, ..., H(~a

i

) = ~a

i

, H(

~

b

i

) =

~

b

i

, H(~y

i+1

) = ~a

i+1

,

and for i+ 1 < j � k, H(~y

j

) = ~z

j

. Thus, Lemma 2.1 implies

A

�

j= '(~a

1

;

~

b

1

; : : : ;~a

i

;

~

b

i

;~a

i+1

; H(

~

b

i+1

); ~z

i+2

; H(

~

b

i+2

); : : : ; ~z

k

; H(

~

b

k

)):

This yields (a') of C

i+1

. It is easy to see that the mapping h

k

was constructed

such that (b') and (c') hold as well.

5 SC-Substructures and SC-Superstructures

In Section 6, where we describe how to construct amalgamated products of

SC-structures, it will be helpful to embed a given SC-structure in a larger

(isomorphic) SC-structure. For the case of term algebras modulo an equa-

tional theory this is trivial. In fact, if V

1

is any countable superset of the

countably in�nite set V then T (�

F

; V )=

=

E

is isomorphic to T (�

F

; V

1

)=

=

E

.
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(c) for all j; 1 � j � k, the components of ~x

j

are not contained in

Stab

M

(~e

1

) [ : : : [ Stab

M

(~e

j�1

).

Proof. \1 ) 2". First, select an arbitrary sequence ~x

1

of distinct M-

atoms from X such that this tuple has the same length as ~u

1

. Since A

�

satis�es 
, there exists a sequence ~e

1

2

~

A such that

(�) A

�

j= 8~u

2

9~v

2

: : :8~u

k

9~v

k

'(~x

1

; ~e

1

; ~u

2

; ~v

2

; : : : ; ~u

k

; ~v

k

):

Now, we may choose a �nite sequence ~x

2

of distinct M-atoms from X such

that this sequence has the same length as ~u

2

, and none of its components oc-

curs in Stab

M

(~e

1

) or ~x

1

. This is possible becauseX is in�nite by assumption,

and Stab

M

(~e

1

) is �nite.

Because of (�), there exist a sequence ~e

2

2

~

A such that

A

�

j= 8~u

3

9~v

3

: : : 8~u

k

9~v

k

'(~x

1

; ~e

1

; ~x

2

; ~e

2

; ~u

3

; ~v

3

; : : : ; ~u

k

; ~v

k

):

Obviously, this argument can be iterated until Condition 2 of the lemma is

proved.

\2 ) 1". Let ~x

1

2

~

X;~e

1

2

~

A; : : : ; ~x

k

2

~

X;~e

k

2

~

A as in Condition 2 be

given. We claim that this implies, for all i; 0 � i � k, the following condition

C

i

:

C

i

: For all ~a

1

2

~

A there exists

~

b

1

2

~

A, ..., for all ~a

i

2

~

A there exists

~

b

i

2

~

A,

and there exist ~y

i+1

; : : : ; ~y

k

2

~

X ,

~

b

i+1

; : : : ;

~

b

k

2

~

A such that

(a') A

�

j= '(~a

1

;

~

b

1

; : : : ;~a

i

;

~

b

i

; ~y

i+1

;

~

b

i+1

; : : : ; ~y

k

;

~

b

k

),

(b') all atoms occurring in the tuples ~y

i+1

; : : : ; ~y

k

are distinct,

(c') for all j; i < j � k, no component of ~y

j

occurs in

S

j�1

�=1

Stab

M

(

~

b

�

)[

S

i

�=1

Stab

M

(~a

�

).

Obviously, the condition C

k

is just Condition 1 of the lemma. We show

that condition C

i

holds for all i; 0 � i � k, by induction on i. For i = 0,

validity of C

0

follows from Condition 2.

Now, assume that C

i

holds for some i; 0 � i < k. To show C

i+1

, assume

that an arbitrary sequence ~a

i+1

2

~

A is given. For j = i+1; :::; k, we de�ne a

mapping h

j

from a �nite set of atoms X

j

to A by induction on j.

For j = i + 1, the set X

i+1

consists of Stab

M

(

~

b

i+1

) [

S

i

�=1

(Stab

M

(~a

�

) [

Stab

M

(

~

b

�

)) and the components of ~y

i+1

. The mapping h

i+1

leaves all elements
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h

0;1

2 M that coincides with h

0

on X

0

and with h

1

on X

1

. Such an endo-

morphism exists in M since (A

�

;M; X) is an SC-structure. Now h

0

and

h

0;1

coincide on fa

1

; : : : ; a

n

g, and h

1

and h

0;1

coincide on fa

1

; : : : ; a

n

g. This

shows that h

0

and h

1

coincide on fa

1

; : : : ; a

n

g, and thus we have proved

fa

1

; : : : ; a

n

g � SH

A

M

(X

0

\ X

1

). Obviously, this implies that there exists a

unique minimal �nite subset Y of X such that fa

1

; : : : ; a

n

g � SH

A

M

(Y ).

The third statement of the lemma shows that the notion \is stabilized

by" behaves better than the notion \is generated by." In fact, minimal sets

of generators need not be unique, as demonstrated by the next example.

Example 4.11 We consider the quotient term algebra T (�

F

; V )=

=

E

, where

�

F

consists of one unary function symbol f , V is countably in�nite, and

E = ff(x) = f(y)g. Obviously, the carrier of T (�

F

; V )=

=

E

consists of the

=

E

-classes fx

i

g for x

i

2 V and one additional class [f(�)] := ff(t) j t 2

T (�

F

; V )g.

It is easy to see that for all x

i

2 V , the element [f(�)] of T (�

F

; V )=

=

E

is generated by fx

i

g. However, [f(�)] is not generated by ;. Thus, there are

in�nitely many minimal sets of generators of [f(�)].

De�nition 4.12 Let (A

�

;M; X) be an SC-structure, and let fa

1

; : : : ; a

n

g �

A. The stabilizer Stab

M

(a

1

; : : : ; a

n

) of fa

1

; : : : ; a

n

g is the (unique) minimal

�nite subset Y of X such that fa

1

; : : : ; a

n

g � SH

A

M

(Y ).

Using this notion of stabilizers, the validity of positive formulae in SC-

structure can be characterized in an algebraic way. This characterization

is essential for proving correctness of our method of combining constraint

solvers for SC-structures.

Lemma 4.13 Let (A

�

;M; X) be an SC-structure, and let


 = 8~u

1

9~v

1

: : :8~u

k

9~v

k

'(~u

1

; ~v

1

; : : : ; ~u

k

; ~v

k

)

be a positive �-sentence. Then the following conditions are equivalent:

1. A

�

j= 8~u

1

9~v

1

: : :8~u

k

9~v

k

'(~u

1

; ~v

1

; : : : ; ~u

k

; ~v

k

),

2. there exist ~x

1

2

~

X;~e

1

2

~

A; : : : ; ~x

k

2

~

X;~e

k

2

~

A such that

(a) A

�

j= '(~x

1

; ~e

1

; : : : ; ~x

k

; ~e

k

),

(b) all M-atoms in the sequences ~x

1

; : : : ; ~x

k

are distinct,
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feature trees. In this case, we do not have a strong SC-structure since

R

�

has endomorphisms that modify non-leaf nodes (e.g., by introdu-

cing new feature-edges for such internal nodes).

Now suppose that we introduce, following [SmT94], additional arity

predicates F for every �nite set F � Fea. The interpretation F

R

of F

consists of all feature trees t where the root of t has a label L 2 Lab and

where F is (exactly) the set of all features departing from the root of

t. Let � be the extended signature. Then (R

�

;M; X) is a strong SC-

structure. We shall call it the non-ground structure of rational feature

trees with arity.

Before we can turn to the combination of SC-structures, we must establish

some useful properties of these structures.

