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Abstract

An extension of the concept description language ALC used in kl-one-like terminological reasoning is

presented. The extension includes multi{modal operators that can either stand for the usual role quan-

ti�cations or for modalities such as belief, time etc. The modal operators can be used at all levels of

the concept terms, and they can be used to modify both concepts and roles. This is an instance of a

new kind of combination of modal logics where the modal operators of one logic may operate directly

on the operators of the other logic. Di�erent versions of this logic are investigated and various results

about decidability and undecidability are presented. The main problem, however, decidability of the basic

version of the logic, remains open.
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Introduction

Knowledge representation languages in the style of kl-one [3], so-called terminological KR lan-

guages, can be used to de�ne the relevant concepts of a problem domain and the interaction

between these concepts. To this purpose, complex concepts are constructed out of atomic concepts

(i.e., unary predicates) and roles (i.e., binary predicates) with the help of the language constructs

provided by the particular terminological language. Various such languages have been considered

in the literature and are used in KR systems (see, e.g., [14, 16, 15, 19, 7, 1, 4, 23]).

They have in common that they are only suitable for representing objective, time-independent

facts about the world. Notions like belief, intentions, time|which are essential for systems that

model aspects of intelligent agents|can only be represented in a very limited way. Suppose that a

terminological system should represent that the agent John believes that new cars have catalytic

converters whereas Tom believes that they don't. One possibility|which has, e.g., been used in

sb-one [12]|is that the system keeps two separate terminologies, one for John's belief context

and one for Tom's belief context:

John's T-Box:

new-car = car u 9has-part: catalytic-converter

Tom's T-Box:

new-car = car u :9has-part: catalytic-converter

This does not work, however, when interactions between di�erent beliefs, e.g., in the sense of a

(modal) theory of belief are needed in the application. Modal operators of the form [belief-:::]

1

that satisfy appropriate modal axioms allow for more natural de�nitions:

[belief-John](new-car = car u 9has-part: catalytic-converter);

[belief-Tom](new-car = car u :9has-part: catalytic-converter):

Things become more complex if the application requires the use of modalities inside of concept

expressions as well. Assume that we want to express that a potential customer (for a car salesman)

is an adult who eventually wants to own a car. In a traditional terminological language a de�nition

of this concept could be

potential-customer = adult u 9eventually-wants-own: car;

where eventually-wants-own is a new role di�erent to the roles own and wants-own. But then there

would be no interaction between these roles, whereas one would expect that wants-own implies

eventually-wants-own. Again, modal operators with an appropriate modal theory of time and

belief can be used to capture such interactions. In our example, we obtain the de�nition

potential-customer = adult u 9(hfuturei[want]own): car:

Intuitively, the role-�llers for own now also depend on the point in time and on the intentional

world, and not only on the object. The pre�x [want] means that one takes only those objects that

are role-�llers in all accessible intentional worlds, and the pre�x hfuturei says that this has to be

evaluated at some future time point.

In this example, the modal operators modify the own-role. Of course, there are also cases where

one would like to modify concepts in this way. In the de�nition

environment-freak = person u 8([want]own):[belief]environment-friendly;

an environment freak is de�ned as a person that wants to own only things that are believed to be

environment friendly. In this case the [belief]-operator modi�es the concept environment-friendly.

1

The standard modal operators are usually written 2 and 3. In a multi{modal logic with di�erent modal

operators referring to di�erent accessibility relations we write [p] and hpi for the parameterized box and diamond

operators. These operators can be interpreted as `believes', `knows', `wants', `always' (in the future or past) and

the like.
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We have motivated by examples that it is desirable to extend terminological languages by

various types of modal operators (for time, belief, want, etc.), which should be applicable to

de�nitions as well as inside of concept terms, and there to modify both concepts and roles. Our

approach to achieve this goal is based on an observation by Schild [19] that the terminological

language ALC is just a syntactic variant of the multi{modal logicK

m

[5], wherem is the number of

di�erent box operators. The reason is that quanti�cations over roles can just be seen as applications

of parameterized modal operators to concepts. Thus we propose to treat roles and modalities in a

symmetric way by using a multi{modal logic where both role names and modalities such as belief

can be used as parameters in boxes and diamonds. To distinguish between roles, which operate

on objects, and modalities operating, e.g., on time points or intentional worlds, we shall equip

each modal operator with a type (or dimension) such as `object', `time-point' etc. Although in

this paper we prefer the notions `role', and `concept', modal logicians should always understand

`role name' as `parameter of a parameterized modal operator', `role' as `accessibility relation', `role

�llers' as `set of accessible worlds' and `concept' as `propositional variable'.

The requirement that it should be possible to modify roles by modal operators is, however,

not yet captured by this approach. Until now, the parameterized modal operators are atomic in

the sense that the boxes and diamonds may only contain parameter names like own, future, or

belief. Applying modal operators to roles means that one obtains complex terms inside boxes

and diamonds. For example, in the de�nition of environment-freak we thus get the modal pre�x

[[want]own] where the complex (role) term [want]own occurs inside a box-operator.

Our new approach for integrating modalities into terminological KR languages, calledM-ALC

in the following, thus extends the prototypical terminological language ALC in two respects. First,

`roles' may have di�erent types that express in what dimension (e.g., object-dimension, time-point-

dimension) they operate. In addition, one can apply role quanti�cation not only to concepts but

also to roles, which provides for a very expressive language for building role terms. The expressive

power of this language is, for example, demonstrated by the fact that general concept equations

(see, e.g., [19]) can be expressed, even if one has only one dimension. This shows that the important

inference problems (such as satis�ability of concept terms) must be of very high complexity for our

language.

2

For this reason we shall impose additional restrictions on the syntactic form of certain

role terms to get a practical algorithm for satis�ability of concept terms (Section 3). If one further

restrictsM-ALC to the case where all role terms are atomic, then M-ALC becomes equivalent to

ALC in the sense that the same concept terms are satis�able (see Section 2.1).

The expressive power ofM-ALC can further be extended by having roles and concepts depend

on only some of the dimensions. For example, it seems reasonable to assume that the role future

of dimension `time-point' does not depend on the object-dimension. In Section 5 we shall show,

however, that this additional feature makes satis�ability in M-ALC an undecidable property.

1 Syntax and Semantics of M-ALC

As for ALC, the elementary syntax elements inM-ALC are concept and role names. However, with

each role name we associate a type that expresses in what dimension (e.g., object-dimension, time-

point-dimension) this role operates. To simplify things, we assume there are n di�erent dimensions,

and we count them from 1 to n. Each dimension corresponds to a particular set (domain, universe).

For example, the object dimension corresponds to the set of all objects (as used in ALC), the time

dimension corresponds to the set of all time points, and the belief dimension corresponds to the

set of all belief worlds. In the present paper, however, we do not yet consider structures on these

sets; for example, time points are not assumed to be linearly ordered, and the belief worlds are not

assumed to satisfy certain belief axioms. This means that the underlying logic is simply the basic

modal logic K.

The syntactic form of a modal operator in M-ALC is [p] (box) or hpi (diamond) where p

may be an atomic role name or a compound role term. In addition to the usual box-operator

2

Satis�ability modulo concept equations is known to be exp-time complete; this is an easy consequence of a result

by Fischer and Ladner [8].

3



of modal logic we shall consider a modi�ed box-operator [:::]

+

that combines the the box- and

diamond-operator. In many cases, [:::]

+

makes more sense than the usual box-operator [:::]. For

example, a sentence `All her friends are wealthy' is usually understood in the sense that the person

in question really has friends. Thus it is better modelled by the expression [has-friend]

+

wealthy

than by [has-friend]wealthy.

De�nition 1.1 The signature � of an M-ALC language L

n

of dimension n > 0 consists of a

set �

P

of role names and a disjoint set �

C

of concept names. The concept names include the

distinguished symbols > (for `truth') and ? (for `falsity'). Each role name p has a dimension

dim(p), which is a positive integer � n.

The sets of role terms and modal operators is de�ned to be the least set such that

� Each role name p is a role term (of dimension dim(p)). In addition, [p], [p]

+

and hpi are modal

operators of dimension dim(p).

� If p is a role name of dimension i and m is a sequence of modal operators then m p is a role

term of dimension i, and [m p], [m p]

+

as well as hm pi are modal operators of dimension i.

The notation [:::]

�

will be used for the [:::]

+

-operator as well as for the normal [:::]-operator.

The set of concept terms is de�ned to be the least set such that

� Each concept name c is a concept term.

� If c and d are concept terms then :c, c _ d and c ^ d are concept terms.

� If p is a role term (of arbitrary dimension) and c is a concept term then [p]c, [p]

+

c and hpic

are concept terms.

A concept equation is a formula m (c = d) where c is a concept name, d a concept term, and

m a modal pre�x, i.e., a (possibly empty) sequence of box and diamond operators. A T-Box is a

set of concept equations.

A concept term is called restricted serial if role terms do not contain normal [:::]-operators. <

Even for a single dimension, M-ALC is an extension of ALC since one can build complex role

terms. This allows one to express interactions between roles that cannot be captured in ALC.

For example, the concept of a `woman all of whose children have a common favourite meal' is

expressible by `woman ^ h[has-child]likesimeal'.

The semantics of M-ALC is similar to the Kripke style possible worlds semantics for many-

dimensional modal logic [22]. For each dimension i we introduce a non-empty set D

i

. The elements

of D

1

� : : :�D

n

correspond to worlds in the modal logic sense. As in modal logic, there is always

an `actual world tuple'

~

d = (d

1

; : : : ; d

n

) that determines the interpretation of the syntax elements.

Since the domain consists of n-tuples, concept terms correspond to n-ary predicates. If, for

example, there are the two dimensions object and time then the extension of the concept term

car is a set of tuples (o; t). Another way of looking at this is that car corresponds to a subset of

objects, but depending on the time point, i.e., the set of things that are cars changes over the time.

Conversely one may also see car as a set of time points, and this set depends on the objects. This

yields the time points (lifespan) for which each object is considered as a car.

Accordingly, roles in M-ALC correspond to n+1-ary predicates. For example, the role own of

dimension object is not simply a binary relation between objects. For a given object o, the set of

role-�llers for this object will depend not only on o but also, say, on the actual belief world and

time point.

In the de�nition of the semantics of M-ALC we shall use the following notational conventions.

For a �xed number of dimensions n, the Cartesian product of the sets D

1

; : : : ; D

n

is denoted by

~

D. An element (d

1

; : : : ; d

n

) of

~

D is denoted by

~

d, and (d

1

; : : : ; d

i�1

,x,d

i+1

; : : : ; d

n

) by

~

d[i=x].

De�nition 1.2 An interpretation = = (

~

D;=

�

) for an n-dimensional M-ALC language L

n

con-

sists of the Cartesian product

~

D = D

1

� : : : �D

n

of n non-empty carrier sets (domains), and a

signature interpretation =

�

.
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The signature interpretation assigns successor functions to role names and n-place relations

to concept names. To be more precise, a role name p of dimension i is interpreted as a function

=

�

(p) :

~

D ! 2

D

i

, and a concept name c as a set =

�

(c) �

~

D. The concept name > is interpreted

as

~

D and ? as the empty set.

The interpretation of a role term q of dimension i is also a function =(q) :

~

D ! 2

D

i

that is

inductively de�ned as follows. Let r be a role name, p; q be role terms, and let j be the dimension

of q.

=(r)(

~

d) = =

�

(r)(

~

d);

=([p]q)(

~

d) =

T

x2=(p)(

~

d)

=(q)(

~

d[j=x]);

=(hpiq)(

~

d) =

S

x2=(p)(

~

d)

=(q)(

~

d[j=x]);

=([p]

+

q)(

~

d) = =([p]q)(

~

d) \ =(hpiq)(

~

d):

A satis�ability relation j= between an interpretation = with actual point

~

d and concept terms

and concept equations is de�ned as follows. Let c be a concept name, e; f be concept terms, p be a

role term of dimension i, and � be a concept term or concept equation.

=;

~

d j= c i�

~

d 2 =

�

(c);

=;

~

d j= c = e i� (=;

~

d j= c i� =;

~

d j= e);

=;

~

d j= :e i� not =;

~

d j= e;

=;

~

d j= e _ f i� =;

~

d j= e or =;

~

d j= f;

=;

~

d j= e ^ f i� =;

~

d j= e and =;

~

d j= f;

=;

~

d j= [p]� i� for all x 2 =(p)(

~

d) : =;

~

d[i=x] j= �;

=;

~

d j= hpi� i� for some x 2 =(p)(

~

d) : =;

~

d[i=x] j= �;

=;

~

d j= [p]

+

� i� =;

~

d j= [p]� and =;

~

d j= hpi�:

An interpretation = is a model of a T-Box i� for all actual points

~

d and all equations � of the

T-Box one has =;

~

d j= �. <

The semantics of the nested role terms [p]q and hpiq can be illustrated graphically. Suppose

we have two dimensions, time (horizontally) and object (vertically). Furthermore we have an own

role, relating objects to the other objects they own at a certain time, and a future role, relating

for each object a time point to some set of future time points, for example the object's lifespan.

The grey parts in the diagram below denote the extension of the own{role for a �xed object o

at the various points in time. The compound role [future]own is a relation that relates the current

point (o; t) with the set of objects that o owns permanently during its lifespan. The compound

role hfutureiown relates o with the set of objects it owns at some future time point of its lifespan.

6

-

O

T

[future]own(o; t)

�

hfutureiown(o; t)

8

>

>

>

<

>

>

>

:

8

>

>

>

<

>

>

>

:

(o; t) future(o,t)

It should be noted that with respect to this semantics, concept equations are treated in the

same way as in terminological languages, i.e., they are required to hold for all actual points. This

di�ers from the usual de�nition of models in modal logics where a formula is only required to hold

at one point (world). Only the characteristic axioms of the particular modal system are required

to hold at all points. To really capture both cases one would need a more exible de�nition of a

model where the elements of some dimensions (e.g., objects) are treated as universally quanti�ed,

whereas the objects of the remaining dimensions (e.g., belief worlds) are (implicitly) assumed to

be existentially quanti�ed. For the case of two dimensions (objects and intentional worlds for a

know-operator), equations are treated in this way in [13]. However, there the modal operator for

`know' may only occur in front of equations, but not inside of concept terms. Since our concept

5



and role terms already have a very complex structure we shall concentrate on the concept term

level, and leave the treatment of T-Boxes|with a possibly more exible de�nition of a model|as

a topic of further research.

The basic reasoning services every kl-one system provides are to decide whether a given

concept term denotes the empty set or not (satis�ability problem) and whether one concept term

always denotes a subset of another concept term (subsumption problem).

