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Abstract

Reduction orderings that are compatible with an equational theory E

and total on (the E-equivalence classes of) ground terms play an important

rôle in automated deduction. We present a general approach for combining

such orderings. To be more precise, we show how E

1

-compatible reduction

orderings total on �

1

-ground terms and E

2

-compatible reduction orderings

total on �

2

-ground terms can be used to construct an (E

1

[E

2

)-compatible

reduction ordering total on (�

1

[�

2

)-ground terms, provided that the sig-

natures are disjoint and some other (rather weak) restrictions are satis�ed.

This work was motivated by the observation that it is often easier to con-

struct such orderings for \small" signatures and theories separately, rather

than directly for their union.

1 Introduction

Reduction orderings that are total on ground terms play an important rôle in

many areas of automated deduction. For example, unfailing completion [4]|a

variant of Knuth-Bendix completion that avoids failure due to incomparable crit-

ical pairs|presupposes such an ordering. In addition, using a reduction ordering

that is total on ground terms, one can show that any �nite set of ground equa-

tions has a decidable word problem [15, 9]. It is, in fact, very easy to obtain such

orderings: many of the standard methods for constructing reduction orderings

yield orderings that are total on ground terms. For instance, both Knuth-Bendix

orderings [14] and lexicographic path orderings [11] are total on ground terms if

they are based on a total precedence ordering on the set of function symbols.

�
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Things become more complex if one is interested in reduction orderings that

are compatible with a given equational theory E. Such orderings, which are, for

example, used in rewriting modulo equational theories [18, 10, 2], can be seen

as orderings on E-equivalence classes. E-compatible reduction orderings that

are total on (E-equivalence classes of) ground terms can be employed for sim-

ilar purposes as the usual reduction orderings that are total on ground terms.

For example, let AC denote a theory that axiomatizes associativity and com-

mutativity of several binary function symbols, where the signature may contain

additional free function symbols. An AC -compatible reduction ordering that is

total on ground terms can be used to show that for any �nite set G of ground

equations, the word problem is decidable for AC [ G [16, 17]. The �rst AC -

compatible reduction ordering total on ground terms was described in [17]. It is

based on a relatively complex polynomial interpretation in which the coe�cients

of the polynomials are again integer polynomials. Surprisingly, it turned out to

be rather hard to construct AC-compatible reduction orderings by appropriately

modifying standard orderings such as recursive path orderings [7]. The main idea

underlying most proposals in this direction (e.g., [5, 3, 12, 6]) is to apply certain

transformations such as 
attening to the terms before comparing them with one

of the standard path orderings. A major drawback of these approaches is that

they impose rather strong restrictions on the precedence orderings on function

symbols that may be used. One consequence of these restrictions is that the

obtained AC-compatible orderings are not total on ground terms if more than

one AC -symbol is present. This problem has �nally been overcome in [21, 22],

where an AC-compatible reduction ordering total on ground terms is de�ned that

is based on a recursive path ordering (with status). In [20] it was shown that

this approach can even be used to construct reduction orderings total on ground

terms that are compatible with theories that axiomatize several associative, com-

mutative, associative-commutative, and free symbols.

The present paper proposes a di�erent way of attacking the problem of how

to construct E-compatible orderings that are total on ground terms. It was moti-

vated by the observation that it is very easy to de�ne an AC -compatible reduction

ordering total on ground terms if there is only one AC-symbol in the signature.

Instead of directly de�ning an AC -compatible ordering total on ground terms

for the case of more than one AC-symbol, we try to obtain such an ordering by

combining the orderings that exist for the case of one AC-symbol.

1

To be more

precise, assume that AC

1

axiomatizes associativity-commutativity of the symbol

+ 2 �

1

and that AC

2

axiomatizes associativity-commutativity of the symbol

� 2 �

2

, where �

1

and �

2

are disjoint signatures that may contain additional free

function symbols. For i = 1; 2, let �

i

be an AC

i

-compatible reduction ordering

1

This should not be confused with Rubio's approach for combining orderings on disjoint

signatures [20]. To obtain his combined ordering, which extends given orderings on terms over

the single signatures to an ordering on terms over the union of the signatures, he presupposes the

existence of a compatible reduction ordering total on ground terms for the combined signature.

In the present paper, the main goal is to show that such an ordering exists.
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that is total on the AC

i

-equivalence classes of ground terms, i.e., �

i

can be seen

as a total ordering on T (�

i

; ;)=

=

AC

i

. In order to de�ne a reduction ordering that

is total on T (�

1

[�

2

; ;)=

=

AC

1

[AC

2

from the given orderings �

1

and �

2

, we utilize

the fact that this combined algebra can be represented as the free amalgamated

product of the single algebras T (�

i

; ;)=

=

AC

i

. This product was introduced in [1]

in the context of combining uni�cation algorithms. The construction of the amal-

gamated product represents the universe of T (�

1

[�

2

; ;)=

=

AC

1

[AC

2

as a (possibly

in�nite) tower of layers. In principle, the combined ordering compares elements

of the combined algebra �rst with respect to the layers they are in: elements in

higher layers are larger than elements in lower ones. If two elements are in the

same layer, then one of the original orderings (�

1

or �

2

) is used to compare them.

This combination approach is, of course, not restricted to AC-theories. It

can be used to combine arbitrary compatible reduction orderings that are to-

tal on ground terms, provided that the single theories are over disjoint signa-

tures and satisfy some additional properties that will be introduced below. For

example, theories that axiomatize associativity, commutativity, or associativity-

commutativity of a binary function symbol satisfy these properties.

2 Compatible reduction orderings

Let � be a signature, and let T (�; X) denote the terms over � with variables inX.

A reduction ordering on T (�; X) is a strict partial ordering � that is Noetherian,

stable under �-operations (i.e., s � t implies f(: : : ; s; : : :) � f(: : : ; t; : : :) for all

f 2 �), and stable under substitutions (i.e., s � t implies �(s) � �(t) for all

�-substitutions �). In the following, we will restrict our attention to reduction

orderings on ground terms, which means that stability under substitutions can be

dispensed with. However, the ground terms that will be considered may contain

additional free constants from a set of constants C with C \ � = ;. By a slight

abuse of notation, the set of these ground terms will be written as T (�; C). The

only di�erence between variables and free constants is the fact that constants

cannot be replaced by substitutions, and thus it is possible to order them with a

reduction ordering. The set of free constants occurring in a term t is denoted by

C(t).

Let E be a set of identities over �, and let =

E

denote the equational theory

induced by E. A reduction ordering � is E-compatible i� s � t, s =

E

s

0

, and

t =

E

t

0

imply s

0

� t

0

. Thus, an E-compatible reduction ordering induces a well-

de�ned ordering on the set of =

E

-equivalence classes. For a set of free constants

C, the E-free algebra with generators C, i.e., T (�; C)=

=

E

, will be denoted by

hCi

�;E

. We call a reduction ordering total on hCi

�;E

(or simply \total on ground

terms," if the set of ground terms is clear from the context) i� it induces a total

ordering on hCi

�;E

, i.e., i� for all s; t 2 T (�; C) we have s � t, or s =

E

t, or

3



s � t.

An E-compatible reduction ordering on T (�; C) can also be seen as an order-

ing on hCi

�;E

(whose elements are the =

E

-equivalence classes). This ordering is

Noetherian and stable under (the interpretation of) the �-operations in hCi

�;E

.

Conversely, one can de�ne an E-compatible reduction ordering on T (�; C) by

directly introducing a Noetherian and stable ordering on hCi

�;E

. Two terms s; t

are then compared by considering their interpretation in the algebra hCi

�;E

, i.e,

their image under the canonical homomorphism from T (�; C) onto hCi

�;E

.

If E is a non-trivial equational theory (i.e., admits models of cardinality

greater than 1), then we have c 6=

E

c

0

for every pair of distinct free constants

c; c

0

2 C. Thus, an E-compatible reduction ordering total on hCi

�;E

yields a to-

tal Noetherian ordering on C. We say that an E-compatible reduction ordering

extends a total Noetherian ordering > on C i� its restriction to C coincides with

>. In the following, we consider only non-trivial equational theories (without

mentioning it explicitly as a condition).

We close this section by proving some properties of equational theories and

reduction orderings compatible with equational theories that will be important

for the proof of our combination result:

Lemma 2.1 1. If there exists a non-empty E-compatible reduction ordering,

then E is a regular equational theory, that is, we have for all terms s; t 2

T (�; C) that s =

E

t implies C(s) = C(t).

2. If there exists a non-empty E-compatible reduction ordering, then for any

free constant c 2 C and term t 2 T (�; C) we can have c =

E

t only if c

occurs exactly once in t.