Lemma 4.10 Let (A

�

;M; X) be an SC-structure.

1. A

�

= SH

A

M

(X) and every mapping X ! A has a unique extension to

an endomorphism of A

�

in M.

2. Let X

0

� X. Then we have SH

A

M

(X

0

) \X = X

0

.

3. For all �nite sets fa

1

; : : : ; a

n

g � A there exists a unique minimal �nite

subset Y of X such that fa

1

; : : : ; a

n

g � SH

A

M

(Y ).

Proof. (1) Since every element of A is stabilized by a �nite subset of

X, the M-atom set X stabilizes the whole structure A with respect to M,

which means that A

�

= SH

A

M

(X). Existence of the extension in M follows

from the fact that X is an M-atom set, and uniqueness is an immediate

consequence of A

�

= SH

A

M

(X).

(2) The inclusion X

0

� SH

A

M

(X

0

) follows from Lemma 4.3. For the

other direction, assume that an M-atom x 2 X is in SH

A

M

(X

0

) n X

0

. Let

h

1

; h

2

: X ! A be mappings that coincide on X

0

, but di�er on x. Because

X is anM-atom set, there are endomorphisms

b

h

1

;

b

h

2

2 M extending h

1

; h

2

.

Since

b

h

1

and

b

h

2

coincide on X

0

, they coincide on x 2 SH

A

M

(X

0

). This is a

contradiction to our assumption that h

1

and h

2

di�er on x.

(3) Since (A

�

;M; X) is an SC-structure, every �nite set fa

1

; : : : ; a

n

g � A

is stabilized by a �nite subset of X with respect to M. Let X

0

; X

1

be two

�nite subsets of X such that fa

1

; : : : ; a

n

g � SH

A

M

(X

i

) for i = 0; 1. We claim

that fa

1

; : : : ; a

n

g � SH

A

M

(X

0

\ X

1

). In fact, let h

0

; h

1

2 M be two endo-

morphisms that coincide on X

0

\ X

1

. We may choose an endomorphism
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to M. Thus V

hfs

(Y ), with union \[" and set construction \f�g", is a

strong SC-structure with atom set X.

(5) Similarly it can be seen that the domain V

hfnws

(Y ) of heriditarily �nite

non-wellfounded sets

3

over a countably in�nite set of urelements Y ,

with union \[" and set construction \f�g", is a strong SC-structure

over the atom set X = ffyg; y 2 Y g.

(6) The two domains V

h


(Y ) and V

hfnwl

(Y ) of nested, hereditarily �nite (1)

wellfounded or (2) non-wellfounded lists over the countably in�nite set

of urelements Y , with concatenation \�" as binary operation and with

list construction h�i : l 7! hli, are strong SC-structures over the atom set

X = fhyi; y 2 Y g of all lists with one element y 2 Y . Formally, these

domains can be described as the set of all (1) �nite or (2) rational trees

where the topmost node has label \h i" (representing a list constructor

of varying �nite arity), nodes with successors have label \h i", and

leaves have labels y 2 Y or \h i".

(7) Let Lab, Fea, andX be mutually disjoint in�nite sets of labels, features,

and atoms respectively. Following [APS94], we de�ne a feature tree to

be a partial function t : Fea

�

! Lab[X whose domain is pre�x closed

(i.e., if pq 2 dom(t) then p 2 dom(t) for all words p; q 2 Fea

�

), and in

which atoms do not label interior nodes (i.e., if p(t) = x 2 X then there

is no f 2 Fea with pf 2 dom(t)). As usual, rational feature trees are

required to have only �nitely many subtrees. In addition, they must

be �nitely branching.

We use the set R of all rational feature trees as carrier set of a structure

R

�

whose signature contains a unary predicate L for every label L 2

Lab, and a binary predicate f for every f 2 Fea. The interpretation

L

R

of L in R is the set of all rational feature trees having root label

L. The interpretation f

R

of f consists of all pairs (t

1

; t

2

) 2 R�R such

that t

1

(f) is de�ned and t

2

is the subtree of t

1

at f . The structure R

�

de�ned this way can be seen as a non-ground version of the solution

domain used in [APS94].

Each mapping h : X ! R has a unique extension to an endomor-

phism of R

�

that acts like a substitution, replacing each leaf with label

x 2 X by the feature tree h(x). With composition, the set of these

substitution-like endomorphisms yield a monoidM. Thus (R

�

;M; X)

is an SC-structure. We shall call it the non-ground structure of rational

3

Non-wellfounded sets, sometimes called hypersets, became prominent through [Acz88].

They can have in�nite descending membership sequences. The heriditarily �nite non-

wellfounded sets are those having a \�nite picture," see [Acz88] for details.
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Examples 4.9 The following list of examples shows that in fact many solu-

tion domains for symbolic constraints are SC-structures.

(1) Let �

F

be a �nite set of function symbols. The free algebra T (�

F

; V )=

=

E

modulo the equational theory E with countably in�nite generator set

V is a strong SC-structure with atom set V . The same holds for free

structures, as considered in [BaS94a].

(2) Let K be a �eld, let �

K

:= f+g [ fs

k

; k 2 Kg. The K-vector space

spanned by a countably in�nite basis X is a strong SC-structure over

the atom set X. Here \+" is interpreted as addition of vectors, and s

k

denotes scalar multiplication with k 2 K.

(3) Let �

F

be a �nite set of function symbols, and letR

�

F

be the algebra of

rational trees ([Col84, Mah88]) where leaves are labelled with constants

from �

F

or with variables from the countably in�nite set (of variables)

V . It is easy to see that every mapping V ! R can be extended to

a unique endomorphism of R

�

F

, and that (R

�

F

;End

�

F

R

; V ) is a strong

SC-structure. Note, however, that R

�

F

is not generated by V .

(4) Let V

hfs

(Y ) be the set of all nested, hereditarily �nite (standard, i.e.,

wellfounded) sets over the countably in�nite set of \urelements" Y .

Thus, eachM 2 V

hfs

(Y ) is �nite, and the elements ofM are either in Y

or in V

hfs

(Y ), the same holds for elements of elements etc. There are no

in�nite descending membership sequences. Since union is not de�ned

for the urelements y 2 Y , the urelements will not be treated as sets

here. Let X := ffyg j y 2 Y g. Let h : X ! V

hfs

(Y ) be an arbitrary

mapping. We want to show that there exists a unique extension of h

to a mapping

^

h : V

hfs

(Y ) ! V

hfs

(Y ) that is homomorphic with respect

to union \[" and set construction f�g. Each M 2 V

hfs

(Y ) can uniquely

be represented in the form M = x

1

[ : : : [ x

k

[ fM

1

g [ : : : [ fM

l

g

where x

i

2 X, for 1 � i � k, and where the M

i

are the elements

of M that belong to V

hfs

(Y ). By induction (on nesting depth), we

may assume that

^

h(M

i

) is already de�ned (1 � i � l). Obviously

^

h(M) := h(x

1

) [ : : : [ h(x

k

) [ f

^

h(M

1

)g [ : : : [ f

^

h(M

l

)g is one and the

only way of extending

^

h in a homomorphic way to the set M of deeper

nesting. For M = x 2 X we obtain

^

h(x) = h(x), thus

^

h is an extension

of h. Moreover, each mapping

^

h is in fact homomorphic with respect

to union \[" and set construction \f�g". It follows easily that

^

h

1

�

^

h

2

is the unique extension of h

1

�

^

h

2

: X ! V

hfs

(Y ), for all mappings

h

1

; h

2

: X ! V

hfs

(Y ), which implies that M := f

^

h j h : X ! V

hfs

(Y )g

is closed under composition. Obviously, identity on V

hfs

(Y ) belongs
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Lemma 4.6 Let X

0

; X

1

be two M-atom sets of A

�

of the same cardinality.