De�nition 1.3 The concept term e subsumes the concept term f i�, for all interpretations = and

actual points

~

d, =;

~

d j= f implies =;

~

d j= e.

The concept term e is satis�able i� there is an interpretation = and an actual point

~

d such that

=;

~

d j= e. <

Since e subsumes f i� f ^ :e is unsatis�able, it is su�cient to have an algorithm for the

satis�ability problem.

1.1 An Alternative Presentation of the Semantics

In the above de�nition of the semantics we interpret role terms p as functions giving for an n{tuple

of worlds the set of accessible worlds. The interpretation function takes care of the dimension

information about p. Alternatively one could interpreted role terms p as relations between n{

tuples which di�er only in the i{th coordinate, where i = dim(p). This means =(p) �

~

D�

~

D with

the constraint

(~x; ~y) 2 =(p) implies ~y = ~x[i=z] for some z: (1)

The complex role terms are de�ned accordingly (i = dim(p), j = dim(q)):

(~x; ~x[j=z]) 2 =([p]q) i�8v (~x; ~x[i=v]) 2 =(p)) (~x[i=v]; ~x[i=v; j=z]) 2 =(q) (2)

(~x; ~x[j=z]) 2 =(hpiq) i�9v (~x; ~x[i=v]) 2 =(p) ^ (~x[i=v]; ~x[i=v; j=z]) 2 =(q) (3)

(~x; ~y) 2 =([p]

+

q) i� (~x; ~y) 2 =([p]q) and (~x; ~y) 2 =(hpiq) (4)

The interpretation function can now be de�ned in the traditional modal logic style.

=;

~

d j= [p]� i� for all

~

d

0

: (

~

d;

~

d

0

) 2 =(p) implies =;

~

d

0

j= �

=;

~

d j= hpi� i� there exists

~

d

0

: (

~

d;

~

d

0

) 2 =(p) and =;

~

d

0

j= �

As a further simpli�cation of the semantics, we can assume without loss of generality that all

domains D

i

are identical. This means that our n{dimensional space

~

D is in fact an n{dimensional

cube D

n

.

It is straightforward to show that these two presentations of the semantics are equivalent in

the sense that exactly the same formulae are true in both versions. In the sequel we shall therefore

make use of both alternatives.

2 Relation to Known Systems

The �rst question one usually asks about a new logical or mathematical system is of course how it

relates to well-known other systems. If the new system is an old system in disguise, one can save

a lot of work. If it is some variation of an old system, one can often adapt results and techniques

that have been developed for the old system.
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2.1 n-Dimensional M-ALC with Atomic Role Terms

The n-dimensional case without nested role terms is the simplest fragment ofM-ALC. In this case

there is no longer a di�erence between the 1-dimensional and the n-dimensional case. To be more

precise, for a given n-dimensionalM-ALC language L

n

, we obtain a 1-dimensional language L

1

if

we de�ne the dimensions of all role names to be 1. For a given concept term c of L

n

, we say that c

is satis�able in n dimensions i� it is satis�able as concept term of L

n

. The term c is satis�able in

1 dimension i� it is satis�able as concept term of L

1

. We show that satis�ability in L

n

is identical

with satis�ability in L

1

, provided there are no nested role terms.

Theorem 2.1 Let L

n

be an n-dimensional M-ALC-language, and let c

0

be a concept term of this

language that contains only atomic role terms. Then c

0

is satis�able in one dimension if, and only

if, it is satis�able in n dimensions.

Proof : First, assume that c

0

is satis�able in n dimensions. Let = = (

~

D;=

�

) be an n-dimensional

interpretation such that =;

~

d

0

j= c

0

for some

~

d

0

2

~

D. The n-dimensional interpretation = yields

the following 1-dimensional interpretation =

0

= (D

0

1

;=

0

�

): We de�ne D

0

1

def

=

~

D, for all concept

names c, =

0

�

(c)

def

= =

�

(c), and for all role names p, =

0

�

(p)(

~

d)

def

= f

~

d[i=x] j x 2 =

�

(p)(

~

d)g (where

i = dim(p)).

By induction on the structure of concept terms, it is now easy to show that, for all concept

terms c containing only atomic role terms, and all

~

d 2

~

D, we have =;

~

d j= c i� =

0

;

~

d j= c. Thus,

=

0

;

~

d

0

j= c

0

, which shows that c

0

is satis�able in 1 dimension.

Second, assume that c

0

is satis�able in 1 dimension. Let = = (D;=

�

) be a 1-dimensional

interpretation such that =; d

0

j= c

0

for some d

0

2 D. We use = to construct an n-dimensional

interpretation =

0

= (

~

D;=

0

�

) as follows:

� For all i; 1 � i � n, we de�ne D

i

def

= D� IN where IN denotes the set of nonnegative integers.

For a tuple

~

d = ((d

1

; k

1

); :::; (d

n

; k

n

)) 2

~

D, let max(

~

d) be (d

i

; k

i

) i� k

i

is strictly greater than

all k

j

for j 6= i. If such an i does not exist then max(

~

d) is unde�ned.

� For all concept names c, we de�ne

=

0

�

(c)

def

= f

~

d j max(

~

d) = (d

i

; k

i

) and d

i

2 =

�

(c)g.

� For all role names p and all

~

d 2

~

D, we de�ne =

0

�

(p)(

~

d)

def

= ;, ifmax(

~

d) is unde�ned. Otherwise,

let max(

~

d) = (d

i

; k

i

). Then =

0

�

(p)(

~

d)

def

= f(d; k

i

+1) j d 2 =

�

(p)(d

i

)g. Note that dim(p) may

of course be di�erent from i.

By induction on the structure of concept terms c containing only atomic role terms, we show the

following claim:

If

~

d 2

~

D is such that max(

~

d) = (d

i

; k

i

) is de�ned then we have =

0

;

~

d j= c i� =; d

i

j= c.

(1) If c is a concept name then the claim holds by de�nition of =

0

�

(c).

(2) Let c be of the form c

1

^ c

2

. We have =

0

;

~

d j= c

1

^ c

2

i� =

0

;

~

d j= c

1

and =

0

;

~

d j= c

2

. By induction,

this is the case i� =; d

i

j= c

1

and =; d

i

j= c

2

, i.e., i� =; d

i

j= c

1

^ c

2

.

(3) Disjunction and negation can be treated similarly.

(4) Let c be of the form hpic

1

where p is a role name of dimension j. First, assume that =

0

;

~

d j= hpic

1

.

Thus, there is (d; k) in =

0

�

(p)(

~

d) and =

0

;

~

d[j=(d; k)] j= c

1

. Since max(

~

d) = (d

i

; k

i

), the de�nition of

=

0

�

(p) implies that d 2 =

�

(p)(d

i

), and k = k

i

+ 1. Consequently, max(

~

d[j=(d; k)]) = (d; k), and

by induction, =

0

;

~

d[j=(d; k)] j= c

1

yields =; d j= c

1

. Since we also know that d 2 =

�

(p)(d

i

), this

implies =; d

i

j= hpic

1

.

Second, assume that =; d

i

j= hpic

1

. Thus, there is d 2 =

�

(p)(d

i

) such that =; d j= c

1

. By de�nition,

=

0

�

(p)(

~

d) contains (d; k

i

+ 1). Since max(

~

d[j=(d; k)]) = (d; k

i

+ 1), induction applied to =; d j= c

1

yields =

0

;

~

d[j=(d; k)] j= c

1

. This, together with (d; k

i

+ 1) 2 =

0

�

(p)(

~

d), yields =

0

;

~

d j= hpic

1

.

(5) The case where c is of the form [p]c

1

can be treated similarly. This completes the proof of the

claim.
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Now, let d

0

be such that =; d

0

j= c

0

. We de�ne

~

d = ((d

1

; k

1

); :::; (d

n

; k

n

)) as follows: d

j

def

= d

0

for all j; 1 � j � n, k

1

def

= 1, and k

j

def

= 0 for all j; 2 � j � n. The above claim yields =

0

;

~

d j= c

0

,

which shows that c

0

is satis�able in n dimensions. <

By this theorem, as long as one does not use compound role terms, one can just forget about

the dimensions: M-ALC collapses to the multi{modal version of the modal system K, which is a

syntactic variant of ALC. All results and algorithms of ALC carry over to this fragment ofM-ALC.

Hence, satis�ability of concept terms can be decided using the well-know algorithm for ALC, and

the complexity results for ALC show that the satis�ability problem is PSPACE complete [20].

Unfortunately, if a concept term c contains complex role terms, then satis�ability in one di-

mension is di�erent from satis�ability in n dimensions.

Theorem 2.2 There is a 2-dimensional M-ALC language L

2

and a concept term c of L

2

such

that c is satis�able in 2 dimensions, but not in 1 dimension.

Proof : This is demonstrated by the following example. Assume that e is a concept name, p is a role

name of dimension 1, and q is a role name of dimension 2. We consider the term [hpiq]e^:[p][q]e.

The 2-dimensional interpretation = is de�ned as follows:

� D

1

def

= f0; 1g =: D

2

.

� =

�

(p)(0; 0)

def

= f1g and =

�

(p)(

~

d)

def

= ; for all

~

d 2

~

D n f(0; 0)g.

� =

�

(q)(1; 0)

def

= f1g and =

�

(q)(

~

d)

def

= ; for all

~

d 2

~

D n f(1; 0)g.

� =

�

(e)

def

= f(0; 0); (0; 1); (1; 0)g.

Since :[p][q]e is equivalent to hpihqi:e, and since =; (1; 1) j= :e, the de�nitions of =

�

(p) and =

�

(q)

yield =; (0; 0) j= :[p][q]e.

The de�nition of the semantics for role terms yields =(hpiq)(0; 0) = f1g, since =(p)(0; 0) = f1g,

and =(q)(1; 0) = f1g. Now, =; (0; 0) j= [hpiq]e since =; (0; 1) j= e. Thus we have shown that

[hpiq]e ^ :[p][q]e is satis�able in 2 dimensions.

In one dimension, however, hpiq denotes nothing else than the composition of the p and q{roles.

Therefore [hpiq]', [p][q]' for all ', which makes [hpiq]e ^ :[p][q]e inconsistent. <

The reason for the di�erence between the one{dimensional and the n{dimensional case lies

in the interpretation of role terms, as shown in the proof of the theorem. In one dimension the

interpretation of the role term hpiq is identical to the composition of the interpretations of p and

q. This need not be the case if one has more than one dimension.

2.2 M-ALC with Compound Role Terms

A compound role term denotes an accessibility relation in the same way as an atomic role term,

except that its interpretation depends on the interpretation of its components. Thus, one could

again try to interpretM-ALC as a standard (one-dimensional) multi{modal logic, but with special

restrictions on the accessibility relations corresponding to the structure of compound role terms.

In this subsection we characterize a class of one{dimensional frames whose theorems coincide with

theM-ALC theorems. To this end we exploit some results about how to axiomatize n{dimensional

modal logic due to Y. Venema [22]. Venema's axioms capture the fact that we are operating in

an n{dimensional environment. We shall add axioms that express the semantics of compound role

terms.

Results about n{Dimensional Modal Logic (Yde Venema)

Venema has investigated a modal logic with coordinate operators 2

i

. Intuitively 2

i

is an operator

that moves along the i{th coordinate: the underlying i{th accessibility relation connects all points

that can be obtained from each other by just changing the i{th coordinate. Venema gives an

axiomatization of these operators which characterizes in fact the n{dimensional cubes. As auxiliary

8



operators, however, constant `diagonal operators' �

ij

are needed. Intuitively, �

ij

is true in a world

(i.e., a tuple) i� its i{th and j{th coordinate are identical. We briey recall Venema's main results.

De�nition 2.3 Cylindrical Modal Logic The signature of cylindrical modal logic CML

n

of di-

mension n contains n normal modal operators 2

i

and the corresponding dual operators 3

i

, together

with the n

2

constant operators �

ij

.

There are two di�erent versions of the semantics for cylindrical modal logic:

1. n{dimensional semantics:

The n{dimensional frames of CML

n

are the n{cubes D

n

for sets D. The interesting part of

the satis�ability relation is:

(u

1

; : : : ; u

n

) j= 2

i

' i� for all v: (u

1

; : : : ; u

i�1

; v; u

i+1

; : : : ; u

n

) j= '

(u

1

; : : : ; u

n

) j= �

ij

i� u

i

= u

j

2. one{dimensional semantics:

The one{dimensional frames of CML

n

consist of a set W of worlds, for each modal operator

2

i

a binary accessibility relation T

i

, and for each unary operator �

ij

a unary predicate E

ij

.

The accessibility relations satisfy the following conditions (for i 6= j in B2

ij

and B4

ij

and

additionally, k 6= i and k 6= j in B3

ijk

):

A1

i

8x T

i

(x; x)

A2

i

8x; y T

i

(x; y)) T

i

(y; x)

A3

i

8x; y T

i

(x; y) ^ T

i

(y; z)) T

i

(x; z)

A4

ij

8x; y (9z T

i

(x; z) ^ T

j

(z; y))) (9z T

j

(x; z) ^ T

i

(z; y))

B1

i

8x E

ii

(x)

B2

ij

8x; y; z T

i

(x; y) ^ E

ij

(y) ^ T

i

(x; z) ^ E

ij

(z)) y = z

B3

ijk

8x E

ij

(x), (9y T

k

(x; y) ^ E

ik

(y) ^E

kj

(y))

B4

ij

8x; y; z (E

ij

(x) ^ T

i

(x; y) ^ T

j

(y; z) ^ y 6= z)

)9u (:E

ij

(u) ^ T

j

(x; u) ^ T

i

(u; z))

B5

i

8x; y; z H

1

(x; y) ^ T

2

(x; z) ^ E

21

(z) ^ T

1

(z; y))E

1i

(y)

where H

1

(x; y),9z

3

; : : : ; z

n

T

2

(x; z

3

) ^ T

3

(z

3

; z

4

) ^ : : : ^ T

n

(z

n

; y).

(B3

ijk

and B5

i

are superuous if n = 2.)

Let us call the frames satisfying the above conditions n{frames.

The satisfaction relation for the operators 2

i

and 3

i

are as usual. For the �

ij

{operators we

have: w j= �

ij

i� E

ij

(w) holds. <

The meaning of the axioms can best be understood by drawing pictures of the situation in

the n{dimensional setting. For example, the axiom B4

ij

can be illustrated by a two{dimensional

coordinate system, where one axis stands for dimension i and the other axis stands for dimension

j (see the left diagram in Figure 1).