3. If � is an E-compatible reduction ordering total on hCi

�;E

, then c 2 C(t)

for a free constant c 2 C and a term t 6=

E

c implies t � c.

4. Let � be an E-compatible reduction ordering total on hCi

�;E

, and assume

that 0 2 � is a signature constant and c 2 C is a free constant. If there

exists a term s containing 0 such that s =

E

c, then 0 is the smallest element

of hCi

�;E

with respect to �.

Proof. (1) Since the reduction ordering � is non-empty, there exist terms l; r 2

T (�; C) such that l � r. If E is non-regular, then there exist terms s; t and a free

constant c such that s =

E

t and c 2 C(s) n C(t). Let �

l

be the endomorphism

on T (�; C) that replaces c by l and leaves all other free constants invariant, and

let �

r

be de�ned correspondingly, with r in place of l. Since c was assumed to be

a free constant, s =

E

t implies �

l

(s) =

E

�

l

(t) and �

r

(s) =

E

�

r

(t). In addition,

since c does not occur in t, we have �

l

(t) = �

r

(t). This shows that �

l

(s) =

E

�

r

(s).

However, since �

r

(s) is obtained from �

l

(s) by replacing every occurrence of l by
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r, the assumption l � r implies �

l

(s) � �

r

(s), which yields a contradiction (to �

being Noetherian and E-compatible).

(2) Assume that c =

E

t and that l � r. Because of the �rst part of the

lemma, we know that c must occur at least once in t. Now, assume that c has

at least two occurrences in t, which we indicate by writing t(c; : : : ; c). Since c is

a free constant, c =

E

t(c; : : : ; c) implies l =

E

t(l; : : : ; l). The following in�nitely

descending chain is a contradiction to the assumption that � is an E-compatible

reduction ordering:

l =

E

t(l; : : : ; l) � t(l; : : : ; r) =

E

t(t(l; : : : ; l); : : : ; r) � t(t(l; : : : ; r); : : : ; r) =

E

� � �

(3) Since � is assumed to be total, t 6=

E

c and t 6� c imply c � t. If c occurs

in t, this yields an in�nitely descending chain:

c � t(c) � t(t(c)) � � � �

(4) Assume that 0 is not the smallest element with respect to �, i.e., there

exists a term t 6=

E

0 such that 0 � t. Then s =

E

c and the fact that s contains 0

imply that we can write s = s(c; 0), and since c is a free constant, this yields the

following in�nitely descending chain:

t =

E

s(t; 0) � s(t; t) =

E

s(t; s(t; 0)) � s(t; s(t; t)) =

E

s(t; s(t; s(t; 0))) � � � �

3 Construction of compatible reduction order-

ings

In this section, we show how given reduction orderings total on ground terms can

be used to construct new ones satisfying certain additional properties. First, we

proof a proposition that will serve as the main tool in these constructions.

We have seen that an E-compatible reduction ordering can be seen as an

ordering on the E-free algebra hCi

�;E

. More generally, we may consider an ar-

bitrary (not necessarily free) �-algebra A, and call a Noetherian ordering �

A

that is stable under (the interpretation of) the �-operations in A a reduction

ordering on A. If � : T (�; C)!A is a homomorphism such that s =

E

t implies

�(s) = �(t), then �

A

induces an E-compatible reduction ordering � on T (�; C):

s � t i� �(s) �

A

�(t):

The next proposition generalizes this construction in two ways. First, it considers

an arbitrary �-algebra (instead of the term algebra) as domain of the homomor-

phism. Second, it introduces an additional comparison, which applies when the
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homomorphism yields the same image. This is necessary to obtain a total order-

ing.

Proposition 3.1 Let � be a signature, and A;B be �-algebras. Assume that �

A

is a reduction ordering total on A, �

B

is a reduction ordering total on B, and

� : A! B is a �-homomorphism. Then the relation � de�ned as

a � b i� �(a) �

B

�(b) or

�(a) = �(b) and a �

A

b

is a reduction ordering that is total on A.

Proof. (1) Transitivity of � can be shown by a simple case distinction. For

example, assume that a � b is due to �(a) �

B

�(b) and that b � c is due to

�(b) = �(c) and b �

A

c. Obviously, this yields �(a) �

B

�(c), and thus a � c.

The other cases are similar.

(2) It is easy to see that an in�nitely descending �-chain yields an in�nitely

descending �

B

-chain, if the �rst case in the de�nition applies in�nitely often.

Otherwise, it yields an in�nitely descending �

A

-chain. Thus, � must be Noethe-

rian.

(3) Stability under �-operations is an easy consequence of the fact that the

orderings �

A

and �

B

satisfy this property, and that � is a �-homomorphism.

(4) Assume that a 6= b are distinct elements of A. If �(a) 6= �(b), then totality

of �

B

implies �(a) �

B

�(b) or �(b) �

B

�(a), and thus a � b or b � a. Otherwise,

we have �(a) = �(b), and totality of �

A

yields the desired comparison.

The constant dominance condition

The following \constant dominance condition" will be an important prerequisite

for our combination method to apply:

De�nition 3.2 Let � be an E-compatible reduction ordering total on hCi

�;E

.

Then � satis�es the constant dominance condition (CDC) i� for all t 2 T (�; C)

and c 2 C such that c � c

0

for all c

0

2 C(t), we have c � t.

Intuitively, this means that large constants dominate terms containing only small

constants. An arbitrary E-compatible reduction ordering total on ground terms

need not satisfy this property. For certain equational theories, which we will call

\strongly regular," the existence of an arbitrary E-compatible reduction ordering

total on ground terms implies the existence of such an ordering that also satis�es

the CDC.
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Let C be a countably in�nite set of free constants. For a term t 2 T (�; C) and

a free constant c 2 C, let jtj

c

denote the number of occurrences of c in t. We say

that the equational theory E is strongly regular i� s =

E

t implies jsj

c

= jtj

c

for

all terms s; t 2 T (�; C) and free constants c. For example, theories axiomatizing

commutativity, associativity, or associativity-commutativity of a binary function

symbol are obviously strongly regular.

Proposition 3.3 Let E be strongly regular. If there exists an E-compatible re-

duction ordering total on hCi

�;E

, then there also exists such an ordering that

additionally satis�es the CDC.

Proof. We denote by MM(C) the set of all �nite multisets with elements in C

[8]. The �-algebraMM(C) with carrier set MM(C) is obtained by interpreting

all �-operations as union \[" of multisets:

f

MM(C)

(M

1

; : : : ;M

n

) := M

1

[ � � � [M

n

:

For a given total Noetherian ordering > on C, the induced multiset ordering >

MM

(see [8]) is a total Noetherian ordering on MM(C), and it is easy to see that it

is stable under the operations f

MM(C)

. Thus, it is a reduction ordering total on

MM(C). By de�nition, this ordering satis�es: fcg >

MM

fc

1

; : : : ; c

n

g i� c > c

i

for all i; 1 � i � n.

Now, assume that E is strongly regular, and that � is an E-compatible re-

duction ordering total on hCi

�;E

. The ordering � induces a total Noetherian

ordering > on C, and thus a reduction ordering >

MM

that is total onMM(C).

Obviously, every term t 2 T (�; C) can be mapped to the multiset MM(t)

of the free constants in t; for instance, t = f(c; f(d; f(c; f(d; d)))) yields the

multiset MM(t) = fc; c; d; d; dg with 2 occurrences of c, 3 of d, and 0 for all other

free constants. Since E is strongly regular, =

E

-equivalent terms yield the same

multiset, and thus we may consider this mapping as a mapping from hCi

�;E

into

MM(C). It is easy to see that this mapping is in fact a homomorphism.

We can now use the construction of Proposition 3.1 to de�ne a new E-

compatible reduction ordering total on hCi

�;E

:

s �

CDC

t i� MM(s) >

MM

MM(t) or

MM(s) = MM(t) and s � t:

If t is a term such that c > c

0

for all c

0

2 C(t), then we obviously have MM(c) =

fcg >

MM

MM(t), which shows that �

CDC

satis�es the CDC.

The layer ordering

Assume that C

1

is a set of free constants that is obtained as a disjoint union of

(not necessarily non-empty) sets C

i

, that is, C

1

:=

S

1

i=0

C

i

. For n � 0, let A

n

7



: : :

C

n+1

A

n

n (A

n�1

[ C

n

)

C

n

: : :

C

2

A

1

n (A

0

[ C

1

)

C

1

A

0

Figure 1: Partitioning of A

1

into layers.

denote the carrier set of the E-free algebra h

S

n

i=0

C

i

i

�;E

. The carrier set A

1

of

hC

1

i

�;E

can then be partitioned into the layers shown in Figure 1.