Then every bijection h

0

: X

0

! X

1

can be extended to an isomorphism

between SH

A

M

(X

0

) and SH

A

M

(X

1

).

Proof. Let h

0

: X

0

! X

1

be bijective, and let h

1

: X

1

! X

0

denote the

inverse mapping. Since X

0

and X

1

are M-atom sets, both mappings can

be extended to endomorphisms

b

h

0

and

b

h

1

in M. Now (

b

h

0

�

b

h

1

) 2 M is an

endomorphism that coincides with Id

A

2 M on X

0

. Therefore, it coincides

with Id

A

on SH

A

M

(X

0

).

Let g

i

denote the restriction of

b

h

i

to SH

A

M

(X

i

) (i = 0; 1). The previous

lemma shows that

g

0

: SH

A

M

(X

0

) ! SH

A

M

(X

1

);

g

1

: SH

A

M

(X

1

) ! SH

A

M

(X

0

):

We have g

0

� g

1

= Id

SH

A

M

(X

0

)

, which implies that g

0

is injective and g

1

is

surjective. Symmetrically, we can show that g

0

is surjective and g

1

is injective.

Thus, g

0

and g

1

are bijective homomorphisms, and g

i

is the inverse of g

1�i

(i = 0; 1).

Another important property of generators in free algebras that can be

generalized to atom sets is given by the next lemma:

Lemma 4.7 Let X be an in�nite M-atom set of the countably in�nite �-

structure A

�

, and let X

0

� X be �nite. Then every mapping h

0

: X

0

! A

can be extended to a surjective endomorphism in M.

Proof. Obviously, h

0

can be extended to a surjective mapping h

1

: X !

A. Since X is an M-atom set, h

1

can be extended to an endomorphism

h

2

2 M of A

�

. By construction, h

2

is surjective.

4.2 SC-structures|examples and basic properties

We are now ready to introduce the main concept of this paper.

De�nition 4.8 A countably in�nite �-structure A

�

is an SC-structure i�

there exists a monoid M � End

�

A

such that A

�

has an in�nite M-atom

set X where every a 2 A is stabilized by a �nite subset of X with respect

to M. We denote this SC-structure by (A

�

;M; X). If M = End

�

A

, then

(A

�

;End

�

A

; X) is called a strong SC-structure.
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our context. In the sequel, we consider a �xed �-structure A

�

; M always

denotes a submonoid of End

�

A

.

De�nition 4.2 For A

0

� A the stable hull of A

0

with respect to M is the

set

SH

A

M

(A

0

) := fa 2 A; A

0

stabilizes fag with respect to Mg:

The following two lemmas show that the stable hull of a set A

0

has pro-

perties that are similar to those of the subalgebra generated by A

0

. Note,

however, that the stable hull can be larger than the generated subalgebra

(see Example 4.9).

Lemma 4.3 Let A

0

be a subset of the carrier A of A

�

. Then SH

A

M

(A

0

) is

a �-substructure of A

�

, and A

0

� SH

A

M

(A

0

).

Proof. Obviously, A

0

� SH

A

M

(A

0

). Let f 2 � be an n-ary function

symbol, and let a

1

; : : : ; a

n

be elements of SH

A

M

(A

0

). We must show that

f

A

(a

1

; : : : ; a

n

) 2 SH

A

M

(A

0

). Let h

1

and h

2

be two endomorphisms in M

that coincide on A

0

. By assumption, h

1

and h

2

coincide on a

1

; : : : ; a

n

.

Thus h

1

(f

A

(a

1

; : : : ; a

n

)) = f

A

(h

1

(a

1

); : : : ; h

1

(a

n

)) = f

A

(h

2

(a

1

); : : : ; h

2

(a

n

)) =

h

2

(f

A

(a

1

; : : : ; a

n

)).

Lemma 4.4 Let A

0

; A

1

be subsets of the �-structure A

�

, and let h 2M. If

h(A

0

) � SH

A

M

(A

1

), then h(SH

A

M

(A

0

)) � SH

A

M

(A

1

).

Proof. Suppose that h(A

0

) � SH

A

M

(A

1

). Let g

1

and g

2

be two endomor-

phisms in M that coincide on A

1

. Then g

1

and g

2

coincide on SH

A

M

(A

1

).

Thus h�g

1

and h�g

2

coincide on A

0

. It follows that h�g

1

and h�g

2

coincide

on SH

A

M

(A

0

), and g

1

and g

2

coincide on h(SH

A

M

(A

0

)).

De�nition 4.5 The set X � A is an M-atom set for A

�

if every mapping

X ! A can be extended to an endomorphism in M. If M = End

�

A

, then X

is simply called an atom set for A

�

.

For T , the set of variables V is an atom set. Two subalgebras generated

by subsets V

0

; V

1

of V of the same cardinality are isomorphic. The same

holds for atom sets and their stable hulls.
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which an amalgamated product can be obtained by an explicit construction,

provided that the component structures have disjoint signatures. Quotient

term algebras, but also other typical domains for constraint based reasoning

such as the algebra of rational trees and (certain types of) feature structures

belong to this class. Quotient term algebras will serve as motivating example

for the abstract de�nitions. The need for using more general notions will be

illustrated with the help of the algebra of rational trees [Col84, Mah88] and

feature structures [APS94, SmT94].

4.1 Stable hulls and atom sets

Let E be an equational theory and V be a countably in�nite set (of variables).

The quotient algebra T := T (�

F

; V )=

=

E

is the free algebra over V for

the class of all models of E. In particular, this means that this algebra

is generated by V , and that every mapping from V into its carrier can be

extended to an endomorphism of T (�

F

; V )=

=

E

. For every element [t] of this

algebra, there exists a �nite subset U � V such that [t] is \generated by U ,"

i.e., [t] is in the subalgebra T (�

F

; U)=

=

E

of T (�

F

; V )=

=

E

. Obviously, if [t]

is generated by U , then two homomorphisms that coincide on U also coincide

on [t].

When de�ning SC-structures we shall keep most of these properties. In

particular, every SC-structure will have a distinguished subset of \atoms",

and these atoms almost behave like variables of a quotient term algebra.

However, we shall not demand that the underlying algebra of an SC-structure

is generated by its atom set. Consider, as an example, the algebra of rational

trees where leaves are labeled by constants or variables. This algebra is not

generated by the set of variables (since \generated by" talks about a �nite

process whereas rational trees may be in�nite). Still, two endomorphisms of

this algebra that coincide on a set U of variables coincide on all trees that

are built over U . This motivates the de�nition of stable hulls and atom sets

given below.

De�nition 4.1 Let A

0

; A

1

be subsets of the �-structure A

�

, and let M �

End

�

A

. Then A

0

stabilizes A

1

with respect to M i� all elements h

1

and h

2

of

M that coincide on A

0

also coincide on A

1

. If M = End

�

A

, then we say that

A

0

strictly stabilizes A

1

.

The reason for considering submonoids of End

�

A

is that in some cases

(such as for feature structures) not all endomorphisms will be of interest in

17



We must show that g

B

i

�D

= h

B

i

�B

123

� f

B

123

�D

for i = 1; 2; 3. For i = 1,

this is just identity (6). For i = 2; 3, we have h

B

i

�B

123

� f

B

123

�D

= h

B

i

�B

23

�

h

B

23

�B

123

� f

B

123

�D

= h

B

i

�B

23

� f

B

23

�D

= g

B

i

�D

(the �rst identity holds by

(3), the second by (7), and the third by (5)).