Theorem 2.4 (Venema)

(i) Every n{frame is isomorphic to the disjoint union of some n{cubes, i.e. there is a bijective map-

ping between the n{frame and the n{cubes which is also a homomorphism and antihomomorphism

with respect to the accessibility relations on the n{frame side and the corresponding movements

along the coordinates at the n{cube side.

(ii) A CML

n

formula ' is a theorem in the n-dimensional semantics if, and only if, it is a theorem

in the one{dimensional semantics. <

In part (i) of the theorem, every n{cubes in the disjoint union corresponds to a connected

component of the n{frame.

Now, we merge CML

n

with M-ALC by adding to CML

n

our M-ALC{operators. In order

to emphasize that the compound role terms are interpreted as accessibility relations in the usual

sense, we assume that for each (possibly compound) role term p there is a unique name. For role
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Figure 1: The left diagram illustrates axiom B4

ij

, and the right diagram illustrates axiom D1

pq

(see below).

names, we can use the role name itself. Now assume that p

0

is the name for the role term p, and

q

0

is the name for the role term q. For [p]q we introduce the name b

p

0

;q

0

, for [p]

+

q we introduce

b

+

p

0

;q

0

and for hpiq we introduce d

p

0

;q

0

. The interpretation of these new role names must, of course,

be restricted to mirror the role constructors' original semantics.

De�nition 2.5 (M-ALC{CML

n

) The syntax of the logic M-ALC{CML

n

contains the operators

of M-ALCand CML

n

together. Like CML

n

, the logic M-ALC{CML

n

has a one{dimensional

semantics and an n{dimensional semantics.

� n{dimensional semantics:

As in the n{dimensional semantics of CML

n

, the frames are n{cubes over a set D. The sat-

is�ability relation for the CML

n

{operators is as in CML

n

. TheM-ALC parts are interpreted

according to the alternative presentation of the M-ALC semantics (see Subsection 1.1).

� one{dimensional semantics:

A one-dimensional M-ALC{CML

n

{frame consists of a set W of worlds, the relations T

i

and

E

ij

of CML

n

's one{dimensional semantics, for each primitive role term a binary relation

p, and for the names for compound role terms the binary relations b

p;q

, b

+

p;q

and d

p;q

. The

various relations satisfy the following conditions:

The axioms A1

i

{ A4

ij

and B1

i

{ B5

i

of CML

n

(De�nition 2.3,ii).

For dim(p) = dim(q) = j:

C1

pq

T

j

(x; y)) (b

p;q

(x; y), (8z p(x; z)) q(z; y)))

C2

pq

d

p;q

(x; y), (9w p(x;w) ^ q(w; y))

For i = dim(p) 6= dim(q) = j:

D1

pq

8x; y d

p;q

(x; y))9u; v p(x; u) ^ q(u; v) ^ T

i

(v; y)

D2

pq

8x; y (9u p(x; u) ^ q(u; y))) (9v T

i

(y; v) ^ d

p;q

(x; v))

D3

pq

8x; y b

p;q

(x; y)) (8u p(x; u))9v q(u; v) ^ T

i

(v; y))

D4

pq

8x; y (T

j

(x; y) ^ (8u; v (p(x; u) ^ T

j

(u; v) ^ T

i

(v; y))) q(u; v)))

) b

p;q

(x; y)

E1

p

8x; y p(x; y)) T

i

(x; y)

E2

q

8x; y q(x; y)) T

j

(x; y)

E3

pq

8x; y b

p;q

(x; y)) T

j

(x; y)

E4

pq

8x; y d

p;q

(x; y)) T

j

(x; y)

De�nition of b

+

p;q

F

pq

b

+

p;q

(x; y), (b

p;q

(x; y) ^ d

p;q

(x; y))

In the sequel we call the n{dimensional frames n{cubes and the one{dimensional frames satisfying

the above conditions n{frames. <
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As in the CML

n

semantics, one should read T

i

(x; y) as `y can be obtained from x by changing

just the i-th coordinate'. Under this interpretation the axioms for the compound role terms

correspond precisely to their de�nitions in the n{dimensional semantics. The next lemma con�rms

that the n{cubes are in fact n{frames over a set of worlds consisting of n{tuples.

Lemma 2.6 If in the n{dimensional setting we interpret the coordinate accessibility relations T

i

as movement along the i

th

coordinate, i.e. T

i

(~x; ~y) i� ~y = ~x[i=z], for some z, and we interpret the

diagonal predicates E

ij

as E

ij

(~x) i� x

i

= x

j

, then every n{cube is also an n{frame.

Proof : We must show that all conditions on n{frames hold in n{cubes. A trivial corollary of

Venema's results guarantees that the axioms A1

i

{ A4

ij

and B1

i

{ B5

i

hold in n{cubes. C1

pq

,

C2

pq

and F

pq

are direct consequences of the de�nitions (2), (3) and (4), and E1

p

{ E4

pq

follow

from the constraint (1).

Now, we check the remaining conditions one by one. Let i = dim(p) and j = dim(q) = dim(d

p;q

) =

dim(b

p;q

) for i 6= j.

D1

pq

: Suppose 1: d

p;q

(~x; ~y)

1 and (1): ~y = ~x[j=z] for some z

1 and (3): 9u

0

p(~x; ~x[i=u

0

]) ^ q(~x[i=u

0

]; ~x[i=u

0

; j=z]):

~u = ~x[i=u

0

]; ~v = ~x[i=u

0

; j=z]: 9u; v p(~x; ~u) ^ q(~u;~v) ^ T

i

(~v; ~y)

D2

pq

: Suppose 1: p(~x; ~u) and 2: q(~u; ~y) for some ~x; ~y; ~u

1 and (1): ~u = ~x[i=u

0

], i.e. p(~x; ~x[i=u

0

])

2 and (1): ~y = ~x[i=u

0

; j=v

0

], i.e. q(~x[i=u

0

]; ~x[i=u

0

; j=v

0

])

(3): 3: d

p;q

(~x; ~x[j=v

0

])

and 4: T

i

(~y; ~x[j=v

0

])

3 and 4: 9~v T

i

(~y;~v) ^ d

p;q

(~x;~v)

D3

pq

: Suppose 1: b

p;q

(~x; ~y)

1 and (1): ~y = ~x[j=y] for some y

1 and (2): 2: for all z: p(~x; ~x[i=z])) q(~x[i=z]; ~x[i=z; j=y])

Suppose 3: p(~x; ~x[i=u])

3 and 2: 4: q(~x[i=u]; ~x[i=u; j=y])

interpretation of T

i

: 5: T

i

(~x[i=u; j=y]; ~x[j=y])

4,5, ~v = ~x[i=u; j=y]: 9~v q(~x[i=u]; ~v) ^ T

i

(~v; ~x[j=y])

D4

pq

: Suppose 1: T

j

(~x; ~y) where ~y = ~x[j=y]

Suppose 2: p(~x; ~x[i=u]) and T

j

(~x[i=u]; ~x[i=u; j=v]) and

T

i

(~x[i=u; j=v]; ~y) implies q(~x[i=u]; ~x[i=u; j=v])

for all u; v

2 and interpretation of T

i

: 3: v = y

2,3 and (2) b

p;q

(~x; ~x[j=y])

<

In order to show that the n{dimensional semantics and the one{dimensional semantics of

M-ALC{CML

n

yield the same theorems, a standard technique is to show that one class of frames is

a zigzagmorphic image of the other class. A zigzagmorphism ' (p-morphism, bounded morphism)

between a frame A and a frame B is a homomorphism from A to B which preserves the structure

of the accessibility relations. In particular we have

1. p(a; b) holds in A then p('(a); '(b)) holds in B (homomorphism condition),

2. if p('(a); b

0

) holds in B then there is a b in A with b

0

= '(b) and p(a; b) holds in A (zizag

condition).

Lemma 2.7 Every connected one{dimensional frame of M-ALC{CML

n

is the zigzagmorphic im-

age of an n{dimensional M-ALC{CML

n

{frame.

Proof : Let F

1

be a connected one{dimensional frame. It satis�es the conditions A1

i

{ B5

i

of

CML

n

. Therefore there exists an isomorphism f between an n{cube and F

1

(Theorem 2.4). In
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particular this isomorphism guarantees for all i:

T

i

(f(~x); f(~y)), ~y = ~x[i=z] for some z (5)

T

i

(f(~x); y))9z f(~x[i=z]) = y (6)

Moreover, it also guarantees that

8x; y T

i

(x; y) ^ T

j

(x; y)) x = y for i 6= j (7)

holds in the one{dimensional frame.

In the main part of the proof we extend this n{cube to a n{dimensionalM-ALC{CML

n

{frame F

n

and show that f is in fact a zigzag morphism from F

n

to F

1

. To simplify the notation, we assume

in the sequel that we have only two dimensions, 1 and 2.

First, we must prove one useful property:

8a; b; c; d; x: T

1

(f(a; b); x) ^ T

2

(f(c; d); x)) f(c; b) = x (8)

Suppose 1: T

1

(f(a; b); x) and 2: T

2

(f(c; d); x)

1 and (6): 3: x = f(a

0

; b) for some a

0

2 and (6): 4: x = f(c; d

0

) for some d

0

(5): 5: T

1

(f(a

0

; b); f(c; b)) (, T

1

(x; f(c; b)) by 3)

(5): 6: T

2

(f(c; d

0

); f(c; b)) (, T

2

(x; f(c; b)) by 4)

5, 6 and (7): f(c; b) = x

Since the role terms can be arbitrarily nested we show the homomorphism and zigzag condition

for f by induction on the structure of the role terms.

Base Case: For a primitive role p with dim(p) = i let p

1

be its interpretation in F

1

. We de�ne

p

n

(~u;~v) i� p

1

(f(~u); f(~v)) as the interpretation of p in F

n

. Because of axiom E1

p

it is guaranteed

that p

n

moves only along the i'th dimension. Furthermore the homomorphism condition and the

zigzag morphism condition are obviously satis�ed.

Induction Step: Once the primitive roles have an interpretation in F

n

, the interpretation of the

corresponding compound roles is �xed. We must show that the homomorphism conditions and the

zigzag conditions are satis�ed by this interpretation.

For the case that dim(p) = dim(q), the conditions C1

pq

and C2

pq

guarantee that the interpre-

tation of b

p;q

and d

p;q

in the one{dimensional case and in the n{dimensional case have a one to

one correspondence. The homomorphism and zigzag conditions hold trivially.

By axiom F

pq

, the homomorphism and zigzag conditions for b

+

p;q

hold once the corresponding

conditions for b

p;q

and d

p;q

are established (even if the dimensions of p and q are di�erent).

Thus, it remains to check the conditions for b

p;q

and d

p;q

in the case of di�erent dimensions of

p and q. In the sequel, we assume that the dimension of p is 1 and the dimension of q is 2.

� Homomorphism condition for b

p;q

:

8x; y; z b

n

pq

((x; y); (x; z))) b

1

pq

(f(x; y); f(x; z)).

Suppose: 1: b

n

pq

((a; b); (a; c)) for some a; b; c.

1 and (2): 2: 8z p

n

((a; b); (z; b))) q

n

((z; b); (z; c))

Suppose: 3: T

2

(u; v) and 4: T

1

(v; f(a; c)) and 5: p

1

(f(a; b); u)

(we want to apply D4

pq

for x = f(a; b) and y = f(a; c))

5, induction hypothesis: 6: p

n

((a; b); (d; b)) and 6: f(d; b) = u for some d

(zigzag condition)

6 and 2: 7: q

n

((d; b); (d; c))

7, induction hypothesis: 8: q

1

(f(d; b); f(d; c)) (homomorphism condition)

3 and 6: 9: T

2

(f(d; b); v)

4,9, A2

1

and (8): 10: f(d; c) = v

6, 8 and 10: 11: q

1

(u; v)

3-11: 12: T

2

(u; v) ^ T

1

(v; f(a; c)) ^ p

1

(f(a; b); u)) q

1

(u; v)

f is an isomorphism: 13: T

2

(f(a; b); f(a; c))

12, 13 and D4

pq

: b

1

pq

(f(a; b); f(a; c))

12



� Zigzag condition for b

p;q

: b

1

pq

(f(x; y); z))9u b

n

pq

((x; y); (x; u)) ^ f(x; u) = z.

Suppose: 1: b

1

pq

(f(a; b); c) for some a; b; c

1 and D3

pq

: 2: 8u p

1

(f(a; b); u))9v q

1

(u; v) ^ T

1

(v; c)

Suppose: 3: p

n

((a; b); (y; b)) for some y

3 and induction hypothesis: 4: p

1

(f(a; b); f(y; b))

2 and 4: 5: q

1

(f(y; b); v) and 6: T

1

(v; c) for some v

5, induction hypothesis: 7: q

n

((y; b); (y; x)) and 8: f(y; x) = v for some x

(zigzag condition)

6 and 8: 9: T

1

(f(y; x); c)

1 and E3

pq

: 10: T

2

(f(a; b); c)

9, 10 and (8): 11: f(a; x) = c

Suppose: 12: p

n

((a; b); (y

0

; b)) for some y

0

As in 3{11 above: 13: q

n

((y

0

; b); (y

0

; x

0

))

and 14: f(y

0

; x

0

) = v

0

for some x

0

,

and 15: f(a; x

0

) = c

11, 15, f isomorphism: 16: x = x

0

13{15: 17: 8y

0

p

n

((a; b); (y

0

; b))) q

n

((y

0

; b); (y

0

; x))

17 and (2): 18: b

n

pq

((a; b); (a; x))

18 and 11: 9x b

n

pq

((a; b); (a; x)) ^ f(a; x) = c

� Homomorphism condition for d

p;q

:

8x; y; z d

n

pq

((x; y); (x; z))) d

1

pq

(f(x; y); f(x; z)).

Suppose: 1: d

n

pq

((a; b); (a; c)) for some a; b; c

1 and (3): 2: 9x p

n

((a; b); (x; b)) ^ q

n

((x; b); (x; c))

2, induction hypothesis: 3: 9x p

1

(f(a; b); f(x; b)) ^ q

1

(f(x; b); f(x; c))

(homomorphism condition)

3 and D2

pq

: 4: T

1

(f(x; c); v) and 5: d

1

pq

(f(a; b); v) for some v

5 and E4

pq

: 6: T

2

(f(a; b); v)

4, 6 and (8): 7: f(a; c) = v

7 and 5: d

1

pq

(f(a; b); f(a; c))

� Zigzag condition for d

p;q

:

d

1

pq

(f(x; y); z))9u d

n

pq

((x; y); (x; u)) ^ f(x; u) = z.