Assume that � is an E-compatible reduction ordering that is total on hC

1

i

�;E

and that extends a total ordering > on C

1

that satis�es

(�) c 2 C

i

; c

0

2 C

j

; i > j ) c > c

0

:

Our goal is to modify � into an E-compatible reduction ordering �

`

that is total

on hC

1

i

�;E

, extends >, and additionally respects the layers, that is, elements of

higher layers are larger with respect �

`

than elements of lower layers. Formally,

this means that the new ordering should satisfy

c 2 C

1

; a 2 A

0

) c �

`

a;

and for all n � 1

c 2 C

n+1

; a 2 A

n

n (A

n�1

[ C

n

) ) c �

`

a;

c 2 C

n

; a 2 A

n

n (A

n�1

[ C

n

) ) a �

`

c:

In this case, we say that �

`

respects the layers induced by the partition C

1

=

S

1

i=0

C

i

.

Proposition 3.4 Let > be a total ordering on C

1

=

S

1

i=0

C

i

that satis�es the

condition (�), and assume that there exists an E-compatible reduction ordering

that is total on hC

1

i

�;E

, extends >, and satis�es the CDC. Then there exists an

E-compatible reduction ordering that is total on hC

1

i

�;E

, extends >, and respects

the layers induced by the partition C

1

=

S

1

i=0

C

i

.

8



Proof. For every non-empty set C

i

, let

b

c

i

be an element of C

i

. The endomorphism

� of hC

1

i

�;E

is de�ned by mapping every free constant c on the representative

b

c

i

of the set C

i

with c 2 C

i

. The homomorphism � is now used to de�ne �

`

with

the help of the construction of Proposition 3.1:

a �

`

b i� �(a) � �(b) or

�(a) = �(b) and a � b:

(1) By Proposition 3.1, �

`

is an E-compatible reduction ordering that is total

on hC

1

i

�;E

.

(2) To show that �

`

extends >, assume that a; b 2 C

1

satisfy a > b. Let

i; j be such that a 2 C

i

and b 2 C

j

. Because > satis�es (�), we have i � j. By

de�nition of �, �(a) =

b

c

i

and �(b) =

b

c

j

. If i > j, condition (�) for > and the fact

that � extends > imply �(a) � �(b), and thus a �

`

b. If i = j, then �(a) = �(b),

and since � extends >, a > b implies a � b.

(3) Next we show that c 2 C

n+1

and a 2 A

n

n (A

n�1

[ C

n

) (for n � 1) imply

c �

`

a. By de�nition of �, we have �(c) =

b

c

n+1

, and since a 2 A

n

n (A

n�1

[ C

n

),

both a and �(a) \contain" only constants in

S

n

i=0

C

i

.

2

Because � satis�es the

CDC, this implies �(c) � �(a), and thus c �

`

a.

(4) The case where c 2 C

1

and a 2 A

0

can be treated analogously. One

should note that the case where a does not contain any free constants also yields

�(c) � �(a) by the CDC.

(5) Finally, we prove that c 2 C

n

and a 2 A

n

n (A

n�1

[C

n

) (for n � 1) imply

a �

`

c. By de�nition, �(c) =

b

c

n

. Let a = [t], i.e., a is the =

E

-equivalence class of

the term t. Now a 2 A

n

n (A

n�1

[ C

n

) implies that

� C(t) �

S

n

i=0

C

i

since a 2 A

n

,

� C(t) \ C

n

6= ; since a 62 A

n�1

,

� t 6=

E

c for all c 2 C

n

since a 62 C

n

.

Let

b

t be a term in the class �(a), i.e., �(a) = [

b

t]. Because E is regular (by

Lemma 2.1), and t contains an element of C

n

, we know that

b

t contains

b

c

n

. By

Lemma 2.1, we can deduce �(a) � �(c) (and thus a �

`

c) as soon as we have

shown that

b

t 6=

E

b

c

n

. Assume to the contrary that

b

t =

E

b

c

n

. Since t 6=

E

c for all

c 2 C

n

, this is only possible if � has identi�ed two di�erent free constants in t.

Consequently,

b

c

n

occurs more than once in

b

t, which together with

b

t =

E

b

c

n

is a

contradiction (by Lemma 2.1).

2

Since E is regular by Lemma 2.1, it makes sense to say that an =

E

-equivalence class

contains a free constant since the terms in a class contain exactly the same free constants.
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If the signature contains constant symbols, A

0

contains elements a that do

not \contain" free constants. In this case, the argument used in part (5) of the

proof cannot be adapted to show that a 2 A

0

n C

0

and c 2 C

0

imply a �

`

c.

If the signature does not contain constant symbols, however, any element of A

0

contains at least one constant from C

0

, and thus the argument used in part (5)

of the above proof applies.

Corollary 3.5 If � does not contain constant symbols, then the ordering �

`

constructed above also satis�es

c 2 C

0

; a 2 A

0

n C

0

) a �

`

c:

4 Combination of compatible reduction order-

ings

In principle, we want to solve the following combination problem: Let �

1

;�

2

be

disjoint signatures and E

1

; E

2

be equational theories over the respective signature.

Assume that, for i = 1; 2 and any set C of free constants, there exists an E

i

-

compatible reduction ordering �

i

that is total on hCi

�

i

;E

i

. Can the orderings

�

1

;�

2

be used to construct an (E

1

[ E

2

)-compatible reduction ordering that is

total on hCi

�

1

[�

2

;E

1

[E

2

?

The next example demonstrates that this is not always possible.

Example 4.1 Let �

1

:= f+; 0g, �

2

:= f�; 1g, E

1

:= fx + 0 = xg, and E

2

:=

fx�1 = xg. It is easy to see that there exist E

i

-compatible reduction orderings �

i

that are total on hCi

�

i

;E

i

. In fact, any term in T (�

1

; C) is either =

E

1

-equivalent to

a term in T (f+g; C) or to 0. Since =

E

1

is the syntactic equality on T (f+g; C), one

can simply take a lexicographic path ordering that is induced by a well-ordering

of C to order the terms equivalent to a term in T (f+g; C). The terms equivalent

to 0 are then made smaller than all the other terms. The same argument applies

to E

2

.

However, assume that � is an (E

1

[ E

2

)-compatible reduction ordering total

on hCi

�

1

[�

2

;E

1

[E

2

. Obviously, we have c+0 =

E

1

[E

2

c and c�1 =

E

1

[E

2

c. By Prop-

erty 4 of Lemma 2.1, both 0 and 1 must be the smallest element in hCi

�

1

[�

2

;E

1

[E

2

,

which is a contradiction since 0 6=

E

1

[E

2

1.

In our general combination result, this kind of problem is avoided by restricting

the attention to theories whose signatures do not contain constant symbols, that

is, the only constants that may occur are free constants. This restriction will

allow us to use Corollary 3.5.

3

The second restriction will be that the orderings

to be combined must satisfy the CDC.

3

Actually, it would be su�cient to apply the restriction to only one of the two theories to

be combined since Corollary 3.5 is only needed for one of the two theories.

10



: : : : : :

A

n+1

n (A

n

[ C

n+1

)

h

n+1

�! D

n+1

C

n+1

g

n+1

 � B

n+1

n (B

n

[D

n

)

A

n

n (A

n�1

[ C

n

)

h

n

�! D

n

C

n

g

n
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Figure 2: The double tower of the amalgamation construction.

Our method for combining compatible reduction orderings depends on the

representation of hCi

�

1

[�

2

;E

1

[E

2

as the free amalgamated product of hCi

�

1

;E

1

and hCi

�

2

;E

2

, as introduced in [1].

4

The free amalgamated product

The free amalgamated product of hCi

�

1

;E

1

and hCi

�

2

;E

2

is de�ned using two

ascending towers of the following form: We consider disjoint sets of free constants

C

1

=

S

1

i=0

C

i

and D

1

=

S

1

i=0

D

i

such that C

0

= C. In addition, for n � 0,

let A

n

be the carrier set of h

S

n

i=0

C

i

i

�

1

;E

1

, and let B

n+1

be the carrier set of

h

S

n

i=0

D

i

i

�

2

;E

2

. The partitioning of C

1

andD

1

into the sets C

i

andD

i

is such that

sets on corresponding 
oors of the double tower shown in Figure 2 have the same

cardinality. Thus, there are bijections h

0

: A

0

! D

0

, g

1

: B

1

nD

0

! C

1

, and for all

n � 1, bijections h

n

: A

n

n(A

n�1

[C

n

)! D

n

and g

n+1

: B

n+1

n(B

n

[D

n

)! C

n+1

.