It remains to be shown that f

B

123

�D

is unique with this property. Thus,

assume that e

B

123

�D

: B

123

! D is a homomorphism satisfying

g

B

i

�D

= h

B

i

�B

123

� e

B

123

�D

(i = 1; 2; 3): (8)

The identity (8) together with (3) yields

g

B

i

�D

= h

B

i

�B

23

� h

B

23

�B

123

� e

B

123

�D

(i = 2; 3):

Since f

B

23

�D

is the unique morphism satisfying (5), this implies

f

B

23

�D

= h

B

23

�B

123

� e

B

123

�D

: (9)

Now, consider (8) for i = 1 and (9): Since f

B

123

�D

is the unique homomor-

phism satisfying (6) and (7), these two identities imply f

B

123

�D

= e

B

123

�D

.

Obviously, a dual lemma holds for (B

1

� B

2

) �B

3

. Since the free simul-

taneous amalgamated product is unique, this implies the next theorem.

Theorem 3.8 (Associativity of free amalgamation)

Let � � �

1

\ �

2

\ �

3

, and let A

�

;B

�

1

1

;B

�

2

2

;B

�

3

3

be structures with �xed

homomorphic embeddings h

�

A�B

1

: A

�

! B

�

1

1

, h

�

A�B

2

: A

�

! B

�

2

2

, and

h

�

A�B

3

: A

�

! B

�

3

3

. Assume that the free amalgamated products B

2

� B

3

,

B

1

� (B

2

� B

3

), B

1

� B

2

, and (B

1

� B

2

) � B

3

exist, and that the classes of

admissible structures satisfy

fB

1

� (B

2

�B

3

); (B

1

� B

2

)�B

3

g � Adm(B

1

;B

2

;B

3

); and

Adm(B

1

;B

2

;B

3

) � Adm(B

1

;B

2

) \ Adm(B

1

�B

2

;B

3

) \

Adm(B

2

;B

3

) \ Adm(B

1

;B

2

�B

3

):

Then we have (B

1

�B

2

)�B

3

' B

1

� (B

2

�B

3

), and this structure is the free

simultaneous amalgamated product of B

1

, B

2

, and B

3

over A

�

.

4 Simply Combinable Structures

In this section we shall introduce the concept of a simply combinable (SC-)

structure. This purely algebraic notion yields a large class of structures for
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Now, we consider (A;B

1

;B

23

) with the embeddings h

A�B

1

: A ! B

1

and

h

A�B

2

� h

B

2

�B

23

: A ! B

23

as amalgamation base. Let B

123

:= B

1

� B

23

be the corresponding free amalgamated product with embeddings h

B

1

�B

123

and h

B

23

�B

123

. By de�nition of the amalgamated product, these embeddings

satisfy

h

A�B

1

� h

B

1

�B

123

= (h

A�B

2

� h

B

2

�B

23

) � h

B

23

�B

123

: (2)

We show that B

123

closes the simultaneous amalgamationbase (A;B

1

;B

2

;B

3

).

To this purpose, we de�ne

h

B

i

�B

123

:= h

B

i

�B

23

� h

B

23

�B

123

(i = 2; 3): (3)

It is easy to see that, with this de�nition, (1) and (2) imply

h

A�B

1

� h

B

1

�B

123

= h

A�B

2

� h

B

2

�B

123

= h

A�B

3

� h

B

3

�B

123

;

i.e., B

123

indeed closes the simultaneous amalgamation base. Because of the

assumption that B

1

� (B

2

� B

3

) 2 Adm(B

1

;B

2

;B

3

), we know that B

123

2

Adm(B

1

;B

2

;B

3

). Thus, it remains to be shown that the admissible simulta-

neous amalgamated product B

123

is in fact free.

Assume that D 2 Adm(B

1

;B

2

;B

3

) is an admissible simultaneous amal-

gamated product with embeddings g

B

i

�D

: B

i

! D (i = 1; 2; 3), which thus

satisfy

h

A�B

1

� g

B

1

�D

= h

A�B

2

� g

B

2

�D

= h

A�B

3

� g

B

3

�D

: (4)

Equation (4), together with our assumption that the classes of admissible

structures satisfy Adm(B

1

;B

2

;B

3

) � Adm(B

2

;B

3

), implies that D is also

an admissible amalgamated product of B

2

and B

3

. Since B

23

is the free

amalgamated product of B

2

and B

3

, there exists a unique homomorphism

f

B

23

�D

: B

23

! D such that

g

B

i

�D

= h

B

i

�B

23

� f

B

23

�D

(i = 2; 3): (5)

Because of our assumption Adm(B

1

;B

2

;B

3

) � Adm(B

1

;B

2

� B

3

), we know

that D 2 Adm(B

1

;B

2

� B

3

). In addition, we have h

A�B

1

� g

B

1

�D

= h

A�B

2

�

g

B

2

�D

= h

A�B

2

� h

B

2

�B

23

� f

B

23

�D

(the �rst identity holds because of (4) and

the second because of (5)). This shows that D with the embeddings g

B

1

�D

and f

B

23

�D

is an admissible amalgamated product of B

1

and B

23

. Since

B

123

is the free amalgamated product of B

1

and B

23

, there exists a unique

homomorphism f

B

123

�D

: B

123

! D such that

g

B

1

�D

= h

B

1

�B

123

� f

B

123

�D

; (6)

f

B

23

�D

= h

B

23

�B

123

� f

B

123

�D

: (7)
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there are homomorphisms

h

�

i

B

i

�D

: B

�

i

i

! D

�

i

such that h

�

A�B

1

� h

�

1

B

1

�D

= h

�

A�B

2

� h

�

2

B

2

�D

= h

�

A�B

3

� h

�

3

B

3

�D

. In this case,

(D

�

1

[�

2

[�

3

; h

�

1

B

1

�D

; h

�

2

B

2

�D

; h

�

3

B

3

�D

) is a simultaneous amalgamated product of

B

1

;B

2

;B

3

over A

�

.

Now, assume that a class of admissible structures Adm(B

1

;B

2

;B

3

) is �xed.

The simultaneous amalgamated product (C

�

1

[�

2

[�

3

; h

�

1

B

1

�C

; h

�

2

B

2

�C

; h

�

3

B

3

�C

) is

called admissible i� C

�

1

[�

2

[�

3

2 Adm(B

1

;B

2

;B

3

). The admissible simultane-

ous amalgamated product (C

�

1

[�

2

[�

3

; h

�

1

B

1

�C

; h

�

2

B

2

�C

; h

�

3

B

3

�C

) of B

�

1

1

;B

�

2

2

;B

�

3

3

over A

�

is called a free simultaneous amalgamated product with respect to

Adm(B

1

;B

2

;B

3

) i� for every admissible simultaneous amalgamated product

(D

�

1

[�

2

[�

3

; h

�

1

B

1

�D

; h

�

2

B

2

�D

; h

�

3

B

3

�D

) there exists a unique homomorphism

f

�

1

[�

2

[�

3

C�D

: C

�

1

[�

2

[�

3

! D

�

1

[�

2

[�

3

such that for all i = 1; 2; 3,

g

�

i

B

i

�D

= h

�

i

B

i

�C

� f

�

1

[�

2

[�

3

C�D

:

As for the binary free amalgamated product, one can show that the free

simultaneous amalgamated product is unique up to isomorphism, provided

that it exists. For this reason, associativity of the free amalgamated product

(under certain restrictions) is an easy consequence of the next lemma and its

dual.

Lemma 3.7 Let � � �

1

\ �

2

\ �

3

, and let A

�

;B

�

1

1

;B

�

2

2

;B

�

3

3

be structures

with �xed homomorphic embeddings h

�

A�B

1

: A

�

! B

�

1

1

, h

�

A�B

2

: A

�

! B

�

2

2

,

and h

�

A�B

3

: A

�

! B

�

3

3

. Assume that the free amalgamated product B

2

� B

3

of B

2

and B

3

, and the free amalgamated product B

1

� (B

2

� B

3

) of B

1

and

B

2

� B

3

exist, and that the classes of admissible structures satisfy

B

1

� (B

2

�B

3

) 2 Adm(B

1

;B

2

;B

3

) � Adm(B

2

;B

3

) \ Adm(B

1

;B

2

� B

3

):

Then B

1

� (B

2

�B

3

) is the free simultaneous amalgamated product of B

1

, B

2

,

and B

3

over A

�

.