Suppose: 1: d

1

pq

(f(a; b); c) for some a; b; c

1 and D1

pq

: 2: p

1

(f(a; b); u) and 3: q

1

(u; v) and

4: T

1

(v; c) for some u; v

2, induction hypothesis: 5: p

n

((a; b); (d; b)) and 6: f(d; b) = u for some d

(zigzag condition)

3 and 6: 7: q

1

(f(d; b); v)

7, induction hypothesis: 8: q

n

((d; b); (d; e)) and 9: f(d; e) = v for some e

(zigzag condition)

4 and 9: 10: T

1

(f(d; e); c)

1 and E4

pq

: 11: T

2

(f(a; b); c)

10, 11 and (8): 12: f(a; e) = c

5 and 8 and (3): 13: d

n

pq

((a; b); (a; e))

12 and 13: 9u d

n

pq

(a; b; a; u) ^ f(a; u) = c (choose u = e)

<

Theorem 2.8 A M-ALC{CML

n

{formula is a theorem in the n{dimensional semantics if, and

only if, it is a theorem in the one{dimensional semantics.
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Proof : First of all, according to Lemma 2.6, n{dimensional frames are also one{dimensional

frames. Therefore, a formula that is true in all one{dimensional frames is also true in all n{

dimensional frames.

In every modal logic, a formula is a theorem if, and only if, it holds in every generated sub-

frames. Therefore only one connected component of a frame need to be considered. In Lemma 2.7

we have shown that every connected one{dimensional frame ofM-ALC{CML

n

is the zigzagmorphic

image of a n{dimensional M-ALC{CML

n

{frame. Hence, they have the same modal theory [21].

<

With this theorem we have in principle succeeded in describingM-ALC in the standard multi{

modal logic framework with standard operators and standard accessibility relations. But the frame

conditions are so complex that it is not clear whether one can employ of this result in some useful

way. Thus, the question arises whether it is possible to simplify the set of axioms. A key observation

is that the formulae we are interested in are pureM-ALC formulae. These formulae do not contain

the diagonal operators �

ij

or the coordinate operators 2

i

and 3

i

. Hence, one may ask whether

these auxiliary

3

operators are really necessary: Is it possible to simplify the axiomatization such

that (i) the predicates E

ij

and T

i

do not occur, but (ii) the �

ij

and 2

i

{free theorems stay the

same. As the next theorem shows, it is in fact possible to eliminate the �

ij

part of the logic.

Theorem 2.9 Let L be the �

ij

{free part of the logic M-ALC{CML

n

with one{dimensional se-

mantics. This means that all frame conditions except the conditions B1

i

{B5

i

are assume to hold.

For all �

ij

{free M-ALC{CML

n

formula ' the formula ' is a M-ALC{CML

n

theorem if, and only

if, ' is a L theorem.

Proof : By de�nition, all M-ALC{CML

n

{frames are also L{frames. If ' is a L{theorem then it

holds in all L{frames and therefore also in allM-ALC{CML

n

{frames. Thus, the nontrivial part is

the other direction. Here we must show that the conditions on the E

ij

{predicates have no inuence

on the theorem-hood of �

ij

{free formulae.

Suppose ' is a M-ALC{CML

n

{theorem. It is well known that for any multi{modal logic

theorem ', the `relationally' translated predicate logic formula �(') [17] is a predicate logic con-

sequence of the predicate logic axiomatization of the frame conditions. The relational translation

maps every propositional variable to a one{place predicate which takes a `world term' as argument.

The modal part of the language is translated using the modal operators' semantics de�nitions as

rewrite rules:

�([p] ;w) = 8v p(w; v)) �( ; v)

�(hpi ;w) = 9v p(w; v) ^ �( ; v)

�(�

ij

; w) = E

ij

(w)

This means that 	) �(') is a predicate logic theorem where 	 is an axiomatization of the frame

conditions for M-ALC{CML

n

, consisting of the axioms A1

i

{B5

i

, C1

pq

{C2

pq

and D1

ij

{E4

pq

.

Thus, 	 ^ :�(') is unsatis�able in predicate logic. By the completeness of the hyperresolution

strategy [18], there is a hyperresolution deduction of the empty clause from the clause form of

	 ^ :�(') together with the equality formulae. We show that the axioms B1

i

{B5

i

cannot partic-

ipate in this refutation. The clause form of B1

i

{B5

i

is

B1

i

E

ii

(x)

B2

ij

:T

i

(x; y);:E

ij

(y);:T

i

(x; z);:E

ij

(z); y = z

B3

ijk

; 1 :E

ij

(x); T

k

(x; f

2

(x))

B3

ijk

; 2 :E

ij

(x); E

ik

(f

2

(x))

B3

ijk

; 3 :E

ij

(x); E

kj

(f

2

(x))

B3

ijk

; 4 E

ij

(x);:T

k

(x; y);:E

ik

(y);:E

kj

(y)

B4

ij

; 1 :E

ij

(x);:T

i

(x; y);:T

j

(y; z); y = z;:E

ij

(f

3

(x; y; z))

B4

ij

; 2 :E

ij

(x);:T

i

(x; y);:T

j

(y; z); y = z; T

j

(x; f

3

(x; y; z))

B4

ij

; 3 :E

ij

(x);:T

i

(x; y);:T

j

(y; z); y = z; T

i

(f

3

(x; y; z); z)

B5

i

:H

1

(x; y);:T

2

(x; z);:E

21

(z);:T

1

(z; y); E

1i

(y):

3

from the standpoint of pure M-ALC
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Besides B1

i

there are only clauses with literals of mixed sign. They can only play the role of

a nucleus of a hyperresolution step. Since all of these clauses contain negative E

ij

{literals, they

need a clause with only positive literals and at least one such clause with a positive E

ij

{literal as

electron. Neither the equality clauses nor the remaining clauses of 	 nor the clause form of :�(')

contains such a clause (' is �

ij

{free). Thus, no hyperresolution step with these clauses is possible.

B1

i

= E

ii

(x) cannot participate either because in all other clauses with E

ij

, i 6= j is required.

Hence, (	nB1

i

{B5

i

)) �

r

(') is a predicate logic theorem. This means that ' is a L{theorem.

<

It is, however, not clear how to eliminate the relations T

i

that correspond to the coordinate

operators. It could be the case that any reasonable axiomatization needs such auxiliary relations.

The conclusion of this section is not quite satisfactory. We did manage to describe M-ALC in

terms of classical multi{modal logics. We have shown that the nested role terms can be understood

as ordinary parameters of a parameterized modal operator, where the structure of the frames is

speci�ed by the conditions A1

i

{ A4

i

, C1

pq

,C2

pq

, D1

pq

{ D4

pq

, E1

p

{ E4

pq

and F

pq

. However, no

further simpli�cation of these rather complex conditions seems possible, even under the assumption

that the theorems we want to prove do not contain the coordinate operators. The naturally asked

question whether there is a Hilbert style axiomatization for M-ALC therefore also remains open.

The di�cult conditions which do not have an obvious corresponding Hilbert axiom are D4

pq

and

the ){part of C2

pq

.

So far, it is not clear whether this relational description of M-ALC can be used to support

the development of decision algorithms. In the next section we present an algorithm for testing

the satis�ability of a restricted class of M-ALC{formulae. This algorithm is based on M-ALC's

original semantics, and not on the axiomatic description developed in this section. Soundness and

termination of the algorithm are shown, but completeness remains an open problem.

3 The Satis�ability Test

In ALC a subsumption algorithm for concept terms is fully su�cient for computing the concept

hierarchy in T-Boxes. The reason is that the concept equations are interpreted universally, and

that the T-Boxes are deterministic and cycle free. This means no pairs c = d and c = d

0

with

d 6= d

0

are in the T-Box, and no chains c

1

= d

1

[c

2

]; : : : ; c

n

= d

n

[c

1

] are in the T-Box. With this

restriction, all de�ned concepts in a concept term can be expanded with their de�nition prior to

the subsumption test.

In the general case where modal concept equations m(c = d) either hold everywhere, or at

some point only, or at one point in some dimensions and everywhere in others, this is no longer

possible. A quite complex speci�cation and control mechanism for the application of concept

equations would be necessary, which is out of the scope of this paper. Therefore we only present a

satis�ability algorithm for concept terms (which is in fact a general theorem prover for the modal

logic M-ALC).

The algorithm we shall present works only for the restricted serial case where no [:::]-operators

occur in the role terms. The following example demonstrates the expressive power the unrestricted

language has. Assume that we have only one dimension, and that the object o is an element of

the concept term [[p]q]c ^ [p]?. The term [p]? (which is also allowed in the restricted case) forces

the set of p-�llers of o to be empty. This in turn means that o is connected with all objects of the

domain by the role term [p]q (which is not allowed in the restricted case). Because o is also an

element of [[p]q]c this implies that all objects have to be in c. This shows that concept terms of

M-ALC can be used to simulate general concept equations of the form c = > where c is a complex

concept term. As mentioned in the introduction, general concept equations are very hard to handle

algorithmically. If M-ALC terms are assumed to satisfy the seriality restriction concept equations

can no longer be expressed. In the following we assume that all concept terms we consider are

restricted serial.

In the satis�ability algorithm we assume that all concept terms are in negation normal form,

i.e., negation symbols occur only in front of the atomic names. The following rules transform a
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given concept term into an equivalent term in negation normal form:

:> ! ? :? ! >

::� ! � :[p]� ! hpi:�

:(� _  ) ! :� ^ : :hpi� ! [p]:�

:(� ^  ) ! :� _ : :[p]

+

� ! hpi:� _ [p]?

In order to be as close to the semantics as possible, we write the satis�ability test as a labelled

deductive system [9]. The control structure, however, is a tableau expansion. Each data item is a

pair

~

l : � where

~

l = (l

1

; : : : ; l

n

) consists of constant symbols generated during the expansion of the

tableau. The label

~

l is the syntactic counterpart of the `actual world tuple'

~

d in an interpretation.

That means

~

l : � describes � in the context

~

l. Here � may be a concept term or a role term with

an argument. The expression

~

l : p : a for example means that a is a p-successor of l

dim(p)

. The

constraint systems that are generated by our satis�ability algorithm will always have a speci�ed

initial label

~

l

0

. The algorithm calls itself recursively with `negated' role terms p in role constraints.

The intended interpretation of p is simply as complement: =(p)(

~

d) = D

dim(p)

n =(p)(

~

d). Since

we must avoid [:::]-operators in the role terms, the rules for building negation normal form are

more complex for role terms than they are for concept terms. These rules are not applied in a

preprocessing step. Instead, they are integrated into the satis�ability algorithm.

The rules for building negation normal forms of role terms generate so-called role terms with

negation, which are slightly more general than simple negated role terms: if p and q are role

terms (without negation) then p, [p]

+

q, and hpiq are role terms with negation. The dimension of

a role term with negation is just the dimension of the corresponding role term without negation:

dim(p) = dim(p), dim([p]

+

q) = dim([p]

+

q), and dim(hpiq) = dim(hpiq). In the following, the

expression `role term' will always mean a role term with or without negation. Since the negation

occurs only in a very restricted setting in such terms (in particular, not inside of box or diamond

operators), allowing for such terms does not mean that we introduce general role negation.

More formally, the rules of the satis�ability algorithm work on so-called constraint systems,

which are de�ned as follows.

De�nition 3.1 For an n-dimensional M-ALC language, constraints are built from constant sym-

bols (points), n-tuples of constant symbols (labels), and role and concept terms. Each constant

symbol has a dimension between 1 and n, and it may occur in a label as i{th component only if its

dimension is i.

A role constraint is a triple

~

l : p : a, where

~

l is a label, p is a role term (with or without

negation), and a is a point of dimension dim(p). A concept constraint is a tuple

~

l : c consisting

of a label

~

l and a concept term c. A constraint system is a set of role constraints and concept

constraints. <

The constraints in one system will be interpreted conjunctively (i.e., all of them must be satis�ed

to satisfy the whole system), whereas sets of constraint systems will be interpreted disjunctively

(i.e., only one of the systems must be satis�ed to satisfy the whole set of systems).

The algorithm depends on a function d that, for a given point in a constraint system, measures

its distance from the initial label

~

l

0

, i.e., it counts with how many atomic steps

~

l : p : x or

~

l : p : x

(where p is a role name) it can be reached from the initial label. For general constraint systems, the

notion of depth may depend on the path chosen to reach the point, and it may even be unde�ned

if the point cannot be reached from the initial label.

De�nition 3.2 For a role term p we de�ne jpj to be the number of occurrences of role names in

p. For a constraint set � with initial label

~

l

0

= (l

01

; : : : ; l

0n

) we de�ne

� d(l

0i

;�) = 0 for i = 1; : : : ; n.

� d(

~

l;�) = max

1�i�n

d(l

i

;�).

� If n = d(

~

l;�) is already de�ned, and

~

l:p:b 2 � is selected by some selection function for b then

d(b;�) = n+ jpj. <
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It will be shown (see Lemma 4.2 below) that for the constraint systems generated by the

satis�ability algorithm, this de�nition determines for every point and label in the system a unique

depth (i.e., one that is independent of the selection function). We are now ready to formulate the

algorithm. Because of the presence of disjunction in our language we will actually have to consider

�nite sets of constraint systems.

De�nition 3.3 The satis�ability algorithm takes as input a restricted serial M-ALC concept term

c

0

in negation normal form. It then constructs an initial label

~

l

0

and builds the constraint system

f

~

l

0

:c

0

g. Then it calls the function apply-rules with the singleton set �

0

= ff

~

l

0

:c

0

gg. This function

iteratively applies the rules of Figure 2 to the constraint systems already obtained. It returns

`unsatis�able' if the ;-rule applies, and `satis�able' if the >-rule applies. <

A small example shall illustrate how the algorithm works. In the one-dimensional case, the

concept terms [hpiq]c and [p][q]c are equivalent. We prove that the second term subsumes the �rst

by applying the satis�ability algorithm to [hpiq]c ^ :[p][q]c.

The initial constraint set for this input term contains the constraint

l

0

:[hpiq]c ^ hpihqi:c. By an application of the ^-rule one obtains the two constraints

(1) l

0

:[hpiq]c and (2) l

0

:hpihqi:c:

The hi-rule, applied to (2), adds the constraints

(3) l

0

:p:a and (4) a:hqi:c:

The hi-rule, applied to (4), adds

(5) a:q:b and (6) b::c:

Now d(b;�) = 2 = d(l

0

;�)+ jhpiqj. For this reason, we have to make a recursive call of the function

apply-rules to determine whether the []

�

-rule �res for (1) and b.