Let A

1

be the carrier set of hC

1

i

�

1

;E

1

, i.e., the union of all set in the left

tower, and let B

1

be the carrier set of hD

1

i

�

2

;E

2

, i.e., the union of all set in

the right tower. The above bijections can be used in the obvious way to de�ne

4

It should be noted, however, that we use a slightly modi�ed construction, which is not as

symmetric as the original one, but more easy to adapt to our purposes.
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bijections h

1

and g

1

, which are inverse to each other:

h

1

:=

1

[

i=0

h

i

[ g

�1

i+1

: A

1

! B

1

and g

1

:=

1

[

i=0

h

�1

i

[ g

i+1

: B

1

! A

1

:

By de�nition, A

1

is equipped with a �

1

-structure and B

1

with a �

2

-structure.

The bijections h

1

and g

1

can be used to carry the �

2

-structure on B

1

to A

1

and the �

1

-structure on A

1

to B

1

. Let f

1

be an n-ary symbol in �

1

, f

2

an n-ary

symbol in �

2

, a

1

; : : : ; a

n

2 A

1

, and b

1

; : : : ; b

n

2 B

1

. We de�ne

f

A

1

2

(a

1

; : : : ; a

n

) := g

1

(f

B

1

2

(h

1

(a

1

); : : : ; h

1

(a

n

)));

f

B

1

1

(b

1

; : : : ; b

n

) := h

1

(f

A

1

1

(g

1

(b

1

); : : : ; g

1

(b

n

))):

Thus, we obtain a (�

1

[�

2

)-algebra A

1

and a (�

1

[�

2

)-algebra B

1

. By de�ni-

tion, the bijections h

1

and g

1

are inverse (�

1

[�

2

)-isomorphisms between these

algebras. The algebra A

1

' B

1

is the free amalgamated product of hCi

�

1

;E

1

and

hCi

�

2

;E

2

. As shown in [1], this algebra is isomorphic to hCi

�

1

[�

2

;E

1

[E

2

.

An ordering on the free amalgamated product

As mentioned above, we assume that the signatures �

1

and �

2

do not contain

constant symbols, i.e., the only constants are free constants. In addition, assume

that, for i = 1; 2, there is a mechanism for constructing E

i

-compatible reduction

orderings that satis�es the following properties:

1. For any �nite or countably in�nite set of free constants C and any total

Noetherian ordering > on C, the mechanism yields an E

i

-compatible re-

duction ordering �

(i)

C;>

that extends >, is total on hCi

�

i

;E

i

, and satis�es the

CDC.

2. The mechanism is monotone in the following sense: Let C

1

� C

2

, let >

1

be a total Noetherian ordering on C

1

, and let >

2

be a total Noetherian

ordering on C

2

such that >

1

� >

2

. Then �

(i)

C

1

;>

1

� �

(i)

C

2

;>

2

.

3. The mechanism is invariant under monotone renaming of free constants. To

be more precise, let >

1

be a total Noetherian ordering on C

1

, >

2

be a total

Noetherian ordering on C

2

, and let � : C

1

! C

2

be an order isomorphism.

Then s �

(i)

C

1

;>

1

t implies �(s) �

(i)

C

2

;>

2

�(t), where the terms �(s); �(t) are

obtained from s; t by replacing the free constants in these terms by their

�-images.

Theorem 4.2 Assume that �

1

and �

2

are disjoint signatures that do not contain

constant symbols, and that, for i = 1; 2, there exist mechanisms for constructing

E

i

-compatible reduction orderings total on ground terms satisfying the three con-

ditions from above. Then there exists an (E

1

[E

2

)-compatible reduction ordering

that is total on hCi

�

1

[�

2

;E

1

[E

2

.
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Before presenting a formal proof of the theorem, we give an intuitive descrip-

tion of how this ordering looks like. Its de�nition depends on the representation

of hCi

�

1

[�

2

;E

1

[E

2

as the free amalgamated product A

1

of hCi

�

1

;E

1

and hCi

�

2

;E

2

.

Going from bottom to top, one simultaneously de�nes an ordering on A

1

and B

1

by induction. Elements that belong to di�erent levels of one of the towers are com-

pared according to their height in the tower. Elements in a level A

n

n (A

n�1

[C

n

)

are compared with respect to the E

1

-compatible ordering on A

n

obtained by the

mechanism (assuming that the precedence ordering on

S

n

i=0

C

i

is already de�ned).

Elements in a level C

n

are ordered using the bijection g

n

: B

n

n(B

n�1

[D

n�1

)! C

n

(assuming that the ordering on B

n

n (B

n�1

[D

n�1

) is already de�ned). The right

tower is treated analogously.

Formally, the combined ordering is de�ned by induction on the level of the

double tower. We will make use of the following \layer endomorphisms" (cf.

Proposition 3.4): � is the endomorphism on hC

1

i

�

1

;E

1

that maps every element

c of C

1

to the representative

b

c

i

of the set C

i

with c 2 C

i

. Accordingly, �

is the endomorphism on hD

1

i

�

2

;E

2

that maps every element d of D

1

to the

representative

b

d

i

of the set D

i

with d 2 D

i

.

Induction base: Here we consider the �rst two layers of the double tower.

(1) Let >

C;0

be an arbitrary total Noetherian ordering on C = C

0

, and let

�

(1)

C

0

;>

C;0

be the E

1

-compatible reduction ordering total on A

0

produced by the

mechanism. We de�ne the ordering �

(1)

0

on A

0

by

a �

(1)

0

a

0

i� �(a) �

(1)

C

0

;>

C;0

�(a

0

) or

�(a) = �(a

0

) and a �

(1)

C

0

;>

C;0

a

0

:

The bijection h

0

: A

0

! D

0

is now used to transfer this ordering (which is a total

and E

1

-compatible reduction ordering by construction) to D

0

:

d >

D;0

d

0

i� h

�1

0

(d) �

(1)

0

h

�1

0

(d

0

):

Obviously, the ordering >

D;0

is a total Noetherian ordering on D

0

.

(2) Using >

D;0

, the mechanism produces an E

2

-compatible reduction ordering

�

(2)

D

0

;>

D;0

that extends >

D;0

and is total on B

1

. We de�ne the ordering �

(2)

1

as

b �

(2)

1

b

0

i� �(b) �

(2)

D

0

;>

D;0

�(b

0

) or

�(b) = �(b

0

) and b �

(2)

D

0

;>

D;0

b

0

:

The bijection g

1

: B

1

nD

0

! C

1

is now used to transfer this ordering to C

1

:

c >

C;1

c

0

i� g

�1

1

(c) �

(2)

1

g

�1

1

(c

0

):

The ordering >

C;1

on C

1

is extended to C

0

[ C

1

as follows: on C

0

it coincides

with >

C;0

, and for c 2 C

1

and c

0

2 C

0

we set c >

C;1

c

0

.
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Induction step: Here we consider the layer of D

n

and C

n+1

(n � 1). By

induction, we already have a total Noetherian ordering >

C;n

on

b

C

n

:=

S

n

i=0

C

i

that satis�es

(�) c 2 C

i

; c

0

2 C

j

; i > j ) c >

C;n

c

0

;

an E

2

-compatible reduction ordering�

(2)

n

total on B

n

, a total Noetherian ordering

>

D;n�1

on

c

D

n�1

:=

S

n�1

i=0

D

i

that satis�es a condition analogous to (�), and an E

1

-

compatible reduction ordering �

(1)

n�1

that is total on A

n�1

. In addition, we may

assume that these orderings are related to each other just like the corresponding

orderings constructed in the base case (for n = 1).

(1) Let�

(1)

b

C

n

;>

C;n

be the E

1

-compatible reduction ordering total on A

n

produced

by the mechanism. We de�ne the ordering �

(1)

n

on A

n

by

a �

(1)

n

a

0

i� �(a) �

(1)

b

C

n

;>

C;n

�(a

0

) or

�(a) = �(a

0

) and a �

(1)

b

C

n

;>

C;n

a

0

:

By construction and part (2) of the proof of Proposition 3.4, �

(1)

n

extends >

C;n

. In

addition, �

(1)

n

extends �

(1)

n�1

. In fact, >

C;n

extends >

C;n�1

(by construction), and

thus monotonicity of the mechanism yields that �

(1)

b

C

n

;>

C;n

extends �

(1)

b

C

n�1

;>

C;n�1

.

The bijection h

n

: A

n

n(A

n�1

[C

n

)! D

n

is now used to transfer this ordering

to D

n

:

d >

D;n

d

0

i� h

�1

n

(d) �

(1)

n

h

�1

n

(d

0

):

The ordering >

D;n

on D

n

is extended to

c

D

n

:=

c

D

n�1

[D

n

as follows: on

c

D

n�1

it

coincides with >

D;n�1

, and for d 2 D

n

and d

0

2

c

D

n�1

we set d >

D;n

d

0

.