Proof. Let B

23

:= B

2

� B

3

denote the free amalgamated product of B

2

and B

3

, and let h

B

i

�B

23

(i = 2; 3) be the corresponding embeddings. Thus,

we have

h

A�B

2

� h

B

2

�B

23

= h

A�B

3

� h

B

3

�B

23

: (1)
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mapping f

0

: V ! D has a unique extension to a homomorphism f

�[�

C�D

:

C

�[�

! D

�[�

.

Since h

B

1

�C

and h

A�B

1

coincides with Id

V

on V , h

�

B

1

�C

�f

�[�

C�D

and h

�

B

1

�D

are two �-homomorphisms B

�

1

! D

�

that coincide on V . Thus h

�

B

1

�C

�

f

�[�

C�D

= h

�

B

1

�D

, since B

�

1

is free over V for the class of all models of E,

and the �-reduct D

�

of D

�[�

satis�es E. Similarly, one can prove that

h

�

B

2

�C

� f

�[�

C�D

= h

�

B

2

�D

.

It remains to be shown that f

�[�

C�D

is unique with this property. Since

h

B

1

�C

coincides with Id

V

on V , any (� [ �)-homomorphism f : C

�[�

!

D

�[�

satisfying h

�

B

1

�C

� f = h

�

B

1

�D

coincides with h

�

B

1

�D

on V . Since C

�[�

is free, there can be only one such homomorphism.

Notions of \amalgamated product," similar to the one given above, can

be found in universal algebra, model theory, and in category theory (see, e.g.,

[Mal73, Che76, DG93]). There are, however, certain di�erences between our

situation and the typical situations in which amalgamation occurs in other

areas. In algebra or model theory, amalgamation has been introduced for

particular classes of algebraic structures such as groups, �elds, skew �elds

etc. Amalgamation is studied for such a �xed class of structures over the

same signature, and it is assumed that these structures all satisfy the same

set of axioms (e.g., those for groups, �elds, skew �elds, etc.). In our case,

algebras over di�erent signatures are amalgamated, and these algebras satisfy

di�erent types of axioms (or are not de�ned by axioms at all).

3.2 Associativity of free amalgamation

The product construction is obviously commutative if the de�nition of the

class of admissible structures satis�es Adm(B

�

1

;B

�

2

) = Adm(B

�

2

;B

�

1

). In

order to obtain associativity as well, we need some additional conditions on

the class of admissible structures.

Before formulating these restrictions, we extend the de�nition of an amal-

gamation base and of the free amalgamated product to the case of three

structures. Let � � �

1

\ �

2

\ �

3

. A quadruple (A

�

;B

�

1

1

;B

�

2

2

;B

�

3

3

) with

given homomorphic embeddings

h

�

A�B

i

: A

�

! B

�

i

i

(i = 1; 2; 3)

is called a simultaneous amalgamation base. The structure D

�

1

[�

2

[�

3

closes

the simultaneous amalgamation base (A

�

;B

�

1

1

;B

�

2

2

;B

�

3

3

) i�, for i = 1; 2; 3,

13



The theorem justi�es to speak about the free amalgamated product of

two structures (provided that the embedding homomorphisms and the class

of admissible structures are �xed). In this situation, we shall often write

B

1

� B

2

for the free amalgamated product of B

1

and B

2

.

In Section 6 we shall give an explicit construction of the free amalgamated

product for the class of \strong SC-structures." For our standard example,

term algebras modulo equational theories, the free amalgamated product

yields the combined quotient term algebra, which shows that the de�nition

of the free amalgamated product makes sense.

Proposition 3.6 Let B

�

1

= T (�; V )=

=

E

and B

�

2

= T (�; V )=

=

F

for consi-

stent equational theories E and F . Let Adm(B

�

1

;B

�

2

) be the class of algebras

satisfying (one of) the conditions of Proposition 3.2. For the amalgamation

base (T (� \ �; V );B

�

1

;B

�

2

), the free amalgamated product with respect to

Adm(B

�

1

;B

�

2

) is isomorphic to the combined algebra T (� [�; V )=

=

E[F

.

Proof. Since C

�[�

:= T (� [ �; V )=

=

E[F

satis�es all axioms of E [ F ,

it is clearly an admissible algebra in Adm(B

�

1

;B

�

2

). The �-reduct C

�

of

C

�[�

satis�es E, and the �-reduct C

�

satis�es F . Since B

�

1

is free over

V for the class of all models of E, there exists a unique �-homomorphism

h

�

B

1

�C

: B

�

1

! C

�

that extends Id

V

. Similarly, there exists a unique �-

homomorphism h

�

B

2

�C

: B

�

2

! C

�

extending Id

V

.

In addition, since A

�

:= T (� \ �; V ) is the (absolutely) free �-algebra,

there exist unique homomorphisms h

�

A�B

1

: A

�

! B

�

1

and h

�

A�B

2

: A

�

! B

�

2

extending Id

V

. It follows that

h

�

A�B

1

� h

�

B

1

�C

= h

�

A�B

2

� h

�

B

2

�C

;

since both homomorphisms represent the unique extension of Id

V

to a �-

homomorphism A

�

! C

�

. Thus, we have shown that C

�[�

is in fact an

admissible amalgamated product of B

�

1

and B

�

2

over A

�

with respect to

Adm(B

�

1

;B

�

2

).

In order to show that it is free, assume that D

�[�

is an admissible algebra

in Adm(B

�

1

;B

�

2

), and that homomorphisms h

�

B

1

�D

: B

�

1

! D

�[�

and h

�

B

2

�D

:

B

�

2

! D

�[�

satisfying

h

�

A�B

1

� h

�

B

1

�D

= h

�

A�B

2

� h

�

B

2

�D

are given. Let f

0

: V ! D be the restriction of h

�

A�B

1

�h

�

B

1

�D

= h

�

A�B

2

�h

�

B

2

�D

to V . Since D

�[�

is an admissible structure, it satis�es all axioms of E [F ,

and since C

�[�

is free over V for the class of all models of E [ F , the

12
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Q

Q

Q

Q

Qs

�

�

�

�

�3

-

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�:

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Xz

A

�

B

�

1

B

�

2

C

�[�

D

�[�

h

A�B

1

h

A�B

2

h

B

1

�C

h

B

2

�C

h

B

1

�D

h

B

2

�D

h

C�D

Theorem 3.5 Let (A

�

;B

�

1

;B

�

2

) be an amalgamation base with �xed homo-

morphic embeddings h

�

A�B

1

: A

�

! B

�

1

and h

�

A�B

2

: A

�

! B

�

2

. The free

amalgamated product of B

�

1

and B

�

2

over A

�

with respect to a given class

Adm(B

�

1

;B

�

2

) is unique up to (� [�)-isomorphism.

Proof. Let C

�[�

and D

�[�

be free amalgamated products of B

�

1

and

B

�

2

over A

�

with respect to Adm(B

�

1

;B

�

2

). It follows that both structures

belong to the class of admissible structures Adm(B

�

1

;B

�

2

). Since C

�[�

is an

amalgamated product, there exist homomorphisms h

�

B

1

�C

: B

�

1

! C

�

and

h

�

B

2

�C

: B

�

2

! C

�

such that h

�

A�B

1

�h

�

B

1

�C

= h

�

A�B

2

� h

�

B

2

�C

. Similarly there

exist homomorphisms h

�

B

1

�D

: B

�

1

! D

�

and h

�

B

2

�D

: B

�

2

! D

�

such that

h

�

A�B

1

� h

�

B

1

�D

= h

�

A�B

2

� h

�

B

2

�D

.