In this recursive call we consider the constraints (3) and (5) together with the new negated role

constraint l

0

:hpiq:b. An application of the hi-rule yields two new systems, one with the additional

constraint

(7) l

0

:[p]

+

q:b;

and the other with the additional constraint l

0

:[p]?. In the following we restrict our attention to

the �rst system. (The alternative l

0

:[p]? also leads to `unsatis�able.') Now the []

�

-rule becomes

applicable for (7) and a. In fact, the recursive call of apply-rules with the constraint (3) and the

new negated role constraint (8) l

0

:p:a immediately returns unsatis�able. Application of the []

�

-rule

for (7) and a yields the new constraint (9) a:q:b, which clashes with (5). Thus the �rst recursive

call also yields unsatis�able.

This shows that in our original system the []

�

-rule can �re for (1) and b. From this we get

(10) b:c, and thus a clash with (6).

4 Proof of Termination and Soundness

First, it will be shown that, for constraint systems generated by the algorithm, the depth function

is always uniquely de�ned (i.e., independent of the selection function). In addition, the depth of

all points and labels is bounded by a positive integer, which depends linearly on the size of the

input term.

To de�ne an appropriate bound on the depth of all points and labels occurring in a constraint

system generated by the algorithm, we extend the notion of length of a role term to concept terms

and expressions of the form p:a.

De�nition 4.1 For concept names c and role names p we de�ne jcj

def

= jpj

def

= 1. Now assume that

a is a point, q is a role term without negation, e, f are concept terms, and � is a concept term or

an expression of the form q:a.

17



1. j:cj

def

= jcj and jqj

def

= jqj.

2. je _ f j

def

= je ^ f j

def

= maxfjej; jf jg.

3. j[q]

�

�j

def

= jhqi�j

def

= jpj+ j�j.

4. jq:aj

def

= jqj.

For a constraint system � and a label

~

l in � we de�ne

m(

~

l;�)

def

= maxfj�j j

~

l:� 2 �g

as the length of

~

l in �. <

Lemma 4.2 Let c

0

be a concept term of length jc

0

j = n

0

, and assume that the function apply-rules

is called with the singleton set f�

0

g, where �

0

= f

~

l

0

:c

0

g.

1. The depths of points and labels is uniquely de�ned, and it remains invariant during the

execution of the function apply-rules.

2. For any constraint system � generated during the execution of apply-rules and any label

~

l in

�, we have d(

~

l;�) +m(

~

l;�) � n

0

.

Proof : by induction on the number of rule applications.

In the initial state there is only the label

~

l

0

, and no points other than the ones occurring in

~

l

0

. For these the �rst part is obviously true: their depth is uniquely de�ned to be zero, and thus

d(

~

l

0

;�

0

) = 0. In addition, we have m(

~

l

0

;�

0

) = jc

0

j = n

0

, which shows that the second part of the

lemma is true as well.

Obviously, an application of the ^- or _-rule does not change the depth of points and labels,

and it is easy to see that this also holds for the length of labels.

The two rules dealing with negated role terms are also unproblematic. We restrict our attention

to the []

+

-rule. (The other rule can be treated analogously.) In the �rst alternative, the []

+

-rule

introduces a new role constraint

~

l:hpiq:a. Since the system already contains the constraint

~

l:[p]

+

q:a,

which satis�es j[p]

+

qj = jhpiqj, this additional constraint neither changes the depth of a nor the

length of

~

l. In the second alternative, the rule adds the constraint

~

l:[p]?. This new constraint does

not change the length of

~

l. The reason is that the system already contains the constraint

~

l:[p]

+

q:a,

which satis�es j[p]

+

qj � jpj+ 1 = j[p]?j.

Thus the only remaining cases in the induction step are the hi- and the []

�

-rules. Assume that

�

0

is obtained from � by application of such a rule.

(1) First, let us consider the hi-rule. In this case, we may without loss of generality assume

that � contains

~

l:hpi� and �

0

= � [ f

~

l:p:a;

~

l[i=a]:�g where i = dim(p). (The case where � contains

~

l:[p]

+

� can be treated in exactly the same way.) The interesting case is where � is a role constraint,

i.e., � is of the form q:a

0

. (The case where � is a concept constraint is similar, but easier.)

(1.1) To prove the �rst part of the lemma, we show that in �

0

the old constants (i.e., constants

di�erent from a) have a unique depth, which is identical to their depth in �. This is done by

induction on the depth of these constants in �.

The only constants of depth 0 in � are the components of the tuple

~

l

0

. In fact, any other

constant b must have been introduced by a hi-rule. Thus there exists a role constraint of the form

~g:r:b in �, which shows that d(b;�) � jrj � 1. For the components of

~

l

0

we have the unique depth

d(

~

l

0i

;�

0

) = 0 = d(

~

l

0i

;�

0

) by de�nition, and this coincides with the depth they have in �.

Let b be a constant of depth greater than 0. First, assume that b 6= a

0

. We know that there

exists a role constraint ~g:r:b, and

(�) d(b;�) = d(~g;�) + jrj:

In addition, for any other role constraint ~g

0

:r

0

:b 2 �, we also have

(��) d(b;�) = d(~g

0

;�) + jr

0

j;
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by our induction assumption on �. From the equations (�) and (��) one can deduce that the

components of ~g and ~g

0

have a depth (in �) that is smaller than the one of b. For this reason, we

know d(~g;�) = d(~g;�

0

) and d(~g

0

;�) = d(~g

0

;�

0

) by induction. This, together with the equations

(�) and (��) shows that in �

0

both role constraints give us the same depth for b, namely the one

b already had in �. Since we have assumed b 6= a

0

, the system �

0

does not contain new role

constraints for b.

Now assume that b = a

0

. As above, one can show that the old role constraints for a

0

provide

us with the same depth for a

0

as in �. Note that the constraint

~

l:hpiq:a

0

2 � shows that d(a

0

;�) =

d(

~

l;�) + jpj+ jqj.

It remains to be shown that the new constraint

~

l[i=a]:q:a

0

does not give a di�erent result.

To determine the depth induced by this constraint, we have to �nd out what the depth of the

new constant a is in �

0

. There is exactly one role constraint for a in �

0

, namely

~

l:p:a. Because

~

l:hpiq:a

0

2 �, we know that the components of

~

l have a smaller depth than a

0

in �. By induction, we

thus know that d(

~

l;�

0

) = d(

~

l;�) is uniquely de�ned. But then d(a;�

0

) = d(

~

l;�

0

)+ jpj = d(

~

l;�)+ jpj

is also uniquely de�ned. Obviously, this implies that d(

~

l[i=a];�

0

) = d(a;�

0

) since a is the component

of maximal depth in

~

l[i=a].

The constraint

~

l[i=a]:q:a

0

induces for a

0

in �

0

the depth d(

~

l[i=a];�

0

) + jqj. However, we know

that this is equal to d(a;�

0

) + jqj = d(

~

l;�

0

) + jpj+ jqj = d(

~

l;�) + jpj+ jqj = d(a

0

;�), as was to be

shown.

(1.2) Now let us turn to the second part of the lemma. First, we consider the length of old labels,

i.e., labels not containing a. Obviously,

~

l is the only such label having an additional constraint in

�

0

. But this new constraint,

~

l:p:a, cannot increase the length of

~

l since � already contains

~

l:hpi�,

and jhpi�j � jpj = jp:aj. Thus, for all old labels ~g we have m(~g;�

0

) = m(~g;�), and since the depth

of these labels also coincides in � and �

0

(by (1.1)), the second part of the lemma is satis�ed for ~g

by induction.

The only new label in �

0

is

~

l[i=a], and its only constraint is

~

l[i=a]:�. By induction, we know

n

0

� m(

~

l;�) + d(

~

l;�);

and in (1.1) we have seen that

d(

~

l[i=a];�

0

) = d(a;�

0

) = d(

~

l;�

0

) + jpj = d(

~

l;�) + jpj:

Since � contains the constraint

~

l:hpi�, we obtain

m(

~

l;�) � jhpi�j = jpj+ j�j;

and since

~

l[i=a]:� is the only constraint for

~

l[i=a], we also have

m(

~

l[i=a];�

0

) = j�j:

These facts imply that n

0

� m(

~

l;�) + d(

~

l;�) � jpj+ j�j + d(

~

l;�) = d(

~

l[i=a];�

0

) +m(

~

l[i=a];�

0

), as

was to be shown.

(2) Second, we consider an application of the []

�

-rule. In this case, � contains the constraint

~

l:[p]

�

� and �

0

= � [ f

~

l[i=a]:�g. Since the rule applies to a, we know that d(a;�) = d(

~

l;�) + jpj.

(2.1) To prove the �rst part of the lemma, we show by induction on the depth of constants in

� that all constants have the same depth in �

0

as they had in �. Again, the constants of depth 0

in � and �

0

are exactly the components of the tuple

~

l

0

.

The only new constraint in �

0

is

~

l[i=a]:�. If � is not a role constraint, the depth of labels

and constants is obviously not changed by its introduction. Thus assume that � = q:a

0

. Since �

contains the constraint

~

l:[p]

�

q:a

0

we have d(a

0

;�) = d(

~

l;�) + jpj + jqj. Since we also know that

d(a;�) = d(

~

l;�)+ jpj this shows that a is of smaller depth than a

0

in �. For this reason, we already

know by induction that d(a;�

0

) = d(a;�) = d(

~

l;�) + jpj = d(

~

l;�

0

) + jpj. In particular, this means

that d(

~

l[i=a];�

0

) = d(

~

l;�) + jpj.
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The constraint

~

l[i=a]:q:a

0

thus gives us d(

~

l;�) + jpj + jqj as depth of a

0

in �

0

. This is just the

depth of a

0

in �. It is easy to see that the role constraints for a

0

that were already present in �

yield the same depth for a

0

in �

0

as they did in �.

(2.2) Finally, we show that the second part of the lemma holds in this case as well. Since the

only new constraint in �

0

is

~

l[i=a]:�, the only label for which the length can change is

~

l[i=a]. If this

does not happen, i.e., if m(

~

l[i=a];�) = m(

~

l[i=a];�

0

), then the second part of the lemma follows by

induction and (2.1).

Thus assume that m(

~

l[i=a];�) < m(

~

l[i=a];�

0

). This means that the length m(

~

l[i=a];�

0

) must

be equal to j�j. From (2.1) we know that d(

~

l[i=a];�

0

) = d(

~

l;�)+ jpj. Together, these to facts yield

m(

~

l[i=a];�

0

)+ d(

~

l[i=a];�

0

) = j�j+ jpj+ d(

~

l;�). Since

~

l:[p]

�

� is a constraint in �, we also know that

m(

~

l;�) � j�j+ jpj. Thus, we know m(

~

l[i=a];�

0

)+d(

~

l[i=a];�

0

) � m(

~

l;�)+d(

~

l;�), and by induction,

this is smaller or equal n

0

, which concludes the proof of the lemma. <

We have to show that the system �

00

for which the satis�ability algorithm is recursively called

in the []

�

-rule satis�es the lemma as well.

Lemma 4.3 Let c

0

be a concept term of length jc

0

j = n

0

, and assume that the function apply-

rules is called with the singleton set f�

0

g where �

0

= f

~

l

0

:c

0

g. Let � be a constraint system

generated during the execution of apply-rules. Let

~

l:[p]

�

� 2 �, and a be a constant in � with

d(a;�) = n = d(

~

l;�) + jpj. We consider the system

�

00

def

= f

~

l

0

:q:b j d(b;�) � ng [ f

~

l:p:a)g:

1. The depth of all constants in �

00

is uniquely de�ned, and it coincides with their depth in �.

2. d(

~

l;�

00

) +m(

~

l;�

00

) � n

0

.

Proof : by induction on the depth of the constants in �. The components of

~

l

0

are the only

constants of depth 0 in �. By de�nition, they also have depth 0 in �

00

.

Let b be a constant of depth greater than 0 in �. There is a constraint ~g:q:b in �, and d(b;�) =

d(~g;�)+jqj. If b occurs in �

00

then this depth is not larger than n. For this reason, the components of

~g are of depth smaller than n, and thus also occur in �

00

. By induction, we know d(~g;�

00

) = d(~g;�).

This shows that the constraint ~g:q:b yields the same depth for b in �

00

as it did in �.

If b 6= a, we are �nished (since the above argument applies to any constraint of the form ~g:q:b

that is both in � and �

00

). Otherwise, we have to take into account that for a we have the new

constraint

~

l:p:a. But this gives us the depth d(

~

l;�

00

) + jpj for a. By induction, we know that

d(

~

l;�

00

) = d(

~

l;�), and by our assumption on a, d(

~

l;�) + jpj is the depth of a in �. Thus we have

proved the �rst part of the lemma.

For the second part, we note that for ~g 6=

~

l we have m(~g;�

00

) � m(~g;�). This is so because ~g

does not have more constraints in � than it has in �

00

. For

~

l, we also have m(

~

l;�

00

) � m(

~

l;�). In

fact, the only new constraint is

~

l:p:a, and we know m(

~

l;�) � jpj (since � contains the constraint

~

l:[p]

�

�). <

The fact that labels are of bounded depth plays an important role in the proof of termination.

Theorem 4.4 The satis�ability algorithm described above terminates. <

Before we can prove the theorem we have to introduce some notation. We say that a constraint

system �

0

is a descendant of the constraint system � i� one of the following two conditions holds:

� �

0

is obtained from � by applying the ^-, _-, []

+

-, hi-, hi-, or []

�

-rule.

� � is a system for which applicability of the []

�

-rule for a constraint

~

l:[p]

�

� is tested by

recursively calling the function apply-rules with input �

0

.

Assume that the algorithm does not terminate. It is easy to see that this implies the existence

of an in�nite chain �

0

;�

1

; : : : of constraint systems such that �

i+1

is a descendant of �

i

. To prove

that this leads to a contradiction, we de�ne a mapping 	 of constraint systems into a set Q, which
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will be equipped with a well-founded strict partial ordering�. Since the ordering is well-founded,

there cannot be an in�nitely decreasing chain 	(�

0

) � 	(�

1

) � � � � of constraint systems. Thus

it will be su�cient to show that 	(�)� 	(�

0

) whenever �

0

is a descendant of �.

The elements of the set Q will have a rather complex structure. They are 2-tuples where the

�rst component is a nonnegative integer. The second component is a �nite multiset of 4-tuples.