(2) Using >

D;n

, the mechanism produces an E

2

-compatible reduction ordering

�

(2)

b

D

n

;>

D;n

that extends >

D;n

and is total on B

n+1

. We de�ne the ordering �

(2)

n+1

as

b �

(2)

n+1

b

0

i� �(b) �

(2)

b

D

n

;>

D;n

�(b

0

) or

�(b) = �(b

0

) and b �

(2)

b

D

n

;>

D;n

b

0

:

This ordering extends >

D;n

and �

(2)

n

.

The bijection g

n+1

: B

n+1

n (B

n

[ D

n

) ! C

n+1

is now used to transfer this

ordering to C

n+1

:

c >

C;n+1

c

0

i� g

�1

n+1

(c) �

(2)

n+1

g

�1

n+1

(c

0

):

This ordering is extended to

b

C

n

[ C

n+1

as follows: on

b

C

n

it coincides with >

C;n

,

and for c 2 C

n+1

and c

0

2

b

C

n

we set c >

C;n+1

c

0

. This completes the description

of the induction step.
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In the limit, we thus obtain a total Noetherian ordering >

C;1

on C

1

that

satis�es the \layer condition" (�):

c >

C;1

c

0

i� c >

C;n

c

0

for some n.

The total Noetherian ordering >

D;1

on D

1

is de�ned analogously.

Using the ordering >

C;1

, the mechanisms produces an E

1

-compatible reduc-

tion ordering �

(1)

C

1

;>

C;1

that is total on A

1

. Correspondingly, >

D;1

yields an

E

2

-compatible reduction ordering �

(2)

D

1

;>

D;1

that is total on B

1

. The endomor-

phisms �; � are now used to obtain orderings respecting the layers:

a �

(1)

1

a

0

i� �(a) �

(1)

C

1

;>

C;1

�(a

0

) or

�(a) = �(a

0

) and a �

(1)

C

1

;>

C;1

a

0

;

b �

(2)

1

b

0

i� �(b) �

(2)

D

1

;>

D;1

�(b

0

) or

�(b) = �(b

0

) and b �

(2)

D

1

;>

D;1

b

0

:

Since the tower on the right-hand side distinguishes between B

1

nD

0

and D

0

, we

need Corollary 3.5 (and thus the restriction that �

2

does not contain constants)

to obtain an ordering that respects these two layers.

By construction, �

(1)

1

is stable under the interpretation of the �

1

-operations in

A

1

, and �

(2)

1

is stable under the interpretation of the �

2

-operations in B

1

. Below

we shall show that �

(1)

1

is also stable under the interpretation of the �

2

-operations

inA

1

(as introduced in the de�nition of the free amalgamated product), and �

(2)

1

is stable under the interpretation of the �

1

-operations in B

1

.

Lemma 4.3 1. �

(1)

1

extends >

C;1

and �

(1)

n

(for all n � 0).

2. �

(2)

1

extends >

D;1

and �

(2)

n

(for all n � 1).

Proof. (1) By construction and part (2) of the proof of Proposition 3.4, �

(1)

1

extends >

C;1

. In addition, >

C;1

extends >

C;n

(for all n � 0). Monotonicity of

the construction mechanism thus implies that �

(1)

C

1

;>

C;1

extends �

(1)

b

C

n

;>

C;n

. It is

easy to see that this implies that �

(1)

1

extends �

(1)

n

.

(2) can be proved analogously.

Lemma 4.4 h

1

: A

1

! B

1

and g

1

: B

1

! A

1

are inverse order isomor-

phisms.

Proof. Without loss of generality, we restrict our attention to h

1

. Let a; a

0

2 A

1

be such that a �

(1)

1

a

0

. In order to show that h

1

(a) �

(2)

1

h

1

(a

0

), we distinguish

the following cases:
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Case 1: a and a

0

are in di�erent layers. Since the ordering �

(1)

1

respects the

layers, this means that a is in a higher layer than a

0

. Consequently, h

1

(a) is in

a higher layer than h

1

(a

0

), and since �

(2)

1

also respects the layers, this implies

h

1

(a) �

(2)

1

h

1

(a

0

).

Case 2: a and a

0

are in the same layer.

(2:1) Assume that a; a

0

2 C

n

. Since �

(1)

1

extends >

C;1

, we have a >

C;1

a

0

,

and thus a >

C;n

a

0

.

For n = 0, a >

C;0

a

0

implies a �

(1)

0

a

0

, which in turn implies h

1

(a) =

h

0

(a) >

D;0

h

0

(a

0

) = h

1

(a

0

). This yields h

1

(a) �

(2)

1

h

1

(a

0

) since �

(2)

1

extends

>

D;0

.

For n > 0, a >

C;n

a

0

and the de�nition of >

C;n

yield g

�1

n

(a) �

(2)

n

g

�1

n

(a

0

). By

de�nition of h

1

, we have h

1

(a) = g

�1

n

(a) and h

1

(a

0

) = g

�1

n

(a

0

), which shows

h

1

(a) �

(2)

n

h

1

(a

0

). Now, the previous lemma yields h

1

(a) �

(2)

1

h

1

(a

0

).

(2:2) Assume that a; a

0

2 A

n

n (A

n�1

[C

n

). From a �

(1)

1

a

0

we can infer a �

(1)

n

a

0

, by the previous lemma. The de�nition of >

D;n

then yields h

n

(a) >

D;n

h

n

(a

0

).

Since �

(2)

1

extends >

D;n

, we obtain h

1

(a) = h

n

(a) �

(2)

1

h

n

(a

0

) = h

1

(a

0

).

Lemma 4.5 �

(1)

1

is also stable under the �

2

-operations, and �

(2)

1

is stable under

the �

1

-operations.

Proof. Without loss of generality, we restrict our attention to �

(1)

1

. Let f

2

2 �

2

be n-ary, and assume that a

1

; : : : ; a

n

; a

0

i

2 A

1

are given such that a

i

�

(1)

1

a

0

i

.

Because h

1

is an order isomorphism, this implies h

1

(a

i

) �

(2)

1

h

1

(a

0

i

), and since

�

(2)

1

is by de�nition stable under �

2

-operations, we obtain

f

B

1

2

(h

1

(a

1

); : : : ; h

1

(a

i

); : : : ; h

1

(a

n

)) �

(2)

1

f

B

1

2

(h

1

(a

1

); : : : ; h

1

(a

0

i

); : : : ; h

1

(a

n

)):

By de�nition of f

A

1

2

, and since g

1

is an order isomorphism, this implies

f

A

1

2

(a

1

; : : : ; a

i

; : : : ; a

n

) �

(1)

1

f

A

1

2

(a

1

; : : : ; a

0

i

; : : : ; a

n

):

To sum up, we have shown that �

(1)

1

is a total reduction ordering (with respect

to the combined signature) on the free amalgamated product A

1

of hCi

�

1

;E

1

and

hCi

�

2

;E

2

. Since A

1

is (isomorphic to) the (E

1

[E

2

)-free algebra hCi

�

1

[�

2

;E

1

[E

2

,

this completes the proof of Theorem 4.2.

In the inductive construction of �

(1)

1

, the induction base is given by an arbi-

trary total Noetherian ordering on C. The combined ordering obtained this way

depends on the set C and on the ordering on C used for starting the inductive

construction. Thus, we again obtain a construction mechanism that transforms
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a given total Noetherian ordering on a set of free constants C into an (E

1

[E

2

)-

compatible reduction ordering that is total on hCi

�

1

[�

2

;E

1

[E

2

. The combined

ordering does not satisfy the CDC. However, if E

1

and E

2

are strongly regular,

then so is E

1

[E

2

. Thus, Proposition 3.3 can be used to modify the combined or-

dering into one satisfying the CDC. It can be shown that the mechanism satis�es

the other properties required in Theorem 4.2. Consequently, the construction can

be applied iteratedly, provided that the involved theories are strongly regular.

5 A decision procedure for the combined order-

ing

If we want to use the combined ordering in an application, we must be able to

e�ectively work with it, that is, for given mixed terms s; t we must be able to

decide whether s �

(1)

1

t holds or not.

Theorem 5.1 If the word problem for E

i

and the orderings �

(i)

C;>

are decidable

for i = 1; 2, then the combined ordering �

(1)

1

is also decidable.

The decision procedure for the combined ordering depends on a method that

is similar to the approach used to show that the word problem for E

1

[ E

2

is

decidable, provided that the word problems for the single theories E

1

; E

2

are

decidable (see, e.g., [19, 13]). Note that a decision procedure for the combined

ordering also yields a decision procedure for =

E

1

[E

2

since s =

E

1

[E

2

t i� neither

s �

(1)

1

t nor t �

(1)

1

s holds.