Since C

�[�

is a free amalgamated product, there exists a unique homo-

morphism f

�[�

C�D

: C

�[�

! D

�[�

such that

h

�

B

1

�D

= h

�

B

1

�C

� f

�[�

C�D

and h

�

B

2

�D

= h

�

B

2

�C

� f

�[�

C�D

:

Similarly, there exists a unique homomorphism f

�[�

D�C

: D

�[�

! C

�[�

such

that

h

�

B

1

�C

= h

�

B

1

�D

� f

�[�

D�C

and h

�

B

2

�C

= h

�

B

2

�D

� f

�[�

D�C

:

This implies h

�

B

1

�C

= h

�

B

1

�D

� f

�[�

D�C

= h

�

B

1

�C

� f

�[�

C�D

� f

�[�

D�C

, and similarly

we obtain h

�

B

2

�C

= h

�

B

2

�C

� f

�[�

C�D

� f

�[�

D�C

.

Since C

�[�

is a free amalgamated product, and since C

�[�

2 Adm(B

�

1

;B

�

2

),

there exists a unique (� [�)-endomorphism h

�[�

of C

�[�

such that

h

�

B

1

�C

= h

�

B

1

�C

� h

�[�

h

�

B

2

�C

= h

�

B

2

�C

� h

�[�

:

We have just seen that f

�[�

C�D

� f

�[�

D�C

satis�es these properties, and obviously,

Id

C

satis�es them as well. This shows that f

�[�

C�D

� f

�[�

D�C

= Id

C

. Symmetri-

cally, one can also show f

�[�

D�C

� f

�[�

C�D

= Id

D

.

To sum up, we have shown that f

�[�

C�D

and f

�[�

D�C

are isomorphisms that

are inverse to each other.
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Without loss of generality, we assume that s = t is an equation in E. Let

g : V ! C be a mapping such that g(v

i

) = c

i

(for 1 � i � n). By (2), there

exists a homomorphism h

�

: T (�; V )=

=

E

! C

�

that extends g. However,

s = t 2 E implies s =

E

t, and thus s and t belong to the same =

E

-class in

T (�; V )=

=

E

. This shows that h(s) = h(t), which contradicts our assumption

that C

�[�

6j= s(c

1

; : : : ; c

n

) = t(c

1

; : : : ; c

n

).

In Section 6 we shall restrict the admissible structures for closing an

amalgamation base (A

�

;B

�

1

;B

�

2

) to structures satisfying the second condi-

tion of the proposition. In the remainder of this section it is su�cient to

assume that some class Adm(B

�

1

;B

�

2

) of admissible structures for closing the

amalgamation base has been �xed.

De�nition 3.3 Let (A

�

;B

�

1

;B

�

2

) be an amalgamation base, letAdm(B

�

1

;B

�

2

)

be a class of (�[�)-structures, to be called admissible structures. An amal-

gamated product (D

�[�

; h

�

B

1

�D

; h

�

B

2

�D

) of (A

�

;B

�

1

;B

�

2

) is called admissible

with respect to Adm(B

�

1

;B

�

2

) (or simply admissible, if the class of admissible

structures is clear from the context) i� D

�[�

2 Adm(B

�

1

;B

�

2

).

In the case of term algebras, the combined algebra T (� [�; V )=

=

E[F

is

not just any algebra satisfying E [ F|it is the free algebra.

Restriction 3: Whenever possible, we want to obtain a most

general element among all admissible amalgamated products of

the components.

This motivates the de�nition of the free amalgamated product by a uni-

versal property that is similar to the one of free algebras.

De�nition 3.4 Let (A

�

;B

�

1

;B

�

2

) be an amalgamation base, and assume that

Adm(B

�

1

;B

�

2

) is the class of admissible (� [ �)-structures. The admissible

amalgamated product (C

�[�

; h

�

B

1

�C

; h

�

B

2

�C

) of B

�

1

and B

�

2

over A

�

is called a

free amalgamated product with respect to Adm(B

�

1

;B

�

2

) i� for every admissible

amalgamated product (D

�[�

; h

�

B

1

�D

; h

�

B

2

�D

) of B

�

1

and B

�

2

over A

�

there

exists a unique homomorphism h

�[�

C�D

: C

�[�

! D

�[�

such that

h

�

B

1

�D

= h

�

B

1

�C

� h

�[�

C�D

and h

�

B

2

�D

= h

�

B

2

�C

� h

�[�

C�D

:

Free amalgamated products need not exist, but if they exist they are

unique up to isomorphism.
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such that h

�

A�B

1

� h

�

B

1

�D

= h

�

A�B

2

� h

�

B

2

�D

. We call (D

�[�

; h

�

B

1

�D

; h

�

B

2

�D

) an

amalgamated product of (A

�

;B

�

1

;B

�

2

).

If the \embedding" homomorphisms are irrelevant or clear from the con-

text, we shall also call the structure D

�[�

an amalgamated product of B

�

1

and B

�

2

over A

�

. It should be clear that it is not reasonable to accept an

arbitrary amalgamated product as the combined structure of B

�

1

and B

�

2

.

Restriction 2: The combined structure should share \relevant"

structural properties with the components.

This principle accounts for the fact that there must be some kind of

(logical, algebraic, algorithmic) relationship between the components and

the combined structure. In the case of quotient term algebras T (�; V )=

=

E

and T (�; V )=

=

F

, the combined algebra T (� [ �; V )=

=

E[F

satis�es E [ F .

In general, we cannot use this as a condition on the structures that close

the amalgamation base since we need not have theories de�ning B

�

1

and

B

�

2

. However, for the case of quotient term algebras there is an equivalent

algebraic reformulation:

Proposition 3.2 For a (� [ �)-algebra C

�[�

and a countably in�nite set

(of variables) V , the following conditions are equivalent:

1. The structure C

�[�

satis�es all axioms of E [ F .

2. For every mapping g

V�C

: V ! C there exist unique homomorphisms

h

�

T

1

�C

: T (�; V )=

=

E

! C

�

and h

�

T

2

�C

: T (�; V )=

=

F

! C

�

extending

g

V�C

.

Proof. First, we show \1! 2." Since the (�[�)-algebra C

�[�

satis�es

E [ F , its �-reduct C

�

satis�es E and its �-reduct C

�

satis�es F . Thus,

existence and uniqueness of the desired homomorphisms follows from the

fact that T (�; V )=

=

E

is free over V for the class of all models of E, and

T (�; V )=

=

F

is free over V for the class of all models of F .

In order to show \2 ! 1," assume that C

�[�

satis�es the algebraic cha-

racterization (2). Let s(v

1

; : : : ; v

n

) = t(v

1

; : : : ; v

n

) be an equation in E [ F ,

where the variables v

1

; : : : ; v

n

occurring in s = t are (without loss of gene-

rality) assumed to be in V . Now, assume that C

�[�

does not satisfy s = t.

Thus, there exist elements c

1

; : : : ; c

n

of C such that

C

�[�

6j= s(c

1

; : : : ; c

n

) = t(c

1

; : : : ; c

n

):

9



structure C

�[�

satisfy to be called a \combination" of B

�

1

and B

�

2

? This will

lead to the de�nition of the free amalgamated product. In the second part

of the section, we shall show that, under certain restrictions, the product

construction is associative.

3.1 The free amalgamated product

The central de�nition of this section will be obtained after three steps, each

introducing a restriction that is motivated by the example of the combination

of term algebras modulo equational theories. The structures B

�

1

and B

�

2

will

be called the components in the sequel.