Each component of these 4-tuples is either a �nite multiset of nonnegative integers (for the third

and fourth component) or a nonnegative integer (for the �rst and second component). Multisets

are like sets, but allow for multiple occurrences of identical elements. For example, f2; 2; 2g is a

multiset that is distinct from the multiset f2g. A given ordering on a set T can be used to de�ne an

ordering on the �nite multisets over T . In this ordering, a �nite multiset M is larger than a �nite

multiset M

0

i� M

0

can be obtained from M by replacing one or more elements in M by any �nite

number of elements taken from T , each of which is smaller than one of the replaced elements. For

example, f2; 2; 2g is larger than f2g and f2; 2; 1; 1; 0g. In [6] it is shown that the induced ordering

on �nite multisets over T is well-founded if the original ordering on T is so.

The nonnegative integer components of our 4-tuples are compared with respect to the usual

ordering on integers, and the �nite multiset components by the multiset ordering induced by this

ordering. The whole 4-tuples are ordered lexicographically from left to right, i.e., (c

1

; :::; c

4

) is

larger than (c

0

1

; :::; c

0

4

) i� there exists i; 1 � i � 4, such that c

1

= c

0

1

; :::; c

i�1

= c

0

i�1

, and c

i

is larger

than c

0

i

. Since the orderings on the components are well-founded, the lexicographical ordering on

the tuples is well-founded as well. Finite multisets of these tuples are now compared with respect

to the multiset ordering induced by this lexicographical ordering. Finally, the 2-tuples consisting

of a nonnegative integer in the �rst component, and a multiset of 4-tuples in the second component

are again ordered lexicographically from left to right. This is the well-founded ordering � on Q

mentioned above.

Before we can de�ne the mapping 	 from constraint systems to elements of Q, we need some

more notation. For a concept term c in negation normal form we denote the number of ` ^ ' and

` _' operators occurring in c by oas(c). For a role term p with negation, we denote the length of

the over-lined part of p by nol(p).

De�nition 4.5 Let c

0

be a concept term of length jc

0

j = n

0

, and assume that the function apply-

rules is called with the singleton set ff

~

l

0

:c

0

gg. Let � be a constraint system generated during the

execution of apply-rules. Then 	(�)

def

= (	

1

(�);	

2

(�)). The �rst component of this 2-tuple is

de�ned as

	

1

(�)

def

= maxfd(

~

l;�) +m(

~

l;�) j

~

l is a label occurring in �g:

The second component, 	

2

(�), is the multiset that contains for each label

~

l occurring in � a 4-tuple

 (

~

l;�) de�ned as follows:

1. The �rst component of  (

~

l;�) is the integer k

1

def

= n

0

� d(

~

l;�). By Lemma 4.2, k

1

is well-

de�ned and nonnegative.

2. The second component of  (

~

l;�) is the number of constraints ~g:[p]

�

� in � that satisfy

�

~

l = ~g[i=a],

� d(a;�) = d(~g;�) + jpj, and

�

~

l:� 62 �.

Note that in this case d(

~

l;�) = d(a;�) > d(~g;�).

3. The third component of  (

~

l;�) is the multiset that consists of all numbers oas(c ^ d) (resp.

oas(e _ f), nol(p)) such that

~

l:c ^ d (resp.

~

l:e _ f ,

~

l:p:a) is in �, and the ^-rule (resp. _-rule,

hi- or []

+

) is still applicable to this constraint.

4. The fourth component of  (

~

l;�) is the multiset that consists of all numbers jpj such that

~

l:hpi� or

~

l:[p]

+

� is in �, and the hi-rule is still applicable to this constraint. <
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Lemma 4.6 Assume that � is a system for which applicability of the []

�

-rule for a constraint

~

l:[p]

�

�

is tested by recursively calling the function apply-rules with input �

0

. Then 	

1

(�) � 	

1

(�

0

), and

thus 	(�)� 	(�

0

).

Proof : We have

~

l:[p]

�

� 2 �, and a constant a in � such that d(a;�) = n = d(

~

l;�) + jpj. The

system �

0

is de�ned as

�

0

= f~g:q:b j d(b;�) � ng [ f

~

l:p:ag:

First, we show that for any label ~g in �

0

we have d(~g;�

0

)+m(~g;�

0

) � n. Let ~g:q:b be the constraint

for which jq:bj = m(~g;�

0

).

Assume that ~g is di�erent from

~

l. By de�nition of �

0

we know d(b;�) � n, and in the proof

of Lemma 4.3 we have seen that d(b;�) = d(b;�

0

). In addition, the presence of ~g:q:b in �

0

shows

that d(b;�

0

) = d(~g;�

0

) + jqj. Thus d(~g;�

0

) +m(~g;�

0

) = d(~g;�

0

) + jq:bj = d(~g;�

0

) + jqj = d(b;�

0

) =

d(b;�) � n.

If ~g =

~

l, then the additional constraint

~

l:p:a must be taken into account. Since d(a;�) = n =

d(

~

l;�) + jpj and jpj = jpj, however, the same argument as above can be used.

Second, we show that d(

~

l;�)+m(

~

l;�) > n, which obviously concludes the proof of the lemma.

We know that

~

l:[p]

�

� is in �, and that d(

~

l;�) = n�jpj. But the �rst fact implies m(

~

l;�) � j[p]

�

�j >

jpj since j�j must be at least 1. <

The proof of the second part of Lemma 4.2 shows that 	

1

(�) is not changed by applying an

^-, _-, hi-, []

+

-, hi-, or []

�

-rule. Thus, if �

0

is a descendant of � obtained by applying one of

these rules it is su�cient to show that the second component of the tuple 	(�) = (	

1

(�);	

2

(�))

decreases.

Lemma 4.7 If �

0

is obtained from � by application of the ^-rule then

	

2

(�)� 	

2

(�

0

).

Proof : Assume that the ^-rule is applied to the constraint

~

l:c ^ d.

(1) Consider the tuple corresponding to

~

l. As shown in Lemma 4.2 we have d(

~

l;�

0

) = d(

~

l;�),

and thus the �rst component of  (

~

l;�

0

) coincides with the �rst component of  (

~

l;�).

The second component of the tuple cannot increase. In fact, this could only happen if a

constraint of the form ~g:[p]

�

� is added for a label ~g with d(

~

l;�) > d(~g;�). But the only label for

which constraints are added is

~

l.

The third component of  (

~

l;�) decreases: oas(c ^ d) is removed from this multiset, and possible

replaced by the smaller elements oas(c) and oas(d) (if these terms have a top-level conjunction or

disjunction).

(2) Consider the tuple corresponding to a label ~g di�erent from

~

l. Since � and �

0

contain the

same constraints for ~g, the only component that may change is the second one. This may happen

if �

0

contains a new constraint of the form

~

l:[p]

�

�. But this new constraint can only increase the

tuple of ~g if d(

~

l;�) < d(~g;�). In this case, the �rst component of  (

~

l;�) is larger than the �rst

component of  (~g;�

0

). Assume that ~g

1

; : : : ; ~g

k

are the labels for which such an increase of the

tuple takes place. Then the multiset 	

2

(�

0

) can be obtained from 	

2

(�) by �rst removing all

tuples  (~g

i

;�), and then replacing  (

~

l;�) by the smaller tuples  (

~

l;�

0

);  (~g

1

;�

0

); : : : ;  (~g

k

;�

0

).

Obviously, this shows that 	

2

(�)� 	

2

(�

0

). <

Lemma 4.8 If �

0

is obtained from � by application of the _-rule then

	

2

(�)� 	

2

(�

0

).

Proof : very similar to the one for the ^-rule. <

Lemma 4.9 If �

0

is obtained from � by application of the []

+

-rule then

	

2

(�)� 	

2

(�

0

).

Proof : Assume that the []

+

-rule is applied to the constraint

~

l:[p]

+

q:a. We have to consider two

cases: �

0

may contain the additional constraint

~

l:hpiq:a or

~

l:[p]?.

(1) First, we consider the case where �

0

= � [ f

~

l:hpiq:ag.
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(1.1) Consider the tuple corresponding to

~

l. The proof of Lemma 4.2 shows that  (

~

l;�) and

 (

~

l;�

0

) coincide in the �rst component. The second component of the tuple does not increase since

there are no constraints added to labels of depth smaller than

~

l. The third component of  (

~

l;�)

decreases: nol([p]

+

q) is removed from this multiset, and no new tuple added (since the new role

constraint does not have the negation on top level).

(1.2) Consider the tuple corresponding to a label ~g di�erent from

~

l. Since � and �

0

contain the

same constraints for ~g, we can apply the same argument as in the corresponding case in the proof

of Lemma 4.7.

(2) Second, we consider the case where �

0

= � [ f

~

l:[p]?g. Here the same arguments as in the

�rst case can be employed. <

Lemma 4.10 If �

0

is obtained from � by application of the hi-rule then

	

2

(�)� 	

2

(�

0

).

Proof : very similar to the one for the []

+

-rule. <

Lemma 4.11 If �

0

is obtained from � by application of the hi-rule then we have 	

2

(�)� 	

2

(�

0

).

Proof : Without loss of generality we consider the case where � contains a constraint of the form

~

l:hpi�, and �

0

= � [ f

~

l:p:a;

~

l[i=a]:�g.

(1) Consider the tuple corresponding to

~

l. Again, the proof of Lemma 4.2 shows that the �rst

components of  (

~

l;�

0

) and  (

~

l;�) are the identical.

The second component of the tuple does not increase. The reason is that the only labels for

which constraints are added are

~

l and

~

l[i=a]. But these labels have a depth that is not smaller than

the depth of

~

l. The second component of the tuple, however, can only increase if a constraint of

the form ~g:[p

0

]

�

�

0

is added for a label ~g of smaller depth.

The third component is not changed since the only new constraint for

~

l is a role constraint

without negation.

4

Thus no concept constraints with top-level ` _ ' or ` ^ ' are added for

~

l, and

also no role constraints with negation.

The fourth component of the tuple decreases. In fact, jpj is removed from this multiset. If p is

of the form hqir or [q]

+

r then jqj is added to the multiset, but obviously jqj < jpj.

(2) Next, we consider the tuple of

~

l[i=a]. Since a is a new constant, this is a new tuple in 	

2

(�

0

)

(i.e., one that was not present in 	

2

(�)). We know, however that d(

~

l[i=a];�

0

) = d(

~

l;�

0

) + jpj =

d(

~

l;�) + jpj, and thus the �rst component of this tuple is smaller than the one of  (

~

l;�).

(3) Finally, consider the tuple corresponding to a label ~g di�erent from

~

l and

~

l[i=a]. Obviously,

the changes for the constraints on

~

l and

~

l[i=a] can only increase this tuple in the second component.

But then the depth of ~g must be larger than the one of

~

l,

5

which means that the �rst component

of the tuple corresponding to ~g is smaller than the �rst component of  (

~

l;�). <

Lemma 4.12 If �

0

is obtained from � by application of the []

�

-rule then

	

2

(�)� 	

2

(�

0

).

Proof : We have a constraint of the form

~

l:[p]

�

� in �, and �

0

= � [ f

~

l[i=a]:�g.

(1) Consider the tuple corresponding to

~

l. Since there are no new constraints on

~

l in �

0

, the

only component in which this tuple could increase is the second one. But this cannot be the case

since the label

~

l[i=a] (which is the only one with a new constraint) is of larger depth than the label

~

l.

(2) Next, we consider the tuple corresponding to

~

l[i=a]. By Lemma 4.2 its �rst component does

not change.

The second component of the tuple decreases. In fact, the constraint

~

l:[p]

�

� is no longer counted

since

~

l[i=a]:� has been added. Since labels ~g of smaller depth than the one of

~

l[i=a] do not obtain

new constraints, this really results in a decrease of the second component.

4

Inside of diamond-operators we do not allow the use of negated roles.

5

Note that the depth of

~

l[i=a] is larger than the depth of

~

l.
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(3) Finally, consider the tuple corresponding to a label ~g di�erent from

~

l and

~

l[i=a]. The

additional constraint on

~

l[i=a] can only increase this tuple in the second component. But then the

depth of ~g must be larger than the one of

~

l[i=a], which means that the �rst component of the tuple

corresponding to ~g is smaller than the �rst component of  (

~

l[i=a];�). <

This completes the proof of termination. When the algorithm has terminated it returns either

`unsatis�able,' if all constraint systems have been eliminated by the ?-rule since they contain

clashes, or it returns `satis�able,' if there remains at least one system without a clash. The next

theorem shows that in the �rst case the answer `unsatis�able' is correct.

Theorem 4.13 Let c

0

be a concept term of M-ALC, and assume that the function apply-rules is

called with the singleton set ff

~

l

0

:c

0

gg. If it returns `unsatis�able' then the input term c

0

is in fact

unsatis�able. <

In order to prove the theorem we have to extend the notion of a model to constraint systems.

De�nition 4.14 (Semantics of Constraint Systems) Let � be a constraint system. An inter-

pretation of � is an interpretation of the underlying M-ALC-language that, in addition,

� assigns an element of D

i

to each constant of dimension i occurring in �,

� interprets over-lined role terms p of dimension i as =(p)(

~

d) = D

i

n =(p)(

~

d).

More general role terms with negation are interpreted according to the semantics for box- and

diamond-operators on roles given in De�nition 1.2. The interpretation of a label

~

l = (l

1

; : : : ; l

n

) is

=(

~

l) = (=(l

1

); : : : ;=(l

n

)).

The interpretation = satis�es the concept constraint

~

l:c i� =(

~

l) 2 =(c), and it satis�es the role

constraint

~

l:p:a i� =(a) 2 =(p)(=(

~

l)). It is a model of � i� it satis�es all constraints in �. The

interpretation = is a model of a set � of constraint systems i� it is a model of one of the systems

in �. A constraint system (set of constraint systems) is satis�able i� it has a model. <

The following three lemmas show that application of rules keeps the satis�ability of sets of

constraint systems unchanged.

Lemma 4.15 If the application of the _-, hi-, or []

+

-rule replaces the system � by �

1

and �

2

then

� is satis�able i� �

1

or �

2

is satis�able.

Proof : (1) This is rather obvious for the _-rule.

(2) Thus, consider the []

+

-rule. This means that � contains the constraint

~

l:p:a for p = [q]

+

r,

and �

1

= � [ f

~

l:hqir:ag whereas �

2

= � [ f

~

l:[q]?g.

The `if' direction of the lemma is trivially satis�ed since both �

1

and �

2

are supersets of �.

To show the `only-if' direction of the lemma, we assume that the interpretation = satis�es the

constraint

~

l:p:a, i.e., =(a) 62 =(p)(=(

~

l)). Since p = [q]

+

r this means that either =(q)(=(

~

l)) = ;,

or this set is non-empty but contains an element x such that =(a) 62 =(r)(x). In the �rst case, =

satis�es the constraint

~

l:[q]?, and thus �

2

is satis�able. In the second case, =(a) 2 =(r)(x), and

thus =(a) 2 =(hqir)(=(

~

l)). This shows that = satis�es �

1

.