The free amalgamated product is an algebraic description of how the combined

algebra hCi

�

1

[�

2

;E

1

[E

2

can be obtained from hCi

�

1

;E

1

and hCi

�

2

;E

2

. In order to

obtain a decision procedure for =

E

1

[E

2

and for �

(1)

1

, we will look at the combined

algebra from a more syntactic point of view: hCi

�

1

[�

2

;E

1

[E

2

can also be obtained

as the quotient of the term algebra T (�

1

[�

2

; C) by the congruence =

E

1

[E

2

. But

�rst, we must introduce some notation.

As above, we assume that �

1

and �

2

are disjoint signatures that do not

contain constant symbols. For a term t 2 T (�

1

[�

2

; C), the top symbol top(t) is

f 2 �

1

[�

2

[C i� t starts with f , i.e., t is of the form f(t

1

; : : : ; t

n

) for n � 0 and

terms t

1

; : : : ; t

n

. The elements of C [ �

1

are called 1-symbols, and the elements

of �

2

are called 2-symbols. An i-term (i = 1; 2) is a term whose top symbol is an

i-symbol. Let t be an i-term and s a j-term for i 6= j. Then s is called an alien

subterm of t i� s is a subterm of t such that all its superterms in t are i-terms. For

a term t 2 T (�

1

[�

2

; C), the depth depth(t) is the maximal number of signature

changes in t. To be more precise, depth(t) := 0 if t 2 T (�

1

; C). Otherwise, let t

be of the form t =

b

t(t

1

; : : : ; t

n

) where t

1

; : : : ; t

n

are the alien subterms of t. Then

depth(t) := 1 + maxfdepth(t

1

); : : : ; depth(t

n

)g.
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The decision procedure for =

E

1

[E

2

and for �

(1)

1

depends on computing a layer-

reduced form and on variable abstraction. Let � be a bijection between the com-

bined algebra hCi

�

1

[�

2

;E

1

[E

2

and a set of variables Y of appropriate cardinality.

Obviously, � induces a mapping � : T (�

1

[ �

2

; C) ! Y : t 7! �([t]), where

[t] denotes the =

E

1

[E

2

-equivalence class of the term t. This mapping satis�es

�(s) = �(t) i� s =

E

1

[E

2

t. The variable abstractions �

1

; �

2

induced by � are

de�ned by induction on the depth of the term t. If t 2 T (�

1

; C), then t

�

1

:= t

and t

�

2

:= �(t). Otherwise, let t be an i-term of the form t =

b

t(t

1

; : : : ; t

n

)

where t

1

; : : : ; t

n

are the alien subterms of t. Then t

�

i

:= t(�(t

1

); : : : ; �(t

n

)) and

t

�

j

:= �(t) for j 6= i. Thus, the variable abstraction �

i

replaces j-terms and alien

subterms of i-terms by variables such that =

E

1

[E

2

-equivalent terms are replaced

by the same variable.

The layer-reduced form t+ of t 2 T (�

1

[ �

2

; C) is also de�ned by induc-

tion on the depth of the term t. If t 2 T (�

1

; C), then t+ := t. Otherwise, let

t be an i-term of the form t =

b

t(t

1

; : : : ; t

n

) where t

1

; : : : ; t

n

are the alien sub-

terms of t. By induction, we may assume that t

1

+; : : : ; t

n

+ are already de�ned.

Let

b

t(t

1

+; : : : ; t

n

+) =

b

s(s

1

; : : : ; s

m

), where s

1

; : : : ; s

m

are the alien subterms of

b

t(t

1

+; : : : ; t

n

+). If there is a � 2 f1; : : : ; mg such that

b

s(s

�

i

1

; : : : ; s

�

i

m

) =

E

i

s

�

i

�

, then

t+ := s

�

.

5

Otherwise, t+ :=

b

t(t

1

+; : : : ; t

n

+) =

b

s(s

1

; : : : ; s

m

). Note that the terms

s

i

are layer-reduced (i.e., s

i

= s

i

+) since they are subterms of the layer-reduced

terms t

j

+. By construction, we have t =

E

1

[E

2

t+ for all terms t 2 T (�

1

[�

2

; C).

With this notation, the relation =

E

1

[E

2

can be characterized as follows (see,

e.g., [19, 13] for a proof):

Lemma 5.2 Let t; t

0

2 T (�

1

[�

2

; C). Then t =

E

1

[E

2

t

0

i� top(t+) = i = top(t

0

+)

(for some i 2 f1; 2g) and (t+)

�

i

=

E

i

(t

0

+)

�

i

.

At �rst sight, it might not be obvious that this lemma can be used to construct

a decision procedure for =

E

1

[E

2

from decision procedures for =

E

1

and =

E

2

. In

particular, it is not clear how to obtain an appropriate bijection � without already

having a decision procedure for =

E

1

[E

2

. However, one can construct the necessary

parts of such a bijection by induction on the depth of terms. In the following,

assume that terms t; t

0

2 T (�

1

[ �

2

; C) are given.

In order to compute t+ and t

0

+, we determine the alien subterms t

1

; : : : ; t

n

of

t =

b

t(t

1

; : : : ; t

n

) and t

0

1

; : : : ; t

0

n

0

of t

0

=

b

t

0

(t

0

1

; : : : ; t

0

n

0

). By induction, we may as-

sume that we already know how to compute t

1

+; : : : ; t

n

+; t

0

1

+; : : : ; t

0

n

0

+. Thus, we

can also compute the alien subterms s

1

; : : : ; s

m

of

b

t(t

1

+; : : : ; t

n

+) =

b

s(s

1

; : : : ; s

m

)

and s

0

1

; : : : ; s

0

m

0

of

b

t

0

(t

0

1

+; : : : ; t

0

n

+) =

b

s

0

(s

0

1

; : : : ; s

0

m

0

). Since these alien subterms

have a smaller depth than the original terms, we may assume that we can de-

cide =

E

1

[E

2

on them. For this reason, we can e�ectively construct a mapping

5

If there is more than on such �, then one arbitrarily takes one of them. If s

�

i

�

=

E

i

bs(s

�

i

1

; : : : ; s

�

i

m

) =

E

i

s

�

i

�

, then s

�

i

�

= s

�

i

�

(since E

i

is non-trivial), and thus s

�

=

E

1

[E

2

s

�

.
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�

0

: fs

1

; : : : ; s

m

; s

0

1

; : : : ; s

0

m

0

g ! Y

0

, for an appropriate set of variables Y

0

, such

that �

0

(u) = �

0

(v) i� u =

E

1

[E

2

v holds for all u; v 2 fs

1

; : : : ; s

m

; s

0

1

; : : : ; s

0

m

0

g.

In order to compute the necessary variable abstractions, it is su�cient to use

this mapping �

0

. (Note that =

E

i

is invariant under renaming of variables.) As-

sume that �

0

1

; �

0

2

are the corresponding abstraction mappings. Since =

E

i

was

assumed to be decidable on pure terms, we can decide

b

s(s

�

0

i

1

; : : : ; s

�

0

i

m

) =

E

i

s

�

0

i

�

and

b

s

0

(s

0�

0

i

1

; : : : ; s

0�

0

i

m

0

) =

E

i

s

0�

0

i

�

. This shows that t+ and t

0

+ can be computed.

Now, top(t+) = top(t

0

+) is obviously decidable, and (t+)

�

i

and (t

0

+)

�

i

can be

computed since induction again yields that we can decide =

E

1

[E

2

on the alien

subterms of t+ and t

0

+. Finally, (t+)

�

i

=

E

i

(t

0

+)

�

i

is decidable by assumption.

In order to decide �

(1)

1

, we must be able to determine to which layer of the

amalgamated product (the equivalence class of) a given term in T (�

1

[ �

2

; C)

belongs. The following theorem shows that there is a close connection between

this layer and the depth of the layer-reduced form of the term. For a given term

t 2 T (�

1

[ �

2

; C), we denote its interpretation in A

1

(resp. B

1

) by t

A

1

(resp.

t

B

1

).

Theorem 5.3 Assume that E

1

and E

2

are regular theories over disjoint signa-

tures �

1

and �

2

, and that the free amalgamated product of hCi

�

1

;E

1

and hCi

�

2

;E

2

is constructed as described in Section 4. Let t 2 T (�

1

[ �

2

; C).

(A

0

) t

A

1

2 A

0

i� top(t+) 2 �

1

[ C and depth(t+) = 0.

(D

0

) t

B

1

2 D

0

i� top(t+) 2 �

1

[ C and depth(t+) = 0.

(A

n

) For n > 0, t

A

1

2 A

n

n (A

n�1

[ C

n

) i� top(t+) 2 �

1

and depth(t+) = 2n.