Restriction 1: Homomorphisms that \embed" the components

into the combined structure must exist. If the components share

a common substructure, then the homomorphisms must agree on

this substructure.

In fact, a minimal requirement seems to be that both structures must

in some sense be embedded in their combination. It would, however, be too

restrictive to demand that the components are substructures of the combined

structure. For the case of consistent equational theories E;F over disjoint si-

gnatures �;�, there exist 1{1-embeddings of T (�; V )=

=

E

and T (�; V )=

=

F

into T (� [�; V )=

=

E[F

. For non-disjoint signatures, however, these \em-

beddings" need no longer be 1{1. Note that even for disjoint signatures �

and � there is a common part, namely the trivial structure represented by

the set V of variables. A reasonable requirement is that elements of the com-

mon part are mapped to the same element of the combined structure by the

homomorphic embeddings. To be as general as possible, we do not assume

that the \common part" is really a substructure of B

�

1

and B

�

2

. Instead,

we assume that it is just homomorphically embedded in both structures.

Restriction 1 motivates the following de�nition.

De�nition 3.1 Let � and � be signatures, and let � � � \ �. A triple

(A

�

;B

�

1

;B

�

2

) with given homomorphic embeddings

h

�

A�B

1

: A

�

! B

�

1

and h

�

A�B

2

: A

�

! B

�

2

is called an amalgamation base. The structure D

�[�

closes the amalgamation

base (A

�

;B

�

1

;B

�

2

) i� there are homomorphisms

h

�

B

1

�D

: B

�

1

! D

�

and h

�

B

2

�D

: B

�

2

! D

�

8



for all p 2 �

P

, and all a

1

; : : : ; a

n

2 A. Equivalently, one can require that the

inverse mapping h

�1

is also homomorphic.

There is an interesting connection between surjective homomorphisms

and positive formulae, which is important for the proofs of several of our

results (see [Mal73], pp. 143, 144 for a proof).

Lemma 2.1 Let h : A ! B be a surjective homomorphism between the �-

structures A and B, '(v

1

; : : : ; v

m

) be a positive �-formula, and a

1

; : : : ; a

m

be

elements of A. Then A j= '(a

1

; : : : ; a

m

) implies B j= '(h(a

1

); : : : ; h(a

m

)).

A �-endomorphism of A

�

is a homomorphism h

�

: A

�

! A

�

. With

End

�

A

we denote the monoid of all endomorphisms of the �-structure A

�

,

with composition as operation. The notation M� End

�

A

expresses that M

is a submonoid of End

�

A

.

If g : A ! B and h : B ! C are mappings, then g � h : A ! C denotes

their composition. Note that g � h means that g is applied �rst, and then h.

Let g

1

: A ! C and g

2

: B ! D be two mappings. We say that g

1

and g

2

coincide on E � A\B if g

1

(e) = g

2

(e) for all e 2 E. For a set A, we denote

the identity mapping on A by Id

A

. If A is the carrier of a �-structure A,

then Id

A

is the unit of the monoid End

�

A

.

Given a signature �, \constraints" are usually introduced as �-formulae

(of a particular syntactic type) '(v

1

; : : : ; v

n

) with free variables. The cons-

traint '(v

1

; : : : ; v

n

) is solvable in the structure A

�

i� there are a

1

; : : : ; a

n

2 A

such that A

�

j= '(a

1

; : : : ; a

n

). Thus solvability of ' in A

�

and validity of

the sentence 9v

1

: : :9v

n

'(v

1

; : : : ; v

n

) in A

�

are equivalent. In this paper we

shall always use the second point of view. As constraints we consider exi-

stential positive and positive sentences. We are mainly interested in solving

\mixed" constraints. This means that we consider two di�erent signatures

� and �, with �xed solution structures B

�

1

and B

�

2

. A mixed constraint is a

positive (or existential positive) (�[�)-sentence. Thus, one needs a (�[�)-

structure as solution structure. Obviously, if we want to reduce solvability

of mixed constraints to solvability of pure �

i

-constraints in the �

i

-structures

B

i

(i = 1; 2), this \combined" solution structure should be in an appropriate

relationship with the single structures B

�

1

and B

�

2

.

3 Combination of Structures

Suppose that B

�

1

and B

�

2

are two structures. In the �rst part of this section

we shall discuss the following question: What conditions should a (� [�)-

7



2 Formal Preliminaries

A signature � consists of a �nite set �

F

of function symbols and a �nite set

�

P

of predicate symbols, each of �xed arity. We assume that equality \=" is

a logical constant that does not occur in �

P

, and which is always interpreted

as the identity relation. An atomic �-formula is an equation s = t between

�

F

-terms s; t, or a relational formula p[s

1

; : : : ; s

m

] where p is a predicate

symbol in �

P

of arity m and s

1

; : : : ; s

m

are �

F

-terms. A positive �-matrix

is any �-formula obtained from atomic �-formulae using conjunction and

disjunction only. A positive �-formula is obtained from a positive �-matrix

by adding an arbitrary quanti�er pre�x, and an existential positive �-formula

is a positive formula where the pre�x consists of existential quanti�ers only.

Sentences are formulae without free variables. The notation t(v

1

; : : : ; v

n

)

(resp. '(v

1

; : : : ; v

n

)) indicates that the set of all (free) variables of the term

t (of the formula ') forms a subset of fv

1

; : : : ; v

n

g. Letters u; v; : : : denote

variables, and expressions ~u;~v; : : : denote �nite sequences of variables.

A �-structure A

�

has a non-empty carrier set A, and it interprets each

f 2 �

F

of arity n as an n-ary (total) function f

A

on A, and each p 2

�

P

of arity m as an m-ary relation p

A

on A. Whenever we use a roman

letter like A and an expression A

�

in the same context, the former symbol

denotes the carrier set of the �-structure denoted by the latter expression.

For a formula '(v

1

; : : : ; v

n

) with free variables in fv

1

; : : : ; v

n

g, we write A

�

j=

'(a

1

; : : : ; a

n

) to express that the formula' is valid inA

�

under the evaluation

that maps v

i

to a

i

2 A (1 � i � n). Sometimes we will consider several

signatures simultaneously. If � is a subset of the signature �, then any

�-structure A

�

can be considered as a �-structure (called the �-reduct of

A

�

) by just forgetting about the interpretation of the additional symbols. In

this situation, A

�

denotes the �-reduct of A

�

. Expressions ~a denote �nite

sequences ha

1

; : : : ; a

k

i of elements of A. In order to simplify notation we will

sometimes use ~a also to denote the set fa

1

; : : : ; a

k

g.

A �-homomorphism is a mapping h between two structures A

�

and B

�

such that

h(f

A

(a

1

; : : : ; a

n

)) = f

B

(h(a

1

); : : : ; h(a

n

));

p

A

[a

1

; : : : ; a

n

] ) p

B

[h(a

1

); : : : ; h(a

n

)]

for all f 2 �

F

, p 2 �

P

, and a

1

; : : : ; a

n

2 A. Letters h; g; : : :, possibly with

subscript, denote homomorphisms. Whenever the signature � is not clear

from the context, expressions h

�

; g

�

; : : : will be used. A �-isomorphism is a

bijective �-homomorphism h : A

�

! B

�

such that

p

A

[a

1

; : : : ; a

n

]() p

B

[h(a

1

); : : : ; h(a

n

)];
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ralized. This yields combination results that apply to most of the structures

mentioned above, and which go far beyond the level of quotient term alge-

bras. To this purpose, a weakened notion of \combinability" is introduced

(Section 4). Structures that satisfy this weak form of combinability will be

called simply-combinable structures (SC-structures).