(3) The hi-rule can be treated similarly. <

Lemma 4.16 If the application of the ^-, hi-, or []

�

-rule replaces the system � by �

0

then � is

satis�able i� �

0

is satis�able.

Proof : The proof is obvious for the ^- and the hi-rule.

Thus consider the []

�

-rule. If �

0

is satis�able then � is satis�able as well since � is a subset of

�

0

. To prove the other direction it obviously su�ces to show the following property:

If the recursive call of the function apply-rules returns `unsatis�able' then we have

=(a) 2 =(p)(=(

~

l)) for all models = of �.
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Assume to the contrary that = is a model of � such that

(�) =(a) 62 =(p)(=(

~

l)):

Obviously, = is a model of the subset f

~

l

0

:q:b j d(b;�) � ng of �. Because of the assumption (�), =

satis�es the constraint

~

l:p:a as well. This means that the recursive call returns `unsatis�able' even

though the input system is satis�able. By induction, we can assume, however, that Theorem 4.13

already holds for this smaller system. <

Lemma 4.17 If the ?-rule applies to a constraint system � then � is unsatis�able.

Proof : obvious by the semantics for concept and role negation and for ?. <

Now we can prove Theorem 4.13. Assume that the concept term c

0

is satis�able, and that we

call the function apply-rules with input ff

~

l

0

:c

0

gg. Since c

0

is satis�able, the constraint system

�

0

= f

~

l

0

:c

0

g is satis�able as well. Let � be a set of constraint systems obtained by repeatedly

applying the rules of Figure 2 to this input. Since �

0

is satis�able, the Lemmas 4.15, 4.16, and

4.17 obviously imply that there exists a constraint systems in � that is satis�able. For this reason,

� cannot be empty, which shows that the ;-rule cannot be applied to �. This completes the proof

of Theorem 4.13.

Unfortunately, we did not succeed in showing the opposite direction of the statement in Theo-

rem 4.13, but we strongly conjecture that it holds. Since subsumption is reduced to unsatis�ability

this means that we have presented a sound (but possibly incomplete) algorithm for subsumption

in M-ALC. In order to prove the conjecture it is su�cient to show that a constraint to which the

>-rule applies is in fact satis�able. The main problem in the proof is to show that the []

�

-rule is

complete, i.e., that that the restrictions on its applicability are not too severe.

In the above proofs we have never used the restriction that role terms must not contain [:::]-

operators. If this restriction did not hold, however, the algorithm would obviously be incomplete.

This is illustrated by the following example, which is a modi�cation of an example given in Sec-

tion 3. We consider a 1-dimensional M-ALC language, and are interested in the satis�ability of

the concept term

c

0

= [[p]q]c ^ [p]? ^ :c:

Note that the �rst conjunct of this term is not restricted serial. In Section 3 we have shown the

following fact: If = is an interpretation such that =([[p]q]c ^ [p]?) 6= ; then any object o in the

carrier set of = is an element of =(c). Obviously, this implies that c

0

is unsatis�able.

Our algorithm, however, does not recognize the unsatis�ability of c

0

. The algorithm starts

with the constraint system fl

0

:c

0

g. By applying the ^-rule twice we obtain the system � =

fl

0

:[[p]q]c; l

0

:[p]?; l

0

::cg. At this point, none of the rules other than the >-rule can be applied. In

fact, the only possible rule could be the []

�

-rule. But there is no constant a of depth d(l

0

;�) + jpj

or d(l

0

;�) + jpj+ jqj in �.

Completeness of the satis�ability algorithm for the case of restricted serial terms is still an open

problem. We close this section by showing that the algorithm is complete in the case where all

role terms are atomic, i.e., role names are the only role terms occurring in the concept term to be

tested for satis�ability.

In order to see this we �rst reconsider the []

�

-rule under this restriction. Since all roles are

atomic it is easy to see that

apply-rules(ff

~

l

0

:q:b 2 � j d(b;�) � ng [ f

~

l:p:a)gg) = `unsatis�able'

i�

~

l:p:a is in �. In fact, since all role terms are atomic, the only rule that may apply is the ?-rule,

and this is only possible if

~

l:p:a is in �. For this reason, the []

�

-rule can be replaced by the simpler

rule of Figure 3.

Obviously, this also means that we can dispense with the []

+

- and the hi-rule. Thus, we obtain

an algorithm that is a simple multi{dimensional variant of the well-known satis�ability algorithm

for ALC. This should not be surprising since in Section 2.1 we have shown that a concept term

without compound role terms is satis�ability in one dimension if, and only if, it is satis�able in n

dimensions.
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Termination and soundness of this algorithm is an immediate consequence of termination and

soundness of the (more general) satis�ability algorithm for the restricted serial case. The proof of

completeness for the case of atomic role terms is very similar to the proof for ALC. Assume that

the >-rule is applied to �, i.e., � is a constraint system to which no other rule applies. We show

that � has a model.

De�nition 4.18 Let � be a constraint system such that all role terms occurring in � are atomic

role terms. The canonical interpretation =

�

is de�ned as follows:

� For all i; 1 � i � n, the carrier sets D

i

consists of all constants of dimension i that occur in

�.

� For all concept names c, the signature interpretation yields

=

�

�

(c) = f

~

l j

~

l:c 2 �g.

� For all role names p and all labels

~

l, the signature interpretation yields

=

�

�

(p)(

~

l) = fa j

~

l:p:a 2 �g. <

Lemma 4.19 If � is a constraint system such that all role terms occurring in � are atomic role

terms, and if the >-rule applies to �, then =

�

is a model of �.

Proof : First, consider a constraint of the form

~

l:p:a. By de�nition, =

�

satis�es this constraint i�

~

l:p:a is in �. Thus, all role constraints of � are satis�ed by =

�

.

Now, assume that

~

l:c 2 � for a concept term c. By induction on the structure of c, we show

that =

�

satis�es

~

l:c. If c is a concept name then this is the case by de�nition of the canonical

interpretation. Now, assume that c is of the form [p]c

0

where p is a role name of dimension i. (The

other cases can be treated similarly.) We must show that =

�

;

~

l j= [p]c

0

. In order to see this, assume

that there is a constant a of dimension i such that a 2 =

�

(p)(

~

l). By de�nition of =

�

, this implies

that

~

l:p:a 2 �. Since the []

�

-rule is not applicable to �, we can deduce that

~

l[i=a]:c

0

2 �, and thus

induction yields =

�

;

~

l[i=a] j= c

0

. To sum up, we have shown that =

�

;

~

l j= [p]c

0

. <

Now, assume that a system � is reached from f

~

l

0

:c

0

g by application of the rules of the satis�a-

bility algorithm, and that the >-rule applies to �. If all role terms occurring in c

0

are atomic then

� satis�es the assumption of the lemma. Since f

~

l

0

:c

0

g is a subset of �, we know that =

�

is also a

model of

~

l

0

:c

0

. This shows that c

0

is satis�able.

Theorem 4.20 Let c

0

be a concept term of M-ALC that contains only atomic role terms, and as-

sume that the function apply-rules is called with the singleton set ff

~

l

0

:c

0

gg. If it returns `satis�able'

then the input term c

0

is in fact satis�able. <

5 Independence of Some Dimensions

As mentioned in the introduction, it would often be desirable to have roles and concepts depend on

only some of the dimensions. For example, assume that we have an object and a time dimension,

and that the role future has dimension time. As de�ned until now, an interpretation = may

interpret future by an arbitrary function

=

�

(future):

~

D ! 2

D

time

:

Thus, if one considers two di�erent individuals John and Mary (who are elements of D

object

), and

a time point t

0

2 D

time

, the future time points reached from the tuple (John,t

0

) may di�er from

the future time points reached from (Mary,t

0

). Considering this as a possibility may give rise to

interesting philosophical discussion, but it does not agree with our usual understanding of time.

With respect to this understanding, the role future should be independent of the dimension object.

In order to account for the fact that some roles (or concepts) may depend on only a subset of

the set of all dimensions, we extend the syntax as follows.
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De�nition 5.1 AnM-ALC language with dimension independence is anM-ALC language where,

in addition to its dimension, dim(p), each role name p has a set of relevant dimensions, �(p) �

f1; : : : ; ng, i.e., the set of dimensions it depends on. Accordingly, each concept name c is equipped

with a set �(c) � f1; : : : ; ng. <

Before we can give a formal de�nition of what it means that concepts and roles depend on the

relevant dimensions only, we must introduce one more piece of notation. Let

~

D = D

1

� : : :�D

n

be

the Cartesian product of n non-empty sets, and let � be a subset of f1; : : : ; ng. For tuples

~

d;~e 2

~

D

we de�ne

~

d �

�

~e i� d

i

= e

i

for all i 2 �:

De�nition 5.2 An interpretation = = (

~

D;=

�

) of an M-ALC language with dimension inde-

pendence is an interpretation of the underlying M-ALC language that satis�es the following two

additional conditions:

1. For all concept names c, and all

~

d;~e 2

~

D such that

~

d �

�(c)

~e, the signature interpretation

satis�es

~

d 2 =

�

(c) i� ~e 2 =

�

(c).

2. For all role names p, and all

~

d;~e 2

~

D such that

~

d �

�(p)

~e, the signature interpretation satis�es

=

�

(p)(

~

d) = =

�

(p)(~e). <

If all sets �(c) and �(p) are equal to f1; : : : ; ng, the set of all dimension, then this yields the

semantics of M-ALC, as de�ned in Section 1. Otherwise, the set of admissible interpretations

is restricted. Thus, a given concept term of an M-ALC language with dimension independence

may be unsatis�able, even though it is satis�able with respect to the semantics of the underlying

M-ALC language.

As an example, assume that n = 2, and that we have two roles p and q such that dim(p) = 1,

dim(q) = 2, �(p) = f1g, and �(q) = f2g. Consider the concept term

c

0

= hpihqic ^ [q][p]:c:

The interpretation= = (

~

D;=

�

) is de�ned as follows: D

1

def

= fa

0

; a

1

g,D

2

def

= fb

0

; b

1

g; =

�

(p)(a

0

; b

0

) =

fa

1

g and =

�

(p)(

~

d) = ; for all

~

d 6= (a

0

; b

0

); =

�

(q)(a

1

; b

0

) = fb

1

g and =

�

(q)(

~

d) = ; for all

~

d 6= (a

1

; b

0

); =

�

(c) = f(a

1

; b

1

)g.

It is easy to see that =; (a

0

; b

0

) j= c

0

. However, = is not an admissible interpretation of

the language with dimension independence. For example, we have (a

0

; b

0

) �

�(p)

(a

0

; b

1

), but

=

�

(p)(a

0

; b

0

) = fa

1

g 6= ; = =

�

(p)(a

0

; b

1

). More generally, it can be shown that there cannot be

an interpretation of the language with dimension independence that interprets the concept term c

0

by a non-empty set. Indeed, since p does not depend on q's dimension and vice versa, applications

of the p-role and the q-role commute. For this reason, the concept terms hpihqic and hqihpic are

equivalent, and this obviously shows unsatis�ability of c

0

.

In the remainder of this section we show that allowing for arbitrary role terms and dimension

independence of roles in M-ALC leads to an undecidable satis�ability problem.

Theorem 5.3 Satis�ability of concept terms is undecidable for the class of M-ALC languages

with dimension independence. <

In order to prove the theorem we reduced the domino problem [2, 11] to the satis�ability problem

for M-ALC languages with dimension independence.

De�nition 5.4 An instance of the domino problem consists of a �nite set C = f1; : : : ; ng of

`colours', and a �nite set T = ft

1

; : : : ; t

m

g of `domino types', where each domino type is a 4{tuple

t

i

= (l

i

; r

i

; a

i

; b

i

) 2 f1; : : : ; ng

4

.

Let IN denote the set of nonnegative integers. A solution of the domino problem (C; T ) is a

mapping L : IN� IN! T such that, for all (i; j) 2 IN� IN, the following two conditions hold:

� If L(i; j) = t

�

= (l

�

; r

�

; a

�

; b

�

) and L(i+ 1; j) = t

�

= (l

�

; r

�

; a

�

; b

�

) then r

�

= l

�

.
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� If L(i; j) = t

�

= (l

�

; r

�

; a

�

; b

�

) and L(i; j + 1) = t

�

= (l

�

; r

�

; a

�

; b

�

) then a

�

= b

�

. <

Intuitively, a domino type is a square such that each side has a colour from the set of available

colours C. In the tuple (l

i

; r

i

; a

i

; b

i

), the number l

i

describes the colour of the left side of the

square, r

i

describes the colour of the right side, a

i

describes the colour we see from above, and

b

i

describes the colour we see from below. For each type, one assumes that there are in�nitely

many dominos of this type. The domino problem is concerned with the question of whether it is

possible to tile the upper right quadrant of the plain with dominos of the available types (without

rotating or reecting the domino types), where an admissible tiling must satisfy the restriction

that the sides where dominos touch have identical colour. As shown by Berger [2], this problem is

undecidable.

The reduction. Let (C; T ) be an instance of the domino problem. We shall use this instance to

de�ne a 2-dimensional M-ALC language with dimension independence, and a concept term c

0

of

this language such that (C; T ) has a solution i� c

0

is satis�able.

The set of role names of the M-ALC language de�ned by (C; T ) consists of the names p, q, l,

r, a, b, and s, and the set of concept names consists of the names c

1

; : : : ; c

n

, where n is the number

of di�erent colours in C. We de�ne dim(p) = dim(l) = dim(r) = dim(a) = dim(b) = dim(s) = 1,

dim(q) = 2, �(p) = f1g, �(q) = f2g, and �(l) = �(r) = �(a) = �(b) = �(s) = �(c

1

) = : : : = �(c

n

) =

f1; 2g.

Intuitively, the concepts c

1

; : : : ; c

n

are used to represent the n di�erent colours. The roles l, r,

a, b represent the corresponding components of a domino type. The role p goes to the right in the

2-dimensional grid IN� IN (i.e., it is meant to increment the �rst component of a tuple in IN� IN),

and the role q goes up in the 2-dimensional grid. Finally, s is an auxiliary role, whose function will

become clear later on.