(D

n

) For n > 0, t

B

1

2 D

n

i� top(t+) 2 �

1

and depth(t+) = 2n.

(B

n

) For n > 0, t

B

1

2 B

n

n (B

n�1

[ D

n�1

) i� top(t+) 2 �

2

and depth(t+) =

2n� 1.

(C

n

) For n > 0, t

A

1

2 C

n

i� top(t+) 2 �

2

and depth(t+) = 2n� 1.

Proof. First, note that 1-terms, i.e., terms with top symbol in �

1

[ C, have

an even depth, whereas 2-terms, i.e., terms with top symbol in �

2

have an odd

depth. This is so because elements of C are counted as 1-symbols and �

1

[ �

2

does not contain constants.

(A

0

) Assume that t

A

1

2 A

0

= T (�

1

; C)==

E

1

, i.e., there exists a term s 2

T (�

1

; C) such that t

A

1

= s

A

1

. Since t =

E

1

[E

2

t+ and s = s+, and sinceA

1

is the

(E

1

[E

2

)-free algebra with generators C, this implies t+ =

E

1

[E

2

s+. Consequently,

top(t+) = top(s+) 2 �

1

[ C, and (t+)

�

1

=

E

1

(s+)

�

1

. Now, s 2 T (�

1

; C) implies

that (s+)

�

1

does not contain abstraction variables (i.e., variables that replace
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alien subterms). Since E

1

is regular, this implies that (t+)

�

1

does not contain

abstraction variables, and thus depth(t+) = 0.

Conversely, assume that top(t+) 2 �

1

[ C and depth(t+) = 0. In this case,

t+ 2 T (�

1

; C), and thus t

A

1

= (t+)

A

1

2 A

0

= T (�

1

; C)==

E

1

.

(D

0

) Assume that t

B

1

2 D

0

. By construction of the free amalgamated prod-

uct, this implies t

A

1

= g

1

(t

B

1

) 2 A

0

. Thus, top(t+) 2 �

1

[C, and depth(t+) = 0

follows from (A

0

).

Conversely, top(t+) 2 �

1

[ C and depth(t+) = 0 yields t

A

1

2 A

0

by (A

0

),

and thus t

B

1

= h

1

(t

A

1

) 2 D

0

by construction of the free amalgamated product.

In the following, we assume that n > 0. We prove (A

n

), (D

n

), (B

n

), and (C

n

)

by induction on n for the \only-if" direction and by induction on depth(t+) for

the \if" direction.

(B

n

) Assume that t

B

1

2 B

n

n (B

n�1

[D

n�1

). This means that there exists a

term

b

s 2 T (�

2

;

c

D

n�1

) such that

�

b

s

B

1

= t

B

1

= (t+)

B

1

,

�

b

s contains at least one element of D

n�1

since otherwise

b

s

B

1

2 B

n�1

,

�

b

s 6=

E

2

d for all d 2 D

n�1

since otherwise

b

s

B

1

2 D

n�1

. Note that

b

s =

E

2

d

for some d 2

c

D

n�2

is impossible because E

2

was assumed to be regular.

(Recall that

c

D

n�1

=

S

n�1

i=0

D

i

.) Assume that d

1

; : : : ; d

m

are all the elements of

c

D

n�1

that occur in

b

s, i.e., we can write

b

s =

b

s(d

1

; : : : ; d

m

). Without loss of

generality, we may assume that d

1

2 D

n�1

. Considered as a (�

1

[ �

2

)-algebra,

B

1

is generated by C, and thus there exist terms s

1

; : : : ; s

m

2 T (�

1

[�

2

; C) such

that (s

i

+)

B

1

= s

B

1

i

= d

i

for i = 1; : : : ; m. Let us consider the corresponding

layer-reduced terms s

i

+more closely. We know that d

i

2 D

m

i

for somem

i

� n�1:

m > 0: By induction, (s

i

+)

B

1

= d

i

2 D

m

i

yields top(s

i

+) 2 �

1

and depth(s

i

+) =

2m

i

.

m = 0: (D

0

) yields top(s

i

+) 2 �

1

[ C and depth(s

i

+) = 0.

Let s :=

b

s(s

1

+; : : : ; s

m

+). Because the free constants in

c

D

n�1

behave like ab-

straction variables for =

E

2

, the fact that

b

s 6=

E

2

d for all d 2

c

D

n�1

implies

that s+ = s. Now, s

B

1

=

b

s

B

1

= (t+)

B

1

yields s+ = s =

E

1

[E

2

t+, and

thus top(t+) = top(s) 2 �

2

and s

�

2

=

E

2

(t+)

�

2

. Since E

2

is regular, this

means that t+ contains (modulo =

E

1

[E

2

) the same alien subterms as s, namely,

t

1

+ =

E

1

[E

2

s

1

+; : : : ; t

m

+ =

E

1

[E

2

s

m

+. Thus, we have (t

i

+)

B

1

= (s

i

+)

B

1

= d

i

,

which yields top(t

i

+) 2 �

1

[ C and depth(t

i

+) = 2m

i

, where m

i

� n � 1 is
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such that d

i

2 D

m

i

. In addition, we know that d

1

2 D

n�1

. This implies that

depth(t+) = 2(n� 1) + 1 = 2n� 1.

Conversely, assume that top(t+) 2 �

2

and depth(t+) = 2n � 1. Thus, t+ =

b

t(t

1

+; : : : ; t

n

+), where

� t

1

+; : : : ; t

n

+ are the alien subterms of t+,

� (t+)

�

2

=

b

t(y

1

; : : : ; y

m

) for abstraction variables y

1

; : : : ; y

m

,

�

b

t(y

1

; : : : ; y

m

) 6=

E

2

y

i

for i = 1; : : : ; m,

� top(t

i

+) 2 �

1

[ C.

� depth(t

i

+) < 2n � 1 for all i = 1; : : : ; m, and there exists a j; 1 � j � m,

such that depth(t

j

+) = 2(n� 1),

By de�nition of the depth of a term, top(t

i

+) 2 �

1

[C implies that depth(t

i

+) is

an even number. Thus, there exist numbers m

i

< n such that depth(t

i

+) = 2m

i

(for i = 1; : : : ; m). Because depth(t

i

+) < depth(t+) and top(t

i

+) 2 �

1

[ C,

induction or (D

0

) yields (t

i

+)

B

1

2 D

m

i

. This shows that (t+)

B

1

2 B

n

. We

have (t+)

B

1

62 B

n�1

because there exists a j such that d

j

:= (t

j

+)

B

1

2 D

n�1

and E

2

is regular. Finally, (t+)

B

1

62 D

n�1

holds since E

2

is non-trivial and

b

t(y

1

; : : : ; y

m

) 6=

E

2

y

i

for i = 1; : : : ; m.

(C

n

) Assume that t

A

1

2 C

n

. By construction of the free amalgamated prod-

uct, this implies t

B

1

= h

1

(t

A

1

) 2 B

n

n (B

n�1

[ D

n�1

). Thus, (B

n

) yields

top(t+) 2 �

2

and depth(t+) = 2n� 1.

Conversely, top(t+) 2 �

2

and depth(t+) = 2n� 1 implies t

B

1

2 B

n

n (B

n�1

[

D

n�1

), and thus t

A

1

= g

1

(t

B

1

) 2 C

n

.

(A

n

) can be treated like (B

n

). The only di�erence is that in some places where

the proof of (B

n

) used an induction argument (for (D

m

) with m < n), the proof

of (A

n

) makes use of the already proved (C

n

).

(D

n

) can be treated like (C

n

).

The following examples shows that the requirement \E

1

and E

2

regular" is

necessary for the theorem to hold. For our purposes, this is not a real restriction

since the existence of a non-empty E

i

-compatible reduction ordering implies that

E

i

is regular.

Example 5.4 Let E

1

:= ff(x; y) = h(y)g and E

2

:= fg(x) = g(x)g, and c 2 C.

We have f(g(c); c)+ = f(g(c); c) since g(c)+ = g(c) and f(y

1

; y

2

) 6=

E

1

y

i

for

i = 1; 2. Thus, depth(f(g(c); g(c))+) = 2, since depth(g(c)) = 1. However,

f(g(c); c)

A

1

= h(c)

A

1

2 A

0

. The reason is that, because of the non-regularity

of E

1

, the layer-reduced term f(g(c); c) is =

E

1

[E

2

-equivalent to a term of smaller

depth.
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If =

E

1

and =

E

2

are decidable, then the layer-reduced form of a term t 2

T (�

1

[ �

2

; C) can be computed, and thus Theorem 5.3 can be used to decide to

which layer of the free amalgamated product t

A

1

belongs. If s; t 2 T (�

1

[�

2

; C)

belong to di�erent layers, then this already allows to decide whether s

A

1

�

(1)

1

t

A

1

(or equivalently, s

B

1

�

(2)

1

t

B

1

) holds or not. The next lemma is concerned with

the case in which s

A

1

and t

A

1

(and thus also s

B

1

and t

B

1

) belong to the same

layer.