2

The algebra of rational

trees [Col84, Mah88], feature structures [APS94, SmT94], but also domains

over hereditarily �nite (wellfounded or non-wellfounded) nested sets and lists

turn out to be SC-structures. The main di�erence between free structures

(treated in [BaS94a]) and SC-structures is that free structures are generated

by a (countably in�nite) set of (free) generators, whereas this need not be the

case for SC-structures (e.g., an in�nite rational tree is not generated|in the

algebraic sense|by its leaf nodes). This di�erence makes it necessary to give

rather involved proofs for facts that are trivial for the case of free structures.

Nevertheless, a variant of the amalgamation construction of [BaS94a] can be

used to combine arbitrary SC-structures A and B over disjoint signatures

� and � (Section 6). As a �-structure (resp. �-structure), the amalgam

A
B is isomorphic to A (resp. B). Consequently, pure �-constraints (resp.

�-constraints) are solvable in A (resp. B) i� they are solvable in A
B. If A

and B belong to the subclass of strong SC-structures, then it can be shown

that A 
 B is in fact the free amalgamated product of A and B as de�ned

in Section 3. In this case, the amalgamation construction can be applied

iteratedly since A
 B is again a strong SC-structure.

The combination scheme, in the form given in [BS92, BaS94a], can be used

to combine constraint solvers for two arbitrary SC-structures A and B over

disjoint signatures into a solver for A
B (Section 7). In this general setting,

we consider existential positive sentences as constraints, and the constraint

solvers are decision procedures for validity of such formulae in the given

solution structure. Thus, decidability of the existential positive theory of

A
B can be reduced to decidability of the positive theories of A and B. For

the case of strong SC-structures A and B, the combination method can also

treat general positive sentences (Section 8). Thus, in this case, decidability

of the full positive theory of A 
 B can be reduced to decidability of the

positive theories of A and B. As one concrete application we show that

validity of positive sentences is decidable in domains that interweave rational

feature trees, (�nite or rational) trees, hereditarily �nite (wellfounded or non-

wellfounded) sets, and hereditarily �nite (wellfounded or non-wellfounded)

lists.

2

It has turned out that the notion of an SC-structure is closely related to the concept

of a \uni�cation algebra" [SS88], and to the notion of an \instantiation system" [Wil91].
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rational trees) mentioned above cannot be described as such quotient term

algebras. For this reason, it is not a priori clear whether there is a canonical

way of combining such structures. The same problem also arises for other

solution domains of symbolic constraints.

As a possible solution to this problem, we introduce the abstract notion

of a \free amalgamated product" of two arbitrary structures in Section 3.

Whenever the free amalgamated product of two given structures A and B

exists, it is unique up to isomorphism, and it is the most general element

among all structures that can be considered as a reasonable combination

of A and B. For the case of quotient term algebras T (�

1

; X)=

=

E

1

and

T (�

2

; X)=

=

E

2

, the free amalgamated product yields the combined term al-

gebra T (�

1

[�

2

; X)=

=

E

1

[E

2

. This shows that it makes sense to propose the

free amalgamated product of two solution structures as an adequate combi-

ned solution structure.

With respect to the second problem{the problem of combining constraint

solvers{rather general results have been obtained for uni�cation in the union

of equational theories over disjoint signatures [SS89, Bou90, BS92]. These

results have been generalized to the case of signatures sharing constants

[Rin92, KiR94], and to disuni�cation [BaS93]. Prima facie, such an exten-

sion of results seems to be mainly an algorithmic problem. The di�culty,

one might think, is to �nd the correct combination method. A closer look

at the results reveals, however, that most of the recent combination algo-

rithms use, modulo details, the same transformation steps.

1

In each case,

the real problem is to show correctness of the \old" algorithm in the new

situation. In [BaS94a] we have tried to isolate the essential algebraic and lo-

gical principles that guarantee that the|seemingly universal|combination

scheme works. We found a simple and abstract algebraic condition|called

combinability|that guarantees correctness of the combination scheme, and

allows for a rather simple proof of this fact. In addition, it was shown that

this condition characterizes the class of quotient term algebras (i.e., free al-

gebras), or more generally (if additional predicates are present), the class

of free structures. In the above mentioned proof, an explicit construction

was given that can be used to amalgamate two quotient term algebras over

disjoint signatures, and which yields the combined quotient term algebra as

result.

In the second part of this paper it is shown that the concept of a combina-

ble structure and the amalgamation construction can considerably be gene-

1

Sometimes, additional steps are introduced just to adapt the general scheme to special

situations (e.g., [KiR94, BaS93]). For optimization purposes, steps may be applied in

di�erent orders, and delay mechanisms are employed (e.g., [Bou90]).

4



1 Introduction

Many CLP dialects, and some of the related formalisms used in computa-

tional linguistics, provide for a combination of several \primitive" constraint

languages. For example, in Prolog III [Col90], mixed constraints can be used

to express lists of rational trees where some nodes can again be lists etc.;

Mukai [Muk91] combines rational trees and record structures, and a domain

that integrates rational trees and feature structures has been used in [SmT94];

Rounds [Rou88] introduces set-valued feature structures that interweave or-

dinary feature structures and non-wellfounded sets, and many other sugge-

stions for integrating sets into logic programming exist [DOP91, DoR93].

In this paper, we study techniques for combining symbolic constraints

from a more general point of view. On the practical side, these considerations

may facilitate the design and implementation of new combined constraint

languages and solvers. On the theoretical side, we hope to obtain a better

understanding of the principles underlying existing combination methods.

This should show their essential similarities and di�erences, and clarify their

limitations.

When combining di�erent constraint systems, at least three problems

must be solved. The �rst problem, namely how to de�ne the set of \mixed"

constraints, is usually relatively trivial. The two remaining problems|which

will be addressed in this paper|are

(1) how to de�ne the combined solution structure over which the mixed

constraints are to be solved, and

(2) once this combined structure is �xed, how to combine constraint solvers

for the single languages in order to obtain a constraint solver for the

mixed language.

The �rst part of this paper is concerned with the �rst aspect. So far, the pro-

blem of combining solution domains has not been discussed in a general and

systematic way. The reason is that most of the general combination results

obtained until now were concerned with cases where the solution structures

are de�ned by logical theories. In this case, the combined structures are de�-

ned by the union of the theories. For example, in uni�cation modulo equatio-

nal theories, the single solution structures are term algebras T (�

1

; X)=

=

E

1

and T (�

2

; X)=

=

E

2

modulo equational theories E

1

and E

2

. Thus, the obvi-

ous candidate for the combined structure is T (�

1

[�

2

; X)=

=

E

1

[E

2

, the term

algebra modulo the union E

1

[E

2

of the theories. It is, however, easy to see

that feature structures and the \non-wellfounded" solution domains (such as

3
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Abstract

When combining languages for symbolic constraints, one is typi-

cally faced with the problem of how to treat \mixed" constraints.

The two main problems are (1) how to de�ne a combined solution

structure over which these constraints are to be solved, and (2) how

to combine the constraint solving methods for pure constraints into

one for mixed constraints. The paper introduces the notion of a \free

amalgamated product" as a possible solution to the �rst problem.

Subsequently, we de�ne so-called simply-combinable structures (SC-

structures). For SC-structures over disjoint signatures, a canonical

amalgamation construction exists, which for the subclass of strong

SC-structures yields the free amalgamated product. The combination

technique of [BS92, BaS94a] can be used to combine constraint sol-

vers for (strong) SC-structures over disjoint signatures into a solver for

their (free) amalgamated product. In addition to term algebras mo-

dulo equational theories, the class of SC-structures contains many so-

lution structures that have been used in constraint logic programming,

such as the algebra of rational trees, feature structures, and domains

consisting of hereditarily �nite (wellfounded or non-wellfounded) ne-

sted sets and lists.
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