In order to facilitate the de�nition of c

0

we shall introduce some abbreviations for concept

terms. First, let us show how the colours will be represented. We cannot directly use the concept

names c

1

; : : : ; c

n

to this purpose, because we must make sure that a side of a domino has one colour

only. Thus, we need concept terms that are always interpreted as pairwise disjoint sets. This can,

for example, be achieved by using the terms

bc

i

def

= c

i

^

^

j 6=i

:c

j

(for i = 1; : : : ; n):

Second, we introduce the concept terms that represent the domino types. For t

i

= (l

i

; r

i

; a

i

; b

i

)

(i = 1; : : : ;m) we de�ne

d

i

def

= [l]

+

bc

l

i

^ [r]

+

bc

r

i

^ [a]

+

bc

a

i

^ [b]

+

bc

b

i

:

Third, we need a term that expresses that a point in the grid is assigned one of the types, and

that the types of the adjacent grid points have appropriate colours at the sides where the dominos

touch:

d

def

=

m

_

i=1

d

i

^ ([p]

+

[l]bc

r

i

) ^ ([q]

+

[b]bc

a

i

):

Finally, the concept term c

0

is de�ned as

c

0

def

= [s]? ^ [[s]p] ([s]? ^ [[s]q]d) :

In order to understand this de�nition, one should reconsider the example given at the beginning

of Section 3. There we have shown that, in the 1-dimensional case, a concept term of the form

[[s]p]c ^ [s]? is satis�able in an interpretation = only if all elements of the carrier set D

1

belong to

the concept c. In the 2-dimensional case, we make the same construction, but it must be nested

to handle both dimensions.

Lemma 5.5 If the domino problem (C; T ) has a solution then the corresponding concept term c

0

is satis�able.
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Proof : Let L : IN�IN! T be a solution of (C; T ). This solution is used to de�ne an interpretation

= = (

~

D;=

�

) of our 2-dimensional M-ALC language with dimension independence:

� D

1

def

= D

2

def

= IN,

� =

�

(c

i

)

def

= f(i; j) j j 2 INg for i = 1; : : : ; n,

� =

�

(p)(i; j)

def

= fi+ 1g and =

�

(q)(i; j)

def

= fj + 1g,

� =

�

(l)(i; j)

def

= fl

�

g, =

�

(r)(i; j)

def

= fr

�

g, =

�

(a)(i; j)

def

= fa

�

g,

and =

�

(b)(i; j)

def

= fb

�

g, where L(i; j) = t

�

= (l

�

; r

�

; a

�

; b

�

)

� =

�

(s)(i; j)

def

= ; for all i; j 2 IN.

By de�nition of =

�

(p) and =

�

(q), this interpretation is an admissible interpretation for the lan-

guage with dimension independence. Indeed, for p the image depends only on the �rst component

i of the tuple (i; j), and for q it depends only on the second component j. The sets =

�

(c

i

)

(i = 1; : : : ; n) are already pairwise disjoint. For this reason the interpretation of the concept name

c

i

coincides with the interpretation of the concept term bc

i

= c

i

^

V

j 6=i

:c

j

.

In the following, we shall show that =; (0; 0) j= c

0

. First, note that the de�nition of =

�

(s)

obviously implies =; (0; 0) j= [s]?. Second, this de�nition also implies that =([s]p)(0; 0) = IN.

Thus, it remains to be shown that =; (i; 0) j= [s]? ^ [[s]q]d holds for all i 2 IN. The de�nition of

=

�

(s) obviously implies =; (i; 0) j= [s]?, and =([s]q)(0; 0) = IN. Hence it is su�cient to show that

=; (i; j) j= d holds for all i; j 2 IN.

Let (i; j) 2 IN�IN with L(i; j) = t

�

= (l

�

; r

�

; a

�

; b

�

) be given. First, we show that =; (i; j) j= d

�

.

By de�nition, we have =

�

(l)(i; j) = fl

�

g, and (l

�

; j) 2 =

�

(c

l

�

). The second fact implies that

=; (l

�

; j) j= bc

l

�

, and thus we have =; (i; j) j= [l]

+

bc

l

�

. Accordingly, we can show that =; (i; j) j=

[r]

+

bc

r

�

, =; (i; j) j= [a]

+

bc

a

�

, and =; (i; j) j= [b]

+

bc

b

�

, which yields =; (i; j) j= d

�

.

Second, we show that =; (i; j) j= [p]

+

[l]bc

r

�

. By de�nition, we have =

�

(p)(i; j) = fi + 1g, and

thus it remains to be shown that =; (i+ 1; j) j= [l]bc

r

�

. By our interpretation of the role l we have

=

�

(l)(i+1; j) = fl

�

g, where L(i+1; j) = (l

�

; r

�

; a

�

; b

�

). Hence we must show that =; (l

�

; j) j= bc

r

�

.

Since L was assumed to be a solution of the domino problem, we know that r

�

= l

�

. Consequently,

we have =

�

(c

r

�

) = =

�

(c

l

�

) = f(l

�

; k) j k 2 INg, which yields the desired property =; (l

�

; j) j= bc

r

�

.

Accordingly, =; (i; j) j= [q]

+

[b]bc

a

�

can be shown, which completes proof of the lemma. <

Lemma 5.6 If the concept term c

0

corresponding to the domino problem (C; T ) is satis�able then

the domino problem has a solution.

Proof : Let = = (

~

D;=

�

) be an interpretation of our 2-dimensionalM-ALC language with dimen-

sion independence, and let (d

0

; e

0

) 2

~

D be such that =; (d

0

; e

0

) j= c

0

. We shall use = and (d

0

; e

0

)

for de�ning a solution L of the domino problem.

From =; (d

0

; e

0

) j= c

0

we can deduced that =; (x; y) j= d holds for all (x; y) 2

~

D. Indeed,

=; (d

0

; e

0

) j= [s]? implies =

�

(s)(d

0

; e

0

) = ;, and thus =

�

([s]p)(d

0

; e

0

) = D

1

. Therefore, we can

deduce that =; (x; e

0

) j= [s]? ^ [[s]q]d holds for all x 2 D

1

. For similar reasons this implies

=; (x; y) j= d for all y 2 D

2

.

In order to de�ne a mapping L : IN � IN ! T , we construct a sequence of tuples (d

i

; e

i

) 2

~

D; i � 0, starting with the already given (d

0

; e

0

). Now assume that (d

i

; e

i

) is already de�ned.

From =; (d

i

; e

i

) j= d we can deduce that there exist �; 1 � � � m such that

=; (d

i

; e

i

) j= d

�

^ ([p]

+

[l]bc

r

�

) ^ ([q]

+

[b]bc

a

�

):

Because of the `[p]

+

' and `[q]

+

' in this concept term, we know that there exist d

0

2 =

�

(p)(d

i

; e

i

)

and e

0

2 =

�

(q)(d

i

; e

i

). We de�ne d

i+1

def

= d

0

and e

i+1

def

= e

0

.

The mapping L : IN � IN ! T is now de�ned as follows. For (i; j) 2 IN � IN we consider the

tuple (d

i

; e

j

) 2

~

D. From =; (d

i

; e

j

) j= d we can deduce that there exists an index �

i;j

such that

=; (d

i

; e

j

) j= d

�

i;j

. Note that there is exactly one such �

i;j

. This follows from the de�nition of the
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d

�

's and the fact that the concept terms bc

�

are necessarily interpreted by pairwise disjoint sets.

We de�ne L(i; j)

def

= t

�

i;j

.

It remains to be shown that L is a solution of the domino problem. Thus, consider L(i; j) =

t

�

i;j

= (l

�

i;j

; r

�

i;j

; a

�

i;j

; b

�

i;j

) and L(i + 1; j) = t

�

i+1;j

= (l

�

i+1;j

; r

�

i+1;j

; a

�

i+1;j

; b

�

i+1;j

). We show

that r

�

i;j

= l

�

i+1;j

. (The fact b

�

i;j

= a

�

i;j+1

can be proved analogously.)

We know that d

i+1

2 =

�

(p)(d

i

; e

i

), and since �(p) = f1g this implies d

i+1

2 =

�

(p)(d

i

; e

j

).

Because =; (d

i

; e

j

) j= d

�

i;j

, and since �

i;j

is unique with this property, we have =; (d

i

; e

j

) j=

[p]

+

[l]bc

r

�

i;j

. Thus, we can deduce =; (d

i+1

; e

j

) j= [l]bc

r

�

i;j

. On the other hand, =; (d

i+1

; e

j

) j= d

�

i+1;j

,

and this concept term has the term [l]

+

bc

l

�

i+1;j

as a conjunct. Pairwise disjointness of the concept

terms bc

�

thus implies r

�

i;j

= l

�

i+1;j

. <

To sum up, we have shown that, for a given instance of the domino problem, we can construct

a concept term c

0

of an M-ALC language with dimension independence such that the domino

problem has a solution i� the concept term c

0

is satis�able. Since the domino problem is in general

undecidable, this yields a proof of Theorem 5.3.

In the reduction we have used both unrestricted role terms (i.e., terms not satisfying restricted

seriality) and independence of some of the dimensions for roles. Thus, it remains an open problem

whether satis�ability becomes decidable if one of these two means of representation is disallowed.

For the case where one only has atomic roles, but independence of dimensions is allowed, we

strongly conjecture that satis�ability is decidable, but we do not have a proof yet.

6 Summary and Open Problems

The present paper is a �rst investigation of a new kind of multi{dimensional modal logic. The

logic M-ALC is a combination of modal logics K

m

, but the combination is of an unusual type.

The modal operators of the component logics do not only operate on the formulae in the combined

logic, but also directly on the operators of the other logics. As we have seen, this gives rise to

quite complicated interactions between the component logics. This kind of logic was motivated by

applications in the area of kl-one-like knowledge representation systems, and in particular by the

need of modelling the knowledge of intelligent agents.

In this paper, we have only worked out the basic framework and related it to the standard

multi{modal case. In particular, we have shown that Venema's axiomatization, which reduces the

n{dimensional semantics to a one{dimensional semantics, can be extended in such a way that it

captures the semantics of compound role terms. We have de�ned a calculus based on the idea

of labelled deductive systems. We have shown that the calculus is terminating and sound, but

completeness remains an open problem for the case of restricted serial terms. Completeness was

shown for the case where all role terms are atomic. This result is not surprising because we

have also shown that in this case there is no di�erence between satis�ability in n dimensions and

satis�ability in 1 dimension. Finally, we have shown that an extension of M-ALC, in which it is

possible to specify independence of some dimensions for roles, leads to an undecidable satis�ability

problem. There are various interesting questions that remain open.

First, of course, is the question whether the algorithm is also complete for unsatis�ability. If

the answer is yes, this would show decidability of the satis�ability problem for restricted serial

M-ALC terms. If the answer is no, decidability remains an open question. The semantics of

M-ALC allows for a straightforward translation of concept terms into �rst-order predicate logic.

But the translated versions of even small concept terms may already become very complicated.

The formulae one obtains do not seem to fall into one of the known decidable subclasses of �rst-

order logic. This is in contrast to ALC where concept terms can be translated into formulae of the

G�odel class.

More generally, one can ask whether the methods described above can be adapted to the case

where arbitrary [...]-operators are allowed at the role term level. Related is the question whether

satis�ability for arbitraryM-ALC terms is decidable?

An adequate representation of modalities such as know, belief, or time require component logics

that are stronger than K

m

; for example S4.3 for knowledge, linear structures for time etc. More
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generally, one can ask whether it is possible to modify the satis�ability algorithm such that it

can take additional modal axioms into account. A possible way of attacking this problem could

be to translate the modal axiom schemas into properties of the accessibility relations (see [10]).

Complex correlations between di�erent modal operators can thus be investigated, and turned into

additional rules of the satis�ability algorithm. However, without additional restrictions, the rule

set one thus obtains will usually not be terminating.

As already mentioned, a exible treatment of T-Box axioms would be desirable. Can such

axioms be handled by a satis�ability algorithm? Also, the interaction with A-Boxes has not

yet been considered. In this context, is it possible to parameterize the role terms with A-Box

elements or concept terms, e.g., by writing [know(John)] where John is an A-Box individual or

[believe(car-salesmen)] where car-salesmen is a concept that is de�ned in the T-Box?

Finally, it is still an open question whether satis�ability is decidable in the case where one has

only atomic role terms, but allows for independence of dimensions for roles.
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In the rules below, c and d are concept terms, � is either a concept term or a

role term like p:a, and i = dim(p). The su�x `&�' stands for the unmodi�ed

part of the constraint system under consideration, and `& �' stands for the other

constraint systems currently not under consideration.

( ^ ) f

~

l:c ^ d & �g & � ! f

~

l:c ^ d;

~

l:c;

~

l:d & �g & �

if not both

~

l:c and

~

l:d are in �.

( _ ) f

~

l:c _ d & �g & � ! f

~

l:c _ d;

~

l:c & �g,

f

~

l:c _ d;

~

l:d & �g & �

if neither

~

l:c nor

~

l:d is in �.

([]

+

) f

~

l:[p]

+

q:a & �g & � ! f

~

l:[p]

+

q:a;

~

l:hpiq:a & �g,

f

~

l:[p]

+

q:a;

~

l:[p]? & �g & �

if neither

~

l:hpiq:a nor

~

l:[p]? is in �.

(hi) f

~

l:hpiq:a & �g & � ! f

~

l:hpiq:a;

~

l:[p]

+

q:a & �g;

f

~

l:hpiq:a;

~

l:[p]? & �g & �

if neither

~

l:[p]

+

q:a nor

~

l:[p]? is in �.

(hi) f

~

l:hpi� & �g & � ! f

~

l:hpi�;

~

l:p:a;

~

l[i=a]:� & �g & �

f

~

l:[p]

+

� & �g & � ! f

~

l:[p]

+

�;

~

l:p:a;

~

l[i=a]:� & �g & �

if

~

l:p:b;

~

l[i=b]:� is not in � for some b.

Here a is assumed to be a new constant of dimension i.

([]

�

) f

~

l:[p]

�

�; & �g & � ! f

~

l:[p]

�

�;

~

l[i=a]:� & �g & �

if a is a constant of dimension i, d(

~

l;�) + jpj = d(a;�) =: n,

~

l[i=a]:� 62 �,

and apply-rules(ff

~

l

0

:q:b 2 � j d(b;�) � ng [ f

~

l:p:a)gg) = `unsatis�able'

(?) f

~

l:c;

~

l::c & �g & � ! �

f

~

l:p:a;

~

l:p:a & �g & � ! �

f

~

l:? & �g & � ! �

(>) � & � ! `satis�able'

if none of the other rules is applicable to �

(;) ; ! `unsatis�able'

Figure 2: Transformation rules of the satis�ability algorithm for M-ALC.

([]

�

) f

~

l:[p]

�

�; & �g & � ! f

~

l:[p]

�

�;

~

l[i=a]:� & �g & �

if a is a constant of dimension i and

~

l:p:a 2 �.

Figure 3: Simpli�ed []

�

-rule for the case of atomic role terms.