Lemma 5.5 Let s; t 2 T (�

1

[ �

2

; C).

(A

0

) If s

A

1

; t

A

1

2 A

0

, then s

A

1

�

(1)

1

t

A

1

is decidable.

(D

0

) If s

B

1

; t

B

1

2 D

0

, then s

B

1

�

(2)

1

t

B

1

is decidable.

(A

n

) If s

A

1

; t

A

1

2 A

n

n (A

n�1

[ C

n

) for n > 0, then s

A

1

�

(1)

1

t

A

1

is decidable.

(D

n

) If s

B

1

; t

B

1

2 D

n

for n > 0, then s

B

1

�

(2)

1

t

B

1

is decidable.

(B

n

) If s

B

1

; t

B

1

2 B

n

n (B

n�1

[D

n�1

) for n > 0, then s

B

1

�

(2)

1

t

B

1

is decidable.

(C

n

) If s

A

1

; t

A

1

2 C

n

for n > 0, then s

A

1

�

(1)

1

t

A

1

is decidable.

Proof. (A

0

) Assume that s

A

1

; t

A

1

2 A

0

. We know that s

A

1

= (s+)

A

1

and

t

A

1

= (t+)

A

1

, and Theorem 5.3 yields s+; t+ 2 T (�

1

; C). By Lemma 4.3 and

the de�nition of �

(1)

0

, we have

(s+)

A

1

�

(1)

1

(t+)

A

1

i� �((s+)

A

1

) �

(1)

C

0

;>

C;0

�((t+)

A

1

) or

�((s+)

A

1

) = �((t+)

A

1

) and (s+)

A

1

�

(1)

C

0

;>

C;0

(t+)

A

1

:

By de�nition, � replaces every constant c 2 C = C

0

occurring in s+ or t+ by

the representative

b

c

0

of C

0

. Let s

0

; t

0

be the terms obtained by this replacement.

In order to decide �((s+)

A

1

) = �((t+)

A

1

), it is su�cient to decide s

0

=

E

1

[E

2

t

0

(which is decidable by Lemma 5.2). In addition, we know that �

(1)

C

0

;>

C;0

is

decidable by assumption.

(D

0

) Assume that s

B

1

; t

B

1

2 D

0

. By construction of the free amalgamated

product, g

1

(s

B

1

) = s

A

1

2 A

0

and g

1

(t

B

1

) = t

A

1

2 A

0

. In addition, since g

1

is an order isomorphism, s

B

1

�

(2)

1

t

B

1

i� t

A

1

�

(1)

1

t

A

1

. Thus, (A

0

) implies (D

0

).

In the following, we assume that n > 0. We prove (A

n

), (D

n

), (B

n

), and (C

n

)

by induction on n.

(B

n

) Assume that s

B

1

; t

B

1

2 B

n

n (B

n�1

[ D

n�1

). Let s+ =

b

s(s

1

+; : : : ; s

k

+)

and t+ =

b

t(t

1

+; : : : ; t

`

+), where

� s

1

+; : : : ; s

k

+ are the alien subterms of s+ and t

1

+; : : : ; t

`

+ are the alien

subterms of t+,
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� top(s+) 2 �

2

and top(t+) 2 �

2

,

� top(s

1

+); : : : ; top(t

`

+) 2 �

1

[ C,

� depth(s

1

+); : : : ; depth(t

`

+) � 2(n� 1),

� (s+)

�

2

=

b

s(y

1

; : : : ; y

k

) and (t+)

�

2

=

b

t(z

1

; : : : ; z

`

) for abstraction variables

y

1

; : : : ; z

`

.

By Lemma 4.3 and the de�nition of �

(2)

n

, we have (s+)

B

1

�

(2)

1

(t+)

B

1

i�

�((s+)

B

1

) �

(2)

b

D

n�1

;>

D;n�1

�((t+)

B

1

) or

�((s+)

B

1

) = �((t+)

B

1

) and (s+)

B

1

�

(2)

b

D

n�1

;>

D;n�1

(t+)

B

1

:

First, note that �((s+)

B

1

) and �((t+)

B

1

) can be obtained from s+ and t+ by

determining the depth 2m

i

of s

i

+ (for i = 1; : : : ; k) and 2n

j

of t

j

+ (for j =

1; : : : ; `),and then replacing s

i

+ in s+ by the representative

b

d

m

i

of D

m

i

, and t

j

+

in t+ by the representative

b

d

n

j

of D

n

j

. This yields terms s

0

; t

0

2 T (�

2

;

c

D

n�1

). We

have �((s+)

B

1

) = �((t+)

B

1

) i� s

0

=

E

2

t

0

, and �((s+)

B

1

) �

(2)

b

D

n�1

;>

D;n�1

�((t+)

B

1

)

i� s

0

�

(2)

b

D

n�1

;>

D;n�1

t

0

. Note that the ordering >

D;n�1

on the representatives is

given by the layer ordering of the sets D

i

. Consequently, to know which of these

constants are identical, and how the distinct constants are ordered, we need not

really compute these constants. Since =

E

2

and �

(2)

b

D

n�1

;>

D;n�1

are invariant under

order preserving renamings of constants, it is su�cient to replace the alien sub-

terms by constants that satisfy the same ordering and identi�cation relationships

as the representatives. Since =

E

2

and �

(2)

b

D

n�1

;>

D;n�1

were assumed to be decidable,

it only remains to be shown that

(s+)

B

1

�

(2)

b

D

n�1

;>

D;n�1

(t+)

B

1

is decidable. Each of the alien subterms s

1

+; : : : ; t

`

+ corresponds to a constant

d 2

c

D

n�1

. By replacing the alien subterms by these constants, we could obtain

terms s

00

; t

00

2 T (�

2

;

c

D

n�1

). It is, however, not quite clear how to determine these

constants. But this is not a problem since invariance of =

E

2

and �

(2)

b

D

n�1

;>

D;n�1

under order preserving renamings allows us to use arbitrary constants, as long

as they satisfy the correct ordering and identi�cation relationships. The correct

identi�cations can be determined by using the decision procedure for =

E

1

[E

2

.

The ordering information can be computed by induction ((D

m

) for 0 < m < n)

or (D

0

).

(C

n

) can be reduced to (B

n

) with the help of the order isomorphism h

1

.

(A

n

) and (D

n

) can be treated similarly.

This concludes the proof of Theorem 5.1.
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6 Conclusion

The aim of this work was to develop a general approach for combining compatible

reduction orderings that are total on ground terms. The main motivation was

that it is often relatively easy to design such orderings for \small" signatures and

theories, whereas it is rather involved to give a direct de�nition of an appropriate

ordering in the case of signatures that contain several symbols axiomatized by

equational theories over disjoint subsets of the signature. As an example, we

have mentioned the case of signatures containing free symbols and more than one

AC-symbol.

The main restrictions that must hold for this combination approach to apply

are:

1. The signatures of the single theories must not contain constant symbols,

i.e., the only available constants are free constants.

2. Both theories must admit compatible orderings total on ground terms that

satisfy the constant dominance condition (CDC).

These restrictions appear to be not overly severe. In fact, we have shown by an

example that a violation of the �rst condition may lead to cases where a com-

patible reduction ordering total on ground terms does not exist for the combined

theory. In addition, for strongly regular theories (such as associativity, commuta-

tivity, or associativity-commutativity of a binary function symbol), the existence

of a compatible orderings total on ground terms implies the existence such an

ordering that also satis�es the CDC.

A major drawback of the presented combination approach is that until now

it does not yield a non-trivial ordering for terms with variables. Indeed, we

have de�ned an ordering on hCi

�

1

[�

2

;E

1

[E

2

, where the elements of C are treated

as free constants. For an ordering on terms with variables, one must also have

stability under substitution. For some applications (e.g., the decision problem for

ground equations modulo AC), having an ordering on ground terms is su�cient.

For other applications where one works with terms containing variables (such as

unfailing completion), this is not quite satisfactory. For example, for unfailing

completion, using an ordering where all terms with variables are incomparable

would mean that none of the identities can be oriented into a rule, and thus all

of them must be used in both directions to compute critical pairs. Thus, an

important open problem is to extend the combined ordering in a non-trivial way

to a decidable ordering on terms with variables. It might be that this makes

additional restrictions on the theories necessary (such as requiring them to be

collapse-free).
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